Picky elements, subnormalisers, and character correspondences

Gunter Malle

RPTU Kaiserslautern

Valencia, 30. January 2025

Picky elements

G a finite group

• Write $G = H_1 \cup \cdots \cup H_r$ for proper subgroups $H_i < G$.

Minimal such *r*: the *covering number* of *G*.

Known: r > 2.

Restrict to covering p-elements G_p of G (p a prime):

• write $G_p = P_1 \cup \cdots \cup P_r$ for $P_i \in \text{Syl}_p(G)$.

Maróti–Martínez–Moretó (2024): Do we need all Sylow *p*-subgroups?

Else, G has redundant Sylow p-subgroups.

Picky elements, cont.

Easy: G has redundant Sylow p-subgroup \iff all p-elements of G lie in at least two Sylow p-subgroups.

Definition

A *p*-element $x \in G$ is *picky* : $\iff x$ lies in unique Sylow *p*-subgroup of G.

Example

- normal Sylow p-subgroups,
- TI (trivial intersection) Sylow p-subgroups are never redundant (all $1 \neq x \in G_p$ are picky).

Basic observation:

Lemma

Let $P \in \operatorname{Syl}_p(G)$ and $x \in P$ picky in G. Then $\operatorname{N}_G(\langle x \rangle) \leq \operatorname{N}_G(P)$.

Picky character correspondence

For $x \in G$ let

$$Irr^{x}(G) := \{ \chi \in Irr(G) \mid \chi(x) \neq 0 \}.$$

Conjecture (Moretó-Rizo (2024))

Let $x \in P \in \operatorname{Syl}_p(G)$ be picky \Longrightarrow there exists a bijection

$$f_X : \operatorname{Irr}^X(G) \xrightarrow{1-1} \operatorname{Irr}^X(N_G(P))$$

such that

- (1) $\chi(1)_p = f_{\chi}(\chi)(1)_p$, and
- (2) $\mathbb{Q}(\chi(x)) = \mathbb{Q}(f_{\chi}(\chi)(x)).$

In fact, Moretó-Rizo conjecture that the bijection can be taken independent of x (in a fixed Sylow p-subgroup P).

See talk of Alex for connections to other local-global conjectures.

Picky elements in nearly simple

[MMM]: symmetric groups \mathfrak{S}_n contain picky p-elements for all p.

What about other simple groups?

Lemma

Let $N \subseteq G$ with [G : N] prime to p. Then:

A p-element $x \in G$ is picky $\iff x$ is picky in N.

Thus, for example, may consider \mathfrak{S}_n instead of \mathfrak{A}_n when $p \neq 2$.

Lemma

Let $N \subseteq G$ where N is either a p-group or central. Then:

A p-element $x \in G$ is picky $\iff xN$ is picky in G/N.

Thus, may consider, $SL_n(q)$ in place of $PSL_n(q)$, or even $GL_n(q)$ when $p \nmid (q-1)$.

Unipotent picky elements

Now G of Lie type (e.g., $SL_n(q)$, $Sp_{2n}(q)$, ..., $E_8(q)$)

First case: *p* is defining characteristic, so *p*-elements are *unipotent*.

Theorem

G quasi-simple of Lie type. A unipotent element $1 \neq x \in G$ is picky \iff one of the following holds:

- (1) x is regular unipotent;
- (2) $G = SU_{2n+1}(q)$ and x has Jordan block sizes (2n, 1);
- (3) $G = {}^{2}B_{2}(q^{2})$ is a Suzuki group;
- (4) $G = {}^2G_2(q^2)$ is a Ree group; or
- (5) $G = {}^{2}F_{4}(q^{2})$ is a Ree group and $|C_{G}(x)| = 2q^{6}$.

Use: Sylow *p*-normalisers are *Borel subgroups*; regular unipotent elements are contained in a *unique* Borel subgroup.

Unipotent picky elements, cont.

About proof of (2)–(5):

- For SU₃(q), ${}^2B_2(q^2)$ and ${}^2G_2(q^2)$: Sylow p-subgroups are TI \Rightarrow all $1 \neq x \in G_p$ picky.
- For ${}^2F_4(q^2)$, C = [x], use:

$$|C \cap P| = \frac{|C|}{[G : N_G(P)]} \implies x \text{ picky}$$

(classes of $N_G(P)$ know by work of Himstedt)

• For $SU_{2m+1}(q)$ use induction, starting at $SU_3(q)$.

Subnormalisers

For $H \leq G$, set

$$S_G(H) := \{g \in G \mid H \triangleleft \triangleleft \langle g, H \rangle \},$$

and for $x \in G$ the *subnormaliser* is

$$\operatorname{\mathsf{Sub}}_G(x) := \big\langle S_G(\langle x \rangle) \big\rangle.$$

Proposition

Let $x \in G$ be a p-element $\Rightarrow \operatorname{Sub}_G(x)$ is generated by the normalisers of the Sylow p-subgroups of G containing x.

Corollary

 $x \in P \in Syl_p(G)$ is picky \iff $Sub_G(x) = N_G(P)$.

Character correspondences

Conjecture (Moretó-Rizo (2024))

For any $x \in G_p$ there exists a bijection $f_x : \operatorname{Irr}^x(G) \xrightarrow{1-1} \operatorname{Irr}^x(\operatorname{Sub}_G(x))$ such that

- (1) $\chi(1)_p = f_x(\chi)(1)_p$, and
- (2) $\mathbb{Q}(\chi(x)) = \mathbb{Q}(f_x(\chi)(x))$ for all $\chi \in \operatorname{Irr}^x(G)$.

Specialises to "picky" conjecture.

Question

Does there exist f_x such that moreover

- (3) $\chi(x)_p = f_x(\chi)(x)_p$, and
- (4) $\mathbb{Q}_p(\chi) = \mathbb{Q}_p(f_{\mathsf{x}}(\chi))$ for all $\chi \in \operatorname{Irr}^{\mathsf{x}}(G)$?

Subnormalisers in groups of Lie type

Again, G of Lie type in characteristic p, so "p-element" = unipotent.

Proposition

G of Lie type, $x \in G$ unipotent $\Rightarrow \operatorname{Sub}_G(x)$ is a parabolic subgroup of G.

Proof.

Clearly, $Sub_G(x)$ contains a Sylow *p*-normaliser,

hence a Borel B of G.

Since G has a BN-pair \Rightarrow all overgroups of B are parabolic

 \Rightarrow Sub_G(x) is parabolic.

Subnormalisers in groups of Lie type, II

Proposition

Let $G = SL_n(q)$, $SO_{2n}^+(q)$, $E_6(q)$, $E_7(q)$ or $E_8(q)$ and $x \in G$ unipotent. Then: $Sub_G(x) = G \iff x$ is not regular.

Use that Dynkin diagram is simply laced.

Theorem

The Moretó-Rizo Conjecture holds for all unipotent elements of G as above with Z(G) = 1, $p \ge 7$.

Use theorem of Green-Lehrer-Lusztig (1976):

$$x \in G \text{ regular } \Longrightarrow \operatorname{Irr}^{x}(G) = \operatorname{Irr}_{p'}(G).$$

Then done with McKay bijection.

Subnormalisers in rank 2

Proposition

Let $= B_2(q)$, $G_2(q)$, ${}^3D_4(q)$ or ${}^2F_4(q^2)$, and $x \in G$ unipotent. Then $\operatorname{Sub}_G(x) = G$ unless one of

- (1) x is picky, where $Sub_G(x) \sim_G B$;
- (2) $G = B_2(q)$ for $p \neq 2$, $|C_G(x)| = 2q^3(q+1)$, and $Sub_G(x) \sim_G P_1$;
- (3) $G = G_2(q)$ for $p \neq 3$, $|C_G(x)| = 3q^4$, and $Sub_G(x) \sim_G P_1$;
- (4) $G = {}^{3}D_{4}(q)$ with $|C_{G}(x)| = q^{6}$, and $Sub_{G}(x) \sim_{G} P_{2}$; or
- (5) $G = {}^2F_4(q^2)$ with $|C_G(x)| \in \{3q^{12}, 2q^8, 4q^8\}$, and $Sub_G(x) \sim_G P_1$.

Proposition

The Moretó-Rizo Conjecture holds for all unipotent elements of G as above.

The case $G = {}^2F_4(q^2)$, $q^2 = 2^{2f+1}$, $\bar{q} := q/\sqrt{2}$

Table: 2-Parts of character values for $G \dots$

	#	1	И9	u_{10}	$u_{11} = u_{12}^{-1}$	$u_{13,14}$	u_{15-18}
χ _{2,3,23,24}	$2q^2$	ą	ą	ą	$ar{q}$	$ar{q}$	ą
χ 4,27,30,33	q^2	q^2	q^2	q^2	q^2	•	•
$\chi_{5,6,8,9}$	4	\bar{q}^4	$ar{q}^4$	$ar{q}^4$	$ar{q}^4$	$ar{q}^3$	\bar{q}^2
χ_{11-14}	4	\bar{q}^4	$ar{q}^4$	$ar{q}^4$	$(\bar{q}^4\pm2i\bar{q}^3)_2$	$ar{q}^3$	\bar{q}^2
χ 7,10	2	$2\bar{q}^4$	$2\bar{q}^4$	$2\bar{q}^4$	$2ar{q}^4$	•	•
χ 15 $-$ 17	3	q^4	$2q^{4}$				•

Table: ... and for $N_G(P_1)$

	#	1	$c_{1,33}$	$c_{1,34}$	$c_{1,35} = c_{1,36}^{-1}$	$c_{1,37-38}$	$c_{1,39-42}$
$\chi_{7,8}(k), \chi_{9,10}$	$2q^2$	ą	ą	$ar{q}$	$ar{q}$	ą	ą
$\chi_2(k), \chi_{11}$	q^2	q^2	q^2	q^2	q^2	•	
χ_{21-24}	4	\bar{q}^4	$ar{q}^4$	$ar{q}^4$	$ar{q}^4$	$ar{q}^3$	$ar{q}^2$
χ_{14-17}	4	\bar{q}^4	$ar{q}^4$	$ar{q}^4$	$(\bar{q}^4\pm2i\bar{q}^3)_2$	$ar{q}^3$	$ar{q}^2$
χ 13,25	2	$2\bar{q}^4$	$2\bar{q}^4$	$2\bar{q}^4$	$2\bar{q}^4$		
χ_{18-20}	3	q^4	$2q^{4}$	•		•	

Subnormalisers in non-simply laced types

Lemma

Let $G = SO_{2n+1}(q)$, q odd, and $x \in G$ unipotent non-regular. Then: $Sub_G(x) = G$ unless x has Jordan form $J_{2n-1} \oplus J_1^2$.

Lemma

Let $G = \operatorname{Sp}_{2n}(q)$ $(n \geq 3)$ and $x \in G$ unipotent non-regular. Then: $\operatorname{Sub}_G(x) = G$ unless q is odd and x has Jordan form $J_{2n-2k} \oplus J_{2k}$ for some $1 \leq k \leq n/2$.

Lemma

Let $G = SU_{2m}(q)$ and $x \in G$ unipotent non-regular. Then:

 $Sub_G(x) = G$ unless x has Jordan form $J_{2m-1} \oplus J_1$.

Odd-dimensional unitary groups: even more tricky.

Picky semisimple elements

Now, G = G(q) of Lie type in characteristic $\neq p$ (so $p \nmid q$), and d := order of q modulo p.

Theorem

Assume Sylow p-subgroups of G are abelian. Then: $x \in G_p$ is picky \iff $C_G(x)$ is the centraliser of a Sylow d-torus.

Theorem

Assume Sylow p-subgroups of G are non-abelian and p>3. Then G possesses no picky p-elements.

Proof in non-abelian case

Proof.

Use: for $P \in \operatorname{Syl}_p(G)$ have

- (1) $N_G(P) \leq N := N_G(T_d)$ for T_d a Sylow d-torus (as p > 3)
- (2) p divides order of $W_d := N_G(T_d)/T_d$ (as Sylow non-abelian)
- (3) W_d has ≥ 2 Sylow p-subgroups (as p > 3, by inspection)

Now, if $x \in G$ is p-element $\stackrel{(1)}{\Longrightarrow}$ may assume $x \in N$.

If $x \in T_d \Rightarrow xT_d$ lies in all Sylow *p*-subgroups of $W_d \stackrel{\text{(3)}}{\Longrightarrow} x$ not picky.

If $x \notin T_d$, show $|C_G(x)|$ is divisible by some prime not dividing |N| $\Longrightarrow C_G(x) \not\leq N_G(P) \Longrightarrow x$ not picky
(as otherwise $C_G(x) \leq N_G(P)$)

(as otherwise $C_G(x) \leq N_G(\langle x \rangle) \leq N_G(P)$).

For p = 2, 3, both (1) and (3) above may fail.

Picky semisimple 3-elements

For p = 3, still complete classification:

Theorem

Assume Sylow 3-subgroups of G are non-abelian. Then G possesses a picky 3-element x if and only if one of:

- **1** $G = SU_3(8)$ or $G_2(8)$ with $|C_G(x)| = 81$;
- ② $G = {}^{3}D_{4}(2)$ with $|C_{G}(x)| = 54$; or
- $G = G_2(2) \cong PSU_3(3).2.$

Proposition

The "picky" Moretó-Rizo Conjecture holds for G as above at p = 3.

Picky semisimple 2-elements

Work in progress.....

I expect:

- no picky 2-elements for groups of rank at least 8,
- but quite a few for small rank groups.

So further interesting cases for Alex and Noelia's conjectures!