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Abstract

Reinforcement Learning is a very active field that has seen lots of progress in the last decade,
however industry is still resistant to incorporate it to the automatization of its decision process.
In this work we make a revision of the fundamentals of Reinforcement Learning reaching some
state-of-the-art algorithms in order to make its implementation more profitable. As a practical
application of this knowledge, we propose a Reinforcement Learning approach to Stock Market
from scratch, developing an original agent-environment interface and comparing the performance
of different training algorithms. Finally we run a series of experiments to tune our agent and test
its performance.

Resumen

El Reinforcement Learning es un campo muy activo que ha sufrido grandes progresos en
la última decada, sin embargo la industria todav́ıa se muestra reacia a incorporarlo a la autom-
atización de su proceso de toma de decisiones. En este trabajo hacemos una revisión de los
fundamentos del Reinforcement Learning alcanzando el estado del arte en algunos de los algorith-
mos desarrollados para hacer su implementación más prometedora. Como aplicación práctica de
este conocimiento proponemos una aproximacion desde cero al Mercado de Valores usando Rein-
forcement Learning, desarrollando una interfaz agent-entorno original y comparando el desempeño
de diferentes algoritmos de entrenamiento. Finalmente realizamos una serie de experimentos para
tunear y testear el desempeño de nuestro agente.

Resum

El Reinforcement Learning és un camp molt actiu que ha patit grans progressos en l’última
dècada, no obstant això la indústria encara es mostra poc inclinada a incorporar-ho a l’automatització
del seu procés de presa de decisions. En aquest treball fem una revisió dels fonaments del Rein-
forcement Learning aconseguint l’estat de l’art en alguns dels algoritmes desenvolupats per a fer
la seua implementació més aprofitable. Com a aplicació pràctica d’aquest coneixement proposem
una aproximació des de zero al Mercat de Valors usant Reinforcement Learning, desenvolupant
una interf́ıcie agent-entorn original i comparant el resultat de diferents algoritmes d’entrenament.
Finalment realitzem una sèrie d’experiments per a tunear i testear els retultats del nostre agent.
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1 Introduction

One of the key steps in the the expansion of Machine Learning to the industry is the change
from the data modelling culture to the algorithm modeling culture [1]. This evolution implies to
put aside the idea of statistical modelling in the sense of discovering the stochastic data-generating
model behind a problem, and focus on the idea of statistical modelling in the sense of the search
of best possible algorithm to reproduce or exploit the data. This change of mindset has proven to
be very fruitful to solve novel real-world problems arising from massive data sets in very different
domains such as finance (portfolio management, prediction of defaults and risk management) [2],
law (document classification, prediction of litigation outcome and recommendation of resolutions)
[3], medicine (automatic diagnosis, cardiology, radiology and smart electronic health records) [4],
pharmaceutical industry (personalized treatment, drug discovery and clinical trial research) [5],
physics (particle physics, cosmology, quantum many-body physics, quantum computing and ma-
terial physics) [6] or sports (player performance, ticketing and strategy) [7].

In this sense, the two big paradigms of Machine Learning, Supervised Learning and Un-
supervised Learning have been very active in last decades, in the academy and the industry, by
the disruption of Deep Learning. But the third paradigm, Reinforcement Learning, that was lack-
ing from attention, has been specially fruitful in the last years in the the academy, with rising
expectations in industry now [8].

Figure 1: Gartner Hype Cycle for Artificial Intelligence for 2019. We can see that the expectations
on Reinforcement Learning are rising. Source: [8]
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Reinforcement learning consists in learning what to do, that is, how to map situations to
actions, so as to maximize a numerical reward signal. In this sense, it is different from supervised
learning, since we are not learning from a training set of labeled examples provided by a knowl-
edgeable external supervisor, and from unsupervised learning, since we are not looking for the
structure hidden in collections of unlabeled data. More formally, Reinforcement Learning consists
of an agent interacting with an environment, this interactions occurs by environment showing an
state to the agent and the agent taking an action of the set of possible actions available for this
states, then the agent receives a reward indicating how good or bad was its decision. Then the
fundamental problem of Reinforcement Learning is the trade-off between long-term rewards versus
short-term reward.

In this sense, games provide a very adequate framework to develop the ideas of Reinforcement
Learning. In games, the rules mediating the interaction between the player and the game, or
between the player and other players tend to be very clear, allowing to get rid of the necessity of
modelling the environment and rather focus on learning process [9]. So, Reinforcement Learning
has evolved by solving classical games such as Backgammon, with the TD-gammon [10], Go, with
AlphaGo [11] [12], or Chess, with AlphaZero [13]. These achievements also were translated to
video games, such as the classic ATARI 2600 set of games [14] [15], with the recent achievement
of the remaining game of Montezuma Revenge [16] that was still unsolved. Recently, a more
generic version of these algorithms was released, muZero [17], begin capable of mastering both,
classic games and ATARI games. In order to keep advancing, Reinforcement Learning took more
complex problems, illustrated by more sophisticated games such as DOTA 2 [18], or Starcraft II
with AlphaStar [19], which have more freedom of choice and involve more complicated long-term
strategies. Solving Go and Starcraft II has been considered huge milestones in the history of
Reinforcement Learning.

After all these achievements, it is reasonable to assume that Reinforcement Learning algo-
rithms, combined with Deep Learning advances to learn representation of very challenge tasks, will
slowly perform better and better in more ambiguous, real-life environments while choosing from
an arbitrary number of possible actions, rather than from the limited options of a repeatable video
game. In this sense, nowadays Reinforcement Learning has experiencing its jump to the industry
with applications in traffic light control [20], bidding and advertising [21], resource management
in computer clusters [22], recommendations systems [23], autonomous driving [24] [25] and many
more [26].

One field that is of special interest for us is finance, or more concretely, the activity buying
and selling financial instruments, also known as trading and explained more in detail in Section
2. The idea of automatizing trading has evolved from the quantitative methods from algorithmic
trading to the use of Deep Learning to implement winning trading strategies, and now Reinforce-
ment Learning seems to be getting popular in this field [27]. The aim of this work is then to explore
and build an end-to-end application of the ideas of Reinforcement Learning to trading.

This work is structured as follows: in section 2 we introduce, at high level, the role and
structure of financial markets, getting more deep in the specific case of the stock market; in section
3 we introduce, in more detail the learning paradigm known as Reinforcement Learning, taking
special attention to its fundamentals, to then present some of the most popular state-of-the-art
implementations of these ideas; in section 4 we use the ideas introduced in section 3 to develop
an environment reproducing a simplified version of the stock market and some agents capable to
operate in this environment; in section 5 we show the results of some experiments developed with
the environment and the agents developed in section 4; finally, in section 6 we make a summary of
this work, highlighting the key insights and proposing some lines of future work. We have published
all our code in our GitHub 1

1https://github.com/pablocarreraflorez/TFM-reinforcement-learning
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2 Financial Markets

In this section we are providing an introduction to financial markets. First, we are going
to define them, to explain their properties and actors and to divide them by the type trade they
involve. Then we are going deeper into one of the most popular financial markets, the stock market
and the characteristics of the assets involved in it. Finally, we are going to make a operational
introduction to the activity known as trading and the different approaches to make profits with it.

2.1 Fundamentals

A financial market, as defined in [28] or [29], is a market in which people exchange, or
trade, financial assets. Although the existence of these markets is not a necessary condition for
the creation and exchange of a financial asset, since in principle these operations can be realized
outside of them, nowadays in most economies financial assets are created and subsequently traded
in some type of financial market.

The function of financial assets is to transfer funds from those who have surplus funds to
those who need funds to invest in tangible assets, in such a way that they also redistribute the
unavoidable risks associated with tangible assets among those seeking and those providing the
funds. In this sense, financial markets have three properties:

• First, the interactions of buyers and sellers in a financial market determine the price of the
traded asset. That is, the return on a financial asset is not given or fixed by prior in the
market.

• Second, financial markets provide a mechanism for an investor to sell a financial asset. That
is, they allow investors to get rid of the obligation of keeping an asset by transferring it to
another investor.

• Third, financial markets reduce the cost of transacting. The search costs, related to looking
for a potential buyer or seller, and information costs, related to the assessment of the financial
merits of an asset, are almost totally avoided.

so from these properties surge many ways to classify financial markets:

• Nature of claim: we can distinguish between debt markets, where funds are borrowed and
lent, and equity markets, where ownership of securities are issued and subscribed.

• Maturity of claim: we can distinguish between money markets, that allow firms to borrow
funds on a short term basis, and capital markets, that allow firms to gain long-term funding
to support expansion.

• Seasoning of claim: we can distinguish between primary markets, which deal with newly
issued claims, and secondary markets, which deal with financial claims previously issued.

• Timing of claim: we can distinguish between cash markets, that trade assets directly, and
derivatives instruments markets, that trade financial instruments based on an underlying
asset.
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2.2 Stock Market

Stocks, also known as equity securities or equities, represent ownership shares in a corpo-
ration [29]. Each share of a stock entitles its owner to one vote on any matters of corporate
governance that are put to a vote at the corporation’s annual meeting and to a share in the fi-
nancial benefits of ownership when those earning are distributed in the form of dividends. There
are two types of stocks, the so called common stocks and the preferred stocks. The key difference
between these two forms lies in the degree to which the participate in the distribution of earnings
and the priority going to each in the distribution of earnings, typically preferred stockholders are
entitled to a fixed dividend before common stockholders may receive dividends. We will center our
discussion in common stocks since they are by far more the most common type of equity. The two
most important characteristics of common stock as an investment are

• Residual claim: this means that stockholders are the last in line of all those who have a
claim on the assets and income of the corporation. For a firm not in liquidation, shareholders
have claim to the part of operating income left over after interest and taxes have been paid.
In a liquidation of the firm’s assets the share-holders have a claim to what is left after all
other claimants such as the tax authorities, employees, suppliers, bondholders, and other
creditors have been paid.

• Limited liability: this means that the most shareholders can lose in the event of failure
of the corporation is their original investment. Unlike owners of unincorporated businesses,
whose creditors can lay claim to the personal assets of the owner, corporate shareholders may
at worst have worthless stock. They are not personally liable for the firm’s obligations.

Stocks are created by the necessity of companies to raise new capital to achieve growth.
Through an initial public offering, or IPO, the shares of the company are sold to institutional and
individual investors. This process, also known as floating, transforms a privately held company
into a public company. An IPO is underwritten by one or more investment banks, who also arrange
for the shares to be listed on one or more stock exchanges. When a company lists its securities on
a public exchange, the money paid by the investing public for the newly-issued shares goes directly
to the company (primary offering) as well as to any early private investors who opt to sell all or a
portion of their holdings (secondary offerings).

Figure 2: Biggest IPOs of history in terms of total monetary volume. We can see that the
economic consequences of this type of operations are noticeable. Source: Statista.
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After the IPO, shares are traded freely in the open market and money passes between public
investors, making the stock market a secondary market, but note that the company will not be
affected by these movements and is never required to repay the capital to its public investors.
Those investors must endure the unpredictable nature of the open market to price and trade their
shares. In thi sense, for a common stock its total value, also known as the market capitalization of
the stock, is the sum of the price of all the shares. Then, for a common stock investor, the return
realized by holding one of these shares come from two sources:

• Dividend payments: dividends are distributions made by a corporations to its owners,
typically in the form of cash or additional shares of the stock. The payment of dividends is
not compulsory, usually young companies do not pay them, but as time goes on and they
mature they start doing it.

• Changes in the price of the stock: while holding a share, if the price at a future date
is higher than the purchase price there is a capital gain, and if the price at a future date is
lower than the purchase price there is a capital loss. When a stockholder is calculating the
return from holding a stock from the purchase date to a given point in time, it is actually
calculating the gain or loss that he will get in case of selling the stock at this time.

There is an additional very popular way to make profits from a stock, known as short selling.
Short selling, usually referred as to take a short position or be in short, differs from the traditional
operation of buying a stock, usually refereed as to take a long position to be in long, in the fact
that, instead of taking profit from the rise of the stock’s prices, we will take profits from the fall
of the stock’s price. The operation of short selling has two steps, in the first step, the short seller
borrow a given quantity of shares from a broker and sells them to a third party; then, in the second
step, the short seller rebuys the shares from the third party and return them back to the broker. If
the price of the stock has fallen between the time of the initial sale and the time of he devolution,
the equivalent the investor will have made a profit equal to the of prices.

Figure 3: Schematic representation of short selling. Source: Investorpedia.

The desire of stockholders to trade their shares has led to the establishment of stock ex-
changes, organizations which provide marketplaces for trading shares and other derived financial
products. Those exchanges can be physical locations, such as the New York Stock Exchange
(NYSE), or digital platforms, such as the NASDAQ. The biggest stock exchange in Spain is the
Bolsa de Madrid, followed by the Borsa de Barcelona. These markets, according to the properties
of the equities they trade are classified as secondary capital markets. Each stock exchange imposes
its own listing requirements upon companies that want to be listed on that exchange. Such con-
ditions may include minimum number of shares outstanding, minimum market capitalization, and
minimum annual income.

13



Symbols Open Low Close High Volume
ANA 94.400 93.450 93.800 94.400 36596.000
ACX 9.950 9.920 10.045 10.045 240375.000
ACS 35.070 35.020 35.650 35.800 396662.000
AENA 171.050 170.500 170.500 172.750 73393.000
AMS 72.700 72.200 72.800 73.300 148692.000
MTS 15.600 15.510 15.620 15.650 220308.000
SAB 1.038 1.034 1.040 1.046 5437795.000
SAN 3.720 3.685 3.730 3.743 19491991.000
BKIA 1.890 1.885 1.903 1.903 2016010.000
BKT 6.550 6.520 6.532 6.572 564270.000
BBVA 4.995 4.953 4.983 5.004 5624533.000
CABK 2.785 2.763 2.798 2.798 8844742.000
CLNX 38.480 37.840 38.370 38.870 221575.000
CIE 21.180 21.000 21.080 21.380 67281.000
ENG 23.040 22.690 22.740 23.110 504112.000
ENC 3.668 3.612 3.670 3.718 731818.000
ELE 24.200 23.730 23.790 24.200 676458.000
FER 26.550 26.500 26.970 26.970 1125539.000
GRF 31.600 31.290 31.430 31.640 198479.000
IAG 7.300 7.182 7.220 7.362 877608.000
IBE 9.216 9.174 9.180 9.250 6724758.000
ITX 31.520 31.160 31.450 31.710 726006.000
IDR 10.100 10.080 10.180 10.250 150119.000
COL 11.200 11.190 11.360 11.450 198963.000
MAP 2.382 2.360 2.360 2.402 1876403.000
TL5 5.520 5.504 5.660 5.660 292443.000
MEL 7.890 7.850 7.860 7.975 105154.000
MRL 12.650 12.560 12.790 12.790 199986.000
NTGY 22.610 22.400 22.400 22.710 742966.000
REE 18.115 17.860 17.925 18.115 411070.000
REP 14.100 13.930 13.930 14.100 2221149.000
SGRE 15.500 15.500 15.635 15.695 441154.000
TRE 23.400 23.300 23.800 23.800 107676.000
TEF 6.293 6.200 6.227 6.300 7967845.000
VIS 47.900 47.100 47.100 47.900 19412.000

Table 1: Daily values for prices and volumes for the stocks composing the IBEX 35 as of December
31, 2019. IBEX 35 is the benchmark stock market index of the Bolsa de Madrid, Spain’s principal
stock exchange. It is a market capitalization weighted index comprising the 35 most liquid Spanish
stocks traded in the Madrid Stock Exchange and is reviewed twice annually. Source: own

Nowadays stock trading is mostly electronic. This has been possible due to the liberalization
of the markets and the technological advances for monitoring the markets and executing orders,
which also has enforced the competitiveness between markets, lowering the costs and making
trading available to the general public and the institutions.

2.3 Trading

As we said before, the globalization of stock market has made it available to both, the
particular investor and the institutional investor. When an investor wants to buy or sell a share
of common stock, the price and conditions under which the order is to be executed must be
communicated to a broker, then the broker arranges the trade and charges a commission to the
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investor. These orders can be of many types:

• Market order: is a buy or sell order that are to be executed immediately at current market
price. A buy order is made at bid price (best offered price) and a sell order is made at ask
price (best asked price). These is a gap between both prices known as bid-ask spread.

• Conditional order: prices can change between the time a order is made and the time a
order is executed, so investors also may place orders specifying prices at which the are willing
to buy or sell a share.

All these orders are included in the order book, which constitutes a record of the interest of
buyers and sellers in a particular financial instrument, in this case stock shares. Then, a matching
engine uses the book to determine which orders can be fully or partially executed. Consequently,
the price of a stock fluctuates fundamentally due to the theory of supply and demand. The usual
tool for studying these fluctuations are candlestick diagrams, such the one in Figure 4, which
represent the open, close, low and high values for the price of a stock in a given time lapse.

Figure 4: Example of candlestick diagram for a stock. Data shown correspond to BBVA stock
from December 2019. Each box, known as candlestick, contains lots of information. If the box is
red it means that the closing price is lower than the opening price, consequently the lower edge of
the box denotes the closing price of the stock this day, and the upper box denotes the opening price.
If the box is green it means that the closing price is higher than the opening price, consequently the
lower edge of the box denotes the opening price of the stock this day, and the upper box denotes
the closing price. The lowest whisper, called lower shadow, always denotes the lowest price of the
stock this day, and the upper whisper, called upper shadow, always the highest price. Source: own.

In addition to supply and demand, there are many factors that influence the demand for a
particular stock and the fields of fundamental analysis and technical analysis attempt to understand
market conditions that lead to price changes in order to make profits. These two fields represent
two different approaches to the market:

• Fundamental analysis: it consists on the analysis of the financial states of a company in
order to determine its value. In this context stands out the idea of value investing [30], that
supports that markets may incorrectly price a stock in the short run but the correct price
will eventually be reached at some point. Under this assumption, investors can make profits
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by buying/selling the wrongly priced stocks and then waiting for the market to reprice the
security to sell/buy it and gain profit from the difference.

• Technical analysis: it consists on the use use of past market data, such as price and
volume, to develop forecasts about the direction of prices [31]. It relies heavily in the use of
candlestick diagrams, as the one shown in Figure 4, and techniques of time-series analysis,
but it also exploits more advanced techniques from other fields, such as statistics or signal
analysis.

These two approaches were a hot topic for many years, but now there is some consensus
in the fact that stock market’s prices are essentially unpredictable. This is partially based on
the efficient-market hypothesis [32], which states that all the available information of an asset is
contained in its prices, which makes impossible to ”beat the market” consistently since these prices
will only react to new, unavailable, information. However, some of the methods deviated in these
approaches can still be used to take advantage from other investors in the market and make profits.
This idea led to the growth of a new approach to trading that reaped lot of success, algorithmic
trading.

Algorithmic trading consists in the application of the ideas provided by fundamental analysis
and technical analysis to automate trading strategies using computer programs [33] [34]. These
algorithms can handle much more information at the same time, and much faster, than a human
trader, so it can implement a set of programmed rules very effectively and with high margin of
benefits. Some examples of these trading strategies can be:

• Trend-following strategies: some popular strategies follow trends in moving averages,
channel breakouts, price level movements, and related technical indicator, so trades are done
based on the occurrence of desirable trends. The typical strategy consists in observing the
ratio between 50-day and 200-day moving averages in order to sell if it is lower than or to
buying if it is higher than 1.

• Arbitrage opportunities: some other popular strategies consist in, given two markets,
buy a stock at a lower price in one market and simultaneously selling it at a higher price in
another market in order to keep the price differential as a risk-free profit. Implementing an
algorithm to identify such price differentials and placing the orders efficiently allows profitable
opportunities.

• Mean reversion: this strategy is based on the concept that the high and low prices of
an asset are a temporary phenomenon that revert to their mean value periodically. Then,
identifying and defining a price range allows trades to be placed automatically when the price
of an asset breaks in and out of its defined range.

• Volume-weighted and Time-weighted average price: VWAP and TWAP strategies
consist in breaking up a large order and release dynamically determined smaller chunks of
the order to the market using stock-specific historical volume profiles in the first case, and
using evenly divided time slops, looking for a minimization of the market impact.

It is important to note the capital importance of algorithmic trading in the markets. In this
sense, it is estimated that in 2010 about the 80% of the trades were done by machines [29]. It
is also important to note that the automation of the trading task lead to a huge increase in the
velocity of the operations, even reaching the limit of miliseconds and conforming what was know
as High Frequency Trading, which is estimated to comprise about the 60% of the trades [29].
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2.4 Machine Learning

Taking into account the trend to change from data modelling culture to the algorithmic
modelling culture [1], Machine Learning seems to be the natural evolution of algorithmic trading
to keep making progress in the field. As we have seen, Algorithmic Trading involves to introduce a
set of rules, or strategies, into a computer, as in traditional programming, and then let the algorithm
operate with them. Machine Learning then emerges as the natural way to the application of these
strategies more flexible, and even breaking the idea of having to set a strategy at all. Some of the
applications of Machine Learning in the last years have been:

• Stock price forecasting: the prediction of stock prices is the most classic problem. Despite
efficient market hypothesis states that it is not possible to predict stock prices and that
stocks behave in random walk manner, technical analysts believe that most information
about the stocks are reflected in recent prices and so if trends in the movements are observed
then prices can be easily predicted. In addition, stock market’s movements are affected by
many macro-economical factors such as political events, firms’ policies, general economic
conditions, commodity price index, bank rates, bank exchange rates, investors’ expectations,
institutional investors’ choices, movements of other stock markets, psychology of investors,
... The literature in this topic is extensive [35], [36], [37], but the publications of machine
learning techniques used to forecast stock market movements can be categorised according
to the machine learning technique used (ARIMA models, Suport Vector Machines, Neural
Networks, Genetic Algorithms, ... ), the forecasting timeframe (minutely, hourly, daily,
monthly, ...), the input variables used (lagged index data, exchange rates, candlestick values,
unemployment rates, ... ), and the evaluation techniques employed. It is found that there
is some consensus between researchers stressing the importance of stock index forecasting,
since it gives an overall picture of economy, and the positive results of the use of Neural
Networks because of their ability to learn very nonlinear relations.

• Portfolio optimization: another classical problem is the portfolio optimization, which
describes the process of selecting the best portfolio of stocks out of the set of all portfolios
being considered, according to some objective such as the maximization of expected return
or the minimization of financial risk [38]. Some noticeable approaches to this problem can
be the development of eigenporfolio theory, which compute orthogonal varying portfolios
using Principal Component Analysis [39], or hierarchical risk parity models, which exploits
hierarchical clustering algorithms to find clusters of the assets to re-allocate risk over them
recursively [40]. These approaches generate portfolios with such a high quantity of assets
that make unfeasible its treatment by human traders, but can get acceptable results when
managed automatically.

• Sentiment analysis: another typical problem is the analysis of external information to
make buy and sell decisions, even if this information is not used directly to predict the stock
price it is proven to be a useful approach. This information is usually extracted from news
websites [41] or social networks [42] and analyzed using techniques from Natural Language
Processing, implemented by state-of-the-art Deep Learning techniques [43]. There is some
consensus over the fact that this information turns out to be more useful, not by itself, but
when used to support other more straightforward approaches to the stock market such of
stock price forecasting.

In this sense, Reinforcement Learning constitutes another step forward in the direction of
algorithmic culture [1], allowing, in principle, to combine the prediction and the portfolio man-
agement task in one integrated step, thereby closely aligning the machine learning problem with
the objectives a human investor in a more organic way [27] [44]. At the same time, important
constraints, such as transaction costs, market liquidity, and the investor’s degree of risk-aversion,
can be conveniently taken into account since Reinforcement Learning tries to learn how to interact
with the market, constituting a more natural approach to the problem of trading.
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3 Reinforcement Learning

In this section we are going to make a operational introduction to the field known as Rein-
forcement Learning [45]. First we are going to introduce Markov Decision Processes, which are the
classical formalization of sequential decision making, where actions influence not just immediate
rewards, but also subsequent situations. Then we are going to present the classical solutions to
these problems in terms of Dynamic Programming, Monte Carlos methods and its combination in
the form of Temporal-Difference methods. Finally, we are going to introduce the use of approxi-
mate solutions to these methods, which allow us to use state-of-the-art algorithms, such as Neural
Networks, to solve efficiently real-world problems.

3.1 Markov Decision Processes

Now we are going to introduce Markov Decision Processes, or MDPs. MDPs are meant to
be a straightforward framing of the problem of learning from interaction to achieve a goal [46]. The
learner and decision maker is called the agent. The thing it interacts with, comprising everything
outside the agent, is called the environment. These interact continually, the agent selecting actions
and the environment responding to these actions and presenting new situations to the agent. The
environment also gives rise to rewards, special numerical values that the agent seeks to maximize
over time through its choice of actions.

3.1.1 Agent-environment interface

More formally, the agent and environment interact with each other in a sequence of discrete
time-steps, t = 0, 1, 2, 3, .... At each time step t, the agent receives some representation of the
environment’s state, St ∈ S, and on that basis selects an action, At ∈ A(St). One time step later,
in part as a consequence of its action, the agent receives a numerical reward, Rt+1 ∈ R, and finds
itself in a new state St+1. Then, the MDP and agent give rise to a sequence, or trajectory, that
begins like this S0, A0, R1, S1, A1, R2, S2, A2, R3, ....

Figure 5: Schema of the agent-environment interaction in a MDP. Source: [45]

In a finite MDP, the sets of states S, actions A, and rewards R all have a finite number
of elements. In this case, the random variables Rt and St have well defined discrete probability
distributions dependent only on the preceding state and action:

p(s′, r|s, a)
.
= P(St = s′, Rt = t|St−1 = s,At−1 = a) (1)
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so the function p : S × R × S × A −→ [0, 1], that defines the dynamics of the MDP, is an
ordinary deterministic function of four arguments. And since it involves a conditional probability
distribution, it satisfies that

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (2)

which implies that the probability of each possible value for St and Rt depends only on the
immediately preceding state and action, St−1 and At−1, and not at all on earlier states and actions.
This is best viewed a restriction not on the decision process, but on the state, which must include
information about all aspects of the past agent-environment interaction that make a difference for
the future. If it does, then the state is said to have the Markov property.

3.1.2 Rewards and returns

In reinforcement learning, the goal of the agent is formalized in terms of a special signal,
called the reward, passing from the environment to the agent. At each time step t, the reward is
a real number Rt ∈ R. Informally, the agent’s goal is to maximize the total amount of reward it
receives, that is, maximizing not immediate reward, but cumulative reward in the long run. If we
want it to solve a problem for us, we must provide rewards to it in such a way that in maximizing
them the agent will also achieve our goals. It is thus critical that the rewards we set up truly
indicate what we want to accomplish.

More formally, we seek to maximize the expected return, where the return is defined as some
specific function of the reward sequence Gt

.
= f(Rt+1, Rt+2, ..., RT ), where T is a final time step.

In the simplest case the return can be defined as the sum of the rewards,

Gt
.
= Rt+1 + ...+RT =

T∑
k=t+1

Rk (3)

so this approach makes sense in applications in which there is a natural notion of final time step
T , that is, when the agent-environment interaction breaks naturally into subsequences, which are
usually called episodes. Each episode ends in a special state called the terminal state ST , followed
by a reset to a standard starting state. Then the next episode begin independently of how the
previous one ended. Thus, the episodes can all be considered to end in the same terminal state,
with different rewards for the different outcomes. Tasks with episodes of this kind are called
episodic tasks.

However, in many cases the agent-environment interaction does not break naturally into
identifiable episodes, but goes on continually without limit. Then the above return formulation
is problematic for continuing tasks because the final time step would be T = ∞ and then also
the return. We can solve this problem by introducing the concept of discounting, with this the
agent tries to select actions so that the sum of the discounted rewards it receives over the future
is maximized. In particular, it chooses At to maximize the expected discounted return:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=t+1

γk−(t+1)Rk (4)
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where 0 ≤ γ ≤ 1 is called the discount rate. If γ < 1, the infinite sum has a finite value as long
as the reward sequence is bounded, and in the extreme case of γ = 0 the agent will be concerned
only with maximizing immediate rewards. As γ approaches 1, the return objective takes future
rewards into account more strongly, that is, the agent becomes more farsighted. In this sense is
important to note the following recursive rule

Gt = Rt+1 + γGt+1 (5)

It is useful to establish one notation that enables us to talk precisely about both cases
simultaneously. This can be achieved by considering episode termination to be the entering of
a special absorbing state that transitions only to itself and that generates only rewards of zero.
Then we get the same return whether we sum over the first T rewards or over the full infinite
sequence.Thus, we can define the return, in general, using the convention of omitting episode
numbers when they are not needed, as

Gt
.
=

T∑
k=t+1

γk−(t+1)Rk (6)

where we include the possibility of T =∞ and γ = 1, but not both at the same time.

3.1.3 Policies and value functions

Reinforcement learning algorithms usually involve estimating how good it is for the agent
to be in a given state, which is defined in terms of the expected return. The rewards the agent can
expect to receive in the future depend on what actions it will take, so value functions are defined
with respect to particular ways of acting, called policies. More formally, a policy is a mapping
π : S ×A −→ [0, 1] from states and actions to probabilities of selecting each possible action, if the
agent is following policy π at time t, then πt(a|s) is the probability that At = a is chosen if we are
in St = s. Like p, π is an ordinary function which defines a probability distribution over a A(s)
for s ∈ S. Reinforcement learning methods specify how the agent’s policy is changed as a result of
its experience.

Then, the value of a state, that is, of being in that state, is associated to a given policy. This
is formalized by the definition of the value function vπ for policy π. The value of a state s under
a policy π, denoted vπ(s), is the expected return when starting in s and following π thereafter

vπ(s)
.
= Eπ [Gt|St = s] (7)

for s ∈ S. Note that the value of the terminal state, if any, is always zero.

Similarly, we define the value of taking action a in state s under a policy π, denoted qπ(s, a),
as the expected return of taking the action a in the state s following policy π

qπ(s, a)
.
= Eπ [Gt|St = s,At = a] (8)

20



and we call qπ the action-value function for policy π. By definition the following relation is satisfied

vπ(s)
.
= Eπ [Gt|St = s] (9)

=⇒ vπ(s) =
∑
a∈A

π(a|s)Eπ [Gt|St = s,At = a] (10)

=⇒ vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (11)

A fundamental property of value functions is that they satisfy recursive relationships similar
to that which we have already established for the return

vπ(s)
.
= Eπ [Gt|St = s] (12)

=⇒ vπ(s) = Eπ [Rt+1 + γGt+1|St = s] (13)

=⇒ vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γEπ [Gt+1|St = s′]] (14)

=⇒ vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γvπ(s′)] (15)

which is known as the Bellman equation [47] and represent the relation between the value of an
state and the subsequent states. Then, the value function vπ(s) can be seen as the unique solution
to the Bellman equation [45]. For the action-value function

qπ(s, a)
.
= Eπ [Gt|St = s,At = a] (16)

=⇒ qπ(s, a) = Eπ [Rt+1 + γGt+1|St = s,At = a] (17)

=⇒ qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γvπ(s′)] (18)

=⇒ qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)

[
r +

∑
a′∈A

π(a′|s′)qπ(s′, a′)

]
(19)

we obtain a similar result, which is denoted as the Bellman equation for the action-value function.
Again, the action-value function qπ(s, a) is the unique solution to the Bellman equation [45].

3.1.4 Optimality

Solving a reinforcement learning task means, roughly, finding a policy that achieves the most
reward over the long run. For finite MDPs value functions define a partial ordering over policies,
a policy π is defined to be better than or equal to a policy π′ if its expected return is greater than
or equal to that of π for all states. In other words, π > π′ if and only if vπ(s) > vπ′(s) for all
s ∈ S. There is always at least one policy that is better than or equal to all other policies, the
optimal policy. Although there may be more than one, we denote all the optimal policies by π∗.
They share the same state-value function, called the optimal state-value function,
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v∗(s)
.
= max

π
vπ(s) (20)

for all s ∈ S. Optimal policies also share the same optimal action-value function

q∗(s, a)
.
= max

π
qπ(s, a) (21)

for all s ∈ S and a ∈ A.

Because v∗(s) is the value function for a policy, it must satisfy the self-consistency condition
given by the Bellman equation for state values, but because it is the optimal one its consistency
condition can be written in a special form without reference to any specific policy. Intuitively, the
Bellman optimality equation expresses the fact that the value of a state under an optimal policy
must equal the expected return for the best action from that state,

v∗(s) = max
a

q∗(s, a) (22)

=⇒ v∗(s) = max
a

E [Gt|St = s,At = a] (23)

=⇒ v∗(s) = max
a

E [Rt+1 + γGt+1|St = s,At = a] (24)

=⇒ v∗(s) = max
a

E [Rt+1 + γv∗(St+1)|St = s,At = a] (25)

=⇒ v∗(s) = max
a

∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γv∗(s
′)] (26)

or in terms of the action-value function

q∗(s, a) = E [Gt|St = s,At = a] (27)

=⇒ q∗(s, a) = E [Rt+1 + γGt+1|St = s,At = a] (28)

=⇒ q∗(s, a) = E [Rt+1 + γv∗(St+1)|St = s,At = a] (29)

=⇒ q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s,At = a
]

(30)

=⇒ q∗(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(31)

so for finite MDPs the Bellman optimality equation for v∗, or q∗, also has a unique solution [45].
If the dynamics p of the environment are known, then in principle one can solve this system of
equations using any one of a variety of methods for solving systems of nonlinear equations.

Once one has v∗, it is relatively easy to determine an optimal policy. For each state s, there
will be one or more actions at which the maximum is obtained in the Bellman optimality equation.
Any policy that assigns nonzero probability only to these actions is an optimal policy. We can
also think of this as a one-step search, if we have the optimal value function, v∗ , then the actions
that appear best after a one-step search will be optimal actions. So, by means of v∗ , the optimal
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expected long-term return is turned into a quantity that is locally and immediately available for
each state. Hence, a one-step-ahead search yields the long-term optimal actions.

Having q∗ makes choosing optimal actions even easier, the agent does not even have to do a
one-step-ahead search, for any state s, it can simply find any action that maximizes q∗(s, a). The
action-value function effectively caches the results of all one-step-ahead searches. It provides the
optimal expected long-term return as a value that is locally and immediately available for each
state–action pair.

Explicitly solving the Bellman optimality equation provides one route to finding an optimal
policy, and thus to solving the reinforcement learning problem. However, this solution is rarely
directly useful, it leads to an exhaustive search, looking ahead at all possibilities, computing their
probabilities of occurrence and their desirabilities in terms of expected rewards. This solution relies
on at least three assumptions that are rarely true in practice: we accurately know the dynamics
of the environment, we have enough computational resources to complete the computation of
the solution and the system satisfies the Markov property. But for the kinds of tasks in which
we are interested, one is generally not able to implement this solution exactly because various
combinations of these assumptions are violated. Then many reinforcement learning methods can
be understood as approximately solving the Bellman optimality equation, using actual experienced
transitions in place of knowledge of the expected transitions.

3.2 Dynamic Programming

The term dynamic programming (DP) refers to a collection of algorithms that can bused
to compute optimal policies given a perfect model of the environment as a MDP. Classical DP
algorithms are of limited utility in reinforcement learning both because of their assumption of
a perfect model and because of their great computational expense, but they are still important
theoretically to set the basis of the learning process.

First we consider how to compute the state-value function vπ for an arbitrary policy π, this
is called policy evaluation. If the environment’s dynamics are completely known, then the Bellman
equation is a system of |S| simultaneous linear equations in |S| unknowns (the vπ(s), s ∈ S). So
in principle, its solution is a straightforward computation, but, for our purposes, iterative solution
methods are most suitable. Consider then a sequence of approximate value functions v0, v1, v2, ...,
each mapping S+ to R. The initial approximation v0 is chosen arbitrarily (except that the terminal
state, if any, must be given value 0), and each successive approximation is obtained by using the
Bellman equation as an update rule

vk+1(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γvk(s′)] (32)

for all s ∈ S. Each iteration updates the value of every state once to produce the new approximate
value function. Clearly, vk = vπ is a fixed point for this update rule because the Bellman equation
for vπ assures us of equality in this case. So, it is usually applied until the difference between two
consecutive iterations of the value function estimate go beyond a given threshold θ.

Then, we can use the value function for a policy to find better policies, which is called policy
improvement. Suppose we have determined the value function vπ for an arbitrary deterministic
policy π. For some state s we would like to know whether or not we should change the policy to
deterministically choose an action a 6= π(s). Consider selecting a in s and thereafter following the
existing policy, π. The value of this way of behaving is qπ(s, a) and then, the key criterion is to
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check whether this is greater than or less than vπ(s). If it is greater, that is, if it is better to select
a once in s and thereafter follow π than it would be to follow π all the time, then one would expect
it to be better still to select a every time s is encountered, and that the new policy would in fact
be a better one overall. A natural extension is to consider changes at all states and to all possible
actions, selecting at each state the action that appears best according to qπ(s, a). In other words,
to consider the new greedy policy π′ given by

π′(s) = argmaxa [qπ(s, a)] (33)

=⇒ π′(s) = argmaxa

[∑
r∈R

∑
s′∈S

p(s′, r|s, a) [r + vπ(s′)]

]
(34)

where argmaxa denotes the value of a at which the expression that follows is maximized (with ties
broken arbitrarily). Suppose the new greedy policy π′ is as good as, but not better than, the old
policy π, then vπ = vπ′ , and then for all s ∈ S:

vπ′(s) = max
a

[E [Rt+1 + γvπ′(St+1)|St = s,At = a]] (35)

=⇒ vπ′(s)
′ = max

a

[∑
r∈R

∑
s′∈S

p(s′, r|s, a) [r + vπ(s)]

]
(36)

but this is the same as the Bellman optimality equation, and therefore, vπ′ must be v∗ , and both
π and π′ must be optimal policies. Policy improvement thus must give us a strictly better policy
except when the original policy is already optimal.

Finally, once a policy π has been evaluated to get vπ, and it is used to yield a better policy
π′, we can then compute vπ′ and improve it again to yield an even better π′′. We can thus obtain
a sequence of monotonically improving policies and value functions

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ ...
I−→ π∗

E−→ vπ∗

where
E−→ denotes a policy evaluation and

I−→ denotes a policy improvement. Each policy is guar-
anteed to be a strict improvement over the previous one (unless it is already optimal). Because a
finite MDP has only a finite number of policies, this process must converge to an optimal policy
and optimal value function in a finite number of iterations. This way of finding an optimal policy
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is called policy iteration.

Algorithm 1: Policy Iteration

Inputs: θ
Initialize policy function π(s) with random values
Initialize value function V (s, a) with random values
Policy Evaluation:
while ∆ > θ do

∆←− 0
for each s do

v ←− V (s)
V (s)←−

∑
s′,r p(s

′, r|s, π(s))[r + γV (s′)]
∆←− max(∆, |v − V (s)|)

end

end
Policy Improvement:
policy stable←− True
for each s do

old action←− π(s)
π(s)←− argmaxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]
∆←− max(∆, |v − V (s)|)
if π(s) 6= old action then

policy stable←− False
end

end

However, although we have complete knowledge of the environment, it would not be easy
to apply these DP methods to compute the value function. DP methods require the distribution
of next events, all of the probabilities must be computed before DP can be applied, and such
computations are often complex and error-prone.

3.3 Monte Carlo methods

One solution to the problem of building a model of the environment can be found in Monte
Carlo (MC) methods. MC methods are a broad class of algorithms that rely on repeated random
sampling to obtain numerical results, the underlying concept is to use randomness to solve problems
that might be deterministic in principle. In this sense MC methods, for Reinforcement Learning,
require only experience-sample sequences of states, actions, and rewards from actual or simulated
interaction with an environment in order to average over them. So, despite a model is required,
the model need only generate sample transitions, not the complete probability distributions of all
possible transitions that is required for DP.

First, as in DP, suppose we wish to estimate vπ(s), the value of a state s under policy π,
given a set of episodes obtained by following π and passing through s. Each occurrence of state s
in an episode is called a visit to s. Then, the first-visit Monte Carlo methods estimate vπ(s) as the
average of the returns following first visits to s in each episode, and the every-visit Monte Carlo
methods average the returns following all visits to s in each episode. However, since a model of
environment is not available, it is particularly useful to estimate action values rather than state
values. So we are doing this computation for qπ(s, a) taking into account visits to state-action
pairs instead of states alone.

Then, after this policy evaluation, policy improvement is done by making the policy π
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greedy with respect to the current action value function qπ. For any action-value function q, the
corresponding greedy policy is the one that, for each state s deterministically chooses an action
with maximal action-value. Then policy improvement then can be done by constructing each πk+1

as the greedy policy with respect to qk.This leads to a series of evaluations and improvements,
analogous to the ones in the policy iteration algorithm in DP.

Algorithm 2: Every-visit Monte Carlo

Inputs: M
Initialize policy function π(s) with random values
Initialize action-value function Q(s, a) with random values
Initialize returns(s, a) with an empty list
for episode = 1 : M do

Choose s0, a0 randomly
Generate an episode from s0, a0 following π: s0, a0, r1, ..., sT−1, aT−1, rT
G←− 0
for t = T − 1 : 0 do

G←− γG+ rt+1

Append G to returns(s, a)
Q(st, at)←− average(returns(s, a))
π(st)←− argmaxaQ(st, a)

end

end

3.4 Temporal-Difference Methods

Temporal-Difference (TD) learning is a combination of Monte Carlo (MC) ideas and Dy-
namic Programming (DP) ideas. On the one hand, like MC methods, TD methods can learn
directly from raw experience without a model of the environment’s dynamics. And, on the other
hand, like DP, TD methods update estimates based in part on other learned estimates, without
waiting for a final outcome.

The problem with MC methods is that the updates of V (St), that serve as a estimation of
v(s), are done using the expected return Gt as a target, that is,

V (St)←− V (St) + α[Gt − V (St)]

so we have to wait until the end of the episode to compute the value of the returns Gt that allow
us to update the values of V (St). The idea beyond TD methods is not to wait until the ed of the
episode but to make updates in each step, so we can use the recurrence property of the returns to
perform a more useful update such as

V (St)←− V (St) + α[Rt+1 + γV (St+1)− V (St)]

which constitute the simplest TD method, the TD(0). This can be complicated including more
steps, constituting the so called T (λ) methods [45]. With this we get the best of both approaches,
we get the online and fully-incremental computational power of DP methods, and the lack of
necessity of a model of the environment from MC methods.
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Figure 6: Backup diagrams comparing Dynamic Programming, Monte Carlo methods and TD
methods. Source: https://lilianweng.github.io/lil-log/assets/images/TD MC DP backups.png.

Moreover, we can extend these one-step TD methods to recover MC methods with the so
called n-step TD methods. With one-step TD methods the same time-step determines how often
the action can be changed and the time interval over which bootstrapping is done. Sometimes we
may want to be able to update the action very fast to take into account anything that has changed,
but bootstrapping works best if it is over a length of time in which a significant and recognizable
state change has occurred. With one-step TD methods, these time intervals are the same, and so
a compromise must be made, so, in this sense n-step methods enable bootstrapping to occur over
multiple steps, freeing us from the compromise of using only one time step each time.

3.4.1 Exploration vs. exploitation

The policy evaluation problem for action values is to estimate qπ(s, a), the expected return
when starting in state s, taking action a, and thereafter following policy π. A state action pair
(s, a) is said to be visited in an episode if the state s is visited and the action a is taken in it. The
only complication is that many state-action pairs may never be visited. For policy evaluation to
work for action-value pairs, we must assure continual exploration.

This problem is formulated more generally in the context of the so called exploration vs.
exploitation trade-off, which shows the necessity to balance the exploitation of behaviours that
the agent know that provide high return, with the exploration of new behaviors that the agent
does not know its returns yet. The common approach to assuring that all state-action pairs are
encountered, is to consider policies that are stochastic with a nonzero probability of selecting all
action in each state. That is, these policies most of the time will select the best possible action,
performing exploitation, but sometimes they will select a random action, performing exploration.
There are two approaches to ensuring this:

• On-policy methods: which attempt to evaluate or improve the policy what is used to
make decisions. In on-policy methods the policy is generally soft, meaning that π(a|s) > 0
for all s ∈ S, a ∈ A, but gradually shifted closer and closer to a deterministic optimal
policy. A example of these policies are ε-greedy policies, meaning that most of the time
they choose an action that has maximal estimated action values, but with probability ε they
instead select an action at random. That is, all nongreedy actions are given the minimal
probability of selection ε/|A|, and the remaining bulk of probability 1 − ε + ε/|A| is given
to the greedy action. Using the natural notion of greedy policy for ε-soft policies, one is
assured of improvement in every step. But with the drawback that we can only achieve the
best policy among the ε-soft policies, but not the best policy overall.

• Off-policy methods: which evaluate or improve a policy different from that used to generate
the data. The on-policy approach is actually a compromise, it learns action values not for
the optimal policy, but for a near-optimal policy that still explores. A more straightforward
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approach is to use two policies, one that is learned about and that becomes the optimal policy,
the target policy, and one that is used to generate behavior, the behavior policy. In this case
we say that learning is from data ”off” the target policy, and the overall process is termed
off-policy learning. A typical case is when the target policy is made as the deterministic
greedy policy with respect to the current estimate of the action-value function given by the
behavior policy.

3.4.2 On-policy methods

On the one hand, the most straightforward application of the TD idea in the form of a
on-policy method is the SARSA algorithm [48]. Is is defined by the update rule

Q(St, At)←− Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)]

which is done after every transition form a nonterminal state St. If St+1 is terminal, then
Q(St+1, At+1) is set to zero. This rule uses every element of the quintuple (St, At, Rt+1, St+1, At+1)
that make up a transition from one state-action pair to another, which gives rise to the name
SARSA for the algorithm. We continually estimate qπ for the policy π and at the same time
change π towards greediness with respect to qπ. The detail of this algorithm is shown in Algorithm
3.

Algorithm 3: SARSA

Inputs: M, ε, α
Initialize action-value function Q(s, a) with random values
for episode = 1 : M do

Initialize st
for t = 1 : T do

With probability ε select a random at, otherwise at = argmaxaQ(s, a)
Execute action at and observe reward rt+1 and state st+1

With probability ε select a random at+1, otherwise at+1 = argmaxaQ(st+1, a)
Q(st, at)←− Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]
st ←− st+1

at ←− at+1

end

end

3.4.3 Off-policy methods

On the other hand, we can build a off-policy version of this algorithm doing a little change
to the update rule. This algorithm is usually known as Q-learning [49] and is defined by the update
rule

Q(St, At)←− Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]

where the function Q directly approximates q∗ the optimal action-values function, independent of
the policy being followed, so it constitutes an off-policy algorithm. However, the policy still has
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still an effect since it determines which state-action pairs are visited and updated, but all that
is required for correct convergence is that all pairs continue to be updated. The detail of this
algorithm is shown in Algorithm 4.

Algorithm 4: Q-learning

Inputs: M, ε, α
Initialize action-value function Q(s, a) with random values
for episode = 1 : M do

Initialize st
for t = 1 : T do

With probability ε select a random at, otherwise at = argmaxaQ(s, a)
Execute action at and observe reward rt+1 and state st+1

Q(st, at)←− Q(st, at) + α [rt+1 + γmaxaQ(st+1, a)−Q(st, at)]
st ←− st+1

end

end

However, the problem of this algorithm is that, since it involves a maximization in the
construction of their target policies, it can lead to a significant positive bias in the estimation of
Q-vales, hurting performance and potentially leading to suboptimal policies. One way to view the
problem is that it is due to using the same samples both to determine the maximizing action and
to estimate its value. Te idea of Double Q-learning [50] solve this problem by dividing the samples
in two sets and using them to learn two independent estimates, call them Q1(a) and Q2(s), each
an estimate of the true value q(a) for all a ∈ A. We could then use one estimate, say Q1, to
determine the maximizing action A∗ = argmaxaQ1(a), and other, say Q2, to provide the estimate
of its value Q2(A∗) = Q2(argmaxaQ1(a)). This estimate will then be unbiased in the sense that
E[Q2(A∗)] = q(A∗). We can also repeat the process with the role of the two estimates reversed
to yield a second unbiased estimate Q1(A∗) = Q1(argmaxaQ2(a)), so the two approximate value
functions are treated completely symmetrically eliminating the bias. The detail of this algorithm
is shown in Algorithm 5.

Algorithm 5: Double Q-learning

Inputs: M, ε, α
Initialize action-value function Q1(s, a) with random values
Initialize action-value function Q2(s, a) with random values
for episode = 1 : M do

Initialize st
for t = 1 : T do

With probability ε select a random at, otherwise at = argmaxaQ(s, a)
Execute action at and observe reward rt+1 and state st+1

if t % 2 = 0 then
Q1(st, at)←− Q1(st, at) + α [rt+1 + γQ2(st+1, argmaxaQ1(st+1, a))−Q1(st, at)]

else
Q2(st, at)←− Q2(st, at) + α [rt+1 + γQ1(st+1, argmaxaQ2(st+1, a))−Q2(st, at)]

end
st ←− st+1

end

end
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3.5 State-of-the-art

All the methods that we have presented are based in a tabular set-up of the data, so in
principle they are able to being applied to problems with arbitrarily large state spaces. However,
in many of the tasks to which Reinforcement Learning can be useful the state space is combinatorial
and enormous, or even continuous and non-easily discretizable. In such cases we cannot expect
to find an optimal policy, or an optimal value function, even in the limit of infinite time and
data. In addition to this, the other he problem with large state spaces is that almost every
state encountered will never have been seen before, so to make sensible decisions in such states
it is necessary to generalize from previous encounters with different states that are in some sense
similar to the current one. Then, the kind of generalization we require is often called function
approximation because it takes examples from a desired function and attempts to generalize from
them to construct an approximation of the entire function. In this sense, function approximation
is an instance of supervised learning.

3.5.1 Deep Q-learning

One of the most popular ways of formalizing this problem is by the use of Neural Networks
for the approximating function due to its ability to learn very complex and nonlinear functions [51].
This fact, united to the advantages of optimality and simplicity given by the Q-learning algorithm,
lead to the development of a series of algorithms known as Deep Q-learning (DQL) [14] [15] [52].
In this approach we want to build a function Q(s, a; θ), that is represented as a parametrized
functional form with weights θ, that approximates the action-value function q(s, a). To rank, and
improve, approximate solutions given by the weights θ we need to define a cost function L(θ). The
most straightforward definition of this is a mean-square loss

L(θ) = Es,a∼ρ(.)
[
(yi −Q(s, a; θ))2

]
(37)

where ρ(s, a) denotes the probability distribution of state-action pairs, which. The most popular
methods to get the optimal weights θi of the approximate solution are the ones based on stochastic
gradient descent. Then, given the update target Yt for these weights, that can be any approximation
of q(St, At) including the usual SARSA or Q-learning updates, we can apply the general gradient-
descent update rule

θt+1 = θt + α [Yt −Q(St, At; θt)]∇θtQ(St, At; θt) (38)

There are several ways of building the Q-network to approximate the q function, but the
most effective seems to be the one in which there is a separate output unit for each possible action,
and only the state representation is an input to the Neural Network [14]. The outputs correspond
to the predicted Q-values of the individual actions for the input state. The main advantage of this
type of architecture is the ability to compute Q-values for all possible actions in a given state with
only a single forward pass through the network. This Q-network can be trained be minimising a
sequence of loss functions Lt(θt) that changes at each iteration t as exposed above, where in this
case, yt = Es′∈E [r + γmaxa′ Q(s′, a′; θt−1)|s, a] is the target for iteration t, and E is the emulator
of the environment we are using to train the network. Then, applying the update rule of Q-learning

Yt = Rt+1 + γmax
a

Q(St+1, a; θt) (39)
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and computing the gradient using the technique of backpropagation, we get the original imple-
mentation of Deep Q-Learning algorithm [14]. Note that the algorithm is an off-policy method, it
learns about the greedy policy in which a = argmaxaQ(s, a; θ) while following a behavior distribu-
tion that ensures adequate exploration. A detailed version of the algorithm is shown in Algorithm
6. The benchmark to test this algorithm is the known Atari 2600 game environment, in which it
achieves good performance, in most case superior than an experimented human player.

Algorithm 6: Deep Q-Learning (DQL)

Inputs: N,M, ε, C
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
for episode = 1 : M do

for t = 1 : T do
With probability ε select a random at, otherwise at = argmaxaQ(st, a; θ)
Execute action at in emulator and reward rt+1 and st+1

Store transition (st, at, rt+1, st+1) in D
Sample random minibatch (sj , aj , rj+1, sj+1) from D

Set yj =

{
rt+1 for terminal st+1

rt+1 + γmaxaQ(st+1, a; θ) for non terminal st+1

Perform a gradient descent step on (yj −Q(st, at; θ))
2

end

end

3.5.1.1 Experience Replay
In order to perform effectively the training of the Q-network is important to take into account the
concept of Experience Replay [53]. In tabular Reinforcement Learning, the update is performed
online, in a sample-by-sample manner, that is, every time a new transition is made, the value func-
tion is updated. The problem with this is that typically we will need a huge amount of episodes to
achieve an optimal, or near optimal policy, in this new set-up with virtually infinite state-action
pairs. The reason for this is that, if weights are adjusted for one certain state-action pair, then
unpredictable changes also occur at other places in the state-action space. The technique of expe-
rience replay consists in the agent storing its experiences at every time-step et = (st, at, rt, st+1)
to build a dataset D = {e0, e1, ...} called replay memory. Then, in the training step of the learn-
ing process, instead of training with the corresponding sample, we apply updates using samples
of experience drawn at random from the pool of stored samples. In this approach each step of
experience is potentially used in many weight updates, making data more efficient, and breaking
the correlations between samples due to the randomizing of the samples, reducing the variance of
the updates.

This approach can be improved by prioritizing the most relevant experiences [54]. This
prioritization avoid expensive sweeps over the entire replay memory by focusing only in the the
most important subset of experience. Then, the central component of prioritized experience replay
is the criterion by which the importance of each transition is measured. The ideal criterion would
be the amount the agent can learn form a transition, but since it is not directly accessible we can
approximated it by the magnitude δ of the TD update, which can be interpreted as how far the
value is from the next-step estimate or how unexpected the transition is. We define the probability
of sampling transition i as

P (i) =
pαi∑
j p

α
j
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where pi is the priority of transition i and α determines how much prioritization is used. There
are two main variants for this prioritization, proportional prioritization pi = |δi|+ ε, where ε is a
small positive constant that prevents the edge case of transitions not being revisited if this update
is zero; and rank-based prioritization pi = 1/rank(i), where rank(i) in the rank of transition i
when the replay memory is sorted accordint to |δi|. Both variant have been proven to improve the
results of DQL algorithms in Atari 2600 game environment.

3.5.1.2 Target networks
Arrived to this point, we can introduce one modification to the method aimed at further improving
the stability of the method [15]. The idea is to use a separate network for generating targets yi
in the Q-learning update. More formally, the proposal consist in cloning the Q-network after C
updates to obtain a target network Q′, and use it for generating the Q-learning targets yi for the
following C updates to Q before cloning it again. This modification makes the algorithm more
stable compared to standard online Q-learning, where an update that increases Q(St, At) often also
increases Q(St+1, a) for all a and hence also increases the target yt, possibly leading to oscillations
or divergences of the policy. Generating the targets using an older set of parameters adds a delay
between the time an update to Q is made and the time the update affects the targets yi, making
these oscillations or divergences more unlikely. A detailed version of the algorithm is shown in
Algorithm 7. This modification shows a noticeable improvement in the benchmark of Atari 2600
game environment, getting even better results than the original DQL implementation.

Algorithm 7: Deep Q-Learning with target network (DQL’)

Inputs: N,M, ε, C
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q with random weights θ′ = θ
for episode = 1 : M do

for t = 1 : T do
With probability ε select a random at, otherwise at = argmaxaQ(st, a; θ)
Execute action at in emulator and observe rt and st+1

Store transition (st, at, rt+1, st+1) in D
Sample random minibatch (sj , aj , rj+1, sj+1) from D

Set yj =

{
rt+1 for terminal st+1

rt+1 + γmaxaQ(st+1, a; θ′) for non terminal st+1

Perform a gradient descent step on (yj −Q(st, at; θ))
2

Every C steps align networks with θ′ = θ
end

end

This improvement can be pushed even further using again the idea of Double Q-learning [52].
As we said before, Q-learning is known to overestimate q-values due to its maximization steps, and
this is still true in the context of approximate solutions, so the idea is to reduce overestimations
by decomposing the maximization operation into action selection and action evaluation. Although
not fully decoupled, the target network provides a natural candidate for the second action-value
function, without having to introduce additional networks. So, the proposal is to evaluate the
greedy policy according to the online network Q, but using the target network Q′ to estimate its
value,

Yt = Rt+1 + γQ′(St+1, argmaxaQ(St+1, a; θt); θ
′
t) (40)

where the second set of weights θ′ can be updated symmetrically by switching the roles of θ and θ′
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in the subsequent steps. A detailed version of the algorithm, known as Double Deep Q-Learning
(DDQL), is shown in Algorithm 8. This improvement to the DQL algorithm is shown not only to
produce more accurate vale estimates but also to lead to better policies, improving the results over
the benchmark of Atari 2600 game environment.

Algorithm 8: Double Deep Q-Learning (DDQL)

Inputs: N,M, ε, C
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q with random weights θ′ = θ
for episode = 1 : M do

for t = 1 : T do
With probability ε select a random at, otherwise at = argmaxaQ(st, a; θ)
Execute action at in emulator and observe rt+1 and st+1

Store transition (st, at, rt+1, st+1) in D
Sample random minibatch (sj , aj , rj+1, sj+1) from D

Set yj =

{
rt+1 for terminal st+1

rt+1 + γQ′(st+1, argmaxaQ(st+1, a; θ); θ′) for non terminal st+1

Perform a gradient descent step on (yj −Q(st, at; θ))
2

Every C steps change networks with θ′ ⇐⇒ θ
end

end

4 Experimental Design

In this section we are going to use the domain knowledge that we have obtained in Section
2 to present an approach to the Stock Market as a Reinforcement Learning problem with the
characteristics presented in Section 3. We divide this approach in three sequential steps. First, we
have to build an emulator of the environment, the Stock Market, using the guidelines of OpenAI
Gym [55], which is the most extended framework to develop Reinforcement Learning problems.
Second, we have to build agents capable of interacting with this environment, using Tensorflow [56],
which is one the most extended frameworks to develop Deep Learning applications. Finally, we
have to implement the training algorithms aimed to improve the behavior of the agents built in the
previous steps, namely, we are implementating, from scratch, the algorithms of Deep Reinforcement
Learning in [14] [15] [52].

4.1 Environment

In order to build an agent to operate in Stock Market, first we have to define how the agent
should perceive its environment, that is, we have to build a emulator for the Stock Market. In this
sense, we need to consider how a human will perform the task. To formulate RL problem, we need
to define three things:

• Observations: at any time-step we have available the time-series of prices for a stock at
any previous time-step, so we are defining each state as a the previous time horizon prices.
The other information that a human has is its current positions regarding this stock, that is,
flat, long or short, so we are using this information also as a part of the state.
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Figure 7: Schema of the building of a state in our environment. Source: own

• Actions: there are three possible actions at any time-step regarding a stock: hold, buy or
sell. So we are going to implement they as follow:

– Hold : do nothing, that is, skip the time-step without buying or selling.

– Buy : open a position, that is, buy a share and save the entry price at this time to
compute the profit.

– Sell : close a position, that is, sell a share and save the price at this time to compute
the profit.

However only some combinations of actions and positions are possible. We are going to
implement the logic of positions and actions as follows:

– Flat : you can hold to stay Flat, buy to become Long or sell to become Short.

– Long : you can hold to stay Long or sell to become Flat. Buy to become Long will be
considered as hold to stay Long.

– Short : you can hold to stay Short or buy to become Flat. Sell to become Short will be
considered as hold to stay Short.

Figure 8: Schema of the action and position dynamics. Source: own
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• Rewards: the usual way to analyze the evolution of prices in Stock Market and build
profitable portfolios is not by directly analyzing the prices itself, but the so-called returns.
Returns denote the relative change of the price in each time-step, which is a is more robust
approach than using the prices themselves because its normalization, which allow to generalize
better between different stocks. Due to the casuistry of each position, rewards are computed
in different ways depending on the position taken by the agent:

– Flat : if the agent has no position opened, the reward at time-step t is:

Rt = 0

– Long : if the agent buys at time-step tentry at price Pentry, since we expect the price to
rise the reward at time-step t is:

Rt =
Pt − Pentry
Pentry

– Short : if the agent sells at time-step tentry at price Pentry, since we expect the price to
fall the reward at time-step t is:

Rt =
Pentry − Pt
Pentry

In our simulator of the environment, we reproduce the brokerage fee, which is the fee that
is charged when we buy or sell stocks. The introduction of a fee also incentivize profit that
is sustained over time, generating long-term strategies that gain money consistently rather
that rapidly gain money using unsustainable strategies based in spurious changes on the price
rather than on the its trend over time. This can be implemented as a fixed amount, as a
percentage of the operations or as a combination of both ones. We have choose to implement
it as a fixed percentage of the operation ε, so taking it into account, the rewards after closing
a positions are computed as:

– Long : if the agent buys at time-step tentry at price Pentry, and sells at time-step texit
at price Pexit, the reward at time-step texit is:

Rf =

(
1 +

Pexit − Pentry
Pentry

)
(1− ε)− 1

– Short : if the agent sells at time-step tentry at price Pentry, and buy at time-step texit
at price Pexit, the reward at time-step texit is:

Rf =

(
1 +

Pentry − Pexit
Pentry

)
(1− ε)− 1
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Figure 9: Schema of the reward dynamics. Source: own

As we said, an environment comprise everything outside the agent, so its code implemen-
tation has to contain all the functionality to allow the agent to interact with it and to learn. We
are going to implement this environment according to the guidelines of OpenAI gym [55], one on
the most used libraries to develop reinforcement learning applications. The environments are then
defined as a python class with the following methods:

• init(self) : define initial information of the environment such as the observation space or
the action space.

• reset(self): reset the environment’s state.

• step(self, action): step the environment by one timestep. Returns:

– observation: an environment-specific object representing our observation of the envi-
ronment.

– reward : amount of reward achieved by the previous action.

– done: whether it’s time to reset the environment again.

– info: diagnostic information useful for debugging.

• render(self, mode=’human’): render one frame of the environment.

So, with this structure in mind we develop an environment based on the historical time-series
of prices of a given stock with the following parameters:

• stock: name of the stock to track.

• data start: date to start tracking the prices of the stock. We are starting our tracking at
2015/01/01 by default.

• date end: date to finish tracking the prices of the stock. We are finishing our tracking at
2019/12/31 by default.
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• time horizon: number of time-steps inside each state. We are experimenting with different
values for this parameter.

• time skip: number of time-steps to skip between states. With the introduction of this
parameters we lighten the training process and avoid the redundancy of information between
states. We are going to use a value o 5, a week in laboral days, for this parameters.

• fee: ratio of the operation to pay as a fee to the broker. We are experimenting with different
values for this parameter despite using a value o 0.01 by default.

4.2 Agents

Once we have build a simulator for the environment we can start to build agents to interact
with it. Following the actual trends, we are going to build our agents using the techniques of Deep
Learning, that is, through the use of Neural Networks [57]. Neural Networks consists in framework
of algorithms initiated in the 40s [58], as a emulation of the human neurons, and popularized
lately by the discovering of the algorithm of backpropagation [59]. This algorithm implement the
training step of the network in a sequential layer-by-layer fashion, allowing the process to scale
very efficiently and, consequently, expanding its applications to the industry.

They key idea behind a Neuron is to build a unit of computation that performs a operation
on its inputs, usually coming from other Neurons. The concatenation of these units, that can be
performed in parallel or in sequence, builds the structure known as Neural Network. The training
of the weights, associated with the union of neurons, of the Neural Network is performed using the
backpropagation algorithm [59], as a layer-by-layer application of gradient descent. This gradient
descent can be improved in many ways, such as adding momentum or adapting the learning rate
through the learning process, usually combined and constituting the well-know ADAM optimizer
[60]. All these features, are implemented in all the state-of-the-art libraries for Deep Learning
such as Tensorflow [56] of PyTorch [61]. In our case, we are using Tensorflow since it is the most
extended framework nowadays.

Figure 10: Functional schema of a neuron and a neuronal network. Source: [58]

One on the bigger revolutions in the field of Neural Networks were Recurrent Neuronal
Networks, in which, in addition to the connections between neurons in adjacent layers, the neurons
of the same layer also share connections. Concretely, in Recurrent Neural Networks, each neuron
shares a connection with the next neuron in the same layer, producing a recurrent pattern that
makes these networks ideal to the treatment of sequential data such as time-series. In this sense
the most extender architecture is the one of Long Short-Term Memory [62], usually known as
LSTM, which tries to avoid the problem of long-term dependencies with the use of a memory flow
combined with the habitual flow between the neurons.
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Figure 11: Detail of a LSTM unit. We can see that there are two flows between the units in the
same layer, the lower usual flow for the recurrent units, and the upper flow known as memory.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

In this sense, we are developing our agents using two networks: the first approach will
be to use a classic Feedforward Neural Networks with two hidden layers for the prices and one
additional joined with the information of the position; the second approach will be a Recurrent
Neural Network with LSTM units with, again two hidden layers for the prices and one additional
joined with the information of the position. The architectures of these networks are showed in
more detail in Section 5.

4.3 Algorithms

Once we have defined our agent, we need to decide how we are going to train it. In this sense,
we are going to use the three more extended versions of Deep Q-learning, the original approach
[14], the approach with a target network [15], and the approach of Double Q-learning [52]. In
Figures 12, 13 and 14 we detail the updates involved by those algorithms.

Figure 12: Detail of the update of Deep Q-Learning. Source: own.

Figure 13: Detail of the update of Deep Q-Learning with target network. Source: own.
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Figure 14: Detail of the update of Double Deep Q-Learning. Source: own.

5 Results

In this section we are going to use the environment and agents built in Section 4 to find the
best combination of architectures and parameters to solve our Reinforcement Learning approach
to Stock Market. In this sense, we are going to run the following experiments:

• Feedforward network with a given stock: in this experiment we chose one stock, namely
AAPL (Apple), to train the agent, and three stocks to test the performance of the agent,
namely, AAPL (Apple), GE (General Electric) and CAT (Caterpillar), in order to see if the
knowledge obtained by the agent can generalize to other stocks. We chose a Feedforward
Neural Network to implement our agent and compare the performance of the three classic
methods of Deep Q-learning [14] [15] [52] for different values for time horizon, namely 8, 16
and 32.

• Recurrent network with a given stock: in this experiment we chose one stock, namely
AAPl (Apple), to train the agent, and three stocks to test the performance of the agent,
namely, AAPL (Apple), GE (General Electric) and CAT (Caterpillar), in order to see if the
knowledge obtained by the agent can generalize to other stocks. We chose a Recurrent Neural
Network to implement our agent and compare the performance of the three classic methods
of Deep Q-learning [14] [15] [52] for different values for time horizon, namely 8, 16 and 32.

• Training with a random stocks: in this experiment we do not chose one stock to train the
agent, but use random stocks from S&P500. Then we use three stocks to test the performance
of the agent, namely, AAPL (Apple), GE (General Electric) and CAT (Caterpillar), in order
to see if the knowledge obtained by the agent can generalize to other stocks. We chose
a Feedforward Neural Network and a Recurrent Neural Network to implement our agent
and compare the performance of DDQL [52] with time horizon = 32, with the results of
Experiment 1 and 2.

5.1 Feedforward network with a given stock

The first experiment that we are going to run, as we said before, consists in analyzing the
adequacy of using a Feedforward Neural Network for our agent. In this sense, we are going to
perform three independent analysis, based in the length of the time window used to build the
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states. With this, we want to study independently the choices of the training algorithm and the
time horizon parameter, looking for possible interactions between both choices.

5.1.1 time horizon = 8

The first run of the experiment uses a choice of time horizon = 8. This choice, united to
the value of the position of the agent, requires a specific architecture of the Neuronal Network,
shown in Figure 15, which joins he information of both inputs, one with a previous encoding by
two feedforward layers and other with any modification into one last feedforward layer.

Figure 15: Architecture of the Feedforward Neural Network for a choice of time horizon = 8.
Source: own

With this architecture we can build our agent and start to operate. In the following figures
we show the training process with the AAPL stock and the test of this trained agent in this stock,
and two additional stocks, GE y CAT, to study the capacity of generalization of this training
process. In Figure 16 we show and agent trained by the classical Deep Q-learning algorithm [14];
in Figure 17 we show and agent trained by the Deep Q-learning algorithm with target network
[15]; and, in Figure 18 we show and agent trained by the Double Deep Q-learning algorithm [52].
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Figure 16: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-
values for a agent trained with the classic Deep Q-learning algorithm [14]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 8. Source: own

Figure 17: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-values
for a agent trained with the Deep Q-learning algorithm with target network [15]. The next rows
show the application of the trained agent to different stocks. Train with time horizon = 8. Source:
own
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Figure 18: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-
values for a agent trained with the Double Deep Q-learning algorithm [52]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 8. Source: own

In these figures we can see many features that will appear constantly in the following runs
of the experiment:

• The learning process is very fast, in less than 5 episodes the agent achieves a plateau in the
reduction of the loss, which indicates that the training algorithm is very efficient despite its
online definition. This is produced, as noted in [14], by the use of experience replay, which
allows the agent to skip the redundancy of the subsequent states, by choosing randomly them
from a buffer of states, and consequently, to avoid getting stuck in the learning process. This
is common to the three algorithms

• The tuning of Q-values is a bit slower in the last two algorithms [15] [50]. This is produced
by the use of a target network that does not update in all steps, slowing the velocity of
convergence.

• The use of more sophisticated algorithms traduce in a better separation of the Q-values in
the tests, we can see that the gaps between the hold, buy and sell lines is bigger in [15]
respect to [14], and even bigger in [50].

• The agent does not generalized very well, we can see that, despite the change of the trend in
the two last time-series, it does not produce the adequate behavior.

5.1.2 time horizon = 16

The second run of the experiment uses a choice of time horizon = 16. This choice, united
to the value of the position of the agent, requires a specific architecture of the Neuronal Network,
shown in Figure 19, which joins he information of both inputs, one with a previous encoding by
two feedforward layers and other with any modification into one last feedforward layer.
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Figure 19: Architecture of the Feedforward Neural Network for a choice of time horizon = 16.
Source: own

With this architecture we can build our agent and start to operate. In the following figures
we show the training process with the AAPL stock and the test of this trained agent in this stock,
and two additional stocks, GE y CAT, to study the capacity of generalization of this training
process. In Figure 20 we show and agent trained by the classical Deep Q-learning algorithm [14];
in Figure 21 we show and agent trained by the Deep Q-learning algorithm with target network
[15]; and, in Figure 22 we show and agent trained by the Double Deep Q-learning algorithm [52].

Figure 20: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-
values for a agent trained with the classic Deep Q-learning algorithm [14]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 16. Source: own
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Figure 21: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-values
for a agent trained with the Deep Q-learning algorithm with target network [15]. The next rows
show the application of the trained agent to different stocks. Train with time horizon = 16. Source:
own

Figure 22: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-
values for a agent trained with the Double Deep Q-learning algorithm [52]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 16. Source: own

In these figures we can see more or less the features that in the previous runs of the experi-
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ment, plus an additional fact:

• The learning process is very fast by the use of experience replay

• The tuning of Q-values is a bit slower in the last two algorithms due to the use of a target
network that does not update in all steps.

• The use of more sophisticated algorithms traduce in a better separation of the Q-values in
the tests.

• The agent does not generalized very well.

• We can see some lag between the trend in the time-series of prices and the time-series of
rewards. The bigger width of the states, implemented by the parameter time horizon, creates
a time separation between the time the agent receives the information and the time that the
agent can experiment a reward from using it.

5.1.3 time horizon = 32

The third run of the experiment uses a choice of time horizon = 32. This choice, united
to the value of the position of the agent, requires a specific architecture of the Neuronal Network,
shown in Figure 23, which joins he information of both inputs, one with a previous encoding by
two feedforward layers and other with any modification into one last feedforward layer.

Figure 23: Architecture of the Feedforward Neural Network for a choice of time horizon = 32.
Source: own

With this architecture we can build our agent and start to operate. In the following figures
we show the training process with the AAPL stock and the test of this trained agent in this stock,
and two additional stocks, GE y CAT, to study the capacity of generalization of this training
process. In Figure 24 we show and agent trained by the classical Deep Q-learning algorithm [14];
in Figure 25 we show and agent trained by the Deep Q-learning algorithm with target network
[15]; and, in Figure 26 we show and agent trained by the Double Deep Q-learning algorithm [52].
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Figure 24: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-
values for a agent trained with the classic Deep Q-learning algorithm [14]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 32. Source: own

Figure 25: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-values
for a agent trained with the Deep Q-learning algorithm with target network [15]. The next rows
show the application of the trained agent to different stocks. Train with time horizon = 32. Source:
own
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Figure 26: Diagrams of experiment 1. The first row shows the evolution of the loss and Q-
values for a agent trained with the Double Deep Q-learning algorithm [52]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 32. Source: own

In these figures we can see more or less the features that in the previous runs of the experi-
ment:

• The learning process is very fast by the use of experience replay

• The tuning of Q-values is a bit slower in the last two algorithms due to the use of a target
network that does not update in all steps.

• The use of more sophisticated algorithms traduce in a better separation of the Q-values in
the tests.

• The agent does not generalized very well.

• The lag between the time-series of prices and the rewards is bigger.

5.1.4 Comments

As we said before, the first row of diagram in each run of the experiment shows the evolution
of the learning process. So, on the one hand, looking at the evolution of the loss we can see that it
converges very fast to a plateau, and, when observed carefully we can see that the more complex
algorithms achieve values of the loss slightly lower. Also, looking at the evolution of the Q-values
we can see that they reach more stable values. When comparing the diagrams for the different
values of time horizon, we can see that the higher this value is, the better are the results in loss
and Q-values. This is trivial since the increase of this parameter also increases the information
available to the agent in order to take a decision.

And, on the other hand, when looking at the tests we can see that the use of more complex
algorithms make the Q-values of the actions to be more separated, that is, the decisions are better
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in the sense that the margin that marks the best decision is bigger. The same effect can be seen
when, using the same algorithm, we increase the value of time horizon. However, the increase
of this parameter induces a lag between the instant when the agent receives the information of
a time-step, and the instant in which the action triggered by this information receives a reward.
So, this parameter has to be tuned carefully in order to be enough flexible to detect important
changes of the trend of the time-series of prices. In this sense, we are going to be conservative
and the are going to choose 32 as the best value for the time horizon parameter, since is when
the lag starts to be noticeable but still conserves an important quantity of information. Finally, is
important to note that the agent generalizes very bad when we change the stock and the actions
are not taken in an optimal way, this is specially noticeable in the GE stock. This can arise from
the particular choice of the training stock, or from the fact that we use only one stock to train the
agent, producing an unintentional overfitting.

5.2 Recurrent network with a given stock

The second experiment that we are going to run, as we said before, consists in analyzing the
adequacy of using a Recurrent neural network for our agent and its improvements from the use of
a Feedforward Neural Network. In this sense, we are going to perform three independent analysis,
based in the length of the time window used to build the states. With this, we want to study
independently the choices of the training algorithm and the time horizon parameter, looking for
possible interactions between both choices.

5.2.1 time horizon = 8

The first run of the experiment uses a choice of time horizon = 8. This choice, united to
the value of the position of the agent, requires a specific architecture of the Neuronal Network,
shown in Figure 27, which joins he information of both inputs, one with a previous encoding by
one Bidirectional LSTM and one simple LSTM layer, and other with any modification into one
last feedforward layer.

Figure 27: Architecture of the LSTM Neural Network for a choice of time horizon = 8. Source:
own

With this architecture we can build our agent and start to operate. In the following figures
we show the training process with the AAPL stock and the test of this trained agent in this stock,
and two additional stocks, GE y CAT, to study the capacity of generalization of this training
process. In Figure 28 we show and agent trained by the classical Deep Q-learning algorithm [14];
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in Figure 29 we show and agent trained by the Deep Q-learning algorithm with target network
[15]; and, in Figure 30 we show and agent trained by the Double Deep Q-learning algorithm [52].

Figure 28: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-
values for a agent trained with the classic Deep Q-learning algorithm [14]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 8. Source: own

Figure 29: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-values
for a agent trained with the Deep Q-learning algorithm with target network [15]. The next rows
show the application of the trained agent to different stocks. Train with time horizon = 8. Source:
own
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Figure 30: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-values
for an agent trained with the Double Deep Q-learning algorithm [52]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 8. Source: own

In these figures we can see many features that will appear constantly in the following runs
of the experiment:

• The learning process is even faster than with the Feedforward Neural Network, practically
since the first step the algorithm achieves a plateau in the loss and the Q-values. Despite its
spiky aspect, when looking at the scale we can see that it reach a level lower than the best
ones achieved in the Experiment1. This is common to the three algorithms

• The use of more sophisticated algorithms traduce in a better separation of the Q-values in
the tests. As in the Experiment 1, we can see that the gaps between the hold, buy and sell
lines is bigger in [15] respect to [14], and even bigger in [50].

• The agent does not generalized very well, we can see that, as in the Experiment 1, despite the
change of the trend in the two last time-series, it does not produce the adequate behavior.

5.2.2 time horizon = 16

The second run of the experiment uses a choice of time horizon = 16. This choice, united
to the value of the position of the agent, requires a specific architecture of the Neuronal Network,
shown in Figure 31, which joins he information of both inputs, one with a previous encoding by
one Bidirectional LSTM and one simple LSTM layer, and other with any modification into one
last feedforward layer.

50



Figure 31: Architecture of the LSTM Neural Network for a choice of time horizon = 16. Source:
own

With this architecture we can build our agent and start to operate. In the following figures
we show the training process with the AAPL stock and the test of this trained agent in this stock,
and two additional stocks, GE y CAT, to study the capacity of generalization of this training
process. In Figure 32 we show and agent trained by the classical Deep Q-learning algorithm [14];
in Figure 33 we show and agent trained by the Deep Q-learning algorithm with target network
[15]; and, in Figure 34 we show and agent trained by the Double Deep Q-learning algorithm [52].

Figure 32: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-
values for a agent trained with the classic Deep Q-learning algorithm [14]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 16. Source: own
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Figure 33: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-values
for a agent trained with the Deep Q-learning algorithm with target network [15]. The next rows
show the application of the trained agent to different stocks. Train with time horizon = 16. Source:
own

Figure 34: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-
values for a agent trained with the Double Deep Q-learning algorithm [52]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 16. Source: own

In these figures we can see more or less the features that in the previous runs of the experi-
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ment:

• The learning process is even faster than with the Feedforward Neural Network, practically
since the first step the algorithm achieves a plateau in the loss and the Q-values.

• The use of more sophisticated algorithms traduce in a better separation of the Q-values in
the tests.

• The agent does not generalized very well, as in the Experiment 1.

5.2.3 time horizon = 32

The third run of the experiment uses a choice of time horizon = 32. This choice, united
to the value of the position of the agent, requires a specific architecture of the Neuronal Network,
shown in Figure 35, which joins he information of both inputs, one with a previous encoding by
one Bidirectional LSTM and one simple LSTM layer, and other with any modification into one
last feedforward layer.

Figure 35: Architecture of the LSTM Neural Network for a choice of time horizon = 32. Source:
own

With this architecture we can build our agent and start to operate. In the following figures
we show the training process with the AAPL stock and the test of this trained agent in this stock,
and two additional stocks, GE y CAT, to study the capacity of generalization of this training
process. In Figure 36 we show and agent trained by the classical Deep Q-learning algorithm [14];
in Figure 37 we show and agent trained by the Deep Q-learning algorithm with target network
[15]; and, in Figure 38 we show and agent trained by the Double Deep Q-learning algorithm [52].
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Figure 36: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-
values for a agent trained with the classic Deep Q-learning algorithm [14]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 32. Source: own

Figure 37: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-values
for a agent trained with the Deep Q-learning algorithm with target network [15]. The next rows
show the application of the trained agent to different stocks. Train with time horizon = 32. Source:
own
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Figure 38: Diagrams of experiment 2. The first row shows the evolution of the loss and Q-
values for a agent trained with the Double Deep Q-learning algorithm [52]. The next rows show the
application of the trained agent to different stocks. Train with time horizon = 32. Source: own

In these figures we can see more or less the features that in the previous runs of the experi-
ment:

• The learning process is even faster than with the Feedforward Neural Network, practically
since the first step the algorithm achieves a plateau in the loss and the Q-values.

• The use of more sophisticated algorithms traduce in a better separation of the Q-values in
the tests.

• The agent does not generalized very well, as in the Experiment 1.

5.2.4 Comments

As we said before, the first row of diagram in each run of the experiment shows the evolution
of the learning process. So, on the one hand, looking at the evolution of the loss we can see that it
converges very fast to a plateau, since the first interaction it reaches optimal values that fluctuate
very little, creating a plateau. This is common for the three algorithms, but looking carefully we
can see that the more complex algorithms achieve lower values of the loss. Also, looking at the
evolution of the Q-values we can see that they reach more stable values since the initial steps.
When comparing the diagrams for the different values of time horizon, we can see that the higher
this value is, the better are the results in loss and Q-values. This is trivial since the increase of
this parameter also increases the information available to the agent in order to take a decision,as
in the Experiment 1.

And, on the other hand, when looking at the tests we can see that the use of more complex
algorithms make the Q-values of the actions to be more separated, as in Experiment 1, that is, the
decisions are better in the sense that the margin that marks the best decision is bigger. The same
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effect can be seen when, using the same algorithm, we increase the value of time horizon. However,
as observed in Experiment 1, the increase of this parameter induces a lag between the instant when
the agent receives the information of a time-steps. In this sense, we are going to be conservative
and the are going to choose 32, again, as the best value for the time horizon parameter, since
is when the lag starts to be noticeable but still conserves an important quantity of information.
Finally, is important to note that the agent still generalizes bad when we change the stock. This
can arise from the particular choice of the training stock, or from the fact that we use only one
stock to train the agent, producing an unintentional overfitting.

5.3 Training with random stocks

In this experiment we are going to propose a solution to the overfitting observed in Experi-
ments 1 and 2. The idea is to introduce some variance in the training data by the use of different
stocks to train the agent. With this approach, we expect that the buffer of states composing the
memory for experience turns to be more diversificated. This will make that the agent get experi-
ence with different types of trends in the prices, and, consequently, to be able to generalize better,
being capable of taking adequate decision for any stock in the tests. In order to avoid the posible
bias of taking conclusion by looking only at 3 stocks, we are going to evaluate the balance achieved
by the agent over all available stocks of S&P500 index and computing the mean value and the
standard deviation.

5.3.1 Feedforward Neural Network

The first run of the experiment uses a choice of time horizon = 32, as we said before. This
choice, united to the value of the position of the agent, requires a specific architecture of the
Neuronal Network, shown in Figure 23. Before training directly with random stocks, we are going
to see how the performance of the agent changes depending of the stock it is trained with. In this
sense, we are training our agent with the same stocks as before, namely AAPL, GE and CA in
order to have a benchmark to compare with the performance of the new agent.

Training stock Balance
AAPL 1.648± 1.013

GE 0.330± 1.004
CAT 1.221± 1.032

Random 1.653± 1.018

Table 2: Mean and standard deviation of the balance of the agent through all the available stocks
of S&P500. The architecture of the agent in this case is a Feedforward Neural Network with a
time horizon = 32.

In Table 2 we show the results of the experiment and we can see that, effectively, the use of
random stocks in the training step seems to be very fruitful, it produce the best results. A balance
of 1.653 means a 65.3% of benefits in the five years that we using to test the agent, which is a very
good profit. We can see that AAPL also produces good results, but since its picked arbitrarily we
can totally confide in it despite its good results.
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5.3.2 Recurrent Neural Network

The second run of the experiment uses a choice of time horizon = 32, as we said before.
This choice, united to the value of the position of the agent, requires a specific architecture of the
Neuronal Network, shown in Figure 35. Before training directly with random stocks, we are going
to see how the performance of the agent changes depending of the stock it is trained with, as in
the previous case. In this sense, we are training our agent with the same stocks as before, namely
AAPL, GE and CA in order to have a benchmark to compare with the performance of the new
agent.

Training stock Balance
AAPL 1.653± 1.004

GE 0.326± 1.003
CAT 1.653± 1.004

Random 1.670± 1.105

Table 3: Mean and standard deviation of the balance of the agent through all the available stocks
of S&P500. The architecture of the agent in this case is a Recurrent Neural Network with a
time horizon = 32.

In Table 3 we show the results of the experiment and we can see that, also in this case, the
use of random stocks in the training step seems to be very fruitful and it produces, in mean terms,
a secure win with the investment.

5.3.3 Comments

In this experiment we have seen that, in both cases, when using a Feedforward Neural
Network and a Recurrent Neural Network, the use of random stocks in the training step produce
very good results, the margins of benefit of out agent are considerably high. The APPL stock also
seems to produce good results, but since it is picked arbitrarely we cannot confide in it to operate
independetly despite its profits. The use of random stocks to trian the agent is the best way to
avoid the possible overfitting and to improve the generalization capabilities of our agent.

5.4 Future work

As a final comment to this work, we propose several ways to continue the work developed
in these pages. There are three clear ways to improve the work done here:

• Environment: the first way to continue our work is to improve the environment, that is, the
simulator of the environment. The environment can be improved by using more desagregated
data, that is, hourly or minutely data, which is not usually public but provided by the online
brokers on demand. This can be pushed even further, with little modifications in code, by
using online data. Also, more realistic fees can be introduced since in general there is a fixed
quantity to pay and an additional quantity relative to the stock or the amount of shares in the
transaction. Finally, we can introduce more diverse data into the environment to improve
the information that the agent has at the moment of taking a decision, that is, economic
information about the current situation of the world or sentiment from news regarding that
stock for example.
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• Agent: the second way to continue our work is to improve the agent. The most obvious
way to make this improvement is to make it able to operate with quantities, that is, making
it able to not only buy and sell, but to choose the quantity of shares to buy and sell. This
feature involves to introduce a continuous set of actions, instead of the discrete one that
we are using in our work and, consequently, to change the training algorithms. Another
implication of the introduction of quantities is the finiteness of the number of shares of each
stock is the management of the prices associated with the offer and demand of each stock,
with this feature we could also use our agent-environment interface to study the stock market
from a realistic and quantitave approach.

• Algorithms: the third way to continue our work is to push the training algorithm more
towards to the state of the art, in this sense, we can introduce the use of dueling networks
[63], noisy networks [64] or a combination of all advances at the same time using the Rainbow
model [65]. In the case we chose to introduce continuous actions we also need to use a
different set of algorithms, capables of dealing with this requirement, some of the state of
the art algorithms to develop this idea are deterministic policy gradient algorithms [66] [67],
trust region policy optimization algorithms, [68], proximal policy optimization algorithms
[69] or actor-critic algorithms [70].

6 Conclusions

The main goal of this work was to approach ourselves to Reinforcement Learning not only
in a theoretical way, but also in a practical way. In order to achieve the first step we have pursued
an extensive revision of the literature of the field, reviewing its fundamentals and reaching some
state of the art techniques to make it usable to real world projects. Then, we put into practice
this knowledge by developing an agent to operate with data from stock market.

In order to elaborate this agent we studied the fundamentals of the stock market and the
rules to operate in it. With this knowledge we built an environment simulating the stock market
and a generic agent to train with this environment. Then to develop the training process we
implement some state of the art Deep Q-learning algorithms using Tensorflow.

Finally, we run a series of experiment to tune the hyperparameters of our agent in order
to make it able to achieve the best possible performance for its architecture. In this sense, we
conclude that the best architecture is a Recurrent Neural Network with bidirectional LSTM units.
Regarding the hyperameters, we conclude that the best time horizon for the agent is 32 days,
because it allows the agent to use much information to take decisions without lagging too much
the rewards; and the best fee is 0.01, because it makes the environment more realistic and rewards
long-term investments rather than short-term buys and sells. Finally, regarding the training data,
we conclude that using random stocks to train the agent produce better and more general results
than using only one stock.
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