Asylum migration in OECD countries: In the search of lost well-being

Jordi Paniagua¹ Jesús Peiró-Palomino Andrés J. Picazo-Tadeo

University of Valencia

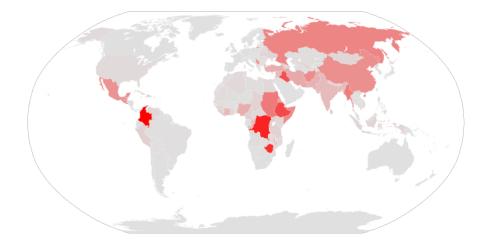
CEMFI Summer Course Virtualville, Agust 31, 2020

¹jordi.paniagua@uv.es

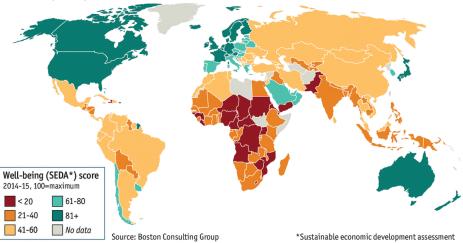

J. Paniagua (UV)

Stylized Reggae Music

Exodus: Movement of Jah people!


We know where we're going, uh!

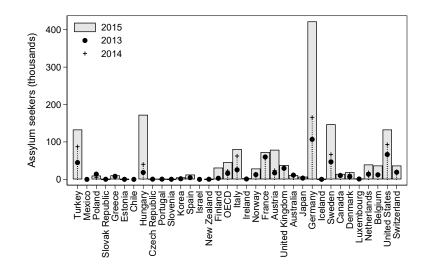
Sec. Data Source: Eurostat (2015)


Map created by Benjamin Hennig www.viewsoftheworld.net

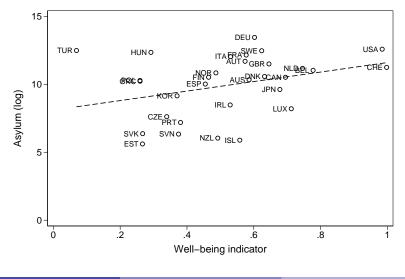
We know where we're from.

Open your eyes and look within:

Money (alone) can't buy you happiness


Economist com

J. Paniagua (UV)


In the search of lost well-being

CEMFI Summer Course 5/27

Are you satisfied (with the life you're living)? Uh!

We're going to our Father land

J. Paniagua (UV)

Outline

Motivation

- Stylized Reggae Music
- Contributions

The model

- 3 Data & Empirics
 - Empirics
 - Data
 - Results
 - Baseline
 - Endogeneity & Robustness
 - Home and host effects
 - Conclusions
 - Lessons learned

Background

- Why do individuals abandon their home and cross international borders to seek asylum in a foreign destination?
- Standard migration models (Anderson, 2011; Beine et al., 2011; Grogger and Hanson, 2011) present some shortcomings when it comes to explain forced migration (i.e., refugees and asylum seekers), which elude wage considerations.
 - distress-driven migration (Missirian and Schlenker, 2017a)
 - Temperature, floods or earthquakes (Feng et al., 2010; Gray and Mueller, 2012; Yang, 2008; Missirian and Schlenker, 2017b)
 - politics, oppression and violence in source countries (Davenport et al., 2003; Hatton, 2009; Moore and Shellman, 2004; Missirian and Schlenker, 2017b; Neumayer, 2005; Schmeidl, 1997)
 - Policies on host countries (Holzer et al., 2000; Neumayer, 2004; Thielemann, 2004, 2006; Vink and Meijerink, 2003).

Determinants of asylum seekers

- well-being determinants of asylum seekers using the gravity equation (Hatton, 2009 EJ, 2016 AER):
 - Origin: terror scale, political rights, civil liberties, wars, income
 - Destination: unemployment, recognition, migration, welfare
 - Bilateral: distance
- Issues:
 - A formal model to explain and derive a gravity equation for asylum flows
 - Empirical bias: Multilateral resistance (time-varying third country effects)
 - Country-specific "crude indicators" of welfare (Hatton, 2009 EJ, p. 211)
 - Decision making: differentials rather than in absolute levels (Ariely, 2009)

Contributions

Contributions

- First, we develop a model which:
 - Incorporates well-being explicitly in the migration decision and reduces the uncertainty of the idiosyncratic migration component.
 - introduces multilateral resistance in bilateral asylum flows.
- Second, we construct multi-dimensional home and host well-being indices
- Third, and estimate the effects of well-being on asylum flows controlling for unobserved bilateral heterogeneity, multilateral resistance terms, zero asylum flows and heteroskedastic residuals

The setup

- The prospect asylum seeker faces a discrete menu of host locations; each with an idiosyncratic cost of relocating of $\varepsilon_{ijz} > 1$ and a common bilateral cost to all migrants in the country pair, which are modeled with iceberg cost $\tau_{ij} > 1$.
- An *i*-country asylum seeker assesses the well-being of location j. The well-being gain $\varphi_{ij} > 0$ enters multiplicative in the model and enhances or deters relocation costs.

The decision and the pie

• In line with the relative decision making theory, a rational individual decides to seek asylum in country *j* if:

$$\varphi_{ij} > \varepsilon_{ijz} \tau_{ij}.$$
(1)


 The asylum seeker has a logarithm utility and the observable component of migrant utility is then:

$$u_{ij} = \ln \varphi_{ij} - \ln \tau_{ij}, \qquad (2)$$

• the probability that a random migrant select a particular destination is given by the multinomial logit form. The aggregate probability is the proportion of identical migrants from *i* (except for the values of ε_{ijz}) that choose *j*. The predicted aggregate flow of asylum seekers from *i* to *j* is:

$$A_{ij} = \frac{\varphi_{ij}/\tau_{ij}}{\sum_k \varphi_{ik}/\tau_{ik}} N_i.$$
(3)

A structural gravity equation for asylum seekers

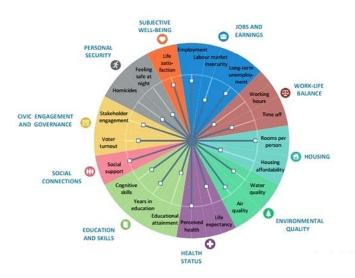
- The second term represents frictions that impede or enhance asylum flows. In a simple two country setup, bilateral migration flows will flow towards destinations with higher wage and well-being differentials with lower travel cost.
- However, multiple alternative destination influence the migration decision. This fact is captured by Ω_j and L_i , whose interpretation is analogous to the multilateral resistance terms in a gravity model of trade (Anderson & van Wincoop, 2003).

(4)

Estimation

We use the the Pseudo-Poisson Maximum likelihood (PPML) estimator proposed by Silva and Tenreyro (2006) using Larch's et al. (2017) procedure:

$$\mathcal{A}_{ijt} = \exp\left(eta_1 \ln w_{ijt} + eta_2 \ln arphi_{ijt} + \lambda_{ij} + \lambda_{it} + \lambda_{jt}
ight) imes arepsilon_{ijt}.$$


Data

OECD: Asylum seekers

Better Life Index the BLI following the recent guidelines by the Commission on the Measurement of Economic Performance and Social Progress (CMEPSP), based on three domains: material conditions, quality of life and sustainability.

Data

Better Life Index

J. Paniagua (UV)

A composite indicator for better life

J. Paniagua (UV)

- We elaborate a global well-being indicator comparable across economies.
 - Data Envelopment Analysis (DEA) & Multi-Criteria-Decision-Making (MCDM) techniques (Peiró & Picazo, 2018).
 - endogenous weights that maximise each country's well-being relative to the well-being of all other countries in the sample assessed with the same set of weights

$$\begin{array}{c|c} \mbox{Composite indicator dimension } d_{c'}^{*} = \mbox{Minimise}_{\lambda_{c'},S_{ic'}^{+}} & \frac{1}{1 + \frac{1}{l}\sum_{i=1}^{l} \frac{S_{ic'}^{+}}{indicator \, i_{c'}}} \\ \mbox{Subject to:} \\ \mbox{Subject to:} \\ \mbox{x}_{c'} \geq \sum_{c=1}^{34} \lambda_{c} x_{c} \\ \mbox{Indicator } i_{c'} = \sum_{c=1}^{34} \lambda_{c} indicator \, i_{c} - S_{ic'}^{+} & i = 1, ... I \\ \mbox{S}_{ic'}^{+} \geq 0 & i = 1, ... I \\ \mbox{A}_{c} \geq 0 & c = 1, ... 34 \\ \mbox{VV} & \mbox{In the search of lost well-being} & \mbox{CEMFI Summer Course} & \mbox{17/27} \end{array}$$

A composite indicator for better life

- Issues with DEA:
 - lack of discriminating power (countries vs dimensions)
 - Idiosyncratic weights
- Combination of DEA with with Multi-Criteria-Decision-Making (MCDM) (Despotis, 2002):

$$\mathsf{Minimise}_{m_c,\omega_i,z} \quad t\frac{1}{34}\sum_{c=1}^{34}m_c + (1-t)z$$

Subject to :

 $\sum_{i=1}^{l} \omega_i \text{ indicator } i_c + m_c = \text{composite indicator dimension } d_c^* \quad c = 1, ...34$

- $(m_c-z)\leq 0 \quad c=1,...34$
 - $m_c \ge 0$ $c = 1, \dots 34$
 - $\omega_i \geq \varepsilon$ i=1,...I

 $z \ge 0$

Data

Asylum vs well-being dimensions origin

	Resu	lts Baseline			
	(1)	(2)	(3)	(4)	
Well-being ratio	0.365*** (0.04)	0.582*** (0.15)	0.343*** (0.04)	-0.004 (0.13)	
Stock of migrants (log)	0.531** (0.21)	0.269 (1.12)	0.051** (0.02)	-0.039 (0.07)	
Population home (log)	1.483*** (0.35)		0.038** (0.02)		
Population host (log) Distance (log)	0.612** (0.30) -0.850** (0.34)		0.041** (0.02) -0.022 (0.03)		
Observations R^2	2304 0.934	2304 0.997	2304 0.424	2304 0.900	
Method	PPML	PPML	OLS	OLS	
Country Pair FE	No	Yes	No	Yes	
Home*year FE	No	Yes	No	Yes	
Host*year FE	No	Yes	No	Yes	
Notes: Robust standard erro	ors in parenthe	eses, clustere	d by country	pair. PPML estimation	
J. Paniagua (UV)		ch of lost well-b		CEMFI Summer Course 20 / 2	7

	(1)	(2)
Well-being ratio	0.981** (0.22)	
Well-being ratio (Lead)	0.253 (0.29)	
Well-being ratio (Lag)		1.687** (0.78)
Observations <i>R</i> ²	2108 0.9981	2108 0.9952
Country Pair FE Home*year FE	Yes Yes	Yes Yes
Host*year FE	Yes	Yes

Notes: Robust standard errors in parentheses,

clustered by country pair. PPML estimation.

* p < 0.10, ** p < 0.05, *** p < 0.01

	Results	Endogeneity	& Robustness	
	(1)	(2)	(3)	(4)
Well-being ratio diff	2.630* (1.63)			
Well-being ratio No income		0.628*** (0.12)		
Well-being ratio STD			0.925*** (0.24)	
Well-being ratio rank				10.212*** (2.43)
Observations	3162	3162	3162	3162
R^2	0.994	0.994	0.994	0.994
Country Pair FE	Yes	Yes	Yes	Yes
Home*year FE	Yes	No	Yes	Yes
Host*year FE	Yes	No	Yes	Yes

Notes: Robust standard errors in parentheses, clustered by country pair. PPML estimation Dep variable PPML: asylum in levels

* p < 0.10, ** p < 0.05, *** p < 0.01

	Results H	ome and host effe	ects	
	(1)	(2)	(3)	(4)
Population home (log)	4.814 (9.60)	6.660 (7.00)		
Population host (log)	21.637 (16.90)	40.131** (18.06)		
Well-being home (lag)	0.857 (4.50)		-2.369 (3.60)	
Well-being host (lag)		9.228*** (2.38)		3.082** (1.42)
Observations R^2	2108 0.996	11346 0.978	2108 0.997	11346 0.988
Country Pair FE	Yes	Yes	Yes	Yes
Home*year FE	No	No	No	Yes
Host*year FE	No	No	Yes	No

Notes: Robust standard errors in parentheses,

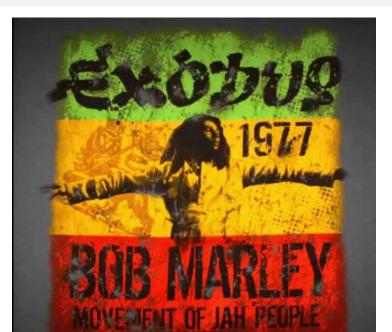
1			
J. Paniagua (UV)	In the search of lost well-being	CEMFI Summer Course	23 / 27

	Results	Home and host effects
	(1) Home	(2) Host
Housing	14.524 (9.41)	-1.862 (1.77)
Income	-17.611 (12.66)	2.662 (1.84)
Jobs	-4.204 (2.62)	1.896* (1.09)
Community	-3.084 (2.46)	-0.351 (0.53)
Education	3.896** (1.94)	0.474 (1.63)
Environment	2.621 (10.39)	-0.560 (1.45)
Civic engagement	13.763 (13.88)	12.965** (5.17)
Health	-13.718* (7.65)	-0.400 (0.41)
Safety	-0.660 (1.08)	0.905*** (0.27)
Work-life balance	-3.762* (2.09)	-1.570** (0.79)
Observations R^2	2108 0.996	11346 0.985
Country Pair FE Home*year FE	Yes No	Yes Yes

Notes: Robust standard errors in parentheses, clustered by country pair.

Lagged variables, PPML estimation

* p < 0.10, ** p < 0.05, *** p < 0.01


Take-away

- Asylum flows & Well-being:
 - Theoretical framework
 - Omposite well-being indicator
 - Structural gravity estimation
- Our findings give support to the use of this new set of multidimensional measures of well-being, as the Better Life Index

liberté, égalité, fraternité ...¿and well-being?

- The inspirational foundations of the European project are falling apart at the seams of the refugee crisis
- 2 Can we do better?
 - Mind the gap: work-life balance, civic engagement and education
 - Push factors: enlarging the scope of economic policies at the source with a wider range targets and political and civil actors.
 - Pull factors, a better design of the refugee quota system, which takes into account not only the population and growth of the host country, but also civic engagement and safety.

The end

