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Gabriel Navarro is a long-standing collaborator
and friend. It is a privilege to be present at
this meeting to mark his significant birthday. 1
hope to appeal to his well-known enthusiasm
for character theory in this talk, and possibly
to ignite the interest of others in some of the
questions raised. We will discuss some con-
jectures involving block theory and character
theory.

A consequence of the conjectures (if
true) for Brauer character tables

Let G be a finite group which satisfies Con-
jecture A (to follow) for the prime p. Let @&
denote the matrix obtained from the Brauer
Character table of ¢G. Then the matrix

PPl = M
may be written in the form

M — Z My,
yer//G



where each My in an £ x £ symmetric positive
semi-definite matrix with non-negative integer
entries, and the rank of the matrix My is the
number of p-regular conjugacy classes of G
which have non-empty intersection with Cq(y)
(in particular, M7 has full rank).

A generalized character

Let G be any finite group, and let p be a prime.
We let Gp denote the set of elements of G
whose orders are a power of p, and Gp/ de-
note the set of elements of G whose orders
are coprime to p. We define an integer-valued
class function W, , s of G as follows: we set
W1 p.c(xz) = 0 whenever x € G has order divis-
ible by p, and we set Wy , o(z) = |Gp N C(x)|
whenever ¢ € Gp/.



Then Wy, is always a generalized character
of G. One way to see this is via Brauer’s char-
acterization of characters and a theorem of
Frobenius. Another is via Adams operations
and higher indicators: if we choose a power q of
p such that |G|, divides g and ¢ =1 (mod|G]|,),
and we define the higher indicator vy(x) for
each complex irreducible character x of G via

1
ve(x) = Gl (Z X(Qq)> ,

9geG

then each v4(x) is an integer and it is easy to
check that

Vi, a= >, v0Ox
x€lrr(G)

In other words, for this value of ¢, the integer
V1, G(x) is the number of g-th roots of z in G
for each x € GG. We note also that for this value
of ¢, we have x(z9) = x(z,) for each z € G.
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Notice that each irreducible character u of G
occurs with multiplicity between 1 — (1) and
pn(l) in Wy, G, and that p occurs with multi-
plicity u(1) if and only if OP(G) < keru. Hence
linear characters all occur with non-negative
multiplicity.

The Truncated Conjugation Module

Let (K,R,F) be a p-modular system for the
finite group G.

The Truncated Conjugation Character (with
respect to p) for G is the class function A, g
which takes value O on all p-singular elements
of G, and takes value |Cq(x)| at each p-regular
r € G. Block orthogonality relations tell us
that

Nepc= 2. ¢,
H€IBrp(G)

where 9¢ IS the character of the projective cover
(as RG-module) of the simple FG-module af-
fording Brauer character ¢.



Hence A, ¢ agrees on p-regular elements with
the Brauer character of the projective FG-module

@ Homp(S, P(S)),
S

where S runs through the isomorphism types
of simple FG-modules, and P(S) denotes the
projective cover of S ( as FG-module). Since
projective FG-modules lift to projective RG-
modules, it follows that A, ¢ is indeed a char-
acter of (G, and is afforded by a projective RG-
module, which we call the Truncated Conjuga-
tion Module for G, and denote by T, -

A Conjecture in Three Equivalent Forms
We first propose :

Conjecture A: The generalized character V4 ,
iIs a character of G, and may be afforded by a
projective RG-module Py ;, .



Next, we propose:

Conjecture B: Let {¢; : 1 < i < ¢} be the
Brauer characters of the absolutely irreducible
FG-modules. For each i, let ¢; be the unique
extension of ¢; to a class function of G con-
stant on p’-sections, and let {(,) be the usual
sesquilinear form on complex-valued class func-
tions of G. (It is well-known that each ¢} is a
generalized character of G). Then ( j,qﬁp is a
non-negative integer for all 1,5 < £.

Finally we propose:

Conjecture C: The Truncated Conjugation

Module T, ,, o of RG, is expressible in the form
~ G

yEGp//G

and each Py , c..(,) IS @ projective RCq(y)-module.

7p?
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Remark: The equivalence of Conjectures A
and C is routine. Also, it is easy to check
that (¢;,¢7) = ($iV1, 6, ¢5) for all i,5 < 2. If
Conjecture B holds, then taking ¢1 to be the
trivial Brauer character and allowing j to vary
shows that (W;,4,¢;) > 0 for 1 < j < ¥4, so
that Wq , G is a non-negative integer combi-
nation of characters of projective indecompos-
able RG-modules and Conjecture A holds. On
the other hand, if Conjecture A holds, then we
have

(97, 05) = (W1 pa ¢igj) >0
for all 7,5 as the product of Brauer characters

IS a Brauer character, so Conjecture B holds.
Hence Conjectures A and B are equivalent.



Some Special Cases and some Partial
Cases

If G is a p’-group, then Wy , 4 is the trivial char-
acter and the trivial RG-module is projective,
so Conjecture A holds for G. If G is a p-group,
then Wl,p’G IS the regular character, and the
regular RG-module is projective, so Conjecture
A holds for G.

If Conjecture A holds for G/Op,(G), then Con-
jecture A holds for G. It Wy, 00 (q) IS af-
forded by a projective RG/O»(G)-module le’G/Op(G)
then V1.6 is afforded by the projective cover

of Py, c/0,(G) @S RG-module, so Py p, g is that
projective cover. In particular, we have:

Lemma 1: If G has a normal Sylow p-subgroup,
then Conjecture A holds for G and Py , ¢ Is the
projective cover of the trivial RG-module.
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Lemma 2: If G has a normal p-complement,
then Conjecture A holds for G.

Proof: We know that W, 4 is a virtual pro-
jective. Hence it suffices to prove that

(W1paG ¢i) >0

for each Brauer irreducible ¢; of G. But

1 G
\Ij , ’l/ pr— 17R 'L
Wire®) = 2 ica@l, (2 Res§ e @)

which is certainly non-negative, because ¢; re-
stricts to a character on p’-subgroups.
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In fact, using Brauer's Second and Third Main
T heorems, we may prove:

Lemma 3: IfCqo(x) has a normal p-complement
for each non-identity p-element x € G, then

W1 .G IS @ character of G. If, in addition, p is

odd, then Conjecture A holds for G.

Remark: Notice that Conjecture A holds for
G if

G = Opp p(G).
To prove Conjecture A for p-solvable G, it is
sufficient, by Fong theory, to prove that Wl,p,G

is a character of GG, but this seems to be open
at present.
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Lemma 4: If G is a finite group with a char-
acteristic p BN-pair, then \Ifl,p,g IS a character
afforded by the projective module

Stp(G) ® Stp(G),

where Stp denotes the Steinberg module.

Proof:. This follows immediately from general
properties of the Steinberg character. For we
have

V1,6 = [Cal;
for every p-regular element y € G.

An easy consequence of this viewpoint is the
following version of a Theorem of G. Lusztig :

Corollary b: Let G be as in Lemma 4, and
{¢; - 1 < i< ¢} be the irreducible Brauer char-
acters of G and let xs denote the Steinberg
character of G. Then {xs¢; : 1 < i < 4} is
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a Z-basis (consisting of characters) for the 7Z-
module of generalized characters of G vanish-
ing on all p-singular elements of G.

Theorem (T. Scharf): IfG = Sy, forn a posi-
tive integer, then W, ,  is a character of G for
each prime p.

Remark : Scharf proved a much more general
theorem for S, than this particular case, but
the more general version of the Theorem does
not hold for all finite groups.



The Strongly p-Embedded Subgroup Case

We outline in some detail the proof of the fol-
lowing:

Lemma 6: Let G be a finite group with a
proper strongly p-embedded subgroup H. Then
if Conjecture A holds for H, it also holds for G.

Proof: We work over F for convenience. Sup-
pose that W, , iy is a character and is afforded
by a projective RH-module Py, g which is the
lift of a projective FH-module Q. Then Wy, g
agrees with

> Indg, (1)
x€Hp/H

on p-regular elements of H, and vanishes else-
where, and similarly for G. Since H is strongly
p-embedded in G, we see that

IndG(Wy 5 —1) =Wy ,c— 1.
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It follows that in the Green ring for FG. we
have

Ind%(Q) — M = N,

where M is a projective complement to the
trivial FG-module in Ind%(F) and N is a virtual
projective FG module lifting to the virtual pro-
jective RG-module Pl,p,G' Now the projective
cover of the trivial FH-module is a summand
of Q with multiplicity one. Hence Ind%(Q) has
a submodule isomorphic to F é& M, soO since
M is projective, M is isomorphic to a direct
summand of Ind%(Q) and N is a projective
FG-module. Hence Py, ¢ is a projective RG-
module, and Conjecture A holds for GG, as re-
quired.

Corollary 7: Let G be a finite group with a
TI-Sylow p-subgroup S , and let H = Ng(S)
and T be a Hall p’-subgroup of H. Then

Wi, =14+Ind%(1) —Ind§ (1)

which is a character afforded by a projective
RG-module.

14



Proof: Use the proof of Lemma 6, and the
fact that \Ul,p,H is afforded by the projective
cover of the trivial module, which is Ind¥ (R).

Then W, , g is as stated.

Using similar methods, we may prove:

Theorem 8: Conjecture A holds for G if G
has a cyclic Sylow p-subgroup, or if the Sy-
low p-subgroup of G is a Klein 4-group or a
quaternion group of order 8. Hence Conjec-
ture A holds for all prime divisors of |G| if
G = PSL(2,9) with ¢ # &1 (mod 8).
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The general case

The strongly p-embedded case uses the fact
that the virtual module P; , ¢ — R is visibly p-
local in that case. In general, we can prove
that Py, ¢ — R is p-local. This allows an in-
ductive procedure to construct P, for an
arbitrary finite group G. Loosely speaking, we
have seen how to construct Pj , g using pro-
jective covers when O,(G) # 1. The fact that
P1 , g — R is p-local means we can construct it
by taking signed sums of modules induced from
known modules of p-local (proper) subgroups
of G when O,(G) = 1.

Using a MOobius inversion argument and the
Steinberg (virtual) module for general finite
groups, as considered by P.J. Webb, we may
obtain an explicit formula (as virtual projective
module) for P; , ¢ in the Green ring for RG.
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The Steinberg (virtual) module in the Green
ring for RG was defined (up to sign) by Webb
as

St,(@) = Y (—Dllmdg (R),
oceNp(GQ)/G
where |o| denotes the number of non-identity
(p)-subgroups in the chain o (we include the
empty chain). This can be considered as the
“non-p-local’ part of the trivial module R.

Then we may see by an inversion argument
that (in the Green ring for RG), the virtual
module

Py = Y Ind§ gy (PISty(Na(Q)/Q)]),
Q/G

where P[] denotes that we are taking the pro-
jective cover of a given (virtual) projective N (Q)/Q-
module when considered as (virtual) Ng(Q)-
module. We include the case = 1 in this

sum.
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In conjunction with Webb’'s inversion formula
for Sty, we may write this (in the Green ring)
as

(Pl,p,G —R) =

S Ind§ o) (PISt(NG(Q)/Q)] — Stp(Na(Q)/Q))
1#Q/G

Remark: We consider Py, o as an analogue
for general finite groups of the endomorphism
ring of the Steinberg module for finite groups
with a characteristic p BN-pair.

18



