
 Javascript Accessible Style Sheets 1

Dynamic HTML in Netscape
Communicator

Contents

This book describes how to use Dynamic HTML to incorporate style sheets,
positioned content, and downloadable fonts in your web pages.

About This Guide 5
Purpose of This Document 5

Structure of This Document 5

Typographic Conventions 7

Chapter 1.Introducing Dynamic HTML 9
Introducing Style Sheets 10

Introducing Content Positioning 11

Introducing Downloadable Fonts 11

Part 1. Style Sheets 13

Chapter 2.Introduction To Style Sheets 15
Style Sheets in Communicator 16

Using Cascading Style Sheets to Define Styles 17

Using JavaScript and the Document Object Model to Define Styles 19

Introductory Example 20

Inheritance of Styles 22

Chapter 3.Creating Style Sheets and Assigning Styles 24

Javascript-Accessible Style Sheets

2 Javascript-Accessible Style Sheets

Defining Style Sheets with the <STYLE> Tag 25

Defining Style Sheets in External Files 27

Defining Classes of Styles 28

Defining Named Individual Styles 32

Using Contextual Selection Criteria 33

Specifying Styles for Individual Elements 36

Combining Style Sheets 38

Chapter 4.Format Properties for Block-Level Elements 40
Block-level Formatting Overview and Example 41

Setting Margins or Width 44

Setting Border Widths, Color, and Style 46

Setting Paddings 47

Inheritance of Block-Level Formatting Properties 48

Chapter 5.Style Sheet Reference 48
Comments in Style Sheets 51

New HTML Tags 52

New Attributes for Existing HTML Tags 54

New JavaScript Object Properties 58

Style Sheet Properties 59

Units 93

Chapter 6.Advanced Style Sheet Example 95
Style Sheets Ink Home Page 96

Overview of the Style Sheet 97

Main Block 99

The Introductory Section 99

The Training Section 104

The Seminars Section 108

Web Sites and Consultation Sections 110

The Background Block 110

Trouble-shooting Hints 111

Part 2. Positioning HTML Content 113

 Javascript Accessible Style Sheets 3

Chapter 7.Introduction 115
Overview 116

Positioning HTML Content Using Styles 117

Positioning HTML Content Using the <LAYER> Tag 121

Chapter 8.Defining Positioned Blocks of HTML Content 123
Absolute versus Relative Positioning. 124

Attributes and Properties 126

The <NOLAYER> Tag 140

Applets, Plug-ins, and Forms 141

Chapter 9.Using JavaScript With Positioned Content 142
Using JavaScript to Bring Your Web Pages to Life 143

The Layer Object 144

Creating Positioned Blocks of Content Dynamically 151

Writing Content in Positioned Blocks 152

Handling Events 153

Using Localized Scripts 155

Animating Positioned Content 156

Chapter 10.Fancy Flowers Farm Example 160
Introducing the Flower Farm 161

Creating the Form for Flower Selection 161

Positioning the Flower Layers 163

Chapter 11.Swimming Fish Example 165
Positioning and Moving the Fish and Poles 166

Changing the Stacking Order of Fish and Poles 171

Chapter 12.Nikki’s Diner Example 177
Content in the External Files 178

The File for the Main Page 179

Chapter 13.Expanding Colored Squares Example 182

Javascript-Accessible Style Sheets

4 Javascript-Accessible Style Sheets

Running the Example 183

Creating the Colored Squares 185

The Initialization Functions 187

The Last Layer 189

Moving the Mouse Over a Square 190

The expand() Function 191

The contract() Function 192

Styles in the Document 194

Chapter 14.Changing Wrapping Width Example 194
Running The Example 195

Defining the Block of Content 196

Capturing Events for the Layer 196

Defining the Dragging Functions 197

Part 3. Downloadable Fonts 201

Chapter 15.Using Downloadable Fonts 201
Creating and Using Font Definition Files 202

New Attributes for the FONT Tag 205

Further Information 206

Index 209

, 5

About This Guide

This guide discusses the concept and use of Dynamic HTML,
which includes style sheets, content positioning, and
downloadable fonts.

Purpose of This Document
This document is for content developers who wish to have more
control over the layout and appearance of their web page, and
who wish to incorporate animations using HTML and JavaScript.

This document discusses each of the three components of
Dynamic HTML, describes how to use them, and gives examples
of the use of each one.

Structure of This Document
This document is divided into three parts, one for each major
component of Dynamic HTML.

Part 1. Style Sheets contains the following chapters:

Chapter 2, “Introduction To Style Sheets,” introduces style sheets,
discusses the two kinds of syntax you can use to define them,
gives an introductory example, and discusses the concept of
style inheritance.

Chapter 3, “Creating Style Sheets and Assigning Styles,” discusses
the different ways to define styles and apply them to content
elements.

Javascript-Accessible Style Sheets

6 Javascript-Accessible Style Sheets

Chapter 4, “Format Properties for Block-Level Elements,”
discusses the border and format characteristics you can set for
block-level elements.

Chapter 5, “Style Sheet Reference,” lists the tags and attributes
that pertain to style sheets, and lists all the properties you can
define for styles.

Chapter 6, “Advanced Style Sheet Example,” presents and
discusses a web page that makes extensive use of style sheets.

Part 2. Positioning HTML Content contains the following chapters:

Chapter 7, “Introduction,” introduces the concept of positioning
HTML content and discusses the two kinds of syntax you can
use to create positioned blocks of content.

Chapter 8, “Defining Positioned Blocks of HTML Content,”
discusses absolute versus relative positioning, lists the
attributes and properties you can use for creating positioned
blocks of content, discusses the <NOLAYER> tag, and summa-
rizes the behavior of applets, plug-ins, and forms in positioned
blocks of content.

Chapter 9, “Using JavaScript With Positioned Content,” discusses
how to use JavaScript to create and modify positioned blocks
of content.

Chapter 10, “Fancy Flowers Farm Example,” illustrates how to
how to hide and show blocks of HTML content. It uses a pop-
up menu to pick which block to display.

Chapter 11, “Swimming Fish Example,” presents an example in
two parts. The first part illustrates how to position and move
blocks of content. The second part illustrates how to change
the stacking order of the blocks.

Chapter 12, “Nikki’s Diner Example,” illustrates a simple use of
using external files as the source for a positioned block of
content.

 Javascript Accessible Style Sheets 7

Typographic Conventions

Chapter 13, “Expanding Colored Squares Example,” illustrates
how to expand and contract the clipping region of a positioned
block of content, without changing the wrapping width of the
block.

Chapter 14, “Changing Wrapping Width Example,” illustrates how
to capture mouse events for a block of content and how to
change the wrapping width of a block. It provides the basic
groundwork for making "draggable" blocks of content.

Part 3. Downloadable Fonts contains the following single chapter:

Chapter 15, “Using Downloadable Fonts,” discusses why you
would use downloadable fonts and how to use them.

Typographic Conventions
The following conventions are used throughout this guide:

• Code identifiers that express literal JavaScript and HTML syntax
appear in a monospaced font like this: computer voice .

• Italic font is used for emphasis and to indicate a special term
like this: special term.

• Variable names are presented in italic like this: variable.

Javascript-Accessible Style Sheets

8 Javascript-Accessible Style Sheets

, Introducing Dynamic HTML 9

C h a p t e r

1
Introducing Dynamic HTML

Navigator 4 from Netscape, which is part of the Communicator
product suite, includes three new areas of functionality that taken
together give you Dynamic HTML. The three components of
Dynamic HTML are style sheets, content positioning, and
downloadable fonts. Used together, these three components give
you greater control over the appearance, layout, and behavior of
your web pages.

This chapter contains the following sections:

• Introducing Style Sheets

• Introducing Content Positioning

• Introducing Downloadable Fonts

Style sheets let you specify the stylistic attributes of the
typographic elements of your web page. With content
positioning, you can ensure that pieces of content are displayed
on the page exactly where you want them to appear, and you can
modify their appearance and location after the page has been
displayed. With downloadable fonts, you can use the fonts of

Javascript-Accessible Style Sheets

10 Javascript-Accessible Style Sheets

your choice to enhance the appearance of your text. Then you
can package the fonts with the page so that the text is always
displayed with your chosen fonts.

Introducing Style Sheets
Prior to the introduction of style sheets for HTML documents, web
page authors had limited control over the presentation of their
web pages. For example, you could specify that certain text
should be displayed as headings, but you could not set margins
for your pages or specify the line heights or border decoration for
text.

Style sheets give you greater control over the presentation of your
web documents. Using style sheets, you can specify many stylistic
attributes of your web page, such as text color, margins, alignment
of elements, font styles, font sizes, font weights and more. You
can use borders to make certain elements stand out from the body
of the content. You can specify different fonts to use for different
elements, such as paragraphs, headings, and blockquotes. You
can guarantee that your chosen fonts will be available on all
systems by packaging them as downloadable fonts and attaching
them to the web page.

In addition, you can use a style sheet as a template or "master
page" so that multiple pages can use the same style sheet.

Part 1. Style Sheets, discusses the two kinds of syntax you can use
for defining styles; describes how to define and use styles;
discusses how to define border characteristic for block-level
elements; gives the list of style properties; and presents an
advanced example of the use of styles.

 Javascript Accessible Style Sheets 11

Introducing Content Positioning

Introducing Content Positioning
No longer are you constrained to use sequential content laid out
linearly in your web pages. By specifying positions for blocks of
HTML content, you can decide what contents goes where on the
page, instead of leaving it up to the browser to lay it out for you.
You could, for example, place one block of content in the top-left
corner of the page, and another block in the bottom-right corner.
Blocks of content can share space too, so images and text can
overlap. You decide precisely where each part of the content will
appear, and Navigator 4 will lay your page out exactly as you
want.

Using JavaScript, you can change the layout of your page
dynamically, and you can modify the page in a variety of ways
after the user has opened it. You can make content vanish or
appear, and you can change the color of individual parts of your
page. You can incorporate animation into your web pages by
moving and modifying individual parts of your HTML page on the
fly.

Used together, content positioning and style sheets allow you to
create web pages that use different styles in different parts of the
page.

Part 2. Positioning HTML Content, discusses the two kinds of
syntax you can use for positioning HTML content; describes the
attributes and properties you can specify for positioned content;
discusses how to use JavaScript to create and modify positioned
content; and gives five complete, working examples of the use of
positioned content.

Javascript-Accessible Style Sheets

12 Javascript-Accessible Style Sheets

Introducing Downloadable Fonts
Using downloadable fonts, you can attach specific fonts to your
web page. As a result, your page will always be displayed with
the fonts you picked out for it. No longer need you use generic
fonts to make your pages look approximately similar on each
platform. No longer are you subject to the vagaries of platform-
specific fonts, because a downloadable font can be displayed on
any platform.

To protect the rights of the font designers, the downloadable fonts
are locked so that users cannot copy them and use them again.
You can include your own fonts in your web documents without
worrying that your readers may copy them for their own
purposes.

Whether you apply font attributes directly to a piece of text or use
style sheets to define the font family for different kinds of
elements, you can use downloadable fonts in your web page to
guarantee that the user sees your page as you want it to be seen.

Part 3. Downloadable Fonts, discusses how to create and use
downloadable fonts, and how to attach them to your web page.

, 13

Part 1.Style Sheets
Contents

Chapter 2. Introduction To Style Sheets 15

Style Sheets in Communicator 16

Using Cascading Style Sheets to Define Styles 17

Using JavaScript and the Document Object Model to Define Styles 18

Introductory Example 19

Inheritance of Styles 22

Chapter 3. Creating Style Sheets and Assigning Styles 24

Defining Style Sheets with the <STYLE> Tag 25

Defining Style Sheets in External Files 26

Defining Classes of Styles 28

Defining Named Individual Styles 31

Using Contextual Selection Criteria 33

Specifying Styles for Individual Elements 35

Combining Style Sheets 37

Chapter 4. Format Properties for Block-Level Elements 39

Block-level Formatting Overview and Example 40

Setting Margins or Width 43

Setting Border Widths, Color, and Style 45

Setting Paddings 46

Inheritance of Block-Level Formatting Properties 47

Chapter 5. Style Sheet Reference 47

Comments in Style Sheets 50

New HTML Tags 51

<STYLE> 51

<LINK> 51

 52

Javascript-Accessible Style Sheets

14 Javascript-Accessible Style Sheets

New Attributes for Existing HTML Tags 53

STYLE 53

CLASS 54

ID 55

New JavaScript Object Properties 57

tags 57

classes 58

ids 58

Style Sheet Properties 58

Font Properties 58

Font Size 58

Font Family 60

Font Weight 61

Font Style 62

Text Properties 63

Text Decoration 65

Text Transform 66

Text Alignment 67

Text Indent 69

Block-Level Formatting Properties 71

Margins 71

Padding 73

Border Widths 74

Border Style 76

Border Color 76

Width 77

Alignment 78

Clear 83

Color and Background Properties 84

Background Image 85

Background Color 87

Classification Properties 88

List Style Type 89

 Javascript Accessible Style Sheets 15

White Space 91

Units 92

Length Units 92

Color Units 93

Chapter 6. Advanced Style Sheet Example 94

Style Sheets Ink Home Page 95

Overview of the Style Sheet 96

Main Block 97

The Introductory Section 98

Intro Head 99

Text in the Intro Block 100

List of Services 101

End of the Intro Block 102

The Training Section 102

The Seminars Section 106

Web Sites and Consultation Sections 108

The Background Block 108

Trouble-shooting Hints 109

Javascript-Accessible Style Sheets

16 Javascript-Accessible Style Sheets

C h a p t e r

2
Introduction To Style Sheets

This chapter introduces the use of style sheets in Netscape
Communicator. It gives an overview of the two different types of
syntax you can use to define styles, presents an introductory
example of the use of styles, and explains about style inheritance,

• Style Sheets in Communicator

• Using Cascading Style Sheets to Define Styles

• Using JavaScript and the Document Object Model to Define Styles

• Introductory Example

• Inheritance of Styles

 Javascript Accessible Style Sheets 17

Style Sheets in Communicator

Style Sheets in Communicator
Prior to the introduction of style sheets for HTML documents, web
page authors had limited control over the presentation of their
web pages. For example, you could specify text to be displayed as
headings, but you could not set margins for your pages or specify
the line heights or margins for text.

Style sheets give you greater control over the presentation of your
web documents. Using style sheets, you can specify many stylistic
attributes of your web page, such as text color, margins, element
alignments, font styles, font sizes, font weights and more.

Netscape Communicator supports two types of style sheet syntax.
It supports style sheets written in cascading style sheet (CSS)
syntax. It also supports style sheets written in JavaScript that use
the document object model. In the document object model, a
document is an object that has properties. Each property can in
turn be an object that has further properties, and so on.

When you define a style sheet, you must declare its type as either
"text/CSS" or "text/JavaScript" . To try to keep things
straight, this manual uses the term CSS syntax to refer to the
syntax for style sheets whose type is "text/CSS". It uses the
term JavaScript syntax to refer to the syntax for style sheets whose
type is "text/JavaScript".

Javascript-Accessible Style Sheets

18 Javascript-Accessible Style Sheets

Using Cascading Style Sheets to Define Styles
Netscape Communicator fully supports cascading style sheets.
Web pages that use cascading style sheets will be displayed
appropriately in Netscape Communicator with a few minor
exceptions.

This document describes the style sheet functionality that is
implemented in Netscape Navigator 4.0. However, if you’d like to
see the original specification for style sheets as authored by the
World Wide Web Consortium, you can go to:

http://www.w3.org/pub/WWW/TR/REC-CSS1

A style sheet consists of a one or more style definitions. In CSS
syntax, the property names and values of a style are listed inside
curly braces following the selection criteria for that style.

The selection criteria determines which elements the style is
applied to, or which elements it can be applied to. If the selection
criteria is an HTML element, the style is applied to all instances of
that element. The selection criteria can also be a class, an ID, or it
can be contextual. Each of these kinds of selection criteria are
discussed in this document.

Each property in the style definition is followed by a colon then
by the value for that property. Each property name/value pair
must be separated from the next pair by a semicolon.

For example, the following cascading style sheet defines two
styles definitions. One style definition specifies that the font size
for all <P> elements is 18 and the left margin for all <P> elements
is 20. The other style definition specifies that the color for all
<H1> elements is blue.

<STYLE TYPE="text/css">

<!--

P {font-size:18pt; margin-left:20pt;}

 Javascript Accessible Style Sheets 19

Using JavaScript and the Document Object Model to De-

H1 {color:blue;}

-->

</STYLE>

You can include the contents of the style sheet inside a comment
(<!-- ... -->) so that browsers that do not recognize the
<STYLE> element will ignore it.

Important: When specifying values for cascading style sheet
properties, do not include double quotes.

Cascading style sheets require strict adherence to correct syntax.
Be sure not to omit any semicolons between name/value pairs. If
you miss a single semi-colon, the style definition will be ignored.
Similarly if you accidentally include a single extraneous character
anywhere within a style definition, that definition will be ignored.

Using JavaScript and the Document Object Model
to Define Styles

Using JavaScript, you can define style sheets that use the
document object model. In this model, you can think of a
document such as a web page as an object that has properties that
can be set or accessed. Each property can in turn be an object that
has further properties. For example, the following code sets the
color property of the object in the H1 property of the object in
the tags property of the document :

document.tags.H1.color = "red";

The tags property always applies to the document object for
the current document, so you can omit document from the
expression document.tags .

Javascript-Accessible Style Sheets

20 Javascript-Accessible Style Sheets

The following example uses JavaScript and the document object
model to define a style sheet that has two style definitions. One
style definition specifies that the font size for all <P> elements
(tags) is 18 and the left margin for all <P> elements is 20. The
other style definition specifies that the color for all <H1> elements
is blue.

<STYLE TYPE = "text/javascript">

tags.P.fontSize = "18pt";

tags.P.marginLeft = "20pt";

tags.H1.color = "blue";

</STYLE>

Do not wrap the contents of the style sheet in a comment (!--
... -->) for style sheets that use JavaScript syntax.

You can also use the with (tags.element) syntax to shorten
the style specification for elements that have several style settings.
The following example specifies that all <P> elements are
displayed in green, bold, italic, Helvetica font.

with (tags.P) {

color="green";

font-weight="bold";

font-style="italic";

font-family="helvetica";

}

Introductory Example
Using style sheets, you can specify many stylistic attributes of your
web page. The stylistic characteristics you can set for font and text
include text alignment, text color, font family (such as Garamond),

 Javascript Accessible Style Sheets 21

Introductory Example

font style (such as italic), font weight (such as bold), line height, text
decoration (such as underlining), horizontal and vertical alignment of
text, and text indentation (which allows indented and outdented
paragraphs). You can specify background colors and images for
elements. You can specify the color and style to use for the bullets and
numbers in lists.

You can set margins and also specify borders for block-level elements.
You can set the padding for elements that have borders, to indicate the
distance between the element’s content and its border.

The following code shows a simple style sheet in both CSS syntax and
JavaScript syntax. This style sheet specifies that all <P> elements have left
and right margins, and their text is centered between the margins. All
<H4> elements are green and underlined. All <H5> elements are
uppercase. They have a red border that is four points thick. The border is
in outdented 3D style and the padding between the text and the border
is four points. The text color is red and the background color is yellow.
All <BLOCKQUOTE> elements are blue italic, with a line height that is
150% larger than the font size. The first line is indented by 10% of the
width of the element.

CSS Syntax

<STYLE TYPE="text/css">

P {

textAlign:center; margin-left:20%; margin-right:20%;}

H4 {

text-decoration:underline; color: green;}

H5 {

text-transform:uppercase; color: red;

border-width:4pt; border-style:outset;

background-color:yellow; padding: 4pt;

border-color:red;}

BLOCKQUOTE {

color:blue; font-style:italic;

Javascript-Accessible Style Sheets

22 Javascript-Accessible Style Sheets

line-height:1.5; text-indent:10%;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (tags.P) {

textAlign = "center"; marginLeft="20%". margin-right="20%";}

with (tags.H4) {

textDecoration = "underline; color = "green";

textTransform = "uppercase;}

with (tags.H5) {

color = "red";

borderWidths="4pt"=; borderStyle="outset";

backgroundColor="yellow"; paddings("4pt");

borderColor="red";}

with (tags.BLOCKQUOTE) {

color="blue"; fontStyle="italic";

lineHeight = 1.5; textIndent = "20pt";}

</STYLE>

Style Sheet Use

<H4>Underlined Heading 4</H4>

<BLOCKQUOTE>

This is a blockquote. It is usual for blockquotes to be indented, but
the first line of this blockquote has an extra indent. Also the line
height in this blockquote is bigger than you usually see in blockquotes.

<h5>uppercase heading 5 with a border</H5>

</BLOCKQUOTE>

<P>This paragraph has a text alignment value of center. It also has
large margins, so each line is not only centered but is also inset on
both sides from the element that contains it, which in this case is the
document.</P>

 Javascript Accessible Style Sheets 23

Inheritance of Styles

Example Results

Underlined Heading 4 EXAMPLE2

This is a blockquote. It is usual for blockquotes to be indented, but
the first line of this blockquote has an extra indent. Also the line
height in this blockquote is bigger than you usually see in
blockquotes. EXAMPLE2

uppercase heading 5 with a border EXAMPLE2

This paragraph has a text alignment value of center. It also has large
margins, so each line is not only centered but is also inset on both
sides from the element that contains it, which in this case is
the document. EXAMPLE2

Inheritance of Styles
An HTML element that contains another element is considered to
be the parent element of the element it contains, and the element
it contains is considered to be its child element.

For example, in the following HTML text, the <BODY> element is
the parent of the <H1> element which in turn is the parent of the
 element.

<BODY>

<H1>The headline is important!</H1>

</BODY>

In many cases, child elements acquire or inherit the styles of their
parent elements. For example, suppose a style has been assigned
to the <H1> element as follows:

<STYLE type="text/css">

H1 {color:blue;}

Javascript-Accessible Style Sheets

24 Javascript-Accessible Style Sheets

</STYLE>

<BODY>

<H1>The headline is important!</H1>

In this case, the child element takes on the style of its
parent, which is the <H1> element, so the word is appears in
blue. However, suppose you had previously set up a style
specifying that elements should be displayed in red. In that
case, the word is would be displayed in red, because properties
set on the child override properties inherited from the parent.

Inheritance starts at the top-level element. In HTML, this is the
<HTML> element, which is followed by the <BODY> element.

To set default style properties for all elements in a document, you
can specify a style for the <BODY> element. For example, the
following code sets the default text color to green.

CSS Syntax

<STYLE TYPE="text/css">

BODY {color: green;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

tags.BODY.color="green";

</STYLE>

A few style properties are not inherited by the child element from
the parent element, but in most of these cases, the net result is the
same as if the property was inherited. For example, consider the
background color property, which is not inherited. If a child
element does not specify its own background color, then the
parent’s background color is visible through the child element. It
will look as if the child element has the same background color as
its parent element.

 Javascript Accessible Style Sheets 25

Inheritance of Styles

C h a p t e r

3
Creating Style Sheets and Assigning Styles

This chapter looks at each of the different ways you can defines
styles, and shows how to apply styles to HTML elements.

• Defining Style Sheets with the <STYLE> Tag

• Defining Style Sheets in External Files

• Defining Classes of Styles

• Defining Named Individual Styles

• Using Contextual Selection Criteria

•

• Combining Style Sheets

A style sheet is a series of one or more style definitions.You can
define a style sheet directly inside the document that uses it, or
you can define a style sheet in an external document. If the style
sheet is in an external document, then it can be used by other

Javascript-Accessible Style Sheets

26 Javascript-Accessible Style Sheets

documents. For example, a series of pages for a particular site
could all use a single externally defined style sheet that sets up the
house style.

If the style sheet is unlikely to be applicable to other documents, it
can be more convenient to define it directly in the document that
uses it, since then you have the style sheet and the content in one
place.

Defining Style Sheets with the <STYLE> Tag
To define a style sheet directly inside a document, use the
<STYLE> tag in the header part of your document. The <STYLE>
tag opens the style sheet, and the </STYLE> tag closes the style
sheet. Be sure to use the <STYLE> tag before the <BODY> tag.

When you use the <STYLE> tag, you can specify the TYPE
attribute to indicate if the type is "text/css" or "text/
javascript" . The default value for TYPE is "text/css" .

The following example defines a style sheet that specifies that all
level-one headings are uppercase blue, and all blockquotes are
red italic.

CSS Syntax

<HEAD>

<STYLE TYPE="text/css">

H1 {color: blue; text-transform: uppercase;}

BLOCKQUOTE {color: red; font-style: italic;}

</STYLE>

</HEAD>

<BODY>

 Javascript Accessible Style Sheets 27

Defining Style Sheets in External Files

JavaScript Syntax

<HEAD>

<STYLE TYPE="text/javascript">

tags.H1.textTransform = "uppercase";

tags.H1.color = "blue";

tags.BLOCKQUOTE.color = "red";

tags.BLOCKQUOTE.font-style: italic;

</STYLE>

</HEAD>

<BODY>

Style Sheet Use

<H1>This Heading Is Blue</H1>

BLOCKQUOTE>This blockquote is displayed in red.

Example Results

This Heading Is Blue EXAMPLE2B

This blockquote is displayed in red. EXAMPLE2B

Defining Style Sheets in External Files
You can define style sheets in a file that is separate from the
document and then link the style sheet to the document. The
benefit of this approach is that the style sheet can be used by any
HTML document. You could think of an externally defined style
sheet as a style template that can be applied to any document. For
example, you could apply a style template to all pages served
from a particular web site by including a link to the style sheet file
in each page.

Javascript-Accessible Style Sheets

28 Javascript-Accessible Style Sheets

The syntax for defining styles in external files is the same as for
defining styles inside a document file, except that you do not
need the opening and closing <STYLE> and </STYLE> tags.
Here is an example:

CSS Syntax

/* external style sheet mystyles1.htm */

all.BOLDBLUE {color:blue; font-weight: bold;}

H1 {line-height: 18pt;}

P {color: yellow;}

/* end of file */

JavaScript Syntax

/* external style sheet mystyles1.htm */

classes.BOLDBLUE.all.color = "blue";

classes.BOLDBLUE.all.fontWeight = "bold";

tags.H1.lineHeight="18pt";

tags.P.color="yellow";

/* end of file */

To use an externally defined style sheet in a document, use the
<LINK> tag to link to the style sheet, as in this example:

CSS Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/css"

HREF="http://style.com/mystyles1.htm">

</HEAD>

JavaScript Syntax

<HTML>

<HEAD>

 Javascript Accessible Style Sheets 29

Defining Classes of Styles

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/javascript"

HREF="http://style.com/mystyles1.htm">

</HEAD>

Example Results

This paragraph, and only this paragraph is green. EXAMPLE3

This paragraph is in the usual color, whatever that may be.

Defining Classes of Styles
If a document includes or links to a style sheet, all the styles
defined in the style sheet can be used by the document. If the
style sheet specifies the style of any HTML elements, then all the
HTML elements of that kind in the document will use the
specified style.

There may be times when you want to selectively apply a style to
HTML elements. For example, you may want some of the
paragraphs (<P> elements) in a document to be red, and others to
be blue. In this situation, defining a style that applies to all <P>
elements is not the right thing to do. Instead, you can define
classes of style, and apply the appropriate class of style to each
element that needs to use a style.

To apply a style class to an HTML element, define the style class
in the style sheet, and then use the CLASS attribute in the HTML
element.

Javascript-Accessible Style Sheets

30 Javascript-Accessible Style Sheets

The following examples show how to define a class called
GREENBOLD, whose color is a medium shade of green and whose
font weight is bold. The example then illustrates how to use the
style in HTML text.

CSS Syntax

<STYLE TYPE="text/css">

all.GREENBOLD {color:#44CC22; font-weight:bold;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.GREENBOLD.all.color = "#44CC22"

classes.GREENBOLD.all.fontWeight = "bold"

</STYLE>

Style Sheet Use

<H1 CLASS=GREENBOLD>This Heading Is Very Green</H1>

<P CLASS = GREENBOLD>This paragraph uses the style class GREENBOLD. You
can use the CLASS attribute to specify the style class to be used by an
HTML element.</P>

<BLOCKQUOTE CLASS = GREENBOLD>

This blockquote uses the style class GREENBOLD. As a consequence, it is
both green and bold. It can be useful to use styles to make blockquotes
stand out from the rest of the page.

</BLOCKQUOTE>

Example Results

This Heading Is Very Green EXAMPLE4

This paragraph uses the style class GREENBOLD. You can use the CLASS
attribute to specify the style class to be used by an HTML
element. EXAMPLE4

This blockquote uses the style class GREENBOLD. As a consequence, it is
both green and bold. It can be useful to use styles to make blockquoutes
stand out from the rest of the page. EXAMPLE4

 Javascript Accessible Style Sheets 31

Defining Classes of Styles

In JavaScript syntax, you cannot use hyphens inside class names.
A hyphen is actually a minus sign, which is a JavaScript operator.
Class names In JavaScript syntax cannot include any JavaScript
operators, including but not limited to -, +, *, /, and %.

When defining a style class, you can specify which HTML
elements can use this style, or you can use the keyword all to let
all elements use it.

For example, the following code creates a style class
DARKYELLOW, which can be used by any HTML element. The
code also creates a class called RED1, which can be used only by
<P> and <BLOCKQUOTE> elements.

CSS Syntax

<STYLE type="text/css">

all.DARKYELLOW {color:#EECC00;}

P.RED1 {color: red; font-weight:bold;}

BLOCKQUOTE.red1 {color:red; font-weight:bold;}

</STYLE>

JavaScript Syntax

<STYLE type="text/javascript">

classes.DARKYELLOW.all.color="#EECC00";

classes.RED1.P.color = "red";

classes.RED1.P.fontWeight = "bold";

classes.RED1.BLOCKQUOTE.color = "red";

classes.RED1.BLOCKQUOTE.fontWeight = "bold";

</STYLE>

Style Sheet Use

<BODY>

Javascript-Accessible Style Sheets

32 Javascript-Accessible Style Sheets

<P CLASS=red1>This paragraph is red.</H1>

<P>This paragraph is in the default color, since it does not use the
class RED1.</P>

<BLOCKQUOTE CLASS="red1">This blockquote uses the class RED1.

</BLOCKQUOTE>

<H5 CLASS=red1>This H5 element tried to use the style RED1, but was not
allowed to use it.</H5>

<P CLASS=darkyellowclass>This paragraph is dark yellow.

<H5 CLASS=darkyellowclass>This H5 element tried to use the style
DARKYELLOW and was succesful.</H5>

Example Results

This paragraph is red. EXAMPLE5

This paragraph is in the default color, since it does not use the class
RED1.

This blockquote uses the class RED1. EXAMPLE5

This H5 element tried to use the style RED1, but was not allowed to
use it.

This paragraph is dark yellow. EXAMPLE55

This H5 element tried to use the style DARKYELLOW and was
successful. EXAMPLE55

An HTML element can use only one class of style. If you specify
two or more classes of style for an HTML element, the first one
specified is used. For example, in the following code the
paragraph will use the RED1 style and ignore the DARKYELLOW
style:

<P CLASS="RED1" CLASS="DARKYELLOW">Another paragraph.</P>

 Javascript Accessible Style Sheets 33

Defining Named Individual Styles

Defining Named Individual Styles
You can create individual named styles. An HTML element can
use both a class of style and a named individual style. Thus you
can use individual named styles to express stylistic exceptions to a
class of style. For example, if a paragraph uses the MAIN style
class, it could also use the named style BLUE1 which could
express some differences to the MAIN style.

Individual names styles are also useful for defining layers of
precisely positioned HTML content. For more details of layers, see
the Part 2. Positioning HTML Content.

To define named styles in CSS syntax, precede the name of the
style with the # sign. In JavaScript syntax, use the ids property.

To apply the style to an element, specify the style name as the
value of the element’s ID attribute.

The following codes defines a style class called MAIN. This style
class specifies a a line height of 20 points, a font size of 18 points;
a font weight of bold, and a color of red. The code also defines a
named style BLUE1 whose color is blue.

CSS Syntax

<STYLE TYPE="text/css">

all.STYLE1 {line-height: 20pt; font-size: 18pt;

font-weight: bold; color: red;}

#BLUE1 {color: blue;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (classes.STYLE1.all) {

lineHeight = "20pt";

Javascript-Accessible Style Sheets

34 Javascript-Accessible Style Sheets

fontSize = "18pt";

fontWeight = "bold";

all.color = "red";

}

ids.BLUE1.color = "blue";

</STYLE>

Style Sheet Use

<P CLASS="STYLE1">Here you see some tall red text. The text in this
paragraph is much taller, bolder, and bigger than paragraph text
normally is.</P>

<P CLASS="STYLE1" ID="BLUE1">This paragraph has tall, bold, blue text.
Although this paragraph is in class STYLE1 1, whose members are normally
red, it also has a unique ID that allows it to be blue.</P>

Example Results

Here you see some tall red text. The text in this paragraph is much
taller, bolder, and bigger than paragraph text normally is. EXAMPLE6A

This paragraph has tall, bold, blue text. Although this paragraph is in
class STYLE1 1, whose members are normally red, it also has a
unique ID that allows it to be blue. EXAMPLE6A2

Using Contextual Selection Criteria
You can define the style to be used by all HTML elements of a
particular kind. If you need more control over when a style is
used, you can define a style class that you can selectively apply to
any element. Sometimes however, even that level of control is not
enough. You might, for example, want to specify a green color for
all elements inside level-one headings.

 Javascript Accessible Style Sheets 35

Using Contextual Selection Criteria

You can achieve this level of control over the application of styles
by using contextual selection criteria in your style definition.
Contextual selection criteria allow you to specify criteria such as
"this style applies to this kind of element nested inside that kind of
element nested inside the other kind of element."

To specify contextual selection criteria in CSS syntax, list the
HTML elements in order before the opening curly brace of the
properties list. In JavaScript syntax, use the predefined method
contextual() .

The following example shows how to specify a green text color
for all elements inside <H1> elements.

CSS Syntax

<STYLE TYPE="text/css">

H1 EM {color:green;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

contextual(tags.H1, tags.EM).color = "green";

</STYLE>

Style Sheet Use

<H1>This is green, emphasized text, but this is plain heading-
one text</H1>

Example Results

This is green, emphasized text, but this is plain heading-one
text EXAMPLE6

Javascript-Accessible Style Sheets

36 Javascript-Accessible Style Sheets

Consider another example, given first in CSS syntax then in
JavaScript syntax:.

UL UL LI {color:blue;}

contextual(tags.UL, tags.UL, tags.LI).color = "blue";

In this case, the selection criteria match elements with at
least two parents. That is, only list items that are two levels
deep in an unordered list will match this contextual selection and
thus be displayed in blue.

You can use contextual selection criteria to look for tags, classes,
IDs, or combinations of these. For example, the following
example creates a class called MAGENTACLASS. Everything in this
class is magenta colored. All paragraphs in MAGENTACLASS that
are also inside <DIV> elements are italic. All text inside tags
nested inside paragraphs in MAGENTACLASS that are inside
<DIV> elements is extra large.

CSS Syntax

<STYLE TYPE="text/css">

all.MAGENTACLASS {color: magenta;}

DIV P.MAGENTACLASS {font-style: italic;}

DIV P.MAGENTACLASS B {font-size:18pt;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.MAGENTACLASS.all.color = "magenta";

contextual(tags.DIV, classes.MAGENTACLASS.P).fontStyle = "italic";

contextual(tags.DIV, classes.MAGENTACLASS.P, tags.B).fontSize = "18pt";

</STYLE>

Style Sheet Use

<DIV CLASS=MAGENTACLASS>

<H3>Heading 3 in the MAGENTACLASS</H3>

 Javascript Accessible Style Sheets 37

Specifying Styles for Individual Elements

<P>Is this paragraph magenta and italic? It should be. Here comes some
big bold text. We achieved this result with contextual
selection.</P>

<P>This paragraph should be magenta too.</P>

</DIV>

<P>This paragraph is still magenta colored, but since it is not inside a
DIV block, it should not be italic.</P>

Example Results

EXAMPLE8

Heading 3 in the MAGENTACLASS EXAMPLE8

Is this paragraph magenta and italic? It should be. Here comes some big
bold text. We achieved this result with contextual selection. EXAMPLE8

This paragraph should be magenta too. EXAMPLE8

EXAMPLE8

This paragraph is still magenta colored, but since it is not inside a
DIV block, it should not be italic. EXAMPLE8

Specifying Styles for Individual Elements
As well as defining styles in style sheets, you can also use the
STYLE attribute of an HTML tag to define a style for use by that
individual tag, and that tag only. This approach basically defines
the style on the fly, and can be useful in situations where you
want an element to use a style in a unique situation, where you
do not need to reuse the style elsewhere in the document.

In general though, it is better to define all the style used by a
document in a single place (be it at the top of the document or in
a separate style sheet file) so that you know where to make
changes to the style. If a style is defined in a style sheet, any
element in the document can use that style. If you want to change

Javascript-Accessible Style Sheets

38 Javascript-Accessible Style Sheets

the properties of the style, you need to make the change only
once and it is automatically applied to all elements that use that
style.

Sometimes, however, youmay want to specify the style of an
individual element, and an easy way to do this is to use the
STYLE attribute. The following example specifies the style of an
individual <P> element. It also shows how to use the STYLE
attribute with the tag to apply a style to a piece of
arbitrary content.

CSS Syntax

<P STYLE="color:green; font-weight:bold;

margin-right:20%; margin-left:20%;

border-width:2pt; border-color:blue;">

This paragraph, and only this paragraph is bold green with big margins
and a blue border.</P>

<P>This paragraph is in the usual color, whatever that may be, but this
word is different
from the other words in this paragraph.</P>

JavaScript Syntax

<P STYLE="color = 'green'; fontWeight='bold';

marginRight='20%' marginLeft='20%';

borderWidth='2pt'; borderColor='blue;">

This paragraph, and only this paragraph is bold green with big margins
and a blue border.</P>

<P>This paragraph is in the usual color, whatever that may be, but this
word is different
from the other words in this paragraph.</P>

Example Results

This paragraph, and only this paragraph is bold green with big
margins and a blue border. EXAMPLE19

 Javascript Accessible Style Sheets 39

Combining Style Sheets

This paragraph is the usual color, whatever that may be, but this
word is different from the other words in this paragraph.

Combining Style Sheets
You can use more than one style sheet to set the styles for a
document. You might want to do this when you have several
partial styles sheets that you wish to mix and match, or perhaps
where your document falls into several different categories, each
with its own style sheet.

For example, suppose you are are writing a white paper about the
benefits of a network product from a company called Networks
Unlimited. You might need to use three style sheet: one defining
the company’s usual style for white papers, another defining their
usual style for documents about networking products, and yet
another defining the corporate style for Networks Unlimited.

The following example illustrates the use of several style sheets in
one document:

<STYLE TYPE="text/css"

SRC="http://www.networksunlimited.org/styles/corporate"></STYLE>

<STYLE TYPE="text/css"

SRC="styles/whitepaper"></STYLE>

<STYLE TYPE="text/javascript"

SRC="styles/networkthings"></STYLE>

<STYLE TYPE="text/css">

H1 {color: red;} /* override external sheets */

</STYLE>

Javascript-Accessible Style Sheets

40 Javascript-Accessible Style Sheets

For externally linked style sheets, the last one listed takes
precedence over previously listed style sheets. So in this case, if
networkthings and whitepaper specify conflicting styles,
then the styles defined in networkthings take precedence over
styles defined in whitepaper .

Locally defined styles take precedence over styles defined in the
<STYLE> element and over styles defined in external style sheets.
In general, local style values override values inherited from parent
elements, and more specific style values override more general
values, as illustrated in the following example.

CSS Syntax

<STYLE TYPE="text/css">

P {color:blue;}

B {color:green;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

tags.P.color="blue";

tags.B.color="green";

</STYLE>

Style Sheet Use

<P>This is a blue paragraph, as determined by the style sheet. But these
bold words are green, as you see.</P>

<P STYLE="color:red">This is a red paragraph, as determined by the local
style. However, these bold words are still green, since the style
defined directly for bold elements overrides the style of the parent
element.</P>

Example Results

This is a blue paragraph, as determined by the style sheet. But these
bold words are green, as you see. EXAMPLE7

 Javascript Accessible Style Sheets 41

Combining Style Sheets

This is a red paragraph, as determined by the local style. However,
these bold words are still green, since the style defined directly for
bold elements overrides the style of the parent element. EXAMPLE7B

Javascript-Accessible Style Sheets

42 Javascript-Accessible Style Sheets

C h a p t e r

4
Format Properties for Block-Level

Elements

This chapter discusses the formatting options for block-level
elements. Block-level elements start on a new line, for example,
<H1> and <P> are block-level elements, but is not.

This chapter starts off by presenting an example that illustrates the
various ways of formatting block-level elements. After that comes
a section discussing each kind of formatting option in detail. The
chapter and ends with a brief overview of the inheritance
behavior of properties that are used for formatting block-level
elements.

• Block-level Formatting Overview and Example

• Setting Margins or Width

• Setting Border Widths, Color, and Style

• Setting Paddings

• Inheritance of Block-Level Formatting Properties

 Javascript Accessible Style Sheets 43

Block-level Formatting Overview and Example

Block-level Formatting Overview and Example
Style sheets treat each block-level element as if it were
surrounded by a box. Each box can have style characteristics in
the form of margins, borders, and padding. Each box can have a
background image or color.

The margins indicate the inset of the edge of the box from the
edges of the document (or parent element). Each box can have a
border that has a flat or three dimensional appearance. The
padding indicates the distance between the element’s border and
the element’s content.

You can also set the width of a block-level element, either to a
specific value or to a percentage of the width of the document (or
parent element). As you can imagine, it is redundant to set the left
and right margin and to also set the width.

If values are specified for the width and for both margins, the left
margin setting has the highest precedence. In this case, the value
for the right margin indicates the absolute maximum distance from
the right edge of the containing element at which the content
wraps. If the value given for the width would cause the element to
run past the right margin, the width value is ignored. If the width
value would cause the element to stop short of the right edge, the
width value is used.

You can set the horizontal alignment of an element to left, right,
or center. You do this by setting the float property in CSS
syntax or setting the align property in JavaScript syntax. It is also
redundant to set the left and/or right margin and then also set the
element’s alignment.

Javascript-Accessible Style Sheets

44 Javascript-Accessible Style Sheets

The following example illustrates the use of margins, paddings,
border widths, background color, width, and alignment
properties.

CSS Syntax

<STYLE TYPE="text/css">

P {

background-color:#CCCCFF;

/* margins */

margin-left:20%; margin-right:20%;

/* border widths

border-top-width: 10pt; border-bottom-width:10pt;

border-right-width:5pt; border-left-width:5pt;

/* border style and color

border-style:outset; border-color:blue;

/* paddings */

padding-top:10pt; padding-bottom:10pt;

padding-right:20pt; padding-left:20pt;

}

H3 {

/* font size and weight */

font-size: 14pt;

font-weight:bold;

background-image:URL("images/grenlite.gif");

/* center the heading with a 90% width */

width:90%;

float:center;

border-color:green;

border-style:solid;

/* all sides of the border have the same thickness */

border-width:10pt;

/* all sides have the same padding */

 Javascript Accessible Style Sheets 45

Block-level Formatting Overview and Example

padding:20pt;

}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (tags.P) {

backgroundColor="#CCCCFF";

/* P border style and color */

borderStyle="outset"; borderColor="blue";

/* P border widths */

borderTopWidth="10pt"; borderBottomWidth="10pt";

borderLeftWidth="5pt"; borderRightWidth="5pt";

/* P paddings */

paddingTop="10pt"; paddingBottom="10pt";

paddingLeft="20pt"; paddingRight="20pt";

/* P margins */

marginLeft= "20%"; marginRight="20%";

}

with (tags.H3) {

backgroundImage ="images/grenlite.gif";

/* font size and weight */

fontSize="14pt"; fontWeight="bold";

/* H3 border style and color */

borderStyle="solid"; borderColor="green";

/* center the heading with a 90% width */

width="90%"; align="center";

/* all sides of the border have the same thickness */

borderWidths("10pt");

/* all sides have the same padding */

paddings("20pt");

}

Javascript-Accessible Style Sheets

46 Javascript-Accessible Style Sheets

</STYLE>

Style Sheet Use

<H3>H3 with a Solid Border</H3>

<P>Borders have their uses in everyday life. For example, borders round
a paragraph make the paragraph stand out more than it otherwise would.

</P>

<P>This is another paragraph with a border. You have to be careful not
to make the borders too wide, or else they start to take over the page.

</P>

Example Results

H3 with a Solid Border EXAMPLE9

Borders have their uses in everyday life. For example, borders round a
paragraph make the paragraph stand out more than it otherwise
would. EXAMPLE9

This is another paragraph with a border. You have to be careful not to
make the borders too wide, or else they start to take over the
page. EXAMPLE9

Setting Margins or Width
The margins indicate the inset of the element from the edges of
the document (or parent element.) You can set right, left, top, and
bottom margins. The "edge" of the parent is the theoretical
rectangle that would be drawn round the inside of the padding,
border, or margins of the parent element, if it has any of these
properties.

You can set the values of the margins for a block-level element by
specifying the following properties (shown as CSS syntax/
JavaScript syntax property names):

 Javascript Accessible Style Sheets 47

Setting Margins or Width

• margin-top/marginTop

• margin-bottom/marginBottom

• margin-left/marginLeft

• margin-right/marginRight

• You can set all four properties at once to the same value, either
by setting the margin property in CSS syntax or by using the
margins() function in JavaScript syntax.

You can set the horizontal alignment of an element to left, right,
or center. You do this by setting the float property in CSS
syntax or setting the align property in JavaScript syntax. It is
redundant to set the left and/or right margin and then also set the
element’s alignment.

Instead of setting specific margin values, you can also set the
width property. You can set this to either a specific value (for
example, 200pt) or to a percentage of the width of the
containing element or document (for example, 60%). If desired,
you can set the width and either the left or right margin, so long
as the total does not exceed 100% of the width of the parent. It is
not useful, however, to set the width and also to set both margins,
since two of the values imply the third. (For example, if the left
margin is 25% and the width is 60%, then the right margin must be
15%.)

Two or more adjoining margins (that is, with no border, padding
or content between them) are collapsed to use the maximum of
the margin values. In the case of negative margins, the absolute
maximum of the negative adjoining margins is deducted from the
maximum of the positive adjoining margins.

Javascript-Accessible Style Sheets

48 Javascript-Accessible Style Sheets

To set the default margins for everything in a document, you can
specify the margin properties for the <BODY> tag. For example,
the following code sets the left and right margins to 20 points.

CSS Syntax

<STYLE TYPE="text/css">

BODY {margin-left:20pt; margin-right:20pt;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (tags.BODY) {

marginLeft="20pt"; marginRight="20pt";

}

</STYLE>

See Block-level Formatting Overview and Example for an example
of setting margins and width.

Setting Border Widths, Color, and Style
You can set the width of the border surrounding a block-level
element by specifying the following properties (shown as CSS
syntax/JavaScript syntax values):

• border-top-width/borderTopWidth

• border-bottom-width/borderBottomWidth

• border-left-width/borderLeftWidth

• border-right-width/borderRightWidth

 Javascript Accessible Style Sheets 49

Setting Paddings

• You can set all four properties at once to the same value, either
by setting the border-width property in CSS syntax or by
using the borderWidths() function in JavaScript syntax.

You can set the style of the border by specifying the border-
style (CSS syntax) or borderStyle (JavaScript syntax)
property. You can give the border a flat appearance by setting the
border-style to solid or double , or you can give it a 3D
appearance, by setting the border-style to groove , ridge ,
inset , or outset .

You can set the color of the border by specifying the border-
color (CSS syntax) or borderColor (JavaScript syntax)
property.

For an example of each of the border styles, see:

borders.htm StyleSheetExample

For another example of setting border widths, border style, and
border color, see Block-level Formatting Overview and Example.

Setting Paddings
The padding indicates the distance between the border of the
element and its content. The padding is displayed even if the
element’s border is not displayed.

You can set the size of the padding surrounding a block-level
element by specifying the following properties (shown as CSS
syntax/JavaScript syntax values):

• padding-top/paddingTop

Javascript-Accessible Style Sheets

50 Javascript-Accessible Style Sheets

• padding-bottom/paddingBottom

• padding-left/paddingLeft

• padding-right/paddingRight

• You can set all four properties at once to the same value, either
by setting the padding property in CSS syntax or by using the
paddings() function in JavaScript syntax.

See Block-level Formatting Overview and Example for an example
of setting paddings.

Inheritance of Block-Level Formatting Properties
The width, margins, border characteristics, and padding values of
a parent element are not inherited by its child elements. However,
at first glance it might seem that these values are inherited, since
the values of the parent elements affect the child elements.

For example, suppose you set the left margin of a DIV element to
10 points. You can think of this DIV element as a big box that
gets inset by 10 points on the left. Assume that the DIV element
has no border width and no padding. If all the elements inside the
DIV have a margin of 0, they are smack up against the edge of
that box. Since the box is inset by 10 points, all the elements end
up being inset by 10 points.

Now consider what would happen if the child elements did
inherit the margin value from their parent element. If that were
the case, then the DIV block would have a left margin of 10
points, and child elements would also each have a left margin of
10 points, so they would be indented on the left by 20 points.

 Javascript Accessible Style Sheets 51

Inheritance of Block-Level Formatting Properties

C h a p t e r

5
Style Sheet Reference

This section includes reference information for both CSS syntax
and JavaScript syntax. It covers style sheet functionality that is
implemented in Netscape Navigator 4.0.

This reference does not include style sheet properties that can be
used to specify positions for blocks of HTML content. These
properties are discussed in Part 2. Positioning HTML Content.

This chapter is organized in the following sections:

Comments in Style Sheets

New HTML Tags

• <STYLE>

• <LINK>

•

Javascript-Accessible Style Sheets

52 Javascript-Accessible Style Sheets

New Attributes for Existing HTML Tags

• STYLE

• CLASS

• ID

New JavaScript Object Properties

• tags

• classes

• ids

Style Sheet Properties

Font Properties

• Font Size

• Font Style

• Font Family

• Font Weight

Text Properties

• Line Height

• Text Decoration

• Text Transform

• Text Alignment

• Text Indent

 Javascript Accessible Style Sheets 53

Inheritance of Block-Level Formatting Properties

Block-Level Formatting Properties

• Margins

• Padding

• Border Widths

• Border Style

• Border Color

• Width

• Alignment

• Clear

Color and Background Properties

• Color

• Background Image

• Background Color

Classification Properties

• Display

• List Style Type

• White Space

Units

• Length Units

• Color Units

Javascript-Accessible Style Sheets

54 Javascript-Accessible Style Sheets

Comments in Style Sheets
Comments in style sheets are similar to those in the C
programming language. For example:

B {color:blue;} /* bold text will be blue */

tags.B.color = "blue"; /* bold text will be blue */

JavaScript style sheet syntax also supports comments in the C++
style, for example:

tags.B.color = "blue"; // bold text will be blue

Comments cannot be nested.

New HTML Tags
This section lists the HTML tags that are useful for working with
styles.

<STYLE>

The <STYLE> and </STYLE> tags indicate a style sheet. Inside
<STYLE> and </STYLE> you can specify styles for elements,
define classes and IDs, and generally establish styles for use
within the document.

 Javascript Accessible Style Sheets 55

New HTML Tags

To specify that the style sheet uses JavaScript syntax, set the TYPE
attribute to "text/javascript". To specify that the style
sheet uses CSS syntax, set the TYPE attribute to "text/css".
The default value for TYPE is "text/CSS" .

For example:

<STYLE TYPE="text/css">

BODY {margin-right: 20%; margin-left:20%;}

PRE {color:green;}

all.CLASS1 {float:right; font-weight: bold;}

</STYLE>

<LINK>

Use the <LINK> element to link to an external style sheet for use
in a document. For example:

CSS Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/css"

HREF="http://style.com/mystyles1.htm">

</HEAD>

JavaScript Syntax

<HTML>

<HEAD>

<TITLE>A Good Title</TITLE>

<LINK REL=STYLESHEET TYPE="text/javascript"

HREF="http://style.com/mystyles1.htm">

</HEAD>

Javascript-Accessible Style Sheets

56 Javascript-Accessible Style Sheets

Use the inline and elements to indicate the
beginning and end of a piece of text to which a style is to be
applied.

The following example applies an individual style to a piece of
text.

<P>Here is some normal paragraph text. It looks OK, but would be much
better if it was<SPAN style="color:blue; font-weight:bold; font-
style:italic"> in bright, bold, italic blue. The blue text stands
out much more.</P>

Example Results

Here is some normal paragraph text. It looks OK, but would be
much better if it was in bright, bold, italic blue. The blue text

stands out much more.

You can use the element to achieve effects such as a
large initial letter, for example:

<STYLE TYPE="text/css">

init-letter.all {font-size:400%; font-weight:bold;}

</STYLE>

<P>This is...</P>

Example Results

This is...

 Javascript Accessible Style Sheets 57

New Attributes for Existing HTML Tags

New Attributes for Existing HTML Tags
This section lists the new attributes for existing HTML tags that are
useful for working with styles. These attributes can be used with
any HTML tag to specify the style for that tag.

STYLE

The STYLE attribute determines the style of a specific element.
For example:

CSS Syntax

<H3 STYLE="line-height:24pt; font-weight:bold; color:cyan;">

Cyan Heading</H3>

JavaScript Syntax

<H3 STYLE="lineHeight=’24pt’; fontWeight=’bold’; color=’cyan’">

Cyan Heading</H3>

Example Results

Cyan Heading EXAMPLE11

CLASS

The CLASSES JavaScript property allows you to define classes of
styles in a style sheet. The CLASS attribute specifies a style class
to apply to an element.

Although CSS syntax and JavaScript syntax use slightly different
syntax to define classes of styles, the use of the CLASS attribute is
the same in both syntaxes. For example:

CSS SyntaxExample

<STYLE TYPE="text/css">

Javascript-Accessible Style Sheets

58 Javascript-Accessible Style Sheets

H3.class1 {font-style:italic; color:red;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

classes.class1.H3.fontStyle="italic";

classes.class1.H3.color="red";

</STYLE>

Style Sheet Use

<H3 CLASS="class1">This H3 is in red italic letters.</H3>

Class names are case-sensitive.

Each HTML element can use only one style class.

To specify that a class can apply to all elements, use the element
selector all when you set the properties for the class. For
example, the code sample below specifies that the class LEMON
can be applied to any element, and all elements that use the style
class LEMON are yellow.

CSS Syntax

<STYLE TYPE="text/css">

all.LEMON {color:yellow;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.LEMON.all.color="yellow";

</STYLE>

Style Sheet Use

<H1 class="LEMON">A Nice Yellow Heading</P>

<P CLASS="LEMON">What a nice shade of yellow this paragraph is.</P>

 Javascript Accessible Style Sheets 59

New Attributes for Existing HTML Tags

For more information about creating classes of style and for more
examples, see the section Defining Classes of Styles in Chapter 3,
“Creating Style Sheets and Assigning Styles.”

ID

When defining style sheets, you can create individual named
styles.

An element can use a style class and also use a named style. This
allows you to use named styles to express individual stylistic
exceptions to a style class.

To define an individual names style in CSS syntax, you use the #
sign to indicate a name for an individual style, while In JavaScript
syntax, you use the ID selector.

In both CSS syntax and JavaScript syntax, you use the ID attribute
in an HTML element to specify the style for that element.

ID names are case-sensitive.

ID styles are particularly useful for working with layers of
precisely positioned HTML content, as discussed in Part 2.
Positioning HTML Content.

The following code shows an example of the use of individual
named styles. In this example, the STYLE1 class defines a style
with several characteristics. The named style A1 specifies that the
color is blue. This style can be used to specify that a paragraph
has all the style characteristics of STYLE1, except that its color is
blue instead of red.

CSS Syntax

<STYLE TYPE="text/css">

P.STYLE1 {

color:red; font-size:24pt; line-height:26pt;

Javascript-Accessible Style Sheets

60 Javascript-Accessible Style Sheets

font-style:italic; font-weight:bold;

}

#A1 {color: blue;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

with (classes.STYLE1.P) {

color="red";

fontSize="24pt";

lineHeight="26pt";

fontStyle="italic";

fontWeight="bold";

}

ids.A1.color= "blue";

</STYLE>

Style Sheet Use

<P CLASS="STYLE1">Big red text</P>

<P CLASS="STYLE1" ID="A1">Big blue text</P>

Example Results

Big red text EXAMPLE10

Big blue text EXAMPLE10B

New JavaScript Object Properties
This section discusses the new JavaScript object properties that are
useful for defining style sheets using JavaScript syntax.

 Javascript Accessible Style Sheets 61

New JavaScript Object Properties

tags

When using JavaScript syntax within the <STYLE> element, you
can set styles by using the tags property of the JavaScript object
document .

The following example uses JavaScript syntax to specify that all
paragraphs appear in red:

<STYLE TYPE="text/javascript">

tags.P.color = red;

</STYLE>

In CSS syntax, this would be:

<STYLE TYPE="text/css">

P {color:red;}

</STYLE>

The tags property always applies to the document object for
the current document, so you can omit document from the
expression document.tags . For example, the following two
statements both say the same thing:

document.tags.P.color = "red";

tags.P.color = "red";

To set default styles for all elements in a document, you can set
the desired style on the <BODY> element, since all other elements
inherit from <BODY>. For example, to set a universal right margin
for the document:

tags.body.marginRight="20pt"; /*JavaScript syntax */

BODY {margin-right:20pt;} /* CSS syntax */

classes

See the CLASS section for a discussion of the classes JavaScript
property.

Javascript-Accessible Style Sheets

62 Javascript-Accessible Style Sheets

ids

See the ID section for a discussion of the ids JavaScript property.

Style Sheet Properties

Font Properties

Using styles, you can specify font size, font family, font style, and
font weight for any element.

Font Size

CSS syntax name: font-size

JavaScript syntax name: fontSize

absolute-size

An absolute-size is a keyword such as:

xx-small

x-small

Possible values: absolute-size, relative-size, length, percentage

Initial value: medium

Applies to: all elements

Inherited: yes

Percentage values: relative to parent element's font size

 Javascript Accessible Style Sheets 63

Style Sheet Properties

small

medium

large

x-large

xx-large

relative-size

A relative-size keyword is interpreted relative to the font size of
the parent element. Note that relative values only equate to
actual values when the element whose font size is a relative
value has a parent element that has a font size. (A relative size
has to have something to be relative to.)

Possible values are:

larger

smaller

For example, if the parent element has a font size of medium,
a value of larger will make the font size of the current
element be large .

length

A length is a number followed by a unit of measurement, such
as 24pt .

percentage

A percentage keyword sets the font size to a percentage of the
parent element’s font size.

CSS Syntax

P {font-size:12pt;}

EM {font-size:120%};

BLOCKQUOTE {font-size:medium;}

B {font-size:larger;}

Javascript-Accessible Style Sheets

64 Javascript-Accessible Style Sheets

JavaScript Syntax

tags.P.fontSize = "12pt";

tags.EM.fontSize = 120%;

tags.BLOCKQUOTE.fontSize = "medium";

tags.B.fontSize="larger";

Font Family

CSS syntax name: font-family

JavaScript syntax name: fontFamily

fontFamily

The fontFamily indicates the font family to use, such as Helvetica
or Arial. If a list of font names is given, the browser tries each
named font in turn until it finds one that exists on the user’s
system. If none of the specified font families are available on
the user’s system, the default font is used instead.

If you link a font definition file to your web page, the font
definition file will be downloaded with the page, thus guaran-
teeing that all the fonts in the definition file are available on the
user’s system while the user is viewing that page. For more
information about linking fonts to a document, see Part 3.
Downloadable Fonts.

Possible values: fontFamily

Initial value: the default font, which comes from user preferences.

Applies to: all elements

Inherited: yes

Percentage values: NA

 Javascript Accessible Style Sheets 65

Style Sheet Properties

There is a set of generic family names that are guaranteed to
indicate a font on every system, but that exact font is system-
dependent. The five generic font families are:

• serif

• sans-serif

• cursive

• monospace

• fantasy

CSS Syntax Example

<STYLE TYPE="text/css">

H1 {fontFamily:Helvetica, Arial, sans-serif;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

tags.H1.fontFamily="Helvetica, Arial, sans-serif";

</STYLE>

Font Weight

CSS syntax name: font-weight

JavaScript syntax name: fontWeight

Javascript-Accessible Style Sheets

66 Javascript-Accessible Style Sheets

The font weight indicates the weight of the font. For example:

CSS Syntax Example

<STYLE>

BLOCKQUOTE {font-weight: bold;}

</STYLE>

JavaScript Syntax Example

<STYLE>

tags.BLOCKQUOTE.fontWeight="bold";

</STYLE>

The possible values are normal , bold , bolder , and lighter .
You can also specify weight as a numerical value from 100 to 900,
where 100 is the lightest and 900 is the heaviest.

Font Style

CSS syntax name: font-style

JavaScript syntax name: fontStyle

Possible values: normal, bold, bolder, lighter,
100 - 900

Initial value: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

 Javascript Accessible Style Sheets 67

Style Sheet Properties

This property determines the style of the font.

The following example specifies that emphasized text within
<H1> elements appears in italic.

CSS Syntax Example

<STYLE>

H1 EM {font-style: italic;}

</STYLE>

JavaScript Syntax Example

<STYLE>

contextual(tags.H1, tags.EM).fontStyle = "italic";

</STYLE>

Text Properties

The use of style sheets allows you to set text properties such as
line height and text decoration.

Possible values: normal, italic

Initial value: normal

Applies to: all elements

Inherited: yes

Percentage values: N/A

Javascript-Accessible Style Sheets

68 Javascript-Accessible Style Sheets

Line Height

CSS syntax name: line-height

JavaScript syntax name: lineHeight

This property sets the distance between the baselines of two adjacent
lines. It applies only to block-level elements.

number:

If you specify a numerical value without a unit of measurement,
the line height is the font size of the current element multiplied by
the numerical value. This differs from a percentage value in the
way it inherits: when a numerical value is specified, child elements
inherit the factor itself, not the resultant value (as is the case with
percentage and other units).

For example:

fontSize:10pt;

line-height:1.2; /* line height is now 120%, ie 12pt */

font-size:20pt; /* line height is now 24 pt, */

length:

An expression of line height as a measurement, for example:

line-height:0.4in;

line-height:18pt;

percentage

Possible values number, length, percentage, normal
Initial value: normal for the font

Applies to: block-level elements

Inherited: yes

Percentage values: refers to the font size of the element itself

 Javascript Accessible Style Sheets 69

Style Sheet Properties

Percentage of the element’s font size, for example:

line-height:150%;

Negative values are not allowed.

Text Decoration

CSS syntax name: text-decoration

JavaScript syntax name: textDecoration

This property describes decorations that are added to the text of
an element. If the element has no text (for example, the
element in HTML) or is an empty element (for example, "</
EM>"), this property has no effect.

This property is not inherited, but children elements will match
their parent. For example, if an element is underlined, the line
should span the child elements. The color of the underlining will
remain the same even if child elements have different color
values.

For example:

BLOCKQUOTE {text-decoration: underline;}

Possible values: none, underline, line-through,
blink

Initial value: none

Applies to: all elements

Inherited: no, but see clarification below

Percentage values: N/A

Javascript-Accessible Style Sheets

70 Javascript-Accessible Style Sheets

The text decoration options do not include color options, since
the color of text is derived from the color property value.

.

Text Transform

CSS syntax name: text-transform

JavaScript syntax name: textTransform

This property indicates text case.

capitalize

Display the first character of each word in uppercase.

uppercase

Display all letters of the element in uppercase.

lowercase

Display all letters of the element in lowercase.

none

Neutralizes inherited value.

For example:

Possible values:, capitalize, uppercase, lower-
case, none

Initial value: none

Applies to: all elements

Inherited: yes

Percentage values: N/A

 Javascript Accessible Style Sheets 71

Style Sheet Properties

CSS Syntax Example

<STYLE TYPE="text/css">

H1 {text-transform:capitalize;}

H1.CAPH1 {text-transform: uppercase;}

</STYLE>

JavaScript Syntax Example

<STYLE>

tags.H1.textTransform = "capitalize";

classes.CAPH1.H1.textTransform = "uppercase";

</STYLE>

Style Sheet Use

<H1>This is a regular level-one heading</H1>

<H1 CLASS=CAPH1>important heading</H1>

Example Results

This Is A Regular Level-One Heading

IMPORTANT HEADING

Text Ali gnment

CSS syntax name: text-align

JavaScript syntax name: textAlign

Javascript-Accessible Style Sheets

72 Javascript-Accessible Style Sheets

This property describes how text is aligned within the element.

Example:

tags.P.textAlign = "center"

CSS Syntax Example

<STYLE TYPE="text/css">

all.RIGHTHEAD {text-align:right; color:blue;}

P.LEFTP {text-align:left; color:red;}

</STYLE>

JavaScript Syntax

<STYLE TYPE="text/javascript">

classes.RIGHTHEAD.all.textAlign="right";

classes.LEFTP.P.textAlign="left";

classes.RIGHTHEAD.all.color="blue";

classes.JUSTP.P.color="red";

</STYLE>

Style Sheet Use

<H3>A Normal Heading</H3>

<H3 CLASS=RIGHTHEAD>A Right-Aligned Heading</H3>

<P>This is a normal paragraph. This is what paragraphs usually look
like, when they are left to their own devices, and you do not use style
sheets to control their text alignment.</P>

Possible values: left, right, center, justify

Initial value: left

Applies to: block-level elements

Inherited: yes

Percentage values: N/A

 Javascript Accessible Style Sheets 73

Style Sheet Properties

<P CLASS = LEFTP>This paragraph is left-justified, which means it has a
ragged right edge. Whenever paragraphs contain excessively, perhaps
unnecessarily, long words, the raggedness of the justification becomes
more manifestly apparent than in the case where all the words in the
sentence are short.</P>

Example Results

A Normal Heading

A Right-Aligned Heading EXAMPLE14

This is a normal paragraph. This is what paragraphs usually look
like, when they are left to their own devices, and you do not use
style sheets to control their text alignment.

This paragraph is left-justified, which means it has a ragged right
edge. Whenever paragraphs contain excessively, perhaps unnecessarily,
long words, the raggedness of the justification becomes more manifestly
apparent than in the case where all the words in the sentence
are short. EXAMPLE13

Text Indent

CSS syntax name: text-indent

JavaScript syntax name: textIndent

Possible values: length, percentage

Initial value: 0

Applies to: block-level elements

Inherited: yes

Percentage values: refer to parent element's width

Javascript-Accessible Style Sheets

74 Javascript-Accessible Style Sheets

The property specifies indentation that appears before the first
formatted line. The text-indent value may be negative. An
indent is not inserted in the middle of an element that was broken
by another element (such as
 in HTML).

length

Length of the indent as a numerical value with units, for
example:

P {text-indent:3em;}

percentage

Length of the indent as a percentage of the parent element’s
width, for example:

P {text-indent:25%;}

CSS Syntax Example

<STYLE TYPE="text/css">

P.INDENTED {text-indent:25%;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/css">

classes.INDENTED.P.textIndent="25%";

</STYLE>

Style Sheet Use

<P CLASS=INDENTED>

The first line is indented 25 percent of the width of the parent
element, which in this case happens to be the BODY tag, since this
element is not embedded in anything else.</P>

<BLOCKQUOTE>

<P CLASS=INDENTED>

This time the first line is indented 25 percent from the blockquote that
surrounds this element. A blockquote automatically indents its contents.

</P>

 Javascript Accessible Style Sheets 75

Style Sheet Properties

</BLOCKQUOTE>

Example Results

The first line is indented 25 percent of the width of the parent
element, which in this case happens to be the BODY tag, since
this element is not embedded in anything else. EXAMPLE15

begin BlockQuote

This time the first line is indented 25 percent from the blockquote that
surrounds this element. A blockquote automatically indents its
contents. EXAMPLE15

end Blockquote

Block-Level Formatting Properties

Style sheets treat each block-level element as if it is surrounded by
a box. Block-level elements start on a new line, for example,
<H1> and <P> are block-level elements, but is not.

Each box can have padding, border, and margins.You can set
values for top, bottom, left and right paddings, border widths, and
margins.

For a more detailed overview discussion of block-level formatting,
see Chapter 4, “Format Properties for Block-Level Elements.”

Mar gins

CSS syntax names: margin-left , margin-right , margin-
top , margin-bottom , margin

JavaScript syntax names: marginLeft , marginRight ,
marginTop , marginBottom and margins ()

Javascript-Accessible Style Sheets

76 Javascript-Accessible Style Sheets

These properties set the margin of an element. The margins
express the minimal distance between the borders of two adjacent
elements.

You can set each margin individually by specifying values for
margin-left /marginLeft , margin-right /marginRight ,
margin-top /marginTop and margin-bottom /
marginBottom.

In CSS syntax you can set all margins to the same value at one
time by setting the margin property (note that the property name
is singular). In JavaScript syntax you can use the margins()

method sets the margins for all four sides at once. (Note that the
function name is plural.)

The arguments to the margin property and margins() method
are top, right, bottom and left margins respectively. For example:

CSS Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

P {margin:10pt 20pt 30pt 40pt;}

/* set all P margins to 40 pt */

P {margin:40pt;}

JavaScript Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

tags.BODY.margins("10pt", "20pt", "30pt", "40pt");

Possible values length, percentage, auto
Initial value: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent element's width

 Javascript Accessible Style Sheets 77

Style Sheet Properties

/* set all P margins to 40 pt */

tags.P.margins("40pt");

Adjoining margins of adjacent elements are added together, unless
one of the elements has no content, in which case its margins are
ignored. For example, if an <H1> element with a bottom margin
of 40 points, is followed by a <P> element with a top margin of
30 points, then the separation between the two elements is 70
points. However, if the <H1> element has content, but the <P>
element is empty, then the margin between them is 40 points.

When margin properties are applied to replaced elements (such as
an tag), they express the minimal distance from the
replaced element to any of the content of the parent element.

The use of negative margins is not recommended because it may
have unpredictable results.

For a working example of setting margins, see the section Block-
level Formatting Overview and Example.

Padding

CSS syntax names: padding-top , padding-right , padding-
bottom , padding-left , paddings

JavaScript syntax names: paddingTop , paddingRight ,
paddingBottom , paddingLeft , and paddings ()

Possible values: length, percentage

Initial value: 0

Applies to: all elements

Inherited: no

Percentage values: refer to parent element's width

Javascript-Accessible Style Sheets

78 Javascript-Accessible Style Sheets

These properties describe how much space to insert between the border
of an element and the content (such as text or image). You can set the
padding on each side individually by specifying values for padding-
top /paddingTop , padding-right /paddingRight , padding-
left /paddingLeft and padding-bottom /paddingBottom.

In CSS syntax you can use the padding property (note that it is padding
singular) to set the padding for all four sides at once. In JavaScript syntax
you can use the paddings() method to set the margins for all four
sides at once.

The arguments to the padding property (CSS syntax) and the
paddings() method (JavaScript syntax) are the top, right, bottom and
left padding values respectively.

CSS Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

P {padding:10pt 20pt 30pt 40pt;}

/* set the padding on all sides of P to 40 pt */

P {padding:40pt;}

JavaScript Syntax

/* top=10pt, right=20pt, bottom=30pt, left=40pt */

tags.P.paddings("10pt", "20pt", "30pt", "40pt")

/* set the padding on all sides of P to 40 pt */

tags.P.paddings("40pt");

Padding values cannot be negative.

To specify the color or image that appears in the padding area, you can
set the background color or background image of the element. For
information about setting background color, see the section Background
Color. For information about setting a background image, see the section
Background Image.

 Javascript Accessible Style Sheets 79

Style Sheet Properties

For a working example of setting paddings, see the section Block-
level Formatting Overview and Example.

Border Widths

CSS syntax names: border-top-width , border-bottom-
width , border-left-width , border-right-width ,
border-width

JavaScript syntax names: borderTopWidth ,
borderBottomWidth , borderLeftWidth ,
borderRightWidth , and borderWidths ()

These properties set the width of a border around an element.

You can set the width of the top border by specifying a value for
border-top-width /borderTopWidth. You can set the
width of the right border by specifying a value for border-
right-width /borderRightWidth. You can set the width of
the bottom border by specifying a value for border-bottom-
width /borderBottomWidth . You can set the width of the
bottom border by specifying a value for border-left-width /
borderLeftWidth.

In CSS syntax, you can set all four borders at once by setting the
border-width property. In JavaScript syntax you can set all four
borders at once by using the borderWidths() function.

Possible values: length

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A

Javascript-Accessible Style Sheets

80 Javascript-Accessible Style Sheets

The arguments to the border-width property (CSS syntax) and
the borderWidths() function (JavaScript syntax) are the top,
right, bottom and left border widths respectively.

/* top=1pt, right=2pt, bottom=3pt, left=4pt */

P {border-width:1pt 2pt 3pt 4pt;} /* CSS */

tags.P.borderWidths("1pt", "2pt", "3pt", "4pt"); /* JavaScript syntax */

/* set the border width to 2 pt on all sides */

P {border-width:40pt;} /* CSS */

tags.P.borderWidths("40pt"); /* JavaScript syntax */

For a working example of setting border widths, see the section
Block-level Formatting Overview and Example.

Border Style

CSS syntax name: border-style

JavaScript syntax name: borderStyle

This property sets the style of a border around a block-level
element.

For the border to be visible however, you must also specify the
border width. For details of setting the border width see the
section Setting Border Widths, Color, and Style or the section Border
Widths.

Possible values:, none, solid , double , inset, out-
set, groove, ridge

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A

 Javascript Accessible Style Sheets 81

Style Sheet Properties

For an example of each of the border values, see:

borders.htm StyleSheetExample

Border Color

CSS name: border-color

JavaScript syntax name:borderColor

This property sets the color of the border. The color can either be
a named color or a 6-digit hexadecimal value indicating a color or
an rgb color value.

For a list of the named colors, see the section Color Units.

For example:

CSS Syntax

P {border-color:blue;}

BLOCKQUOTE {border-color:#0000FF;}

H1 {border-color:rgb(0%, 0%, 100%);}

JavaScript Syntax

tags.P.borderColor="blue";

tags.BLOCKQUOTE.borderColor="#0000FF";

tags.H1.borderColor="rgb(0%, 0%, 100%);

Possible values: none, colorvalue

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A

Javascript-Accessible Style Sheets

82 Javascript-Accessible Style Sheets

For a working example of setting border color, see the section
Block-level Formatting Overview and Example.

Width

CSS syntax name: width

JavaScript syntax name: width

This property determines the width of an element.

Note that if you set the left and right margins, and also the width
of a property, the margin settings take precedence over the width
setting. For example, if the left margin setting is 25%, the right
margin setting is 10%, and the width setting is 100%, the width
setting is ignored. (The width will end up being 65% total.)

CSS Syntax Example

all.NARROW {width:50%;}

all.INDENTEDNARROW {margin-left:20%; width:60%;}

JavaScript Syntax Example

classes.NARROW.all.width = "50%";

classes.INDENTEDNARROW.all.width = "60%";

classes.INDENTEDNARROW.all.marginLeft = "20%";

Possible values: length, percentage, auto
Initial value: auto

Applies to: block-level and replaced elements

Inherited: no

Percentage values: refer to parent element's width

 Javascript Accessible Style Sheets 83

Style Sheet Properties

For a working example of setting the width of an element, see the
section Block-level Formatting Overview and Example.

Ali gnment

CSS syntax name: float

JavaScript syntax name: align

The float property (CSS syntax) and align property (JavaScript
syntax) determine the alignment of an element within its parent.
(Note that the text-align /textAlign property determines
the alignment of the content of text elements.)

The term float is a reserved word in JavaScript, which is why
the JavaScript syntax uses the name align instead of float for
this property.

Using the float /align property, you can make an element float
to the left or the right and indicate how other content wraps
around it.

If no value is specified, the default value is none . If the value is
none , the element is displayed where it appears in the text.

Possible values: left, right, none

Initial values: none

Applies to: all elements

Inherited: no

Percentage values: N/A

Javascript-Accessible Style Sheets

84 Javascript-Accessible Style Sheets

If the value is left or right , the element is displayed on the left
or the right (after taking margin properties into account). Other
content appears on the right or left side of the floating element. If
the value is left or right , the element is treated as a block-
level element.

Using the float /align property, you can declare elements to
be outside the normal flow of elements. For example, if the
float /align property of an element is left , the normal flow
wraps around on the right side.

If you set an element’s float /align property set, do not also
specify margins for it. If you do, the wrapping effect will not work
properly. However, if you want a floating element to have a left or
right margin, you can put it inside another element, such as a
<DIV> block, that has the desired margins.

CSS Syntax Example

<STYLE TYPE="text/css">

H4 {

width:70%;

border-style:outset;

border-width:2pt;

border-color:green;

background-color:rgb(70%, 90%, 80%);

padding:5%;

font-weight:bold;

}

H4.TEXTRIGHT {text-align:right; margin-right:30%;}

H4.TEXTRIGHT_FLOATLEFT {text-align:right; float:left;}

H4.FLOATRIGHT {float:right;}

H4.FIXED_RIGHT_MARGIN {float:right; margin-right:30%;}

</STYLE>

 Javascript Accessible Style Sheets 85

Style Sheet Properties

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

with (tags.H4) {

width="70%";

borderStyle="outset";

borderWidth="2pt";

borderColor="green";

backgroundColor = "rgb(70%, 90%, 80%)";

paddings("5%");

fontWeight="bold";

}

classes.TEXTRIGHT.H4.textAlign="right";

classes.TEXTRIGHT.H4.marginRight="30%;"

classes.TEXTRIGHT_FLOATLEFT.H4.textAlign="right";

classes.TEXTRIGHT_FLOATLEFT.H4.align="left";}

classes.FLOATRIGHT.H4.align="right";

classes.FIXED_RIGHT_MARGIN.H4.align="right";

classes.FIXED_RIGHT_MARGIN.H4.marginRight="30%";

</STYLE>

Style Sheet Use

<BODY>

<H4>Level-Four Heading</H4>

<P>I am a plain paragraph, positioned below a non-floating level-four
heading.

</P>

<H4 CLASS=TEXTRIGHT>H4 - My Text On Right, No Float</H4>

<P>I am also a plain paragraph, positioned below a non-floating level-
four heading. It just happens that the heading above me has its text
alignment set to right.

</P>

<H4 CLASS = FLOATRIGHT>H4 - Float = Right</H4>

<P>I am a regular paragraph. There’s not much more you can say about me.

Javascript-Accessible Style Sheets

86 Javascript-Accessible Style Sheets

I am positioned after a level-four heading that is floating to the
right, so I come out positioned to the left of it.</P>

<BR CLEAR>

<H4 CLASS=TEXTRIGHT_FLOATLEFT>H4 - My Text on Right, Float = Left </H4>

<P>I'm also just a plain old paragraph going wherever the flow takes me.

</P>

<BR CLEAR>

<H4 CLASS=FIXED_RIGHT_MARGIN>H4 - Float = Right, Fixed Right Margin</H4>

<P>Hello? Hello!! I am wrapping round an H4 that is floating to the
right and has a fixed right margin. When I try to satisfy all these
requirements, you see what happens! For best results, do not set
the left and/or right margin when you set the float (CSS syntax) or
align (JavaScript syntax) property. Use an enclosing element with
margins instead.
</P>

<BR CLEAR>

<DIV STYLE="margin-left:30%;">

<H4 CLASS = FLOATRIGHT>H4 - Float = Right</H4>

<P>Notice how the heading next to me seems to have a right margin.
That’s because we are both inside a DIV block that has a right margin.</
P>

<BR CLEAR>

</DIV>

</BODY>

Example Results

Level-Four Heading EXAMPLE16

I am a plain paragraph, positioned below a non-floating level-four
heading.

H4 - My Text On Right, No Float EXAMPLE16A

I am also a plain paragraph, positioned below a non-floating
level-four heading. It just happens that the heading above me has
its text alignment set to right.

 Javascript Accessible Style Sheets 87

Style Sheet Properties

H4 - Float = Right EXAMPLE16B

I am a regular paragraph. There’s not much more you can say
about me. I am positioned after a level-four heading that is
floating to the right, so I come out positioned to the left of it.

BR CLEAR

H4 - My Text on Right, Float = Left EXAMPLE16C

I'm also just a plain old paragraph going wherever the flow takes
me.

BR CLEAR

H4 - Float = Right, Fixed Right Margin EXAMPLE16D

Hello? Hello!! I am wrapping round an H4 that is floating to the
right and has a fixed right margin. When I try to satisfy all these
requirements, you see what happens! For best results, do not set
the left and/or right margin when you set the float (CSS syntax) or
align (JavaScript syntax) property. Use an enclosing element with
margins instead.

BR CLEAR

DIV Example16

H4 - Float = Right EXAMPLE16B

Notice how the heading next to me seems to have a right margin. That’s
because we are both inside a DIV block that has a right margin.

BR CLEAR

/DIV Example16

Clear

CSS syntax name: clear

JavaScript syntax name: clear

Javascript-Accessible Style Sheets

88 Javascript-Accessible Style Sheets

This property specifies whether an element allows floating
elements on its sides. More specifically, the value of this property
lists the sides where floating elements are not accepted. With
clear set to left , an element will be moved below any floating
element on the left side. With clear set to none , floating
elements are allowed on all sides.

Example:

P {clear:left;}

tags.H1.clear = "left";

Color and Background Properties

Just as you can set color and background properties for a
document as a whole, you can set them for block-level elements
too. These properties are applied to the "box" that contains the
element.

Color

CSS syntax name: color

JavaScript syntax name: color

Possible values: none, left, right, both

Initial value: none

Applies to: all elements

Inherited: no

Percentage values: N/A

 Javascript Accessible Style Sheets 89

Style Sheet Properties

This property describes the text color of an element, that is, the
"foreground" color.

See the section Color Units for information about how to specify
colors.

The following examples illustrate the ways to set the color to red.

CSS Syntax Example

<STYLE TYPE="text/css">

EM {color:red;}

B {color:rgb(255, 0, 0);}

I {color:rgb(100%, 0%, 0%);}

CODE {color:#FF0000;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

tags.EM.color="red";

tags.B.color="rgb(255, 0, 0)";

tags.I.color="rgb(100%, 0%, 0%)";

tags.CODE.color="#FF0000";

</STYLE>

Possible values: color

Initial value: black

Applies to: all elements

Inherited: yes

Percentage values: N/A

Javascript-Accessible Style Sheets

90 Javascript-Accessible Style Sheets

Background Image

CSS syntax name: background-image

JavaScript syntax name: backgroundImage

This property specifies the background image of an element.

Partial URLs are interpreted relative to the source of the style
sheet, not relative to the document.

CSS Syntax Example

<STYLE TYPE="text/css">

H1.SPECIAL {

background-image:url(images/glass2.gif);

padding:20pt;

color:yellow;

}

H2.SPECIAL {

padding:20pt;

background-color:#FFFF33;

border-style:solid;

border-width:1pt;

border-color:black;

}

Possible values: url

Initial value: empty

Applies to: all elements

Inherited: no

Percentage values: N/A

 Javascript Accessible Style Sheets 91

Style Sheet Properties

P.SPECIAL B {background-image:url(images/tile1a.gif); }

P.SPECIAL I {background-color:cyan;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

classes.SPECIAL.H1.backgroundImage = "images/glass2.gif";

classes.SPECIAL.H1.paddings("20pt");

classes.SPECIAL.H1.color="yellow";

classes.SPECIAL.H2.paddings("20pt");

classes.SPECIAL.H2.backgroundColor="FFFF33";

classes.SPECIAL.H2.borderStyle="solid";

classes.SPECIAL.H2.borderWidth="1pt";

classes.SPECIAL.H2.borderColor="black";

contextual(classes.SPECIAL.P, tags.B).backgroundImage=

"images/tile1a.gif";

contextual(classes.SPECIAL.P, tags.I).backgroundColor="cyan";

</STYLE>

Style Sheet Use

<H1 CLASS=SPECIAL>Heading One with Image Background</H1>

<P CLASS=SPECIAL>

Hello. Notice how the portion of this paragraph that has an image
background is promoted to being a block-level element on its own
line.</P>

<H2 CLASS=SPECIAL>Heading Two with Solid Color Background</H2>

<P CLASS=SPECIAL>Hello, here is some <I>very interesting</I>
information. Notice that each <I>colored portion</I> of this paragraph
just continues right along in its normal place.

</P>

Example Results

Heading One with Image Background EXAMPLE17

Javascript-Accessible Style Sheets

92 Javascript-Accessible Style Sheets

Hello. Notice how the portion of this paragraph that has an image
background is promoted to being a block-level element on its own
line. EXAMPLE17

Heading Two with Solid Color Background EXAMPLE17

Hello, here is some very interesting information. Notice that each
colored portion of this paragraph just continues right along in
its normal place. EXAMPLE17

Background Color

CSS syntax name: background-color

JavaScript syntax name: backgroundColor

This property specifies a solid background color for an element.

See the previous section, Background Image, for a working
example.

Classification Properties

These properties classify elements into categories more than they
set specific visual parameters.

Possible Values: color

Initial value: empty

Applies to: all elements

Inherited: no

Percentage values: N/A

 Javascript Accessible Style Sheets 93

Style Sheet Properties

Display

CSS syntax name: display

JavaScript syntax name: display

This property indicates whether an element is inline (for example,
 in HTML), block-level element (for example. <H1> in
HTML), or a block-level list item (for example, in HTML).
For HTML documents, the initial value is taken from the HTML
specification.

A value of none turns off the display of the element, including
children elements and the surrounding box. (Thus if the value is
set to none , the element is not be displayed.)

Note that block-level elements do not seem to respond to having
their display property set to inline .

CSS Syntax Example

EM.LISTEM {display:list-item;}

JavaScript Syntax Example

classes.LISTEM.EM.display="list-item";

Possible values:, block, inline, list-item
none

Initial value: according to HTML

Applies to: all elements

Inherited: no

Percentage values: N/A

Javascript-Accessible Style Sheets

94 Javascript-Accessible Style Sheets

List Style Type

CSS syntax name: list-style-type

JavaScript syntax name: listStyleType

This property describes how list items (that is, elements with a
display value of list-item) are formatted.

This property can be set on any element, and its children will
inherit the value. However, the list style is only displayed on
elements that have a display value of list-item . In HTML
this is typically the case for the element.

CSS Syntax Example

<STYLE TYPE="text/css">

UL.BLUELIST {color:blue;}

UL.BLUELIST LI {color:aqua;list-style-type:square;}

OL.REDLIST {color:red;}

OL.REDLIST LI {color:magenta; list-style-type:upper-roman;}

</STYLE>

JavaScript Syntax Example

<STYLE TYPE="text/javascript">

Possible values: disc, circle, square, decimal,
lower-roman, upper-roman, lower-
alpha, upper-alpha, none

Initial value: disc

Applies to: elements with display property value of list-
item

Inherited: yes

Percentage values: N/A

 Javascript Accessible Style Sheets 95

Style Sheet Properties

classes.BLUELIST.UL.color="blue";

contextual(classes.BLUELIST.UL, tags.LI).color="aqua";

contextual(classes.BLUELIST.UL, tags.LI).listStyleType="square";

classes.REDLIST.OL.color="red";

contextual(classes.REDLIST.OL, tags.LI).color="magenta";

contextual(classes.REDLIST.OL, tags.LI).listStyleType="upper-roman";

</STYLE>

Style Sheet Use

<UL CLASS=BLUELIST> <!-- LI elements inherit from UL -->

Consulting

Development

Technology integration

<OL CLASS=REDLIST> <!-- LI elements inherit from OL -->

Start the program.

Enter your user name and password.

From the File menu, choose the Magic command.

Example Results

EXAMPLE18

Consulting EXAMPLE18

Development EXAMPLE18

Technology integration EXAMPLE18

end unordered list

EXAMPLE18

Start the program. EXAMPLE18

Enter your user name and password. EXAMPLE18

From the File menu, choose the Magic command. EXAMPLE18

Javascript-Accessible Style Sheets

96 Javascript-Accessible Style Sheets

end ordered list

White Space

CSS syntax name: white-space

JavaScript syntax name: whiteSpace

This property declares how white space inside the element should
be handled. The choices are:

• normal (white space is collapsed),

• pre (behaves like the <PRE> element in HTML) .

For example:

P.KEEPSPACES {white-space:pre;} /* CSS syntax */

classes.KEEPSPACES.P.whiteSpace = "pre"; /* JavaScript syntax */

Units
This section discusses units of measurement.

Possible values: normal, pre

Initial value: according to HTML

Applies to: block-level elements

Inherited: yes

Percentage values: N/A

 Javascript Accessible Style Sheets 97

Units

Length Units

The format of a length value is an optional sign character ('+' or '-
', with '+' being the default) immediately followed by a number
followed by a unit of measurement. For example, 12pt , 2em,
3mm.

There are three types of length units: relative, pixel and absolute.
Relative units specify a length relative to another length property.
Style sheets that use relative units will scale more easily from one
medium to another (for example, from a computer display to a
laser printer). Percentage units and keyword values (such as x-
large) offer similar advantages.

Child elements inherit the computed value, not the relative value,
for example:

BODY {font-size:12pt; text-indent:3em;}

H1 {font-size:15pt;}

In the example above, the text indent value of H1 elements will
be 36pt, not 45pt.

The following relative units are supported:

• em -- the height of the element's font, typically the width or
height of the capital letter M

• ex -- half the height of the element’s font, which is typically
the height of the letter 'x'

• px -- pixels, relative to rendering surface

The following absolute units are supported:

• pt -- points

• pc -- picas

Javascript-Accessible Style Sheets

98 Javascript-Accessible Style Sheets

• px -- pixels

• in -- inches

• mm -- millimeters

• cm -- centimeters

Color Units

A color value is a either a color name or a numerical RGB
specification.

The suggested list of color names is: aqua, black, blue, fuchsia,
gray, green, lime, maroon, navy, olive, purple, red, silver, teal,
white, and yellow. These 16 colors are taken from the Windows
VGA palette and will also be used in HTML 3.2.

tags.BODY.color = "black";

tags.backgroundColor = "white";

tags.H1.color = "maroon";

tags.H2.color = "olive";

You can specify an RGB color by a six digit hexadecimal number
where the first two digits indicate the red value, the second two
digits indicate the green value, and the last two digits indicate the
blue value. For example:

BODY {color: #FF0000}; /* red */

BODY {background-color:#333333";} /* gray */

You can also specify an RGB color by using the rgb () function
which takes three arguments, for the red, green, and blue values.
Each color value can either be an integer from 0 to 255 inclusive,
or a percentage, as in this example:

P {color: rgb(200, 20, 240);) /* bright purple */

BLOCKQUOTE {background-color: rgb(100%, 100%, 20%); /* bright yellow */

 Javascript Accessible Style Sheets 99

Units

C h a p t e r

6
Advanced Style Sheet Example

This chapter presents an advanced example that uses style sheets.
The example web page discussed in this chapter is the home page
for a fictional company called Style Sheets Ink.

You can view this page at:

styleink/index.htm StyleSheetExample

The page opens in a separate browser window. If you do not see
the page after selecting the link, check your desktop in case the
second browser window is hidden under this one.

This chapter discusses how the index.htm page uses style
sheets.

However, Style Sheets Ink has also developed several alternative
home pages, that each display the same content but use slightly
different style sheets. To view the alternative home pages, select
the following links:

styleink/version1.htm StyleSheetExample

styleink/version2.htm StyleSheetExample

styleink/version3.htm StyleSheetExample

Javascript-Accessible Style Sheets

100 Javascript-Accessible Style Sheets

Feel free to copy any of these examples and modify them to suit
your needs.

Style Sheets Ink Home Page
To view the web page that is discussed in this chapter, select:

styleink/index.htm StyleSheetExample

The example page opens in a separate browser window, so if you
do not see it immediately, check if it is hidden under another
window on your desktop. Be sure to view the sample page in a
web browser that supports style sheets, such as Navigator 4.0, so
you can see the full effects of the styles.

The rest of this chapter discusses how style sheets are used in
Style Sheets Ink’s home page. The discussions include extracts of
source code. However, to see the entire source code, view the
page source in your web browser.

The style sheet for the page uses CSS syntax. The style sheet is
included at the top of the page.

The Style Sheets Ink home page has several sections, including an
introductory section, a training section, a web sites section, and a
consultation section, which are all contained within a main block.
There is also a background section which is in the back, outside
the main block.

The introductory section is centered in the main block, but the
sections after it alternate between being on the left and the right.

 Javascript Accessible Style Sheets 101

Overview of the Style Sheet

The example page makes extensive use of <DIV> tags to contain
elements that share styles. It also illustrates how you can use a
<DIV> block to draw a single border around multiple elements.

Overview of the Style Sheet
At the very top of the style sheet file, there’s a link to a font
definition file:

<LINK HXBURNED REL="fontdef" SRC="index.pfr">

This font definition file contains the definition for the Impact BT
downloadable font, which is used in the page. (For more
information about downloadable fonts, see Part 3. Downloadable
Fonts.)

The style sheet defines several styles that are used in different
parts of the page. For instance, the INTROBLOCK style is used for
the introductory material, the TRAININGHEAD style is used for the
heading in the training section, and the TRAINING style is used
for the text in the training section.

However, the style sheet also defines a couple of styles that are
used throughout the whole document. These include styles for the
<BODY> element and for the <H1> element.

The body of the Style Sheets Ink home page has a medium blue
background. This could be specified using the bgColor attribute
in the <BODY> element, but Style Sheets Ink has instead specified
a style for the <BODY> element:

<STYLE type="text/css">

BODY {background-color:#CCDDFF;}

Javascript-Accessible Style Sheets

102 Javascript-Accessible Style Sheets

Nearly all <H1> elements in the document use the same
customized style, so the style sheet defines the style for first-level
headings as follows:

H1 {

font-size:18pt;

font-weight:bold;

font-style:italic;

font-family:"Impress BT", "Helvetica", sans-serif;

}

The font-family property lists three fonts. The font Impress B"
is defined in the font definition file index.pfr , which is
automatically downloaded to the user’s system when a user views
the page. However, just in case the font definition file is not
available for any reason, Helvetica is specified as a backup font.
Many computers include Helvetica as a system font, so it is likely
to be available for most users. But just in case the font definition
file is not available and the user does not have Helvetica font on
their system, the style specifies the generic sans-serif font family as
a last resort.

Th style defines the default font size, the font weight, font style,
and font family for all <H1> element in the page. It does not
define the font color. Throughout the document, each <H1>
element gets its color from other inherited styles. For example, the
training heading is inside a <DIV> block that uses the TRAINING
style. This style sets the color property to #111100 (a dark gold
color). Thus the training heading gets some of its characteristics
from the H1 style, and other characteristics from the TRAINING
style.

 Javascript Accessible Style Sheets 103

Main Block

Main Block
The very first thing in the body of the page is a <DIV> block that
contains the main content for the page.

This DIV block has a gray border and a white background. It uses
the MAIN style to define its border and background: The
definition of the MAIN style is:

all.MAIN {

background-color: white;

margin-left:5%; margin-right:5%;

border-color:gray; border-style:outset; border-width:6pt;

padding:20 pt;

}

The Introductory Section
The MAIN <DIV> block contains another <DIV> block. This
block is the intro block, which contains the introductory
information for the page. The intro block uses the style
INTROBLOCK.

This style defines a flat blue border and a blue background for the
intro block. The color of the border is the same as the color of the
background. The style also defines the text and font characteristics
to be used by all elements inside the intro block.

Here’s the definition of the style class INTROBLOCK:

all.INTROBLOCK {

font-family: "new century schoolbook", serif;

font-style:italic;

Javascript-Accessible Style Sheets

104 Javascript-Accessible Style Sheets

font-size:12pt;

color:#000055;

background-color: #CCDDFF;

margin-left:5%; margin-right:5%;

border-color:#CCDDFF; border-style:solid;

border-width:2pt;

padding:10pt;

}

Figure 6.1 Blocks used in the Style Sheets Ink Home Page

 Javascript Accessible Style Sheets 105

The Introductory Section

Intro Head

The main heading for the page is inside the intro block. It has a
wide outset 3D blue border. It uses the style INTROHEAD. Here’s
the definition of the style class INTROHEAD:

all.INTROHEAD{

font-size:24pt;

text-align:center;

color:#000055;

background-color:#CCDDFF;

margin-left:2%; margin-right:2%;

border-color:#0055FF; border-style:outset; border-width:20pt;

padding:5pt;

}

Text in the Intro Block

The following code shows the first few lines in the body of the
document:

<BODY >

<DIV CLASS=MAIN>

<DIV CLASS=INTROBLOCK>

<H1 CLASS=INTROHEAD>Style Sheets Ink.</H1>

The first letter of the first paragraph in the intro block needs to be
extra large, so Style Sheets Ink uses a tag to apply the
INITCAP style class to the first letter, as shown here:

<P STYLE="text-indent:0%;">Welcome to the
home page for our company, Style Sheets Ink,...

The following code shows the definition of the style INITCAP :

all.INITCAP {font-size:36pt;}

Javascript-Accessible Style Sheets

106 Javascript-Accessible Style Sheets

All the paragraphs in the intro block inherit their styles (font styles
and so on, not margins or paddings) from the enclosing element,
which is the DIV block that uses the INTROBLOCK style.

The text-indent property is not inherited. The first line of
each paragraph in the intro block (except for the first one) needs
to be indented by ten percent. This could be achieved by
specifying a local style for each paragraph as follows:

<P STYLE="text-indent:10%;>content...

However, several paragraphs need to be indented. Their best plan
is to define a class of style, and use that style in each paragraph as
appropriate. Although the amount of typing needed ends up
being about the same, it is better to use a style class. That way,
you can make changes to the style definition in one place, and
those changes will be automatically reflected everywhere the style
is used.

Thus you can define a simple style called INTROTEXT as follows:

all.INTROTEXT{text-indent:10%;}

Each paragraph that needs to be indented uses this style, for
example:

<P CLASS=INTROTEXT>

At Style Sheets Ink we believe in the power of style sheets. We are
jazzed and excited at the myriad of ways that style sheets can liven up
a web site. We provide many services to help your company come up to
speed with using style sheets, including:

</P>

List of Services

The intro block includes a list of services offered by Style Sheets
Ink. These services are presented in an unordered list.

 Javascript Accessible Style Sheets 107

The Introductory Section

Figure 6.2 List of services

Style Sheets Ink specified the SQUAREDISCS class of style for the
 element so it is inherited by the element inside the
 element. (An alternative approach would be to specify the
SQUAREDISCS style class for each element.)

The following code shows the definition of the SQUAREDISCS
style:

all.SQUAREDISCS {list-style-type:square; color:green;}

The following code shows the body text that lists the services:

<UL CLASS=SQUAREDISCS>

Training

Seminars

Web site development

Consultation

End of the Intro Block

At the end the intro block, there is a </DIV> tag that matches the
<DIV CLASS=INTROBLOCK> tag. Notice that the border
characteristics specified by the INTROBLOCK style apply to the

Javascript-Accessible Style Sheets

108 Javascript-Accessible Style Sheets

DIV block as a whole, not to each individual element within the
DIV block. Thus the entire DIV block is enclosed in a box with a
blue background and a thin, flat, blue border.

The Training Section
Following the intro block is the training section, which displays
the training heading on the left. The information about training
wraps around the heading on the right.

 Javascript Accessible Style Sheets 109

The Training Section

Figure 6.3 The Training Section

The entire training section is contained within a DIV block that
uses the TRAINING style. This style sets the text color, the left
margin, and the right margin.

The definition of the TRAINING style is:

all.TRAINING{

 color:#111100;

 margin-right:30%;

Javascript-Accessible Style Sheets

110 Javascript-Accessible Style Sheets

 margin-left:5%;

}

The reason for setting the margins is to offset the contents of the
training section from the edge of the surrounding block. The
training section uses a floating element for the heading, and it’s
not wise to specify the margin-left property on an element if
you also specify its float property. Therefore we put the floating
heading inside a DIV block that has a left margin.

The heading for the training section floats to the left. It uses the
TRAININGHEAD style, which specifies the color, the background
image, the border and padding characteristics, and the float
property. There’s no need to specify the font size, font weight
(bold) and font style (italic) since they are inherited from the style
assigned to all H1 tags. There’s also no need to specify the color,
because it is inherited from the TRAINING style. (However, if you
wanted the heading to have a different color from the body text,
you would need to specify the color here.)

The following code shows the definition of the TRAININGHEAD
style:

H1.TRAININGHEAD {

 background-image:url(trainbg.gif);

border-color:#666600;

 border-width:5pt;

 border-style:outset;

 padding:10pt;

 float:left;

}

The vertical effect in the heading is achieved simply by putting a

 tag after each letter, as shown here:

<DIV CLASS=TRAINING>

<H1 CLASS=TRAININGHEAD>

 Javascript Accessible Style Sheets 111

The Training Section

T

R

A

I

N

I

N

G

</H1>

All the paragraphs within the training section inherit their
characteristics from the enclosing DIV block which uses the
TRAINING style. So there’s no need to specify which style these
paragraphs need to use.

The training text wraps around the training heading. It doesn’t
reach all the way to the right since the margin-right property
on the TRAINING style is set to 30%.

Just before the final </P> in this section, include a <BR CLEAR>
tag, to ensure that the next element will not continue wrapping
around the training heading.

The following code shows the paragraphs in the training section.
Note the use of the tag to apply the INITCAP style to the
first letter in the first paragraph.

<P >We can build customized training courses
for you, to show you how useful style sheets can be.

</P>

<P >We also run regularly scheduled training courses at our offices that
are just jam-packed with information about style sheets. The training
course is very hands-on. Each participant has their own computer, and we
accept no more than ten students per class. The training courses usually
run for one full day, or two half days.

<BR CLEAR>

</P>

Javascript-Accessible Style Sheets

112 Javascript-Accessible Style Sheets

<!-- this ends the training section -->

</DIV>

The Seminars Section
Next comes the seminars section, which is very similar in style and
structure to the training section. However, since the seminars
section appears on the right, the SEMINARHEAD style sets the
float property to right . Also, the SEMINAR style sets the
margin-left property to 30% and the margin-right
property to 10%, so that the seminars section appears on the right
of the main block.

 Javascript Accessible Style Sheets 113

The Seminars Section

Figure 6.4 The Seminars Section

The seminar section includes a list of seminars:

Figure 6.5 Outdented Items in the List of Seminars

The first line of each item in this list is outdented. This effect is
achieved by using the SEMINARLIST style. This style sets the
margin-left property and sets a text-indent value equal to
minus the left margin, as shown here:

all.SEMINARLIST{margin-left:40pt; text-indent:-40pt;}

In the body text, each paragraph in the list of seminars uses the
SEMINARLIST style, as shown below:

<P>Here is a list of available seminars:</P>

<P CLASS=SEMINARLIST> Using Colors in Style Sheets:

<I> discussion of this seminar... </I></P>

<P CLASS=SEMINARLIST> Using Boxes For Headings:

<I> discussion of this seminar... </I></P>

<P CLASS=SEMINARLIST> Using Text Properties of Style Sheets:

Javascript-Accessible Style Sheets

114 Javascript-Accessible Style Sheets

<I> discussion of this seminar... </I></P>

Note, however that you could achieve the same result by
enclosing the paragraphs in a DIV block that uses the
SEMINARLIST style, and then there would be no need to
individually specify the SEMINARLIST class for each paragraph.

Web Sites and Consultation Sections
These two sections use the same layout and style structure as the
training and seminars section.

The Background Block
At the bottom of the page, you see an explanatory paragraph
that’s in the main body of the page. This paragraph is at the top
level (that is, it’s directly in the BODY element.) It uses the
INBACK style.

Although this paragraph is technically at the top level, it appears
to live in the background, since it follows a big block with an
outset 3D border.

 Javascript Accessible Style Sheets 115

Trouble-shooting Hints

Trouble-shooting Hints
In general, when you’re working with style sheets, be sure to
match opening and closing tags correctly. While web browsers are
often fairly forgiving of HTML syntax mistakes, the browsers
become very much stricter when style sheets are involved.

In particular, extraneous closing tags may end up closing other
tags that you would not expect them to close. For example, in the
code below, the extraneous </H3> tag may close the opening
<DIV STYLE=INNERBLOCK> tag, and the second paragraph will
thus be outside the inner block.

<DIV STYLE=INNERBLOCK>

<P>Here is some text. </P>

</H3>

<P>Here is some more text which is supposed to be in the innerblock.</P>

</DIV>

Be careful when using<A> and tags in documents that use
style sheets. For example, when you use DIV blocks with style
sheets, don’t start an <A HREF> tag before the start of the DIV
block and then close it inside the DIV block, or you will get
unpredictable results.

For example, the following code behaves as you would expect:

<DIV STYLE="margin-left:5%">

<H1 CLASS=TRAININGHEAD>

content...</H1>

However, the code below has unpredictable results, because the
<A HREF> and tags are not in the correct places. (For
example, the tag may be used to close the <DIV> tag.)

Javascript-Accessible Style Sheets

116 Javascript-Accessible Style Sheets

<DIV STYLE="margin-left:5%">

<H1 CLASS=TRAININGHEAD>

content...</H1>

, 117

Part 2. Positioning
HTML Content

Contents

Chapter 7.Introduction 115
Overview 116

Positioning HTML Content Using Styles 117

Positioning HTML Content Using the <LAYER> Tag 121

Chapter 8.Defining Positioned Blocks of HTML Content 123
Absolute versus Relative Positioning. 124

Absolute Positioning 124

Relative Positioning 125

Attributes and Properties 125

POSITION 127
ID 127
LEFT and TOP 128
PAGEX and PAGEY 131
SRC and source-include 131
WIDTH 133
HEIGHT 133
CLIP 134
Z-INDEX, ABOVE and BELOW 135
VISIBILITY 136
BGCOLOR and BACKGROUND-COLOR 137
BACKGROUND and BACKGROUND-IMAGE 138
OnMouseOver, OnMouseOut 138
OnFocus, OnBlur 139
OnLoad 139

The <NOLAYER> Tag 140

Applets, Plug-ins and Forms 140

Chapter 9.Using JavaScript With Positioned Content 141

118 Netscape Communicator 4.0 Changes for Content Developers

Using JavaScript to Bring Your Web Pages to Life 143

The Layer Object 143

The Document Property of Layers and the Layers Property of Documents

144

The Layer Object Properties 145

The Layer Object Methods 149

Creating Positioned Blocks of Content Dynamically 151

Writing Content in Positioned Blocks 152

Handling Events 153

Using Localized Scripts 155

Animating Positioned Content 156

Animating Images 157

Chapter 10.Fancy Flowers Farm Example 160
Introducing the Flower Farm 161

Creating the Form for Flower Selection 161

Positioning the Flower Layers 163

Chapter 11.Swimming Fish Example 165
Positioning and Moving the Fish and Poles 166

Defining the onLoad Handler for the BODY Element 167

Positioning the Fish and Poles 168

Defining the Form 169

Moving the Fish 169

Changing the Stacking Order of Fish and Poles 171

Adding Another Layer to Contain the Reverse Fish Image 172

Initializing the Fish to Have a Direction Variable 173

Moving the Fish Backward and Forward 173

Changing the Direction of the Fish 174

Changing the Stacking Order of the Poles and the Fish 175

Updating the Button That Gets the Fish Going 176

Chapter 12.Nikki’s Diner Example 177
Content in the External Files 178

The File for the Main Page 179

Chapter 13.Expanding Colored Squares Example 182

, 119

Running the Example 183

Creating the Colored Squares 185

Definitions for the Layers 186

The Initialization Functions 187

The Last Layer 189

Moving the Mouse Over a Square 190

The expand() Function 191

The contract() Function 192

Styles in the Document 194

Chapter 14. Changing Wrapping Width Example 194
Running The Example 195

Defining the Block of Content 196

Capturing Events for the Layer 196

Defining the Dragging Functions 197

The begindrag() Function 198

The drag() Function 198

The enddrag() Function 199

Overview

120 Netscape Communicator 4.0 Changes for Content Developers

C h a p t e r

7
Introduction

This chapter introduces the concept of using positioned blocks or
layers of HTML content, and looks at the ways to define
positioned blocks of HTML content.

• Overview

• Positioning HTML Content Using Styles

• Positioning HTML Content Using the <LAYER> Tag

Throughout this document, the terms layer and positioned block of
HTML content are used interchangeably.

Overview
Netscape Navigator 4.0 introduces functionality that allows you to
define precisely positioned, overlapping blocks of transparent or
opaque HTML content in a web page.

, Introduction 121

Overview

You can write JavaScript code to modify these blocks of HTML
content, or layers. Using JavaScript, you can move them, hide
them, expand them, contract them, change the order in which
they overlap, and modify many other characteristics such as
background color and background image. Not only that, you can
change their content, and you can create new layers on the fly.
Basically, you can use HTML and JavaScript to create dynamic
animations on a web page and to create self-modifying web
pages.

Using JavaScript and positioned blocks of HTML content, you can
achieve dynamic animations directly in HTML. For example, layers
can move, expand, and contract. You could also have many
overlapping layers that can be dynamically peeled away to reveal
the layer underneath.

Layers can be stacked on top of each other, and they can be
transparent or opaque. If a layer is transparent, the content of
underlying layers shows through it. You can specify background
images and background colors for layers just as you can for the
body of an HTML document.

Layers can be nested inside layers, so you can have a layer
containing a layer containing a layer and so on.

Netscape Navigator 4.0 offers two ways to dynamically position
HTML layers:

• Defining a style that has a position property

• Using the <LAYER> tag

A document can contain both layers that are defined as styles and
layers that are defined with the <LAYER> tag. Also, if a layer is
defined with the <LAYER> tag, it can use make use of styles.

Positioning HTML Content Using Styles

122 Netscape Communicator 4.0 Changes for Content Developers

The rest of this chapter discusses how to position a block of
HTML content using styles, and then discusses how to do it using
the <LAYER> tag.

Positioning HTML Content Using Styles
You can use styles to position blocks of HTML content. Part 1.
Style Sheets talks about style sheets in general.

This section talks about using cascading style sheet (CSS) syntax
to define styles for positioned blocks of HTML content. To see the
original W3C Specification on using cascading style sheets for
positioning blocks of HTML content, select:

http://www.w3.org/pub/WWW/TR/WD-positioning

Cascading style sheets are implemented in browsers from multiple
vendors, while the <LAYER> tag may not be supported in non-
Netscape browsers.

The style for a positioned block of HTML content always includes
the property position. The value can be either absolute ,
which indicates a layer with an absolute position in its containing
layer, or relative , which indicates a layer with a position
relative to the current position in the document.

You can also specify the top and left properties to indicate the
horizontal indent from the containing layer (for an absolutely
positioned layer), or the current position in the document (for a
relatively positioned layer).

, Introduction 123

Positioning HTML Content Using Styles

A style that indicates a positioned block of HTML content must
specify a value for the position property. Other than that, you
can define the style however you like within the rules of defining
style sheets. (See Part 1. Style Sheets for a full discussion of
defining style sheets.)

If your document contains one or more layers with absolute
positions, these layers are unlikely to share styles, since each one
will need its own specific value for top and left to indicate its
position. The use of individual named styles can be very useful for
defining layers, since you can define a named style for each layer.
(A named style is the same as a style with a unique ID .)

For example, the following <STYLE> tag defines styles for two
layers. The layer named layer1 is positioned 20 pixels from the
top of the page and 5 pixels in from the left. The layer named
layer2 is positioned 60 pixels down from the top, and 250 pixels
in from the left.

<STYLE TYPE="text/css">

<!--

#layer1 {position:absolute;

 top:20px; left:5px;

 background-color:#CC00EE;

 border-width:1; border-color:#CC00EE;

 width:200px;

 }

#layer2 {position:absolute;

 top:60px; left:250px;

 background-color:teal;

 width:200px;

 border-width:2px; border-color:white; }

}

-->

</STYLE>

Positioning HTML Content Using Styles

124 Netscape Communicator 4.0 Changes for Content Developers

Any style that specifies a value of absolute or relative for its
position property defines a positioned layer. You use a layer
style as you would use any other style in the body of your
document. However, bear in mind that the idea of a layer is to act
as a single entity of content. If you want your layer to contain
more than one element, you can apply the layer style to a
containing element, such as DIV or SPAN, that contains all the
content.

For example:

<BODY BGCOLOR=white>

<DIV ID=layer1>

 <H1>Layer 1</H1>

 <P>Lots of content for this layer.</P>

 <P>Content for layer 1.</P>

<P>More Content for layer 1.</P>

</DIV>

<P ID=layer2>Layer 2</P>

The following example uses the STYLE attribute directly in an
element to specify that the element is a positioned layer:

<DIV STYLE="position:absolute; top:170px; left:250px;

 border-width:1px; border-color:white;

 background-color:#6666FF">

<H1>Layer 3 </H1>

<P>This is a blue block of HTML content.</P>

</DIV>

If you understand how to use style sheets to define styles, you can
use the power of style sheets to define your layers. For example,
you could create a colorful layer with a ridge-style 3D border as
follows:

#layer4 {position:absolute;

, Introduction 125

Positioning HTML Content Using Styles

 top:300px; left:100px;

 color:magenta;

 background-color:yellow;

 border-width:20px; border-color:cyan;

 border-style:ridge;

 padding:5%;

}

<BODY>

<DIV ID=layer4>

 <H1>Layer 4 </H1>

 <P>I am a very colorful layer.</P>

</DIV>

</BODY>

If you define a style with an absolute position, don’t set margins
for it, since it will get its position from the top and left
properties.

For a full discussion of style sheets, see Part 1. Style Sheets.

To see the results of using the styles discussed so far in this
section, select:

layercs1.htm lewin

The example opens a new Web browser window, so if you press
the link and nothing seems to happen, have a hunt about on your
desktop for the second Web browser window.

You can view the source code for layerscs1.htm to see the
entire code for the examples.

Positioning HTML Content Using the <LAYER> Tag

126 Netscape Communicator 4.0 Changes for Content Developers

Positioning HTML Content Using the <LAYER>
Tag

Navigator 4.0 supports an alternative syntax for positioning blocks
of HTML content. This syntax extends HTML to include the
<LAYER> tag.

You can specify the position and content of a layer of HTML
inside a <LAYER> tag in the body of the page -- there is no need
to pre-define the layer before you specify the content for it. You
can specify attributes for the layer such as ID , TOP, LEFT,
BGCOLOR, WIDTH, and HEIGHT. (This is not a complete list of
attributes -- all the attributes are discussed in Chapter 8, “Defining
Positioned Blocks of HTML Content.”)

At the time of writing, the <LAYER> tag is specific to the Netscape
Navigator 4.0+ web browser. Other browser may not handle
layers defined with the <LAYER> tag property.

When using the <LAYER> tag, you can use inline JavaScript in the
layer definition, so for example, you can position layers relative to
each other, such as having the top of one layer start just below the
bottom of another.

The following code gives an example of the use of the <LAYER>
tag.

<!-- default units for TOP, LEFT, and WIDTH is pixels -->

<LAYER ID=layer1 TOP=20pt LEFT=5pt

 BGCOLOR="#CC00EE" WIDTH=200>

 <H1>Layer 1</H1>

 <P>Lots of content for this layer.</P>

 <P>Content for layer 1.</P>

 <P>More Content for layer 1.</P>

</LAYER>

, Introduction 127

Positioning HTML Content Using the <LAYER> Tag

<LAYER ID=layer2 TOP=60 LEFT=250 BGCOLOR=teal WIDTH=200>

 <P>Layer 2</P>

</LAYER>

<LAYER ID=layer3 TOP=170 LEFT=250 BGCOLOR="#6666FF">

 <H1>Layer 3</H1>

 <P>This is a blue block of HTML content.</P>

</LAYER>

You can use the <LAYER> tag in conjunction with styles to create
stylized layers. For example, the following code creates a colorful
style class and applies it to a layer created with the <LAYER> tag:

<STYLE TYPE="text/css">

<!--

 all.style4 {

 color:magenta;

 border-width:20px; border-color:cyan;

 border-style:ridge;

 padding:5%;

}

-->

</STYLE>

<BODY BGCOLOR=white>

<LAYER ID=layer4 TOP=300 LEFT=100 BGCOLOR=yellow

 CLASS=style4>

 <H1>Layer 4 </H1>

 <P>I am a very colorful layer.</P>

</LAYER>

</BODY>

To see the results of using the styles discussed so far in this
section, select:

layertg1.htm lewin

Positioning HTML Content Using the <LAYER> Tag

128 Netscape Communicator 4.0 Changes for Content Developers

You can view the source code for layerstg1.htm to see the
entire code for the examples.

, Defining Positioned Blocks of HTML Content129

Absolute versus Relative Positioning.

C h a p t e r

8
Defining Positioned Blocks of HTML

Content

This chapter discusses how to specify either absolute or relative
positions for blocks of HTML content. It lists all the characteristics
you can specify for a positioned block of HTML content, describes
the <NOLAYER> tag, and discusses the behavior of applets, plug-
ins, and forms in positioned blocks of HTML content.

• Absolute versus Relative Positioning.

• Attributes and Properties

• The <NOLAYER> Tag

• Applets, Plug-ins, and Forms

Absolute versus Relative Positioning.
A layer can have an absolute position or a relative position.

Absolute versus Relative Positioning.

130 Netscape Communicator 4.0 Changes for Content Developers

Absolute Positioning

If a layer has an absolute position, you can specify its position
within its containing layer, or within the document if it is not
inside another layer. You define the exact position of the top, left
corner of the layer by setting the left and top attributes or
properties.

For a layer with absolute position, if you do not provide values for
the left and top attributes or properties, they default to the
value of the current position in the containing layer. For a layer at
the top level, you can think of the document as the containing
layer.

A layer with an absolute position is considered out-of-line in that
it can appear anywhere in an HTML document, and does not take
up space in the document flow.

To create a layer with an absolute position, use the <LAYER> tag
with a matching </LAYER> tag to identify the end of the layer.
For layers defined as styles, create a layer with an absolute
position simply by specifying the position property as
absolute . For example:

<LAYER ID=layer1 TOP=200 LEFT=260>

 <P>Layer 1 content goes here</P>

</LAYER>

<STYLE type="text/css">

<!--

#layer1 {position:absolute; top:200px; left:260px;}

-->

</STYLE>

, Defining Positioned Blocks of HTML Content131

Absolute versus Relative Positioning.

Relative Positioning

A layer with a relative position is known as an inflow layer, and it
appears wherever it naturally falls in the flow of the document.
Inflow layers are considered to be both inflow, because they
occupy space in the document flow, and inline, because they
share line space with other HTML elements. If you want an inflow
layer to appear on a separate line, you can insert a break before
the layer, or wrap the layer in the <DIV> tag.

For layers with relative positions, you can use the left and top
attributes or properties to specify the offset of the layer’s top-left
corner from the current position in the document.

To create an inflow layer, you can use the <ILAYER> tag with a
closing </ILAYER> tag. For layers defined as styles, create an
inflow layer by specifying the position property as relative .

For example:

<ILAYER ID=layer2>

 <P>Layer 2 content goes here</P>

</ILAYER>

<STYLE type="text/css">

<!--

#layer2 {position:relative; }

-->

</STYLE>

Attributes and Properties

132 Netscape Communicator 4.0 Changes for Content Developers

Attributes and Properties
This section lists all the attributes or properties that you can
specify when defining layers, whether you use the <LAYER> and
<ILAYER> tags to create layers, or you define layers as styles.
(This list only includes only those properties that are relevant to
layers. A style definition for a layer can include any style property.
See Chapter 5, “Style Sheet Reference,” for a list of all the other
style sheet properties.)

For the sake of simplicity, in this section the term parameter
means either an HTML attribute or a style property. For example,
the ID parameter means either the ID attribute that can be used
with the <LAYER> tag or the ID style property. Whenever the
term attribute is used, it means an attribute for an HTML tag.
Whenever the term property is used, it means a style property.

The <LAYER> tag always uses pixels as the unit of measurement
for attributes that specify a distance. You do not need to specify
the measurement units. For style properties however, you should
always specified measurement units for properties that have
numerical values.

• POSITION

• ID

• LEFT and TOP

• PAGEX and PAGEY

• SRC and source-include

• Z-INDEX, ABOVE and BELOW

• WIDTH

• HEIGHT

, Defining Positioned Blocks of HTML Content133

Attributes and Properties

• CLIP

• VISIBILITY

• BGCOLOR and BACKGROUND-COLOR

• BACKGROUND and BACKGROUND-IMAGE

• OnMouseOver, OnMouseOut

• OnFocus, OnBlur

• OnLoad

POSITION
#block1 {position:absolute;}

#block2 {position:relative;}

The position property applies only to layers defined as styles. It
indicates that the style represents a positioned block of HTML. Its
value can be either absolute or relative .

A style whose position property is absolute creates a layer
similar to one created by the <LAYER> tag. A style whose
position property is relative creates a layer similar to one
created by using the <ILAYER> tag.

ID
<LAYER ID=block1>

#block1 {position:absolute;} /* CSS */

The ID parameter is an identification handle, or name, for the
layer. The ID must begin with an alphabetic character. (The ID
attribute was previously called NAME. The NAME attribute still
works, but its use is discouraged, since it is only applicable to the
<LAYER> tag).

Attributes and Properties

134 Netscape Communicator 4.0 Changes for Content Developers

You can use the layer’s id as a name to refer to the layer from
within HTML and from external scripting languages such as
JavaScript.

This attribute is optional; by default, layers are unnamed, that is,
they have no id.

LEFT and TOP

The LEFT and TOP parameters specify the horizontal and vertical
positions of the top-left corner of the layer within its containing
layer, or within the document if it is at the top level. Both
parameters are optional. The default values are the horizontal and
vertical position of the layer’s contents as if it was not enclosed in
a layer. The value must be an integer.

For layers with absolute positions, the origin is the upper-left
corner of the document or containing layer, with coordinates
increasing downward and to the right.

The default units for LEFT and TOP when used in the <LAYER>
tag is pixels. When defining a layer as a style, however, you need
to specify the units. For example:

<LAYER> Tag Syntax

<LAYER BGCOLOR="yellow" TOP=300 LEFT =70

WIDTH=400 HEIGHT=200>

<P>Paragraph in layer with absolute position.</P>

<LAYER BGCOLOR=teal TOP=50 LEFT=20

WIDTH=200 HEIGHT=100>

<P>Paragraph in embedded layer with absolute position</P>

</LAYER>

</LAYER>

CSS Syntax

, Defining Positioned Blocks of HTML Content135

Attributes and Properties

<DIV STYLE="position:absolute; background-color:yellow;

top:300px; left:70px; width:200px; height:200px;

border-width:1;">

 <P>Paragraph in layer with absolute position.</P>

 <DIV STYLE="position:absolute; background-color:teal;

top:30px; left:20px; width:150px; height:120px;

border-width:1px;">

<P>Paragraph in embedded layer with absolute position.</P>

</DIV>

</DIV>

For layers with relative positions, the origin is the layer's "natural"
position in the flow, rather than the upper-left corner of the
containing layer or page. You can also use the LEFT and TOP
parameters to offset a relatively positioned layer from its natural
position in the flow, as shown in the following example.

<LAYER> Tag Syntax

<P>Paragraph above relatively positioned layer.</P>

<P><ILAYER LEFT=2>

This relatively positioned layer is displaced 2 pixels to the right of

its normal position.

</ILAYER></P>

<P>Paragraph below relatively positioned layer</P>

<P>This <ILAYER TOP=3>word</ILAYER> is nudged down 3 pixels.</P>

CSS Syntax

<P>Paragraph above relatively positioned layer.</P>

<P STYLE="position:relative; left:2px;">

This relatively positioned layer is displaced 2 pixels to the right of

its normal position.</P>

<P>Paragraph below relatively positioned layer.</P>

<P>This word is nudged
down 3 pixels.</P>

Attributes and Properties

136 Netscape Communicator 4.0 Changes for Content Developers

The following code illustrates another example of relatively
positioned layers defined as styles.

STYLE TYPE="text/css">

<!--

all.UP {position:relative; top:-10pt;}

all.DOWN {position:relative; top:10pt;}

-->

</STYLE>

<BODY>

<P>This text goes up

and down, up

and down.

</P>

</BODY>

To see the results of some of the examples given in this section,
see:

updown.htm lewin

Using Inline JavaScript to Position Layers

When using the <LAYER> tag, you can use also inline JavaScript
scripted expressions to position the layer. For example, you can
position one layer relative to another.

The following example uses inline JavaScript code to define a
layer whose ID is suspect1 , and then defines another layer
whose ID is suspect2 that is positioned 10 pixels below the
bottom of the first suspect.

<LAYER ID="suspect1">

 <P>Name: Al Capone

 <P>Residence: Chicago

</LAYER>

, Defining Positioned Blocks of HTML Content137

Attributes and Properties

<LAYER ID="suspect2"

 LEFT=&{"&"};{window.document.suspect1.left};

 TOP=&{"&"};{window.document.suspect1.top +

 document.suspect1.document.height + 10};>

 <P>Name: Lucky Luciano

 <P>Residence: New York

</LAYER>

Notice these two points in the previous example:

• You need to use a semicolon outside the closing curly brace.

• You get the value of top from the layer, but you get the value
of height from the layer’s document.

Although you cannot use inline JavaScript within a style definition
for a layer, you CAN use JavaScript to reposition such a layer after
it has been defined.

PAGEX and PAGEY
<LAYER PAGEX=100 PAGEY=100>

These attributes are used only with the <LAYER> tag; there is no
equivalent style property.

The PAGEX and PAGEY attributes specify the horizontal and
vertical positions in pixels of the top-left corner of the layer
relative to the enclosing document (rather than the enclosing
layer.)

SRC and source-include
<LAYER SRC="htmlsource/meals/special.htm>

source-include:url("htmlsource/meals/special.htm"); /* CSS */

Attributes and Properties

138 Netscape Communicator 4.0 Changes for Content Developers

The SRC attribute for the <LAYER> tag and the source-
include style property specify an external file that contains
HTML-formatted text to be displayed in this layer. (Note that the
source-include style property is not approved by W3C.)

The file specified can contain an arbitrary HTML document.

The following code shows an example of the use of the SRC
attribute and include-source property.

CSS Syntax

<STYLE TYPE="text/css">

<!--

#layer1 {

 position:absolute;

 top:50pt; left:25pt; width:175pt;

 include-source:url("content1.htm");

 background-color:purple;

color:yellow; border-width:1; }

-->

</STYLE>

<BODY BGCOLOR=white>

<DIV ID=layer1>

</DIV>

<LAYER> Tag Syntax

<LAYER top=50 left=250 width=175

src="content1.htm"

BGCOLOR="#8888FF">

</LAYER>

</BODY>

To see the results of this example, select:

source1.htm lewin

, Defining Positioned Blocks of HTML Content139

Attributes and Properties

The source file can include JavaScript code. Any layers in the
source file are treated as child layers of the layer for which the
source file is providing content.

Using an external source as the content of your layer is
particularly useful if you want to dynamically change the content
of the layer. For example, a restaurant might have a web page that
uses a layer to describe the special meal of the day. Each morning,
after the chef has decided what the special is going to be for the
day, he or she quickly edits the file "special.htm" to describe the
meal.

The chef doesn’t have to rewrite the entire page just to update the
information about the special of the day.

It can also be a very good idea to use external source as the
content of a layer when you wish to provide alternative content
for browsers that do not support layers. In that case, you can use
the <NOLAYER> tag to enclose the content to be displayed on
browsers that do not support layers, as illustrated in the section
"The <NOLAYER> Tag."

WIDTH
<LAYER WIDTH=200>

<LAYER WIDTH="80%">

width:200px; /* CSS */

width:80%; /* CSS */

The WIDTH parameter determines the width of the layer at which
the layer’s contents wrap. The width can be expressed as an
integer value, or as a percentage of the width of the containing
layer.

Note, however, that if the layer contains elements that cannot be
wrapped, such as images, that extend beyond the specified width,
the actual width of the layer expands accordingly.

Attributes and Properties

140 Netscape Communicator 4.0 Changes for Content Developers

If this parameter is not specified, the layer contents wrap at the
right boundary of the enclosing layer.

See Chapter 14, “Changing Wrapping Width Example,” for an
example of dynamically changing the wrapping width of a layer.

HEIGHT
<LAYER HEIGHT=200>>

<LAYER HEIGHT = "50%">

height:200px; /* CSS */

height:50%; /* CSS

The HEIGHT parameter determines the initial height of the
clipping region of the layer. The height can be expressed as an
integer value, or as a percentage of the height of the containing
layer (or the window for a top-level layer.)

Note, however, that if the contents of the layer do not fit inside
the specified height, the layer increases its height to include all its
contents.

The main purpose of the HEIGHT parameter is to act as the
reference height for children layers that specify their heights as
percentages.

By default, the height is the minimum height that contains all the
layer contents.

CLIP
<LAYER CLIP="20,20,50,100">

clip:rect(0,100,100,0); /* CSS */

The CLIP parameter determines the clipping rectangle of the
layer, that is, it defines the boundaries of the visible area of the
layer.

, Defining Positioned Blocks of HTML Content141

Attributes and Properties

The value is a set of four numbers, each separated by a comma,
and optionally enclosed in a string. If you omit the quotes, be sure
not to have any white space between the four numbers. The
numbers indicate the left value, the top value, the right value, and
the bottom value in order. The left and right values are specified
as pixels in from the left edge of the layer itself, while the top and
bottom values are specified as pixels down from the top edge of
the layer itself.

Each of the four values are numbers of pixels. You can also
specify the value as a set of two numbers, in which case the left
and top values default to 0. For example:

CLIP="10,20"

is equivalent to

CLIP="0,0,10,20"

 If the CLIP attribute is omitted, the clipping rectangle of a layer
is determined by the values of WIDTH, HEIGHT, and the content
of the layer. If neither of these values are given, by default, the
clip left value of a layer is 0; clip top is 0; clip right is the
wrapping width, and clip height is the height required to display
all the contents.

For an example of changing the clipping region of a layer, see
Chapter 13, “Expanding Colored Squares Example.”.

Z-INDEX, ABOVE and BELOW
<LAYER Z-INDEX=3>

<LAYER ABOVE=layer1>

<LAYER BELOW=greenlayer>

z-index:3; /* css */

The ABOVE and BELOW attributes are used with the <LAYER> tag.
There are no corresponding style properties.

Attributes and Properties

142 Netscape Communicator 4.0 Changes for Content Developers

These parameters specify the z-order (stacking order) of layers. If
you set one of these parameters, it overrides the default stacking
order which is determined by placing new layers on top of all
existing layers. Only one of the Z-INDEX , ABOVE, or BELOW
parameters can be used for a given layer.

The Z-INDEX parameter allows a layer’s z-order to be specified
in terms of an integer. Layers with higher-numbered Z-INDEX
values are stacked above those with lower ones. Only positive Z-
INDEX values are allowed.

The ABOVE attribute specifies the layer immediately on top of a
newly created layer; that is, the new layer is created just below the
layer specified by the ABOVE attribute. (The ABOVE and BELOW
attributes are not available in as style properties.)

Similarly, the BELOW attribute identifies the layer immediately
beneath the newly created layer. For either attribute, the named
layer must already exist. Forward references to other layers result
in default layer creation behavior (as if the ABOVE or BELOW
attribute had not appeared).

Currently all nested layers exist above their parent layer in the
stacking order. The Z-INDEX , ABOVE and BELOW values are
relative to sibling layers, that is, other layers that have the same
parent layer.

For an example of changing the stacking order or z order of
layers, see Chapter 11, “Swimming Fish Example.”

VISIBILITY
<LAYER VISIBILITY=SHOW>

<LAYER VISIBILITY=HIDE>

<LAYER VISIBILITY=INHERIT>

visibility:show; /* css */

visibility:hide; /* css */

, Defining Positioned Blocks of HTML Content143

Attributes and Properties

visibility:inherit; /* css */

The VISIBILITY parameter determines whether the layer is
visible or not. A value of HIDE hides the layer; SHOW shows the
layer; INHERIT causes the layer to have the same visibility as its
parent layer. For top level layers (that is, layers that are not nested
inside other layers), a value of INHERIT has the same effect as
SHOW since the body document is always visible.

By default, a layer has the same visibility as its parent layer, that is,
the value of the VISIBILITY attribute is INHERIT .

Remember that even if the visibility of a layer is set to SHOW, you
will only be able to see the layer if there are no other visible,
opaque layers stacked on top of it.

If the visibility of a relatively positioned layer is HIDE, the layer
contents are not shown, but the layer still takes up space in the
document flow.

For an example of making layers visible and invisible, see
Chapter 10, “Fancy Flowers Farm Example.”

BGCOLOR and BACKGROUND-COLOR
<LAYER BGCOLOR="#00FF00">

<LAYER BGCOLOR="green">

background-color:green;

background-color:00FF00;

The BGCOLOR attribute and background-color style property
determine the solid background color of a block of HTML content,
similar to the BGCOLOR attribute of the <BODY> tag. The
background color is either the name of a standard color such as
red or an RGB value, such as #334455 (which has a red
hexadecimal value of 33, a green hexadecimal value of 44 and a
blue hexadecimal value of 55.)

Attributes and Properties

144 Netscape Communicator 4.0 Changes for Content Developers

By default, a layer is transparent -- layers below it show through the
transparent areas of the layer’s text and other HTML elements.

If a layer is defined with the <LAYER> tag, its background color is
applied to the rectangular region occupied by the layer. If a layer is
defined as a style, the background color is applied only to the actual
content of the layer, not to the entire region of the layer. If the style
has a border, the region enclosed by the border uses the background
color, but this region is still limited to the region that contains
content. If the style specifies width and height values that define a
region larger than is needed to display the content, the background
color will only be applied to the area inside the border, which will be
drawn around the actual content.

Netscape Navigator 4.0 also supports a layer-background-color
CSS style property, which sets the background color of the entire
layer, but this property is not approved by the W3C.

This is really hard to explain in words, but is immediately obvious
when you see the results. To see an illustration of this point, click on:

bgtest.htm lewin

BACKGROUND and BACKGROUND-IMAGE
<LAYER BACKGROUND="images/dogbg.gif">

background-image:url("images/dogbg.gif"); /* CSS */

The BACKGROUND attribute and background-image style property
indicate a tiled image to draw across the background of a block of
HTML content. The value is the URL of an image.

By default, a layer is transparent -- layers below it show through the
transparent areas of layer’s text and other HTML elements.

, Defining Positioned Blocks of HTML Content145

Attributes and Properties

Note that Netscape Navigator 4.0 also supports a layer-
background-image CSS style property, which sets the
background color of the entire block that uses the style, but this
property is not approved by the W3C.

If a layer is defined with the <LAYER> tag, the background image
is applied to the rectangular region occupied by the layer. If a
layer is defined as a style, the background image is applied to the
region that contains the actual content of the layer. If the style
specifies width and height values that define a region larger than
is needed to display the content, the background image will only
be applied to the area that encloses the actual content.

Netscape Navigator 4.0 also supports a layer-background-
image CSS style property, which draws the image across the
entire layer, but this property is not approved by the W3C.

To see an illustration of this point, click on:

bgimage.htm lewin

OnMouseOver, OnMouseOut

These attributes only apply to the <LAYER> tag.

<LAYER OnMouseOver="highlight(); return false;">

<LAYER OnMouseOut="dehighlight(); return false;">

These are event handlers. Their values must be functions or inline
JavaScript code. The onMouseOver handler is invoked when the
mouse enters the layer, and the onMouseOut handler is invoked
when the mouse leaves the layer.

For on example of using an onMouseOver handler, see
Chapter 13, “Expanding Colored Squares Example.”

The <NOLAYER> Tag

146 Netscape Communicator 4.0 Changes for Content Developers

OnFocus, OnBlur

These attributes only apply to the <LAYER> tag.

<LAYER OnFocus="function1(); return false;">

<LAYER OnBlur="function2(); return false;">

These are event handlers. Their values must be functions or inline
JavaScript code. The onFocus handler is invoked the layer gets
keyboard focus, and the onBlur handler is invoked when the
layer loses keyboard focus.

OnLoad

This attribute only applies to the <LAYER> tag.

OnLoad="dosomething(); return false;"

This is an event handler. Its value must be a function or inline
JavaScript code. The onLoad handler is invoked when the layer is
loaded, regardless of whether the layer is visible or not.

For an example of setting the onLoad handler for a layer, see
Chapter 11, “Swimming Fish Example” and Chapter 13, “Expanding
Colored Squares Example.”.

The <NOLAYER> Tag
If an HTML file that contains positioned blocks of HTML content is
displayed in a browser that does not know how to position
content, the content is displayed as if it was not positioned. If the
file contains any scripts that require layers functionality, they will
generate JavaScript errors if loaded into a browser that does not
support positioning.

, Defining Positioned Blocks of HTML Content147

Applets, Plug-ins, and Forms

You can use the <NOLAYER> and </NOLAYER> tags to surround
content that is ignored by Netscape Navigator 4. This enables you
to provide alternative content that will be displayed by browsers
that cannot position content. For example:

<LAYER SRC=layerContent.html></LAYER>

<NOLAYER>

This page would show some really cool things if you had

a browser that can position content.

</NOLAYER>

Applets, Plug-ins, and Forms
Layers can contain form elements, applets, and plug-ins, which
are known as windowed elements. These elements are special in
that they float to the top of all other layers, even if their containing
layer is obscured.

When a windowed element is moved to the edge of its containing
layer, it disappears as soon as one of its borders hits a border of
the layer, instead of seeming to glide out of view as non-
windowed elements would do. For form elements, it is the
individual element that disappears on contact with the border of
the layer, not the entire form.

Note however, that windowed elements do move and change
visibility in accordance with their containing layer.

Forms cannot span layers. That is, you cannot have part of the
form in one layer and another part in another layer.

Applets, Plug-ins, and Forms

148 Netscape Communicator 4.0 Changes for Content Developers

Communicator introduces windowless plug-ins, which are plug-
ins that do not pop to the top of the window and can be drawn
below other items in the window. Windowless plug-ins are
discussed in the Plug-in guide.

Here’s the URL for the Plug-in Guide:

/library/documentation/communicator/plugin/index.htm lewin

To link to Chapter 1, "Plug-in Basics," which contains a section
called "Windowed and Windowless Plug-ins" see:

/library/documentation/communicator/plugin/pg1bas.htm lewin

To link to Chapter 4, "Drawing and Event Handling," which
contains a section on general issues in writing windowless plug-
ins, see:

/library/documentation/communicator/plugin/pg4dr.htm lewin

, Using JavaScript With Positioned Content149

Applets, Plug-ins, and Forms

C h a p t e r

9
Using JavaScript With Positioned Content

This chapter discusses how to use JavaScript to modify and
animate positioned blocks of HTML content. First the chapter
gives an overview of why you might want to use JavaScript to
modify blocks of content, then it discusses the Layer object, which
represents a block of content. It shows how to use JavaScript to
create new blocks of content, and how to write content
dynamically. It discusses how you can make distinct blocks of
HTML respond to events. It discusses how each block of content
can contain its own localized script, and finishes up by addressing
some of the issues involved in animating HTML content.

• Using JavaScript to Bring Your Web Pages to Life

• The Layer Object

• Creating Positioned Blocks of Content Dynamically

• Writing Content in Positioned Blocks

• Handling Events

• Using Localized Scripts

Using JavaScript to Bring Your Web Pages to Life

150 Netscape Communicator 4.0 Changes for Content Developers

• Animating Positioned Content

This chapter does not teach the basics of using the JavaScript
language, although it does provide several examples that should
help you get started. For more information about JavaScript see:

• JavaScript 3.0 Guide:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/
index.html lewin

• What's New in JavaScript for Navigator 4.0:

/library/documentation/communicator/jsguide/js1_2.htm lewin

The remaining chapters in this part of the book each present a
separate complete example of using JavaScript to work with
positioned content.

Using JavaScript to Bring Your Web Pages to Life
Regardless of how you define your positioned blocks of HTML
content, you can write scripts in JavaScript that move them,
change their color and size, change their content, make them
visible or invisible, and generally modify them in a variety of
ways. Furthermore, you can use JavaScript to change the contents
of a positioned block or create new ones on-the-fly.

Using JavaScript to work with positioned blocks of HTML content
allows you to define animations directly in a web page. For
example, you could create an animation that dynamically peels
away a series of layers of content to reveal the one underneath.
You can make blocks of content move across, over, and under
other blocks of content. You can make them appear and

, Using JavaScript With Positioned Content151

The Layer Object

disappear. You can make them dynamically expand and contract
in response to mouse events. You can generally bring your web
page alive with animated content.

You can use JavaScript to modify positioned blocks of HTML
content regarless of how the blocks are defined. You can
manipulate positioned blocks of HTML content with JavaScript,
even if they are defined as styles.

The Layer Object
Regardless of how you define a positioned block of HTML
content, it can be treated as a modifiable object in JavaScript.

For each layer in an HTML page (whether it is defined with the
<LAYER> tag or as a style whose position property is either
absolute or relative) there is a corresponding JavaScript
layer object. You can write JavaScript scripts that modify layers
either by directly accessing and modifying property values on the
layer objects, or by calling methods on the layer objects.

The Document Property of Layers and the
Layers Property of Documents

Each document object has a layers property that contains an
array of all the top-level layers in the document. Each layer in turn
has a document property.

This document property has a layers array that contains all the
top-level layers inside this layer. The document of a layer also has
all the usual properties of a document object, such as the images

The Layer Object

152 Netscape Communicator 4.0 Changes for Content Developers

property, which is an array of all the images in the layer, as well
as properties that are arrays for all the applets, embeds, links, and
named anchors in that layer.

How Do You Refer to a Positioned Block of Content from
JavaScript?

There are several ways you can access a layer from JavaScript. If
you know the layer’s id (or name) you can access it in the
following ways:

• document .layername

For example, the following expression returns the layer named
"flowerlayer" .

document.flowerlayer

• document .layers [layername]

For example, the following expression returns the layer named
"flowerlayer" .

document.layers["flowerlayer"]

If you know the index for the layer you can access it as follows:

• document .layers [index]

Note that the first layer has an index of 0, the second layer has
an index of 1, and so on. The following expression returns the
fourth layer in the document.

document.layers[3]

When accessed by integer index, array elements appear in z-order
from back to front, where zero is the bottom-most layer and
higher layers are indexed by consecutive integers. The index of a
layer is not the same as its zIndex property, as the latter does

, Using JavaScript With Positioned Content153

The Layer Object

not necessarily enumerate layers with consecutive integers. Also,
adjacent layers can have the same zIndex property values, but
two layers can never occupy the same index in the array.

You can find the number of layers in a document or another layer
array by obtaining its length property. For example, the
following expression returns the number of top level layers in the
document:

document.layers.length

The following expression returns the number of layers nested at
the top level inside the layer named "houses" .

document.layers["houses"].document.layers.length

The Layer Object Properties

As with any JavaScript object, you can access the properties of a
layer object using the following syntax:

layerObject.propertyName

where layerObject is an expression that evaluates to a layer object,
and propertyName is the name of the property to be accessed. For
example, the following expression returns the value of the
visibility property of the layer named "flowerlayer" :

document.flowerlayer.visibility;

The following expression sets the left property of the layer
named "flowerlayer" to 300 pixels.

document.flowerlayer.left=300;

The following table lists all the properties that you can use to
access or modify a layer in JavaScript. Notice that there is only one
set of property names. No matter whether a layer was created

The Layer Object

154 Netscape Communicator 4.0 Changes for Content Developers

with the <LAYER> tag or was defined as a style, you can use the
property names listed in the following table to access it or modify
it after it has been created.

These property names are case-sensitive.

Table 9.1 Layer Object Properties

 Property
Name

Modifiable
by user?

 Description

document No Each layer object contains its own document
object. This object can be used to access the
images, applets, embeds, links, anchors and
layers that are contained within the layer.
Methods of the document object can only
also be invoked to change the contents of
the layer.

name No The name assigned to the layer through the
NAME or ID attribute.

left Yes The horizontal position of the layer’s left
edge, relative to the origin of its parent layer
(for layers with absolute positions) or relative
to the natural flow position (for layers with
relative positions).
The value can be an integer such as 12 , or a
percentage, such as " 25%" .
The default unit of measurement is pixels.

top Yes The vertical position of the layer’s top edge
relative to the origin of its parent layer.
The value can be an integer, an integer such
as 12 , or a percentage, such as " 25%" .
The default unit of measurement is pixels.

pageX Yes The horizontal position of the layer relative
to the page.
The default unit of measurement is pixels.

pageY Yes The vertical position of the layer relative to
the page.
The default unit of measurement is pixels.

, Using JavaScript With Positioned Content155

The Layer Object

zIndex Yes The relative z-order of this layer with respect
to siblings. Sibling layers with lower
numbered z-index's are stacked underneath
this layer.
The value must be 0 or a positive integer.

visibility Yes Determines whether or not the layer is
visible. A value of "show" means show
the layer; "hide" means hide the layer;
"inherit" means inherit the visibility
of the parent layer.

clip.top
clip.left
clip.right
clip.bottom
clip.width
clip.height

 Yes These properties define the clipping
rectangle, which specifies the part of the
layer that is visible. Any part of a layer that is
outside the clipping rectangle is not
displayed.
The clipping region can extend beyond the
area of the layer that contains content.
Clipping values can be negative, 0, or
positive integers.
For example, to clip 10 pixels from the left
edge, you would increase clip.left by 10. To
reduce the clipping region by 20 pixels at the
right edge, you would reduce clip.right by
20.
The values for clip.top, clip.left, clip.bottom,
and clip.right, are in the layer’s coordinate
system.
Setting the clip.width value to w is the same
as:
clip.right = clip.left + w;
Setting the clip.height to h is the same as:
clip.height = clip.top + h;

 background Yes The image to use as the background for the
layer.
The image is tiled across the background of
the layer. For example:

layer.background.src = "fishbg.gif";

The value is null if the layer has no
backdrop.

Table 9.1 Layer Object Properties

 Property
Name

Modifiable
by user?

 Description

The Layer Object

156 Netscape Communicator 4.0 Changes for Content Developers

bgColor Yes The color to use as a solid background color
for the layer. The value can be an encoded
RGB value, a string that indicates a pre-
defined color, or null for a transparent
layer
For example:

//blue background

layer.bgColor = "#0000FF";

// red background

layer.bgColor = "red";

// transparent layer

layer.bgColor = null;

siblingAbov
e

 No The layer object above this one in the
stacking order, among all layers that share
the same parent layer or null if the layer has
no sibling above.

siblingBelo
w

 No The layer object below this one in z-
order, among all layers that share the same
parent layer or null if layer is bottommost.

above No The layer object above this one in z-
order, among all layers in the document or
the enclosing window object if this layer is
topmost.

below No The layer object below this one in z-
order, among all layers in the document or
null if this layer is bottommost.

parentLayer No The layer object that contains this layer,
or the enclosing window object if this layer is
not nested in another layer.

src Yes Source of the content for the layer, specified
as a URL.

Table 9.1 Layer Object Properties

 Property
Name

Modifiable
by user?

 Description

, Using JavaScript With Positioned Content157

The Layer Object

The Layer Object Methods

There are several methods that you can use on a layer object to
modify a layer. As with any JavaScript object, you can invoke a method
on a layer object using the following syntax:

layerObject.methodName(args)

where layerObject is an expression that evaluates to a layer object,
methodName is the method to be invoked, and args are the arguments to
the method.

For example, the following expression invokes the method moveBy()
on the layer named flowerlayer , to move the layer 10 pixels to the
right and 10 pixels down from its current position.

document.flowerlayer.moveBy(10, 10);

The following table lists all the methods that you can use to access or
modify a layer in JavaScript. You will notice that there is only one set of
method names. It does not matter whether a layer was created with the
<LAYER> tag or was defined as a style, you can use the methods listed
in the following table to access it or modify it after it has been created.

These method names are case-sensitive

Table 9.2 Layer Object Methods

 Method Name Description

 moveBy(dx, dy) Moves this layer by dx pixels to the left, and dy pixels
down, from its current position.

The Layer Object

158 Netscape Communicator 4.0 Changes for Content Developers

moveTo(x, y) For layers with absolute positions, this method changes the
layer’s position to the specified pixel coordinates within the
containing layer or document. For layers with relative
positions, this method moves the layer relative to the natural
position in the containing layer or document.
This method is equivalent to setting both the top and
left properties of the layer object.

moveToAbsolute(x, y) Changes the layer position to the specified pixel coordinates
within the page (instead of the containing layer.)
This method is equivalent to setting both the pageX and
pageY properties of the layer object.

resizeBy(dwidth,
dheight)

Resizes the layer by the specified height and width values (in
pixels). Note that this does not relayout any HTML contained
in the layer. Instead, the layer contents may be clipped by the
new boundaries of the layer.
This method has the same effect as adding dwidth and
dheight to the clip.width and
clip.height .

resizeTo(width,
height)

Resizes the layer to have the specified height and width
values (in pixels). Note that this does not relayout any HTML
contained in the layer. Instead, the layer contents may be
clipped by the new boundaries of the layer.
This method has the same effect as setting the
clip.width and clip.height .

moveAbove(layer) Stacks this layer (in z-order) above the layer specified in the
argument, without changing either layer's horizontal or
vertical position. After re-stacking, both layers will share the
same parent layer.
The value must be a valid layer object.

moveBelow(layer) Stacks this layer (in z-order) below the specified layer,
without changing the layer's horizontal or vertical position.
After re-stacking, both layers will share the same parent layer.
The value must be a valid layer object.

Table 9.2 Layer Object Methods

 Method Name Description

, Using JavaScript With Positioned Content159

Creating Positioned Blocks of Content Dynamically

Creating Positioned Blocks of Content
Dynamically

You can use JavaScript to create new layer objects by calling the
new operator on a Layer object, for example:

bluelayer = document.bluelayer;

newbluelayer = new Layer(300, bluelayer);

The first argument is the width of the new layer, and the second
argument, which is optional, is its parent layer. The parent can
also be a window, in which case the new layer is created as a top-
level layer within the corresponding window. If you do not
supply a parent layer, the new layer will be a top-level layer in the
current document.

After creating a new layer, you can set its source either by setting
a value for its src property, or by calling the load method.
Alternatively, you can open the layer’s document and write to it
(as discussed in the next section.)

There are a few important things to know about creating layers
and modifying their contents dynamically. You can create a new
layer object by using the new operator only after the page has

load(sourcestring,
width)

Changes the source of a layer to the contents of the file
indicated by sourcestring, and simultaneously changes the
width at which the layer’s HTML contents will be wrapped.
This method takes two arguments. The first argument is a
string indicating the external file name, and the second is the
width of the layer in pixels.

Table 9.2 Layer Object Methods

 Method Name Description

Writing Content in Positioned Blocks

160 Netscape Communicator 4.0 Changes for Content Developers

completely finished loading. You cannot open a layer’s document and
write to it until the page has finished loading. You can have only one
layer open for writing at a time.

Writing Content in Positioned Blocks
While initially defining a layer, you can write to the layer’s document
using the document’s write method.

<LAYER ID="layer1" BGcolor="green">

 <HR>

 <H1>First Heading</H1>

 <SCRIPT>

 document.write("<P>Here is some content<P>")

 </SCRIPT>

 <HR>

</LAYER>

After a layer has been initially created and the page has fully finished
loading, you can modify the contents of the layer by using the write ()
method of the layer’s document. If you use the write() method to
write content to a layer after the layer has been created, the original
content of the layer is wiped out, and replaced by the new content.

After writing to a layer’s document, you need to close the document.

For example:

<LAYER ID="layer1" BGCOLOR="blue">

 <HR>

 <H1>First Heading</H1>

 <P>Here is the original content<P>

 <HR>

, Using JavaScript With Positioned Content161

Handling Events

</LAYER>

</BODY>

</HTML>

<SCRIPT>

function changeLayerContent() {

document.layer1.document.write("<HR><P>New content.</P><HR>");

document.layer1.document.close();

}

</SCRIPT>

<FORM NAME="form">

<INPUT TYPE=button VALUE="CHANGE CONTENT"

ONCLICK=’changeLayerContent();return false;’>

</FORM>

For a further example of writing to a layer, see Chapter 13,
“Expanding Colored Squares Example.”

Handling Events
Each layer can be thought of as a separate document. It has the
same event-handling capabilities as a top-level window. You can
capture events for a layer.

For an overview of event handling, see the section "Scripting
Event Handlers" in the JavaScript guide for in JavaScript. The
following link takes you to the JavaScript guide:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/
index.html lewin

Handling Events

162 Netscape Communicator 4.0 Changes for Content Developers

When defining a layer with the <LAYER> tag, you can also supply
the following attributes that specify event handlers:

onMouseOver

onMouseOut

onLoad

onFocus

onBlur

The onMouseOver event handler is invoked when the mouse
cursor moves into a layer.

The onMouseOut event handler is invoked when the mouse
cursor moves out of the area of a layer.

The onLoad event handler gets invoked when a layer is loaded,
that is, the document that ultimately contains the layer is
displayed. This is true regardless of whether a layer is visible or
not.

The onFocus handler is invoked when the layer gets keyboard
focus, and the onBlur handler is invoked when the layer loses
keyboard focus.

Just as in the case of a document, if you want to define the mouse
click response for a layer, you must capture onMouseDown and
onMouseUp events at the level of the layer and process them as
you want.

If an event occurs in a place where multiple layers overlap, the
top-most layer gets the event, even if it is transparent. However, if
a layer is hidden, it does not get events.

For an example of capturing events for a layer, see Chapter 14,
“Changing Wrapping Width Example.”

, Using JavaScript With Positioned Content163

Using Localized Scripts

Using Localized Scripts
You can use the <SCRIPT> and </SCRIPT> tags within blocks
of positioned content. The functions defined in the script will be
scoped to the block that contains them, and they cannot be used
outside that block.

This functionality is handy, for example, for defining event
handlers for a layer.

<LAYER> Tag Syntax

<LAYER ID="layer1" BGCOLOR="red"

onMouseOver='changeColor("blue");'

onMouseOut='changeColor("red");'>

<P>Layer content...</P>

<SCRIPT>

function changeColor(newcol) {

bgColor=newcol; // Modifies the layer object's bgColor property

return false;

}

</SCRIPT>

</LAYER>

CSS Syntax

<DIV STYLE="position:absolute; layer-background-color:red;

width:200px; height:100px">

<P>Layer content...</P>

<SCRIPT>

function onMouseOver() {changeColor("blue");}

function onMouseOut() {changeColor("red");}

function changeColor(newcol) {

 bgColor=newcol;

 return false;

Animating Positioned Content

164 Netscape Communicator 4.0 Changes for Content Developers

}

</SCRIPT>

</DIV>

When the mouse moves into the layer, the layer turns blue. When
the mouse moves out of the layer, it turns red. To see the example
in action, select:

chgcolor.htm lewin

Animating Positioned Content
You can use JavaScript to modify layers to produce the effects of
animation. Frequently, animation revolves around repeating
actions over and over again, particularly for looping animations.
You can use the JavaScript function setInterval() function to
repeatedly call a function at a given interval.

For example, the following statement calls the
keepExpanding() function every 25 milliseconds, with
arguments of 20, 30, 40 and 50.

setInterval(keepExpanding, 25, 20, 30, 40, 50);

JavaScript also provides the setTimeout() function, which calls
another function after a given amount of time.

The setTimeOut() function has two different forms:

setTimeout("code to be executed", delay)

setTimeout(function, delay, args...)

For example, to invoke doItAgain("Sam", "piano") after 3
milliseconds, you can use either of the following statements:

, Using JavaScript With Positioned Content165

Animating Positioned Content

setTimeout("doItAgain('Sam', 'piano')", 3)

setTimeout(doItAgain, 3, "Sam", "piano");

The setTimeout() function is useful for conditionally re-
invoking a function, whereas the setInterval() function is
useful for kicking off the repeated, unconditional invocation of a
function.

The following function uses setTimeout() to keep making the
clipping area of a layer 5 pixels wider and 5 pixels higher until the
layer is 450 pixels wide.

function expand(layer)

{

 if (layer.clip.right < 450) {

 layer.resizeBy(5, 5);

 setTimeout(expand, 5, layer);

 }

 return false;

}

Animating Images

You can achieve many interesting animations by changing the
source of an image in conjunction with moving the image. To
move an image, you can change the position of the layer that
contains the image. To change the source of the image, you can
assign a new value to the src property of the image object.

If the source of the image is changed too quickly or too often, the
actual image may not download across the net quickly enough to
keep up with the animation. Therefore if you have a script that
changes the source of an image in a moving layer, it is best to
make sure that the image has fully loaded before you try to do
anything with it.

Animating Positioned Content

166 Netscape Communicator 4.0 Changes for Content Developers

Using OnLoad Handlers

When a document has completely finished loading, it invokes its
onLoad handler if it has one. You could define an onLoad
handler for the BODY element of a document that initiates any
animations in the document. The onLoad handler for a BODY
element may be invoked before all frames in all animated GIF
images have finished loading, but it will not be invoked until at
least one frame of every animated GIF image has finished loading.

Layers can also have onLoad handlers. However, if a layer
contains images, the images may load asynchronously from the
rest of the layer’s content, and the layer may think it has finished
loading and thus fire its onLoad handler (if it has one) before all
its images have finished loading.

Images can have onLoad handlers also. However, if the image is
an animated GIF, its onLoad handler is invoked every time a
frame in the image finishes loading. Therefore if your image is an
animated GIF, it is better to define an onLoad handler that
initiates any animations that use that image in the BODY element
rather than directly on the image.However, it the image is a static
GIF or JPEG, by all means define the onLoad handler directly on
the image.

Chapter 11, “Swimming Fish Example,” discusses an example, Positioning

and Moving the Fish and Poles, that has a layer containing a fish that
swims back and forth. The fish starts swimming when someone
clicks on a button. To ensure that nobody can click the button
before the fish image has finished loading, the layer containing
the button is initially hidden. When the document has finished
loading, its onLoad handler makes the form layer visible.

, Using JavaScript With Positioned Content167

Animating Positioned Content

Pre-fetching Images

One way to reduce the time required to start an animation is to
ensure that the images used in the animation are downloaded to
the browser’s cache before the animation starts. This approach is
known as prefetching the images.

You can prefetch an image by embedding it in a layer. When a
layer loads, it loads all its content, including all images, regardless
of whether the layer is visible or not. If a page has a hidden layer
that contains all the images needed in the animation then when
the page opens, the source for the images is downloaded into the
browser’s cache, even though they are not visible.

Chapter 11, “Swimming Fish Example,” discusses an example, Changing the

Stacking Order of Fish and Poles, that illustrates the use of a hidden
layer to contain images that are not needed when the page opens
but are used in the course of animating the contents of the page.

Suppressing the Icon for Images that Have Not Yet
Loaded

 By default, when a page opens, it shows a placeholder icon for
every image in the page that has not finished loading. Animation
sequences may sometimes require multiple images. While the
images are loading, the user could see lots of placeholder icons
that you would prefer they did not see.

A new attribute has been introduced for the IMG tag to allow you
to suppress the display of placeholder icons.

The SUPPRESS attribute for the IMG tag can be set to either true
or false. The default value is false . If SUPPRESS is set to true ,
neither the place-holder icon or frame that appear during image
loading will be displayed and tool-tips will be disabled for that
image.

Animating Positioned Content

168 Netscape Communicator 4.0 Changes for Content Developers

If SUPPRESS is set to false , the place-holder icon and frame
will always be displayed during loading even if the images are
transparent images that would not otherwise be displayed. Tool
tips will be active.

, Fancy Flowers Farm Example169

Animating Positioned Content

C h a p t e r

10
Fancy Flowers Farm Example

This example illustrates how to how to hide and show positioned
blocks of content. It uses a pop-up menu to pick which block to
display.

This example creates a web page that has five positioned blocks
of content. Four of the blocks each contain information about a
specific flower, and the fifth block contains a form with a pop-up
menu.

The user can choose which flower block to display by using the
pop-up menu.

To run the <LAYER> version of the example, select:

flower.htm lewin

To run the style sheet version of the example, select:

flowercs.htm lewin

To view the complete code for either version of the example, use
the Page Source command of the View menu in the Navigator
browser that is displaying the example.

Introducing the Flower Farm

170 Netscape Communicator 4.0 Changes for Content Developers

• Introducing the Flower Farm

• Creating the Form for Flower Selection

• Positioning the Flower Layers

• Introducing the Flower Farm

Introducing the Flower Farm
To start with, the page introduces the flower farm:

<HR>

<H1>Welcome to Fancy Flowers Farm </H1>

<HR>

<P>We sell bulbs, seeds, seedlings, and potted plants,

in all shapes, sizes, colors, and varieties.

This page presents information about our most popular varieties.

</P>

Creating the Form for Flower Selection
The form is placed in an inflow layer. The form contains a popup
menu (a select menu) listing four kinds of flowers. The menu uses
an onClick event handler, so that when it is clicked, the
changeFlower() function is invoked to display the selected
flower.

, Fancy Flowers Farm Example171

Creating the Form for Flower Selection

The only reason the form needs to be in a layer is so that you can
specify the LEFT value for it, since it is to be indented from the
left edge. Because this is an inflow layer, the natural cursor
position in the page will be at the end of the layer when the layer
has finished being drawn.

<ILAYER ID="formlayer" LEFT=50>

<P>Please select a flower:</P>

<FORM NAME=form1>

<SELECT name=menu1

onChange="changeFlower(this.selectedIndex);

return false;">

<OPTION >Mona Lisa Tulip

<OPTION >Mixed Dutch Tulips

<OPTION >Bijou Violet

<OPTION >Pink Chrysanthemum

</SELECT>

</FORM>

</ILAYER>

When the user selects an option in the menu, the
changeFlower() function is invoked. This function calls the
hideAllFlowers() function to hide all the flower layers, then
shows the flower layer corresponding to the selected option. The
flower layers are named flower0 , flower1 , flower2 , and
flower3 . Thus, the name of the selected flower layer is simply
the concatenation of "flower" and the index of the selected
option.

<SCRIPT>

// this function hides all the flower layers

function hideAllflowerLayers() {

document.flower0.visibility="hide";

document.flower1.visibility="hide";

document.flower2.visibility="hide";

Positioning the Flower Layers

172 Netscape Communicator 4.0 Changes for Content Developers

document.flower3.visibility="hide";

}

// this function makes a single flower layer visible

function changeFlower(n) {

hideAllflowerLayers();

document.layers["flower" + n].visibility="show";

}

</SCRIPT>

Positioning the Flower Layers
The page has four layers that contain information about a flower.
Each flower layer contains a left-aligned image, a level 3 heading,
and some number of paragraphs. The first layer is initially visible,
and the remaining flower layers are initially hidden.

All the flower layers are positioned in exactly the same place, and
they have the same width and height. The idea is that only one
flower layer is visible at a time.

So far, the page does not contain any layers with absolute
positions. So you can let the first flower layer fall at the natural
cursor position in the page, which is at the end of the inflow layer
that contains the form.

If the first flower layer has an absolute position, the natural cursor
position in the page will still be at the end of the form layer. Thus
you can let each flower layer fall at the natural position in the
page, so long as each one has an absolute position.

The following code shows the code for the first flower layer:

<LAYER ID="flower0" LEFT=50 width=400

, Fancy Flowers Farm Example173

Positioning the Flower Layers

 BGCOLOR="#FFFFDD">

<HR>

<H3>Mona Lisa Tulip</H3>

<HR>

<P>These tulips have been specially...</P>

 <BR CLEAR="ALL">

<P>Priced at only $1 a bulb ... </P>

</LAYER>

The code for the second and third flower layers is very similar.
They all use the default value for TOP.

So far, each flower layer has used the default value for TOP.
However, if the page had several layers with absolute positions,
and you wanted to place another layer in a relative position to
one of the existing layers, you could use inline JavaScript to
calculate the value for LEFT or TOP. Or if you wanted to make
the background of one layer be slightly darker than the
background of another, you could use inline JavaScript to
calculate the value of the BGCOLOR attribute. (Note however that
you can use inline JavaScript only in layer definitions that use the
<LAYER> tag. You cannot use inline JavaScript inside layer
definitions that use cascading style sheet syntax, although you can
use JavaScript to modify such layers after they have been defined
and created.)

In this example, there is really no need to use inline JavaScript to
position the last flower layer, since you could just let the TOP
value default to its natural value, as in the other flower layers.

However, just to provide an illustration of using inline JavaScript,
the TOP attribute is given the same value as the TOP attribute for
the layer named flower0 , as follows: (note that the TOP attribute
in the <LAYER> tag can be any case, but the top property in
JavaScript must be all lowercase)

Positioning the Flower Layers

174 Netscape Communicator 4.0 Changes for Content Developers

<LAYER ID="flower3" LEFT=50

TOP=&{"&"}; {document.flower0.top;};

width=400 VISIBILITY="HIDE"

BGCOLOR="#DDFFDD">

<HR>

<H3>Pink Chrysanthemum</H3>

<HR>

<P>These modern chrysanthemums...</P>

</LAYER>

, Swimming Fish Example175

Positioning the Flower Layers

C h a p t e r

11
Swimming Fish Example

This example is presented in two parts. The second part is an
advanced version of the first part.

• Positioning and Moving the Fish and Poles

This example illustrates how to position and move layers.

In this example, a fish (an animated GIF) and three poles
appear in the window (as shown in Figure 0.1) along with a
button saying "Move the Fish." When the user clicks the button,
the fish moves repeatedly from the left side of the window to
the right, swimming in front of the two outer poles and
swimming behind the middle one.

• Changing the Stacking Order of Fish and Poles

This example illustrates how to change the stacking order of
the layers.

This example extends the previous one, so that when the user
clicks the "Move the Fish" button, the fish swims to the right,
then changes direction, and swims back to the left, this time
swimming behind the outer poles and in front of the middle
pole.

Positioning and Moving the Fish and Poles

176 Netscape Communicator 4.0 Changes for Content Developers

Figure 0.1 The fish and three poles in their initial positions

Positioning and Moving the Fish and Poles
In this example, a fish and 3 poles appear in the window along
with a button saying "Move the Fish." When you click the button,
the fish moves from the left side of the window to the right,
swimming in front of the two outer poles and swimming behind
the middle one.When it reaches the far right, it jumps back to the
far left and starts swimming across the screen again.

The fish is an animated GIF, and the three poles are static GIFS.

To run the example that uses the <LAYER> tag, select:

fish1.htm lewin

To run the style sheet version of the example, select:

fish1css.htm lewin

, Swimming Fish Example177

Positioning and Moving the Fish and Poles

To view the complete code for either version of the example, use the
Page Source command of the View menu in the Navigator
browser that is displaying the example.

In the <LAYER> version, the layer containing the form is initially
hidden, and a waiting layer is temporarily displayed while the fish
images are downloading. This version uses a showForm() function
to hide the waiting layer and show the form layer.

In the style sheet version, the form layer is visible immediately. This
version does not have a waiting layer or showForm() function.

The sections in the first part of this example are:

• Defining the onLoad Handler for the BODY Element

• Positioning the Fish and Poles

• Defining the Form

• Moving the Fish

• Moving the Fish

Defining the onLoad Handler for the BODY
Element

This page has a form containing a button whose action is to start the
fishing swimming. The form is contained in a layer that is initially
hidden. The BODY element has an onLoad handler that makes the
form layer visible. This approach ensures that the user cannot start

Positioning and Moving the Fish and Poles

178 Netscape Communicator 4.0 Changes for Content Developers

the fish swimming until the form is visible which will not happen
until all the contents in the document, including all the frames in
the animated image of the fish, have finished loading.

The following statement defines the BODY element:

<BODY BGCOLOR="#FFFFFF" ONLOAD="showForm();">

Positioning the Fish and Poles

Here’s the code that creates the three pole layers:

<HTML>

<HEAD>

<TITLE>Swimming Fish</TITLE>

</HEAD>

<BODY>

<LAYER ID="bluepole"LEFT=160 TOP=150>

</LAYER>

<LAYER ID="greenpole" LEFT=360 TOP=150>

</LAYER>

Here’s the code that creates the fish layer.

<LAYER ID="fish" LEFT=40 TOP=170 above="redpole"

ONLOAD="showForm();">

</LAYER>

After the definition of the fish layer comes the definition for the
red pole layer.

, Swimming Fish Example179

Positioning and Moving the Fish and Poles

<LAYER ID="redpole" LEFT=260 TOP=150>

</LAYER>

By default, each subsequent layer is placed on top of the one
before it in the stacking order. So to start with, the blue pole is on
the "bottom," the green pole is above the blue pole, and the fish is
directly below the red pole (that is between the green pole and
the red pole.) The red pole is on top of everything, as far as the
stacking order goes. (It might help to imagine that all the images
are slid into the center of the page so that they all overlap each
other. This scenario might help you visualize that the blue pole is
on the bottom, and the red pole is on the top.)

Defining the Form

The layer containing the form is initially this layer is hidden. The
form has a button that the user clicks to start the fish swimming.
The only reason for putting the form in a layer is to hide it
initially. Since you don’t need to set TOP or LEFT attributes, you
can let this be an inflow layer so that it falls at the natural place in
the page.

Here’s the definition of the form layer:

<ILAYER ID=formlayer VISIBILITY=HIDE>

<H1>Fish Example 1</H1>

<FORM>

<INPUT type=button value="Move the fish"

OnClick="movefish(); return false;">

</FORM>

</ILAYER>

There’s also another "temporary" layer that displays a message
while the fish is loading. The definition for this layer is:

Positioning and Moving the Fish and Poles

180 Netscape Communicator 4.0 Changes for Content Developers

<LAYER ID=waiting TOP=100 LEFT=50>

<H3>Please wait while the fish loads...</H3>

</LAYER>

Moving the Fish

The file contains a script that has the definitions for the
moveFish() and showForm() functions.

The following code defines the function showForm() , which
makes the waiting layer become invisible and makes the form
layer become visible.

<SCRIPT>

function showForm() {

 document.waiting.visibility="hide";

 document.formlayer.visibility="show";

 return false;

}

The following code defines the function moveFish() , which
causes the fish to move repeatedly across the window.

<!-- Simple move function -->

function movefish() {

var fish = document.fish;

if (fish.left < 400) {

fish.moveBy(5, 0);}

else {

fish.left = 10;}

// use the windows method setTimeOut

setTimeout(movefish, 10);

}

, Swimming Fish Example181

Changing the Stacking Order of Fish and Poles

</SCRIPT>

This function binds the variable fish to the layer named
"fish." The function checks if the horizontal location of the fish
layer is less than 400, in which case it uses the moveBy() method
to move the layer 10 pixels to the right. If the horizontal location
is greater than 400, the function sets the horizontal location back
to 10.

Then the function waits 10 milliseconds and calls movefish()

(that is, itself) again.

The net result is that when this function is invoked, the fish swims
across the screen to the 400th pixel, then reappears at the left of
the screen and swims across the screen again, ad infinitum.

Because of the stacking order of the poles, the fish seems to swim
in front of the blue pole, behind the red (middle) pole, and in
front of the green pole.

Changing the Stacking Order of Fish and Poles
This example extends the previous example, Positioning and Moving

the Fish and Poles.

In this extended version, when the fish reaches the far right, it
turns around and swims back again. On the way back, it swims in
front of the green pole, behind the red (middle) pole, and in front
of the blue pole. To enable the fish to swim in front of a pole on
the way out and swim behind it on the way back, you need to
change the stacking order of the layers each time the fish changes
direction.

Changing the Stacking Order of Fish and Poles

182 Netscape Communicator 4.0 Changes for Content Developers

Both fishes (one for each direction) are animated GIFs, and the
three poles are static GIFs.

To run the <LAYER> version of the example, select:

fish2.htm lewin

To run the style sheet version of the example, select:

fish2css.htm lewin

To view the complete code for either version of the example, use
the Page Source command of the View menu in the Navigator
browser that is displaying the example.

The sections in the first part of this example are:

• Adding Another Layer to Contain the Reverse Fish Image

• Initializing the Fish to Have a Direction Variable

• Moving the Fish Backward and Forward

• Changing the Direction of the Fish

• Changing the Stacking Order of the Poles and the Fish

• Updating the Button That Gets the Fish Going

Adding Another Layer to Contain the
Reverse Fish Image

When the fish reaches the right edge, the image of the fish needs
to change to a fish swimming in the reverse direction. The change
needs to occur very quickly, perhaps too quickly for there to be

, Swimming Fish Example183

Changing the Stacking Order of Fish and Poles

time for the new fish image to download across the network. If
the image of the reverse fish does not download quickly enough,
the image will continue coming in as the fish moves back across
the screen. To start with, you’ll see only bits of the fish.

To ensure that the fish is whole as soon as it starts swimming
back, you can preload the fish image.The easiest way to do this is
to create a new, hidden layer that contains the reverse fish image.
Even if a layer is hidden, all its images are downloaded when the
layer is loaded.

The following code creates a hidden layer containing an image of
the fish swimming in the reverse direction.

<LAYER ID="fishB" VISIBILITY="hide">

</LAYER>

Initializing the Fish to Have a Direction
Variable

The following function initializes the fish layer so that it has a
direction variable which keeps track of which way the fish is
swimming. To start with, the fish swims forward. The fish also has
forwardimg and backwardimg properties that hold the
appropriate fish images.

function initializeFish() {

 // create the backward fish image to force it to preload now

 var fish = document.fish;

 var fishB = document.fishB;

 fish.direction = "forward";

 fish.forwardimg = fish.document.images["fish"].src;

 fish.backwardimg = fishB.document.images["fishB"].src;

}

Changing the Stacking Order of Fish and Poles

184 Netscape Communicator 4.0 Changes for Content Developers

Moving the Fish Backward and Forward

The following code defines the function movefish2() , which
moves the fish to the right, changes the image of the fish (so that
it faces left), moves the fish back to the left, and repeats the
process continuously.

In more detail, the function specifies that if the fish is moving
forward and hasn’t reached a horizontal position of 450, it keeps
moving forward. If it has reached 450, it changes direction.

If it’s moving backward and hasn’t reached 10, it keeps moving
backward. If it has reached 10, it changes direction.

Each time the fish changes direction, the function changes the
stacking order of the layers, by calling either the
changePoles() function or the resetPoles() function,
depending on which way the fish is turning.

function movefish2() {

 var fish = document.fish;

 if (fish.direction == "forward") {

 if (fish.left < 450) {fish.moveBy(5, 0);}

 else {changePoles();changeDirection();}

 }

 else {

 if (fish.left > 10) {fish.moveBy(-5, 0);}

 else {resetPoles();changeDirection();}

 }

 setTimeout("movefish2()", 10);

 return;

}

, Swimming Fish Example185

Changing the Stacking Order of Fish and Poles

Changing the Direction of the Fish

The changeDirection() function changes the image of the
fish, so that it faces in the correct direction. The function also sets
the value of the direction variable to the new direction.

function changeDirection () {

 var fish = document.fish;

 if (fish.direction == "forward") {

 fish.direction = "backward";

 fish.document.images["fish"].src = fish.backwardimg;

 }

 else {fish.direction = "forward";

 fish.document.images["fish"].src = fish.forwardimg;

 }

 return;

}

Changing the Stacking Order of the Poles
and the Fish

The functions changePoles() and resetPoles() change the
stacking order (z-order) of the layers. You can change the
stacking order of a layer in the following ways:

• Use the moveBelow() layer to move a layer immediately
below another one.

• Use the moveAbove() layer to move a layer immediately
above another one.

• Directly set the value of the zIndex property of a layer.

Changing the Stacking Order of Fish and Poles

186 Netscape Communicator 4.0 Changes for Content Developers

To keep your stacking order straight, it is a good idea to
consistently use one of these ways. If you mix them, it could be
hard to keep track of the exact stacking order. For example, if you
use moveAbove() to move the blue pole layer above the green
pole layer, then you set the zIndex value of the fish layer to 3,
you may not know where the fish is in the stacking order in
relation to the green and blue poles.

The following functions, changePoles() and resetPoles() ,
consistently use the moveAbove() function to set the stacking
order of the three layers containing the poles and the layer
containing the fish.

function changePoles () {

 var redpole = document.redpole;

 var bluepole = document.bluepole;

 var greenpole = document.greenpole;

 var fish = document.fish;

 fish.moveAbove(redpole);

 bluepole.moveAbove(fish);

 greenpole.moveAbove(bluepole);

}

// reset the stacking order of the poles and the fish

function resetPoles () {

 var redpole = document.redpole;

 var bluepole = document.bluepole;

 var greenpole = document.greenpole;

 var fish = document.fish;

 greenpole.moveAbove(bluepole);

 fish.moveAbove(greenpole);

 redpole.moveAbove(fish);

}

, Swimming Fish Example187

Changing the Stacking Order of Fish and Poles

Updating the Button That Gets the Fish
Going

Here is the definition of the layer that contains the form:

<H1>Fish Example 2</H1>

<LAYER ID="fishlink" LEFT=10 TOP=100 >

 <FORM>

 <INPUT type=button value="Move the Fish"

 OnClick="initializeFish(); movefish2(); return false;">

 </FORM>

</LAYER>

This time, the OnClick() method initializes the fish to initialize
the direction variable on the fish before it calls
movefish2() .

Changing the Stacking Order of Fish and Poles

188 Netscape Communicator 4.0 Changes for Content Developers

C h a p t e r

12
Nikki’s Diner Example

This example illustrates the use of external files as the source for a
layer. This example creates a web page for Nikki’s Diner, which is
a vegan restaurant that offers tasty daily specials. The web page
contains some general information about the diner, and then
offers a pop-up menu that lists the days of the week. When a user
selects a particular day, the specials for that day are displayed.

To run the <LAYER> version of the example see:

diner.htm lewin

To run the style sheet version of the example see:

dinercss.htm lewin

To view the complete code for either version of the example, use
the Page Source command of the View menu in the Navigator
browser that is displaying the example.

The functions used in both versions are identical.

To view the files containing the daily specials see:

specials/mon.htm

, Nikki’s Diner Example 189

Content in the External Files

specials/tues.htm

specials/wed.htm

specials/thurs.htm

specials/fri.htm

specials/sat.htm

specials/sun.htm

The specials for each day are written in separate files. There is a
file for Monday’s special, (mon.htm) another for Tuesday’s
special (tues.htm) and so on. These files contain HTML
formatted text that describes the specials for that day.

The benefit of this system is that changing the specials for a
particular day of the week is a trivial process. For example, to
update the specials offered on Monday, Nikki simply has to
change the text in the mon.htm file. She doesn’t have to make
any changes to the main file for the web page document.

• Content in the External Files

• The File for the Main Page

Content in the External Files
The following code shows the entire contents of the file
mon.htm :

<HR>

<H1 align=center > Monday</H1>

<HR>

<H2 align=center >Entrees</H2>

The File for the Main Page

190 Netscape Communicator 4.0 Changes for Content Developers

<P>Tofu, Artichoke, and Asparagus Surprise</P>

<P>Walnut and Carrot Risotto</P >

<P>Parsnip Casserole </P >

<P>Chef's Special Spicy Salad</P >

<H2 align=center >Desserts</H2>

<P>Gooseberry Tart</P >

<P>Strawberry Delight</P >

The content of the files tues.htm , wed.htm , and so on are
similar.

The File for the Main Page
The file for Nikki’s Diner’s home page starts with some general
information about the diner. Paragraphs in the general
introduction are not indented, and the paragraphs in the layers are
indented. This page uses style sheets to achieve this indentation
effect.

<HTML>

<HEAD>

<TITLE>Welcome to Nikki's Diner</TITLE>

<STYLE TYPE="text/css">

<!--

 P {margin-left:50;}

 P.plainPara {margin-left:0};

-->

</STYLE></HEAD>

<BODY BGCOLOR="white">

<HR>

<H1 align = "center">Welcome to Nikki's Diner!</H1>

, Nikki’s Diner Example 191

The File for the Main Page

<HR>

<P CLASS=plainPara>Nikki's Diner is the best place for vegan food in
NetscapeVille. </P>

<P CLASS=plainPara>You can find us at the corner of Communicator Street
and Navigator Way. We're open from 10 am to 6 pm every day. We don't
take reservations, so just come on down. We guarantee that after you
visit us once, you'll be back on a regular basis!</P>

<P CLASS=plainPara>We have an extensive regular menu of tasty meals in
addition to our daily specials.</P>

<P CLASS=plainPara >You can use the following menu (no pun intended) to
view the Specials for any day this week. Our specials change every
week.</P>

Next comes an inflow layer containing a form that lets users pick a
day of the week. This layer is indented 50 pixels to the left.
Because it is an inflow layer, the natural position in the page will
be at the end of the layer, when the layer has finished being
drawn.

<LAYER ID="formlayer" LEFT=50>

<P Please select a day of the week:</P>

 <FORM NAME=form1>

 <SELECT name=menu1 onChange="showSpecials(this.selectedIndex); return
false;">

 <OPTION >Saturday

 <OPTION >Sunday

 <OPTION >Monday

 <OPTION >Tuesday

 <OPTION >Wednesday

 <OPTION >Thursday

 <OPTION >Friday

 </SELECT>

 </FORM>

</LAYER>

The next task is to create the layer where the daily specials will be
shown.

The File for the Main Page

192 Netscape Communicator 4.0 Changes for Content Developers

The menu layer needs to have an absolute position, since
changing the source on the fly works only for layers with absolute
positions.

Since this is the first layer with an absolute position in the
document, its position defaults to the current cursor position in
the page, which happens to be beneath the inflow form layer.

You want the top value to default to the natural top position, so
do not supply a value for TOP, but you want the left value to be
50 pixels in from the left edge. By default, Saturday’s menu
appears.

<LAYER ID="menu" LEFT=50 WIDTH=400 src="specials/sat.htm">

</LAYER>

The script is defined at the level of the document rather than
inside a particular layer, since it involves both the form and the
menu layer. The showSpecial() function assigns a source for
the menu layer depending on which menu option was picked.

<SCRIPT>

function showSpecials(n) {

 var specials = document.menu;

 switch (n) {

 case 0: specials.src = "specials/sat.htm"; break;

 case 1: specials.src = "specials/sun.htm"; break;

 case 2: specials.src = "specials/mon.htm"; break;

 case 3: specials.src = "specials/tues.htm"; break;

 case 4: specials.src = "specials/wed.htm"; break;

 case 5: specials.src = "specials/thurs.htm"; break;

 default: specials.src = "specials/fri.htm";

 }

}

</SCRIPT>

</BODY>

, Nikki’s Diner Example 193

The File for the Main Page

</HTML>

The File for the Main Page

194 Netscape Communicator 4.0 Changes for Content Developers

C h a p t e r

13
Expanding Colored Squares Example

This example illustrates how to expand and contract the clipping
region of a layer, without changing the wrapping width of the
layer. (The next example, Chapter 14, “Changing Wrapping Width
Example,”, illustrates how to capture mouse events so that the
user can make a layer’s wrapping width wider or narrower by
dragging the mouse.)

This example illustrate these tasks:

• using of onLoad and onMouseOver event handlers for layers

• dynamically changing clipping regions of layers

• writing to layers

• changing the source of a layer

• using nested layers

The sections in this chapter are:

• Running the Example

• Creating the Colored Squares

, Expanding Colored Squares Example195

Running the Example

• The Initialization Functions

• The Last Layer

• Moving the Mouse Over a Square

• The expand() Function

• The contract() Function

• Styles in the Document

Running the Example
In this example, when the page initially loads, the user sees four
colored squares as follows:

Figure 2.1 Initial appearance of the four colored squares

Running the Example

196 Netscape Communicator 4.0 Changes for Content Developers

When the square is fully contracted, it displays a number. If the
user moves the mouse over one of the squares, its content
changes to a block of text and the square expands.The top-left
square expands up and to the left, the top-right square expands to
the top and to the right, and so on.

The following figure shows the four squares after the top-left and
top-right squares are fully expanded.

Figure 2.2 Two squares are fully expanded

While a square is expanding, further mouse-over events are
blocked on that square until it has finished expanding. When it is
fully expanded, if the user moves the mouse over it, then it
contracts again. While it is contracting, all mouse-over events for
that square are blocked until it has finished contracting. When it
finishes contracting, it changes its content back to a number.

To run the example see:

, Expanding Colored Squares Example197

Creating the Colored Squares

squares.htm lewin

This example is provided only as a <LAYER> version.

To view the complete code for the example, use the Page
Source command of the View menu in the Navigator browser
that is displaying the example.

Creating the Colored Squares
Each colored square is in its own layer. The width of each layer is
200 and the height is 200. When the page loads you only see a
50x50 region of each layer because as soon as it is loaded, it calls
a function that sets its clipping region so that only a small part of
the square is visible.

Each square layer contains another layer that displays a number.
The number needs to be in a layer so that can be placed it in the
portion of the layer that is visible when the square is fully
contracted.

The following figure shows where the number 1 would appear in
the top-left square if it were not in a layer but were allowed to fall
in its natural position in the parent layer. As you can see, when
the red square is fully contracted, the number would not be
visible.

Creating the Colored Squares

198 Netscape Communicator 4.0 Changes for Content Developers

Figure 2.3 Position where the number 1 would appear if it were not in a layer

Definitions for the Layers

The following code defines the top-left layer:

<LAYER ID="topleftblock" top=50 left=50

 width=200 height=200

 BGcolor="#FF5555"

 onLoad = initializeTopLeft(0);

 onMouseOver=changeNow(0); >

 <LAYER TOP=160 LEFT=168>

 <H1>1</H1>

 </LAYER>

, Expanding Colored Squares Example199

The Initialization Functions

</LAYER>

This layer would be 200 pixels wide by 200 high. However, when
this layer finishes loading, it calls its onLoad function,
initializeTopLeft() .

Before considering the initializeTopLeft() function,
quickly look at the global variables defined in the script. There are
four variables that describe the minimum and maximum clipping
values. The variable delta specifies the distance by which the
clipping values change each time the expand() or contract()
functions are called. (These functions will be discussed in detail
soon.)

<SCRIPT>

var maxclip = 200;

var minclip = 0;

var maxclipcontracted = 150;

var minclipcontracted = 50;

var delta = 10;

The Initialization Functions
The initializeTopLeft() function does the following things:

• Sets the layer’s status variable to "waitingToExpand" .
(Notice that you can create the variable simply by using it.)

• Sets the clip.top , clip.bottom , clip.right , and
clip.left values so that the visible region of the layer is a
square measuring 50 pixels by 50 pixels in the bottom right
corner, as illustrated in the following figure:

The Initialization Functions

200 Netscape Communicator 4.0 Changes for Content Developers

Figure 2.4 Clip values

• Sets the dleft , dtop , dbottom , and dright variables to
indicate by how much the clip.left , clip.top ,
clip.bottom and clip.right variables need to change
while the square is expanding.

• Sets the myposition variable to topLeft .

• Sets the mysource variable so that it specifies the source file
to be used as the contents of the layer when it starts
expanding.

• Sets the mytext variable so it contains the text that will be
written to the layer when the layer is fully contracted.

The full definition for the initializeTopLeft() function is
shown here:

function initializeTopLeft(n)

{

 var thislayer = document.layers[n];

 thislayer.status = "waitingToExpand";

 thislayer.clip.top = maxclipcontracted;

 thislayer.clip.left = maxclipcontracted;

, Expanding Colored Squares Example201

The Last Layer

 thislayer.clip.bottom = maxclip;

 thislayer.clip.right = maxclip;

 thislayer.dleft = -delta;

 thislayer.dtop = -delta;

 thislayer.dbottom = 0;

 thislayer.dright = 0;

 thislayer.myposition = "topLeft";

 thislayer.mysource="point1.htm"

 thislayer.mytext="<LAYER TOP=160 LEFT=168><H1>1</H1></LAYER>"

 return false;

}

Each of the other three layers has a similar definition, and a
corresponding initialization function.

The Last Layer
Since the bottom squares can be dynamically expanded beyond
the height of the page, add a last layer that is positioned below
the bottom of the expanded bottom squares. This last layer has
nothing in it, but it forces the Web page to increase its height to
be big enough to include the expanded layers. Thus you will be
able to use the scrollbar to scroll down to the bottom of the
expanded layers if they do not initially fit on your screen.

If you we do not include this last layer, then the scrollbar will only
allow you to scroll to the bottom of the contracted squares.

Here is the definition for the last layer:

<LAYER TOP=500>

<P></P>

Moving the Mouse Over a Square

202 Netscape Communicator 4.0 Changes for Content Developers

</LAYER>

Moving the Mouse Over a Square
When you move the mouse over any of the colored squares, its
changeNow() function is invoked. (This is because in the layer
definition, the onMouseOver handler is set to changeNow ().)

The basic aim of the changeNow() function is to start expanding
the layer if it is fully contracted, or start contracting the layer if it is
fully expanded. If the layer is already in the process of expanding
or contracting, it ignores the new mouse over event.

The status variable indicates whether the layer is waiting to
expand, waiting to contract, expanding or contracting. The status
value for each layer is initialized to "waitingToExpand ".

The changeNow() function simply checks the status of the layer
and then calls the expand() function, the contract()
function, or does nothing, depending on the layer’s status. If the
layer needs to start expanding, it first sets the layer’s source to
change the content of the layer to show text instead of just a
number.

function changeNow (n)

{

 var thislayer = document.layers[n];

 if (thislayer.status == "waitingToExpand")

 {

 thislayer.src=thislayer.mysource;

 expand(n);

 }

, Expanding Colored Squares Example203

The expand() Function

 else if (thislayer.status == "waitingToContract")

 {contract(n);}

 return false;

}

The expand() Function
The expand() function sets the layer’s status to expanding .
Then it changes each of the clip.left , clip.right ,
clip.top , and clip.bottom variables by the values
appropriate to the particular layer to increase the layer’s visible
region in the appropriate direction. It then checks if the layer is
fully expanded and, if not, calls the setTimeout() function to
reinvoke the expand() function.

If the layer has finished expanding, the expand() function sets
the layer’s status to "waitingToContract" .

Here is the code for the expand() function:

function expand (n)

{

 var thislayer = document.layers[n];

 thislayer.status = "expanding";

 // increase or decrease each clip value as appropriate

 thislayer.clip.left=thislayer.clip.left+thislayer.dleft;

 thislayer.clip.right=thislayer.clip.right+thislayer.dright;

 thislayer.clip.bottom=thislayer.clip.bottom+thislayer.dbottom;

 thislayer.clip.top=thislayer.clip.top+thislayer.dtop;

 // is the layer fully expanded?

 if (

The contract() Function

204 Netscape Communicator 4.0 Changes for Content Developers

 (((thislayer.myposition == "topLeft") |

 (thislayer.myposition == "bottomLeft")) &&

 (thislayer.clip.left > minclip)) ||

 (((thislayer.myposition == "topRight") |

 (thislayer.myposition == "bottomRight")) &&

 (thislayer.clip.right < maxclip)))

 // if not, call expand again

 {setTimeout("expand(" + n + ")", 50);}

 // if so, change the layer’s status

 else {thislayer.status = "waitingToContract";}

 return false;

}

The contract() Function
The contract() function is very similar to the expand()
function. The contract() function sets the layer’s status to
contracting . Then it changes each of the clip.left ,
clip.right , clip.top , and clip.bottom by the values
appropriate to the particular layer to decrease the visible region in
the appropriate direction. It then checks if the layer is fully
contracted, and if not, calls the setTimeout() function to
reinvoke the contract() function.

If the layer has finished contracting, the contract() function
sets the layer’s status to "waitingToExpand" . The other thing it
does is to change the contents of the layer so that you can see the
number of the layer. It does this by opening the layer’s document,
writing the data stored in the layer’s mytext variable, and then
closing the layer’s document.

, Expanding Colored Squares Example205

The contract() Function

The value of the mytext variable was set during the initialization
process. For each layer, it contains the HTML text for an
embedded layer that displays the layer’s number at a place that
will be visible when the layer is fully contracted.

Here is the code for the contract() function:

function contract (n)

{

 var thislayer = document.layers[n];

 thislayer.status = "contracting";

 // increase or decrease each clip value as appropriate

 thislayer.clip.left=thislayer.clip.left-thislayer.dleft;

 thislayer.clip.right=thislayer.clip.right-thislayer.dright;

 thislayer.clip.bottom=thislayer.clip.bottom-thislayer.dbottom;

 thislayer.clip.top=thislayer.clip.top-thislayer.dtop;

 // is the layer fully contracted? True if

 // the square is the top OR bottom left AND its clip left

 // is less than or equal to the minimum clip for contracted squares

 // OR if the square is the top OR bottom right AND its clip right

 // is greater than or equal the max clip for contracted squares

 if (

 (((thislayer.myposition == "topLeft") |

 (thislayer.myposition == "bottomLeft")) &&

 (thislayer.clip.left <= minclipcontracted)) ||

 (((thislayer.myposition == "topRight") |

 (thislayer.myposition == "bottomRight")) &&

 (thislayer.clip.right >= maxclipcontracted)))

 // if not, call contract again

 {setTimeout("contract(" + n + ")", 50);}

 // if it is fully contracted

 else {

 // change the status

Styles in the Document

206 Netscape Communicator 4.0 Changes for Content Developers

 thislayer.status = "waitingToExpand";

 //open the document, write mytext to it, close again

 thislayer.document.write(thislayer.mytext);

 thislayer.document.close();

 }

 return false;

}

</SCRIPT>

Styles in the Document
Just to make the text in the squares look prettier, this file uses a
style sheet to set left and right margins for paragraphs, and to
center level-three headings:

<STYLE TYPE="text/css">

<!--

 P {margin-left:10%; margin-right:10%;}

 H3 {text-align:center; margin-top:4%;}

-->

</STYLE>

, Changing Wrapping Width Example207

Styles in the Document

C h a p t e r

14
Changing Wrapping Width Example

The previous example, Chapter 13, “Expanding Colored Squares
Example,” illustrates how to expand and contract the clipping
region of a layer without changing the wrapping width of the
layer.

This example illustrates how to capture mouse events so that the
user can make a layer’s wrapping width wider or narrower by
dragging the mouse.

This example illustrates:

• how to capture mouse events for a layer

• how to change the wrapping width of a layer by using the
load() function

The sections in this chapter are:

• Running The Example

• Defining the Block of Content

• Capturing Events for the Layer

Running The Example

208 Netscape Communicator 4.0 Changes for Content Developers

• Defining the Dragging Functions

Running The Example
When the page loads, you’ll see a a blue layer containing a block
of text. You can change the wrapping width of the layer by
moving the mouse into the layer, pressing the mouse button
down, and moving the mouse to the left or right. The wrapping
width of the layer increases when you move the mouse to the
right, and decreases when you move the mouse to the left. When
you release the mouse button, the layer stops tracking mouse
events and no longer changes in accordance with the mouse.

To run the <LAYER> version of the example see:

wrapping.htm lewin

For the style sheet version of this example see:

wrapcss.htm lewin

Defining the Block of Content
The definition for the block of content is very simple. It sets the
left position, sets the background color, sets the initial wrapping
width, and specifies the source for the layer:

<LAYER NAME="layer1" LEFT=100

 WIDTH=300 BGCOLOR="#99bbFF"

 SRC="mytext.htm" >

, Changing Wrapping Width Example209

Capturing Events for the Layer

</LAYER>

</BODY>

Capturing Events for the Layer
The first thing the script does is to define some variables that it
needs. These include layerWidth , which is the initial width of
the layer; oldX which keeps track of the previous x position of
the mouse when it is dragged inside the layer; and layer1 ,
which is the layer itself.

var layerWidth = 300;

var oldX;

var layer1 = document.layer1;

Next, the script specifies which events layer1 needs to capture:

layer1.document.captureEvents(

 Event.MOUSEUP|Event.MOUSEDOWN|Event.MOUSEDRAG);

Then it specifies that when the mouse is pressed down inside
layer1 , the begindrag() function is called, and when the
mouse button is released (let up) inside layer1, the enddrag()
function is called. (These functions will be defined shortly.)

layer1.document.onmousedown=begindrag;

layer1.document.onmouseup=enddrag;

The script specifies that after layer1 has loaded, the
resetcapture() function is invoked.

layer1.onLoad=resetcapture;

Next comes the definition of the resetcapture() function,
which basically restates which events the layer needs to capture:

function resetcapture() {

Defining the Dragging Functions

210 Netscape Communicator 4.0 Changes for Content Developers

 layer1.document.captureEvents(

 Event.MOUSEUP|Event.MOUSEDOWN|Event.MOUSEDRAG|Event.MOUSEMOVE);

}

Defining the Dragging Functions
When you press the mouse down in the layer, the layer’s
onMouseDown event handler is called, which in this case is the
begindrag() function. The begindrag() function sets the
layer’s onMouseMove handler to drag , so that when you move
the mouse while the button is pressed down, the drag()
function is invoked. When you release the mouse button, the
layer’s onMouseUp event handler is invoked, which in this case is
the enddrag() function.

When an event occurs, an event object is created to represent the
event. This event object has a PageX variable, which indicates the
x position in the page where the event occurred.

The begindrag() Function

The begindrag() function tells the layer that it needs to capture
mouse-move events. It sets the onmousemove handler to drag
so that the drag() function will be invoked when the mouse is
moved. Then it gets the x position of the mouse-down event and
stores it in the oldX global variable.

function begindrag(e) {

 layer1.document.captureEvents(Event.MOUSEMOVE);

 layer1.document.onmousemove=drag;

 oldX=e.pageX;

, Changing Wrapping Width Example211

Defining the Dragging Functions

 return false;

}

The drag() Function

The drag() function calls the changeWidth() function, which
changes the wrapping width of layer1 by the distance that the
mouse moved since the drag function was last called, or if
applicable since the begindrag() function was called. This
distance is calculated by subtracting the x value of the previous
event (stored in oldX) from the pageX value of the current event.
Finally the drag() function updates the value stored in oldX .

function drag(e) {

 changeWidth(layer1, e.pageX - oldX);

 oldX = e.pageX;

 return false;

}

The only way to change the wrapping width of a layer is to reload
the contents of the layer using the load() function. This function
takes two arguments: the file to use as the content of the layer,
and the new wrapping width of the layer.

The changeWidth() function increases the value of the
layerWidth global variable by the amount that the mouse
moved. If the distance that the mouse moved is not zero, the
function calls the load() method on the layer to load the file
"mytext.htm" and also to change the layer’s wrapping width to
the new layer width. Since the same file is loaded over and over,
in effect the content does not seem to change, but the wrapping
width constantly changes so that the content wraps neatly at the
right edge of the layer.

function changeWidth(layer, delta)

{

Defining the Dragging Functions

212 Netscape Communicator 4.0 Changes for Content Developers

 layerWidth = layerWidth + delta;

 if (delta != 0)

 layer.load("mytext.htm", layerWidth);

}

When you use load() to change the wrapping width, the value
of clip.right automatically changes to show the full wrapping
width, so long as you have not changed the value of
clip.right from its default initial value. If you have specifically
set the value of clip.right , then the right edge of the clipping
region will not change, even if the wrapping width changes.

The enddrag() Function

When you release the mouse, the enddrag() function is called.
The only thing this function does is set the layer’s onMouseMove
handler to 0, and release the mouse-move event. If the mouse-
move event was not released, the layer would continue tracking
all mouse move events.

function enddrag(e) {

 layer1.document.onmousemove=0;

 layer1.document.releaseEvents(Event.MOUSEMOVE);

 return false;

}

, 213

Part 3.Downloadable
Fonts

Contents

Chapter 15. Using Downloadable Fonts 201
Creating and Using Font Definition Files 202

Creating Font Definition Files 203

Linking Font Definition Files Into a Document 203

Using Fonts in the Document 204

Adding a New MIME Type to the Web Server 205

New Attributes for the FONT Tag 205

POINT_SIZE Attribute 206

WEIGHT Attribute 206

Further Information 206

Javascript-Accessible Style Sheets

214 Javascript-Accessible Style Sheets

C h a p t e r

15
Using Downloadable Fonts

Font enhancements in Communicator include the ability to
incorporate downloadable fonts into your web documents. By
using downloadable fonts on your web pages, you can specify
whatever fonts you want to enhance the appearance of your
pages.

The fonts are contained in a font definition file that reside on the
host web server with the HTML document. When the page is
accessed by a browser, the font definition file is downloaded with
the HTML file in the same way that a GIF or JPEG file would be.
The font definition file is loaded asynchronously so that the HTML
page doesn’t have to wait while the fonts are loading.

The dowloaded font remains on the end user’s system only while
the page is in the browser’s cache. End users cannot copy the
fonts for their own future use.

This document contains the following sections:

• Creating and Using Font Definition Files

• New Attributes for the FONT Tag

• Further Information

 Javascript Accessible Style Sheets 215

Creating and Using Font Definition Files

Creating and Using Font Definition Files
Before you can create font definition files, make sure the fonts
you wish to use in your web document are installed on your
system. You can get fonts by creating them, purchasing them, or
finding free fonts on the Internet. Be aware that fonts are subject
to copyright laws, so be sure you have the right to use a font
before you incorporate it as a downloadable font in your web
documents.

As a first place to look for fonts to buy or download free, you can
search the web using keywords such as "font buy"or "font free."

Creating Font Definition Files

When the desired fonts are installed on your system, the next step
is to make a font definition file. To do this, you need a font
definition file authoring tool, such as Typograph from HexMac, or
the Font Composer Plugin for Communicator.

To download a font definition generation tool from HexMac, go to
their web site at:

http://www.hexmac.com/ fontswin

The exact steps for creating a font definition file depend on the
tool you are using. For example, in HexMac Typograph, you
would open your document in Typograph, and use simple menus
to select fonts and apply them to text. You then burn the file,
which saves the document, creates a font definition file that
contains the fonts used by the file, and also links the font
defintion file into the document.

Javascript-Accessible Style Sheets

216 Javascript-Accessible Style Sheets

When creating a font definition file, you must specify the domain
that is allowed to use these fonts. That is, only web pages served
by the specified domain are allowed to download the font file. For
example, for fonts to be downloaded with this document, which
is served from developer.netscape.com , the domain for the
font file is:

//developer.netscape.com

Linking Font Definition Files Into a
Document

After you have created a font definition file, you can link it directly
into documents either by using a style sheet or by using the
<LINK> tag.

The following example links a font definition file using CSS
syntax.

<STYLE TYPE="text/css"><!--

 @fontdef url(http://home.netscape.com/fonts/sample.pfr);

--></STYLE>

You can link a font definition file into a document by using a
LINK tag whose REL attribute is FONTDEF, and whose SRC
attribute is the pathname to the font definition file, as shown here:

<LINK REL=FONTDEF SRC="http://home.netscape.com/fonts/sample.pfr">

The source URL can be any valid URL.

Using Fonts in the Document

After linking a font definition file into a document, you can use
the fonts that are contained in the font definition file anywhere in
the document. You can either use the fonts as the value of the

 Javascript Accessible Style Sheets 217

Creating and Using Font Definition Files

FACE attribute in the tag, or you can use them as the
value of the font family style sheet property, as discussed in the
section "Font Family" in Chapter 5, “Style Sheet Reference.”

The following code creates a style sheet that contains a style
definition for all <H1> tags. All <H1> elements will be displayed
in the Impress BT font. If that font is not available (for example,
the font definition file cannot be located), the element uses the
Helvetica font. If that font is not available, the generic sans serif
font is used as a last resort.

<STYLE type="text/css">

<!--

H1 {font-family:"Impress BT", "Helvetica", sans-serif;}

-->

</STYLE>

The following example displays an <H1> elemet in the Impress
BT font.

<H1> This H1 Uses Impress BT Font </H1>

For a further example of the use of downloadable fonts, open the
following page:

fontdef1.htm fontswin

You can view the source code for the file fontdef1.htm to see
how the fonts are used in the file.

Javascript-Accessible Style Sheets

218 Javascript-Accessible Style Sheets

Adding a New MIME Type to the Web
Server

When you are ready to make your document available on the
web, you need to put the font definition file in the place where
the document expects to find it. The font definition file will be
downloaded with documents that use it, so long as it is served
from the domain for which the font definition file was created.

You will also need to add a new MIME type to your web server if
it has not already been added.

Add the MIME type application/font-tdpfr , and specify its
ending as .pfr .

Web servers cananot download font definition files unless they
know about this MIME type.

New Attributes for the FONT Tag
The tag takes new POINT-SIZE and WEIGHT attributes,
in addition to the other attributes it already supports.

POINT_SIZE Attribute

The POINT-SIZE attribute indicates the point size of the font.
For example:

<P>

This text appears in 18 pt monspace font.

</P>

 Javascript Accessible Style Sheets 219

Further Information

The POINT_SIZE attribute lets you set exact point sizes. (The
existing SIZE attribute lets you set the font size relative to the
existing size, for example, "+2" or "-2".)

WEIGHT Attribute

The WEIGHT attribute indicates the weight, or "boldness" of the
font. The value is from 100 to 900 inclusive (in steps of 100),
where 100 indicates the least bold value, and 900 indicates the
boldest value.

If you use the tag to indicate a bold weight, the maximum
boldness is always used. The WEIGHT attribute allows you to
specify degrees of boldness, rather than just "bold" or "not bold,"

For example:

<P>

This text appears in 18 pt monospace font.It is fairly bold, but it
could be even bolder if it needed to be.

</P>

Further Information
For more information about dynamic fonts, see:

http://home.netscape.com/comprod/products/communicator/fonts/index.html

Another information resource is:

http://www.bitstream.com/world/ fontswin

The following link takes you to a very informative article that
contains information and recommendations about buying fonts:

Javascript-Accessible Style Sheets

220 Javascript-Accessible Style Sheets

http://www4.zdnet.com/macuser/mu_0696/desktop/desktop.html fontswin

The following link takes you to a paper published by the World
Wide Web Consortium (W3C) discussing fonts and the web.

http://www.w3.org/pub/WWW/Fonts/ fontswin

221

Index
Symbols
<BODY> tag

as parent 23

<DIV> tag
example for positioning

content 119

 tag
FACE attribute 204
POINT-SIZE attribute 205
WEIGHT attribute 205

<ILAYER> tag 125

<LAYER> tag
and style sheets 122
caveats 121
example 121
for positioning HTML content 121
using inline JavaScript 130

<LINK> tag
reference entry 52

<NOLAYER> tag 140

<SCRIPT> tag
in positioned content 155

 tag
reference entry 53

<STYLE> tag
for positioning content 118
overview 25
reference entry 52

A
above property

for positioning content 135
of layer objects 149

absolute position

for content 124

absolute-size
font size 60

accessing
positioned content with

JavaScript 142

align
style sheets property 79

animated gifs
onload handler 158

animating
positioned content 156

applets
in positioned content 141

assigning
styles 24

attributes
of positioned blocks of

content 126

auto
margin 72

B
background color

style sheet property 88

background color property
of positioned content 137

background image
of positioned content 138
style sheet property 86

background properties
in style sheets 85

background property
for positioning content 138

222 MANUAL NAME GOES HERE

of layer objects 148

beginDrag()
example function 198

below property
for positioning content 135

bgColor property
for positioning content 137
of layer objects 148

Bitstream
font information 207

blink 66

block level elements
classification property 89
format properties 40
formatting example 41
formatting in style sheets 72
padding overview 47

border characteristic
setting in style sheets 46

border color
style sheet property 77

border style
style sheet property 77

border widths
in style sheets 75

borderWidths()
function 75

bulleted lists
display properties 89

C
capitalize 67

capturing mouse events
example using positioned

content 195

cascading style sheets
position property 119
syntax for definining style

sheets 17
syntax for positioning content 117
W3C specification for positioning

content 117
W3C specification for style

sheets 17

center
text align value 68

changeDirection()
example function 174

changeNow()
example function 190

changePoles()
example function 175

changeWidth()
example function 199

child elements
in style sheets 22

CLASS
HTML attribute 55

classes
in JavaScript syntax style sheets 59
JavaScript property 59
of styles 28

classification properties
in style sheets 89

clear
style sheet property 84

clip property
for positioning content 134

clip.bottom property
of layer object 148

clip.height property
of layer object 148

clip.left property
of layer object 148

clip.right
property of layer object 148

clip.top property
of positioned content 148

clip.width property
of layer object 148

clipping region
example of changing for positioned

223

content 182
of positioned content 134

color
background in style sheets 88
background of positioned

content 137
properties in style sheets 85
style sheet property 85
units 94

combining style sheets 38

comments
in style sheets 51

Communicator
style sheets 16
syntax for positioning content 117

content
for positioned content 131
positioning 115
writing in positioned blocks 152

contextual selection
in style sheets 33

contract()
example function 192

contracting
positioned content example 190

creating
positioned content

dynamically 151
style sheets 24

CSS
see cascading style sheets 17

D
defining

classes of styles 28

DIV block
example use with style sheets 99

document object
layers property 144

document object model 17

downloadable fonts 201

drag()
example function 198

Dynamic HTML 9
positioning content 113
style sheets 13

Dynamic HTNL
introduction 9

dynamically
creating positioned content 151

E
enddrag()

example function 199

event handling
in positioned content 153

examples
expanding colored squares 182
of capturing mouse events in

positioned content 195
of changing positioned content’s

wrapping width 195
of creating positioned content 160
of inline JavaScript 164
of style sheets 95
of using load() function 195
swimming fish 165

expand()
example function 191

expanding
positioned content example 190

external content
for positioned content 131

external style sheets 27

F
FACE attribute 204

Fancy Flowers Farm
positioned content example 160

float
style sheet property 79

224 MANUAL NAME GOES HERE

font definition files
linking 204

font family
style sheet property 61

font properties
in style sheets 59

font size
style sheet property 59

font style
style sheet property 63

font weight
style sheets 63

fonts
downloadable 201
downloading 206
dynamic, see downloadable

fonts 201

format properties
for block level elements 40

forms
example in positioned content

(1) 161
example in positioned content

(2) 169
in positioned content 141

H
height property

for positioning content 134

hide
visibility value 136

HTML layers
see positioned content 115

HTML tags
attributes for style sheets 54
in style sheets 52

I
ID

for styles 32

HTML attribute 56
property of positioned content 127
style for positioning content 118
style sheet property for positioning

content 127

ids
in JavaScript style sheets 59
JavaScript property 59

images
pre-fetching 158
suppressing placeholder icons 159

individual elements
assigning styles for 36

inflow blocks of positioned
content 124

inherit
visibility value 136

inheritance
of styles 22

initializeFish()
example function 173

initializeTopLeft()
example function 188

inline
classification property 89

inline JavaScript
example 164
using with positioned content 130

introduction
to Dynamic HTML 9

J
JavaScript

accessing positioned content 142
document object model 17
example of inline 164
inline in layer definition 130
methods of the layer object 149
syntax for style sheets 19

JavaScript properties
classes 59

225

for styles sheets 58
ids 59
tags 58

justify
text align value 68

L
large

font size 60

layer object 144
above property (ii) 149
background property 148
bgColor property 148
changing source 151
clip.bottom 148
clip.height 148
clip.left 148
clip.right 148
clip.top 148
clip.width 148
document property 144
left property (ii) 147
load() method 151
methods 149
moveAbove() method 151
moveBelow() method 151
moveBy() method 150
moveToAbsolute() method 150
name property (ii) 147
pageX property (ii) 147
pageY property (ii) 147
parentLayer property 149
properties 147
resizeBy() method 150
resizeTo() method 150
siblingAbove property 149
siblingBelow property 149
src property (ii) 149
top property 147
visibility property (ii) 147
zIndex property 147

layer-background-color
style property 138

layer-background-image
style property 138

layers
of HTML content 115
see also positioned content 115

layers array 144

left
text align value 68

left property
for positioning content 128
of layer object 147

length
units 93

line height
style sheet property 65

line-through
text decoration value 66

linking
font definition files 204
to style sheets 27

list style type
style sheet property 90

list-item
display value 89

lists
display properties 89

load() method
of the layer object 151

loading
onLoad handler for positioned

content 139
positioned content 151

lowercase
text transform value 67

M
margins

overview 44
precedence 41
properties in style sheets 72

226 MANUAL NAME GOES HERE

margins()
function 72

medium
font size 60

methods
in layer object 149

modifying
positioned content with

JavaScript 142

moveAbove() method
of layer objects 151

moveBelow() method
of layer objects 151

moveBy() method
of layer objects 150

moveFish()
example function 170

movefish2()
example function 174

moveTo() method
of layer objects 150

moveToAbsolute() method
of layer objects 150

moving
blocks of content

incrementally 150
positioned content to a fixed

position 150

N
name property

for positioning content 127
of layer objects 147

named style
for positioning content 118

Navigator 4.0
syntax for positioning content 117

nesting
blocks of positioned content 116

normal

white space value 92

O
objects

document 144
layer 144

onBlur attribute
of positioned content 139

onFocus
attribute of positioned content 139
event handler 154

onLoad
animated gifs 158
attribute of positioned content 139
event handler for positioned

content 154
example in positioned content 182

onMouseOut
event handler for positioned

content 154

onMouseOver
event handler for positioned

content 154
example in positioned content 182

ordered lists
display properties 89

P
padding

in block level elements 47
style sheet properties 74

padding()
function 74

pageX property
for positioning content 131
of layer objects 147

pageY property
for positioning content 131
of layer objects 147

parent elements
in style sheets 22

227

parentLayer property 149

plugins
in positioned content 141

POINT-SIZE attribute 205

position
absolute 124
of content 128
relative 124

position property
for positioning content 124
for styles 119

positioned content
<LAYER> tag 121
<NOLAYER> 140
above property 135
absolute position 124
animating 156
applets 141
attributes 126
background color 137
background image 138
below property 135
changing wrapping width

example 194
clip property 134
creating dynamically 151
defining position of 128
dynamically positioning 115
event handling 153
example of changing clipping

region of 182
example of changing stacking

order 171
example of contracting 190
example of expanding 190
expanding colored squares

example 182
forms 141
height property 134
ID 127
in Communicator 117
in Navigator 4.0 117
inflow 124
inline 124

introduction 115
layer object 144
left property 128
name property 127
nesting 116
onBlur attribute 139
onFocus attribute 139
onLoad attribute 139
onLoad handlers 158
onMouseOut attribute 139
onMouseOver attribute 139
pageX property 131
pageY property 131
plugins 141
position property 119
properties 126
properties that can be accessed or

modified in scripts 146
relative position 124
scripts 155
source-include property 131
specifying external content 131
specifying stacking order 135
src property 131
top property 128
using JavaScript to access 142
visibility property 136
W3C specification 117
width property 133
wrapping width 133
writing 152
Z-index attribute 135

positioning
content, W3C specification 117
HTML content 115

pre
white space value 92

precedence
of horizontal dimensions 41

properties
of layer object 147

228 MANUAL NAME GOES HERE

R
relative

position value 125
positioned content 124

relative-size
font size 60

replaced elements 48

resetPole()
example function 176

resizeBy() method
of layer objects 150

resizeTo() method
of layer objects 150

resizing
blocks of positioned content

incrementally 150
blocks of positioned content to

specific size 150

restacking blocks of content
moveAbove() method 151
moveBelow() method 151

right
text align value 68

S
scripts

for accessing positioned
content 142

in positioned content 155

setTimeout() function 156

setting
margins 44
padding 47
width in style sheets 44

show
visibility value 136

showForm()
example function 170

siblingAbove property 149

siblingBelow property 149

small
font size 60

source
changing for positioned

content 151

source-include property 131

src property
for positioning content 131
of layer objects 149

stacking order
example of changing for positioned

content 171
of positioned content 135

strict
cascading style sheet syntax 18

STYLE
attribute 54

style sheets
<BODY> tag 23
<LINK> 52
 53
<STYLE> 52
align 79
and content positioning 122
background color 88
background image 86
background properties 85
background property for

positioning content 138
background-color property of

positioned content 137
block level formatting 72
border color 77
border style 77
border width settings 75
CLASS attribute 55
classification properties 89
clear 84
color 85
combining 38
comments 51
contextual selection 33
creating 24
defining in external files 27

229

definining classes of styles 28
example 95
float 79
font family 61
font properties 59
font size 59
font style 63
font weight 63
formatting block level elements 40
height property 134
HTML tags 52
ID attribute 56
in Communicator 16
inheritance 22
introduction 15
JavaScript properties 58
JavaScript syntax 19
left property 128
line height 65
list style type 90
margin settings 72
new HTML tags 54
padding settings 74
setting border characteristics 46
source-include property 131
STYLE attribute 54
text align 68
text color 85
text decoration 66
text indent 70
text properties 64
text transform 67
top property 128
unique styles 32
units 93
visibility property 136
white space 92
width 78
width property 133
Z-index property 135

Style Sheets Ink 95

styles
assigning 24
defining with <STYLE> 25
for individual elements 36

ID 32
unique 32

suppressing placeholder icons 159

T
tags

JavaScript style sheet syntax 58

text align
style sheet property 68

text color 85

text decoration
style sheet property 66

text indent
style sheet property 70

text properties
in style sheets 64

text transform
style sheet property 67

top property
for positioning content 128
of layer objects 147

U
underline

text decoration value 66

unique styles 32
for positioning content 118

units
color 94
for style sheet properties 93
length 93

unordered lists
display properties 89

uppercase
text transform value 67

V
visibility property

for positioning content 136

230 MANUAL NAME GOES HERE

of layer objects 147

visible area
of positioned content 134

W
W3C

fonts and the web 207
specification for positioning

content 117
specification for style sheets 17

web fonts 201

WEIGHT attribute 205

white space
style sheet property 92

width
changing of a block of positioned

content using load()
method 151

overview (style sheets) 44
precedence 41
style sheet property 78

width property
for positioning content 133

wrapping width
example of changing in positioned

content 194
of positioned content 133

writing
positioned blocks of content 152

X
x-large

font size 60

x-small
font size 60

xx-large
font size 60

Z
Z-index property

for positioning content 135

zIndex property
of layer objects 147

	Dynamic HTML in Netscape Communicator
	Contents
	About This Guide
	Purpose of This Document
	Structure of This Document
	Typographic Conventions
	Introducing Dynamic HTML
	Introducing Style Sheets
	Introducing Content Positioning
	Introducing Downloadable Fonts

	Part 1. Style Sheets
	Introduction To Style Sheets
	Style Sheets in Communicator
	Using Cascading Style Sheets to Define Styles
	Using JavaScript and the Document Object Model to Define Styles
	Introductory Example
	Inheritance of Styles

	Creating Style Sheets and Assigning Styles
	Defining Style Sheets with the <STYLE> Tag
	Defining Style Sheets in External Files
	Defining Classes of Styles
	Defining Named Individual Styles
	Using Contextual Selection Criteria
	Specifying Styles for Individual Elements
	Combining Style Sheets

	Format Properties for Block-Level Elements
	Block-level Formatting Overview and Example
	Setting Margins or Width
	Setting Border Widths, Color, and Style
	Setting Paddings
	Inheritance of Block-Level Formatting Properties

	Style Sheet Reference
	Comments in Style Sheets
	New HTML Tags
	New Attributes for Existing HTML Tags
	New JavaScript Object Properties
	Style Sheet Properties
	Font Properties
	Text Properties
	Block-Level Formatting Properties
	Color and Background Properties
	Classification Properties

	Units
	Length Units
	Color Units

	Advanced Style Sheet Example
	Style Sheets Ink Home Page
	Overview of the Style Sheet
	Main Block
	The Introductory Section
	Intro Head
	Text in the Intro Block
	List of Services
	End of the Intro Block

	The Training Section
	The Seminars Section
	Web Sites and Consultation Sections
	The Background Block
	Trouble-shooting Hints

	Part 2. Positioning HTML Content
	Introduction
	Overview
	Positioning HTML Content Using Styles
	Positioning HTML Content Using the <LAYER> Tag

	Defining Positioned Blocks of HTML Content
	Absolute versus Relative Positioning.
	Absolute Positioning
	Relative Positioning

	Attributes and Properties
	The <NOLAYER> Tag
	Applets, Plug-ins, and Forms

	Using JavaScript With Positioned Content
	Using JavaScript to Bring Your Web Pages to Life
	The Layer Object
	The Document Property of Layers and the Layers Property of Documents
	The Layer Object Properties
	The Layer Object Methods

	Creating Positioned Blocks of Content Dynamically
	Writing Content in Positioned Blocks
	Handling Events
	Using Localized Scripts
	Animating Positioned Content
	Animating Images

	Fancy Flowers Farm Example
	Introducing the Flower Farm
	Creating the Form for Flower Selection
	Positioning the Flower Layers

	Swimming Fish Example
	Positioning and Moving the Fish and Poles
	Defining the onLoad Handler for the BODY Element
	Positioning the Fish and Poles
	Defining the Form
	Moving the Fish

	Changing the Stacking Order of Fish and Poles
	Adding Another Layer to Contain the Reverse Fish Image
	Initializing the Fish to Have a Direction Variable
	Moving the Fish Backward and Forward
	Changing the Direction of the Fish
	Changing the Stacking Order of the Poles and the Fish
	Updating the Button That Gets the Fish Going

	Nikki’s Diner Example
	Content in the External Files
	The File for the Main Page

	Expanding Colored Squares Example
	Running the Example
	Creating the Colored Squares
	Definitions for the Layers

	The Initialization Functions
	The Last Layer
	Moving the Mouse Over a Square
	The expand() Function
	The contract() Function
	Styles in the Document

	Changing Wrapping Width Example
	Running The Example
	Defining the Block of Content
	Capturing Events for the Layer
	Defining the Dragging Functions
	The begindrag() Function
	The drag() Function
	The enddrag() Function

	Part 3. Downloadable Fonts
	Using Downloadable Fonts
	Creating and Using Font Definition Files
	Creating Font Definition Files
	Linking Font Definition Files Into a Document
	Using Fonts in the Document
	Adding a New MIME Type to the Web Server

	New Attributes for the FONT Tag
	POINT_SIZE Attribute
	WEIGHT Attribute

	Further Information

	Index

