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Resumen:

Este trabajo toma inspiración de la estadística y la biología para definir un
conjunto de funciones paramétricas (Gaussiana, Gabor, Centro Periferia y Nor-
malización Divisiva) y las introduce en el campo de trabajo del aprendizaje
profundo para entrenar sus paramétros. Estas funciones se analizan en dos
"problemas de juguete" para comprobar la correcta implementación y explorar
las peculiaridades de optimizar este tipo de funciones frente al enfoque usual en
el aprendizaje profundo donde se dejan todos los parámetros libres sin restric-
ciones. Para terminar, se aplican estas formas funcionales a dos problemas reales:
clasificación y calidad de imagen, donde superan a los enfoques no paramétricos
obteniendo mejores resultados y generalizando mejor con una menor cantidad de
parámetros entrenables y, al mismo tiempo, mostrando que los modelos paramétri-
cos pueden ser entrenados con tasas de entrenamiento (learning rate) más altas
para obtener mejores resultados de forma más rápida que con los modelos no
paramétricos.





Abstract:

This work takes inspiration from statistics and biological findings to define a set of
parametric functions (Gaussian, Gabor, Center Surround and Divisive Normaliza-
tion) and implements them into the conventional deep learning framework. These
functions are analyzed in two different toy problems to assess their correctness
and explore the peculiarities of optimizing them versus optimizing non-parametric
models as is the norm in the deep learning field. Finally, these functional forms
are applied to two real world problems: classification and image quality, where
they outperform non-parametric approaches by obtaining better performances,
and generalization with fewer number of trainable parameters while also showing
that parametric models can be trained with higher learning rates to obtain better
results faster than non-parametric models.





Resum:

Aquest treball pren inspiració de l’estadística i la biologia per a definir un conjunt
de funcions paramètriques (Gaussiana, Gabor, Centre Perifèria i Normalització
Divisiva) i les introdueix en el camp de treball de l’aprenentatge profund per a
entrenar els seus paràmetres. Aquestes funcions s’analitzen en dos "problemes
de joguet" per a comprovar la correcta implementació i explorar les peculiar-
itats d’optimitzar aquest tipus de funcions enfront de l’enfocament usual en
l’aprenentatge profund on es deixen tots els paràmetres lliures sense restriccions.
Per a acabar, s’apliquen aquestes formes funcionals a dos problemes reals: classi-
ficació i qualitat d’imatge, on superen als plantejaments no paramètrics obtenint
millors resultats i generalitzant millor amb una menor quantitat de paràmetres
entrenables i, al mateix temps, mostrant que els models paramètrics poden ser
entrenats amb taxes d’entrenament (learning rate) més altes per a obtindre millors
resultats de forma més ràpida que amb els models no paramètrics.
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Chapter 1

Introduction

The breakthrough of convolutional neural networks started with [Lecun et al., 1998] and
moved rapidly as its impressive performance reignited the spark and interest of neural
networks, giving rise to big jumps in performance in the competitive ImageNet contest
with the appearance of networks like the VGG [Simonyan and Zisserman, 2015], ResNet
[He et al., 2015] and Inception [Szegedy et al., 2014]. Even though deep neural networks
were known for overfitting the training data distribution [Lecun et al., 1998], the increase in
computing power and available data started a golden age for convolutional neural networks,
which quickly moved to the top spots in all the vision-related challenges’ leaderboards.

The usual approach to training convolutional neural networks (CNNs) consists of
defining a set of convolutional kernels of predefined spatial size (kx, ky) whose pixels are
all independently-trainable. This means that, for a kernel k 2 Rkx,ky, there are kx⇥ ky
trainable weights. In the most common setting for images, the input to a convolutional
layer L would have 3 dimensions (height, width and channels): I 2 RH,W,C and, normally,
each layer of a CNN has several kernels, usually called features, F , resulting in an output
of shape O 2 RH,W,F if considering the appropriate padding of the input so that the
spatial dimensions are not changed after the convolution operation. In this setting, the
complete kernel of L would have dimensions k 2 Rkx,ky,C,F , amounting to a total number
of kx⇥ ky⇥C⇥F trainable weights. One can see the number of trainable weights quickly
growing with the spatial size of the kernels and, considering that the number of features
also grows with the depth of the network, deeper layers could have a significant number of
parameters. It is so the case if we look at the number of parameters from some ImageNet
winning models in Table 1.1, we see that all of them are surpassing a million parameters.
And they don’t even have filters bigger than 7x7!

The number of parameters is (and will be) a problem for researchers and practitioners
that do not have access to the computing resources needed to train the ever-growing
models that keep arising. Besides this, with bigger models, their interpretability becomes

Table 1.1: Parameter count of some of the more well-known models that participated in the
ImageNet challenge. All of them correspond to their smallest versions.

Model # Parameters
VGG16 14.780.352
ResNet18 10.998.784
Google LeNet (Inception) 5.389.360
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harder and their generalization may suffer as well because having more parameters means
the model would be more prone to memorizing the training data. In [Olah et al., 2017], a
method to obtain and visualize the features of interest for a network is presented. While
this work focuses mainly on higher-level features that are appealing and can be visually
interpreted, the intermediate-level features of the filters are harder to interpret, as the
filters usually learn odd forms and shapes from the training data. However, earlier layers
of artificial neural networks are known to learn, easy-to-characterize Gabor-like filters,
edge detectors, etc [Krizhevsky et al., 2012], and this is often praised as a way of showing
that CNNs are "learning what they should learn" but, if that is what we want them
to learn, why aren’t we telling them straight away?

Examples of prior knowledge of what "CNNs devoted to vision should learn" are given
in Fig1.1. By looking at the biological visual system, it has been found that it displays
center-surround receptive fields in the retina-LGN [Enroth-Cugell and Robson, 1966] and
Gabor-like filters in V1 cortex [Hubel and Wiesel, 1962, Ringach, 2002] (Figure 1.1 top-
left). However, this is not only a biological finding. Applying statistical-based tools like
second-order (PCA) and higher-order redundancy reduction techniques leads to local
Fourier-like and Gabor-like filters [Hyvärinen and Oja, 2000, Olshausen and Field, 1996]
(Figure 1.1 top-right). Therefore, it is not surprising, but encouraging and explainable, that
networks devoted to vision developed Gabor-like filters [Krizhevsky et al., 2012] (Figure
1.1 bottom).

Figure 1.1: Consistent image representations that emerge in Biology, Statistics, and
Deep Learning. The top-left panel represents the drawings by the Nobel Price laure-
ates [Hubel and Wiesel, 1962] of different receptive fields of cells along the visual pathway:
the center-surround LGN neurons, and the Gabor-like neurons in the visual cortex V1. More-
over, it shows actual measurements of the V1 receptive fields (data) using current reverse-
correlation techniques and fits to Gabor functions [Ringach, 2002]. The top-right panel shows
the Gabor-like representation that emerges to capture the independent components of natural
images [Olshausen and Field, 1996]. The bottom panel shows the Gabor-like representation that
emerges in the early layers of Alexnet optimized for image classification [Krizhevsky et al., 2012].
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In order to tackle these issues (number of parameters, explainability, and precondition-
ing), scientists became motivated (and inspired by statistics and biology) to constraint
the kernels on the earlier convolutional layers to a specific functional form (i.e. opponent
color channels, local-frequency sensors, and Gabor functions), showing faster and bet-
ter training [Alekseev and Bobe, 2019], better generalization to out of the sample data
[Evans et al., 2022], or enhancing robustness to adversarial attacks [Pérez et al., 2020].
It’s worth noting that implementing specific functional forms (like Gaussians) allows the
consideration of more sophisticated (non-linear) bio-inspired operations like Divisive Nor-

malization [Carandini and Heeger, 1994] into neural networks [Veerabadran et al., 2021],
which also have appealing statistical effects [Schwartz and Simoncelli, 2001].

This work is devoted to the study of these parametric characterizations of linear and
nonlinear operations in deep neural networks, explaining their advantages in interpretability
and generalization capabilities.
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Chapter 2

Objectives

We can separate the objectives of this work between two technical and a two-sided scientific
objective. From the technical side we have:

1. Be able to impose a parametric form to a certain neural network’s weights and
optimize its parameters through gradient descent.

2. Test our implementation on a set of tasks with a known solution to assert their
correct functioning and inspect their training dynamics.

While the scientific objective is:

3. Apply our restricted weights to two applications by building a statistically and
biologically inspired network whose layers have a specific (imposed) meaning:

(a) Classification.
(b) Image Quality Assessment.

The scientific objectives use the result of our two technical objectives and take knowledge
from the statistics of natural images and biological neural processing to solve both tasks.
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Chapter 3

Review of the field’s landscape

This Chapter consists of a brief overview of the terminology and basic concepts used
in the artificial neural networks’ field followed by a review of different approaches that
take inspiration from statistics and biology to modify the training procedure employed to
train the models, the tasks and data used to this effect, or the models themselves. After
identifying interesting functional forms that add this statistical and biological knowledge,
we will go through different approaches that have been taken to include them into artificial
neural networks.

3.1 Neural Networks: Basic Concepts

The field of artificial neural networks is in constant movement so, before diving deeper into
the particularities of this work, we thought of giving the reader a very brief introduction
to some jargon and concepts that will be appearing in the following pages so as to lift
everyone up to the same level and facilitate the comprehension of our work. We will be
going through the concept of gradient descent, the key component that allows practitioners
to train from very small to huge models, we will as well cover the basic operation to be
used in our models: the convolution, and we’ll finish with a note on activation functions
and what we refer to when "activating a function".

3.1.1 Gradient Descent

Even in high school, when teaching about simple optimization methods, the use of
derivatives makes an appearance. By definition, the derivative of an univariate function
f(x), f 0(x), points towards the direction of maximum change meaning that, when x is
taken to be the minimum or maximum of the function, f 0(x) = 0. Artificial neural networks
are no more than functions, N✓, depending on a set of parameters ✓ that are applied to
some inputs x to produce an output y = N✓(x). How could we proceed to find the set of
parameters ✓̂ that minimize (or maximize, depending on the problem at hand) a given
loss function L? With derivatives! Specifically, we will calculate the derivative of L with
respect to the parameters ✓, r✓L, to obtain the direction in which we want to move in
order to reach the parameters ✓̂ that optimize our function L. This multivariate derivative
is also known as the gradient of L with respect to the parameters ✓. Keep in mind that
the gradient points towards the maximum so, if we want to minimize the function, we will
have to move in the opposite direction.
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Figure 3.1: Minimization of the function f(x, y) = x2 + y2 with gradient descent for
demonstration purposes.

Having laid everything out, we can take an iterative approach in which we initialize ✓
to some (usually random) values, calculate r✓L and change the parameters in its opposite
direction, leading to Eq. 3.1, the expression that models the training process of every
artificial neural network, where the hyperparameter ↵ is called "learning rate" and controls
the step size at each iteration. Note that 0 < ↵ < 1 or the training will diverge. Figure 3.1
shows a trivial example minimizing the function f(x, y) = x2 + y2 with gradient descent.

✓t+1 = ✓t � ↵r✓L (3.1)

Originally, it was thought that the gradient should be computed as the mean gradient
for the whole dataset but it would take a good amount of time to perform a parameter
update, making the training process very slow. The opposite procedure was also put to
the test: updating the parameters with the gradient calculated from a single sample. This
led to faster training but the models were prone to overfit. Finally, the community settled
on a middle point: split the full data set into subsets (called "batches") and perform the
updates with the mean gradient of all the samples in a batch. This received the name of
stochastic gradient descent and was found to converge much faster than the true gradient

while finding solutions that are more robust [Lecun et al., 1998].

3.1.2 Convolution

In this work, we are going to be focused on deep convolutional neural networks, which
are mainly based on learning a set of filters to convolve with an input to solve a specific
task. The convolution operation can be defined both for continuous and discrete signals.
However, due to the discrete nature of the images, when saying "convolution", we will be
referring to the discrete convolution. The mathematical definition of the 2D convolution is
stated in Eq. 3.2:

(f ⇤ g)[n,m] =
kxX

i=�kx

kyX

j=�ky

f [n� i,m� j]g[i, j] (3.2)
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Figure 3.2: Diagram showing the convolution operation of a 3x3 matrix (in white) with a
2x2 filter (in light orange) using a stride of 1 and no padding. If not using padding, the
output image is of shape (3� 2

2 , 3�
2
2).

We will apply this definition to the correlation between an image and a filter (or a set
of filters when considering more than one), so f will be a (Ix, Iy) matrix, and g will be a
(kx, ky) matrix.

The mathematical definition in Eq. 3.2 can be a little bit intimidating at first, but
what it is telling us to do is actually very simple (shown in Figure 3.2): move the filter, g,
across the image and do a weighted sum of the filter and the "overlayed" image values.
Strictly speaking, this operation could be called cross-correlation between the image and
the filter, but everyone in the field refers to it as convolution. There are some details to be
considered when performing this operation: strides, padding, dilation, grouping, etc, but
we will only explain briefly the first two. Normally, it’s advised to utilize odd-size filters
so that they have "a center", but, when applying the (default) convolution, the center
doesn’t pass for every pixel, resulting in an output image of smaller size than the input.
To fix this issue, a common practice is to add a border to the image so that the center of
the filter passes over every pixel of the image and the spatial size is preserved between the
input and output. This is called padding the input image. Incidentally, in Eq. 3.2 we have
considered that the filter is displaced 1 pixel at each step, but this step size, the stride,
can be chosen freely, keeping in mind that it will also affect the spatial size of the outputs.
Considering all of this, the output size, (Ox, Oy), can be calculated with Eq. 3.3, where
(px, py) and (sx, sy) are the padding and the strides in each dimension respectively:

(Ox, Oy) =

 
Ix � kx

2 + px
sx

,
Iy � ky

2 + py
sy

!
(3.3)

3.1.3 Activation functions

It is known that artificial neural networks are based on stacking a set of linear and
non-linear transformations in order to minimize a specific loss function with a given set
of data. The two most common linear operations found, f , are matrix products and
convolutions (which can even be defined as a matrix product). After applying any of those
to a given input x, its output, y = f(x), is "activated" with a non-linear function a to
obtain its "activation", z = a(y) = a(f(x)). Normally, the sequential application of f and
a is considered to be a "layer", and a is known as the activation function of the layer.

The most common activation functions are usually rectified or saturating functions.
Three of the more conventionally seen are ReLU [Fukushima, 1975] (Eq. 3.4),
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Figure 3.3: Three of the most common activation functions used in deep neural networks.
ReLU is of the class of rectified functions while sigmoid and tanh pertain to the saturating
functions family.

f(x) =

(
x, x > 0
0, x  0

(3.4)

sigmoid [Narayan, 1997] (Eq. 3.5),

f(x) =
1

1� e�x
(3.5)

and tanh [LeCun et al., 2012] (Eq. 3.6),

f(x) =
ex � e�x

ex + e�x
(3.6)

all shown in Figure 3.3.

3.2 Bio-inspired neural networks

Since their inception, neural networks have been considered to be inspired by the hu-
man brain but, actually, this inspiration is merely seen on the form of the computa-

tion performed [Bengio et al., 2016]. More specific features such as feedback connec-
tions, specific activation functions [Teo and Heeger, 1994] or even particular learning
algorithms [Bengio et al., 2016, Hinton, 2022] have yet to be introduced properly in the
field. What makes neural networks interesting is that, even though there’s much work to
do yet, we can still find correlations between their behavior and human-brain responses
[Gomez-Villa et al., 2020, Li et al., 2022, Vila-Tomás et al., 2022b, Vila-Tomás et al., 2022a].

In this Section we will explore some of the approaches that have been taken towards
increasing the biological inspiration in different areas of deep learning, starting from the
training procedure, followed by the task and data used to train the models, and finishing
with specific models or architectures that have been proposed with a more-than-the-norm
focus on imposing statistical properties in image representations and increased consistency
with biology, keeping in mind that we will focus in the model part within this work.
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3.2.1 Training

One of the first critiques conventional deep learning gets with regard to its (dis)similarity
to the brain is that backpropagation [Rumelhart et al., 1986] (the algorithm used to
optimize the weights in an artificial neural network) is not actually happening in the
brain [Markram and Sakmann, 1995, Gerstner et al., 1996]. In an effort to suggest a more
brain-like training procedure, [Bengio et al., 2016] propose an interpretation of the spiking
dynamics (Spike-Timing-Dependent Plasticity or STDP) that is known to happen in the
human brain, which is related to the fact that real neurons may only fire binary responses
[DeWeese et al., 2003]. Briefly, they propose to model STDP with Eq. 3.7, where �Wij

indicates the average weights change, Si the pre-synaptic spike from neuron i, and V̇j

represents the temporal derivative of the post-synaptic voltage potential of neuron j.

�Wij / SiV̇j (3.7)

If we assume that �Vj may correspond to an improvement on some objective function
J , STDP can be interpreted as an approximation of stochastic gradient descent in the

objective function. In the end, what we see is that it might be easier to come up with
an interpretation of backpropagation that satisfies its oppositors than proposing a new
algorithm to train deep neural networks which can produce results as good as can be
obtained with backpropagation.

As said in [Hinton, 2022], backpropagation remains implausible despite considerable

effort to invent ways in which it could be implemented by real neurons. In an effort to
overcome backpropagation, an alternative method is proposed in [Hinton, 2022]: the
Forward-Forward algorithm. Inspired by Boltzmann machines [Rumelhart et al., 1986]
and Noise Contrastive Estimation [Gutmann and Hyvärinen, 2010], this algorithm aims
to replace the forward-backward passes of backpropagation with two forward passes (called
positive and negative passes) operating in the same way but on different data: the positive
pass utilizes real examples to adjust the model’s weights to maximize a goodness function,
while the negative pass operates on "negative" examples and modifies the weights to
minimize their goodness. This goodness function can be of different types but, in the
paper, they test both the positive and negative quadratic sum of the activations of the
layers. Their conclusions are that the Forward-Forward algorithm is somewhat slower than

backpropagation and does not generalize quite as well on several toy problems, so they don’t
see it as a replacement for backpropagation yet but, still, it is suggested that it may be

superior to backpropagation as a model of learning in cortex.
Besides modifying the base training algorithm completely, in [Liu et al., 2023] a modi-

fication to usual backpropagation that is inspired by the brain’s modularity is proposed,
Brain-Inspired Modular Training, with the objective to improve the interpretability of
artificial neural networks. In this work, each neuron is embeded in a geometric space and
a term penalizing distant conections between neurons is introduced in the loss function
(Eq. 3.8),

L = L+ lw, lw =
LX

i

niX

j

ni+1X

k

dijk |wijk| (3.8)

where L represents the conventional loss function for a given problem and lw is a sum
of the distances between all the neurons, dijk, weighted by the modulus of the weight
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Figure 3.4: Conectivity graphs of different networks trained with Brain-Inspired Modular
Training (BIMT) to solve a series of simple regression problems. It can be seen that the
connections organize to show different behaviors such as independence (a), feature sharing
(b), and compositionality (c). The main takeaway of these examples is that the neurons
that need to work together to solve the task, are rearranged so that they are together.
Extracted from [Liu et al., 2023].

that connects them, |wijk|. By doing so, they show that the networks become more easily
interpretable and their calculations can be visually analyzed as they show in Figure 3.4.

3.2.2 Tasks and Data

Neural networks are known to learn the statistics of the data used to train them
[Hepburn et al., 2022] and this, in fact, is very similar to how humans evolved: by adapting
our visual system to the statistics of nature [Barlow, 1961]. Having said this, one could
make a distinction between datasets and tasks that could lead to more human-like behavior
than others. For example, it is to be expected that a model trained to discriminate
between handwritten digits may present fewer human-features than a model trained to
detect persons in a video image, as the last one is more similar to what humans have been
doing for a long time and has been ingrained into our brain through the years.

In [Kumar et al., 2022], they define a "Perceptual Score" and use it to evaluate whether
a better performance in a classification task leads to a better Perceptual Score. Their work
focuses on testing models of different kinds (EfficientNets, Vision Transformers, ResNets,
and AlexNet) trained to perform classification on ImageNet, and what they find is that
better ImageNet classifiers achieve better Perceptual Scores up to a certain point. Beyond

this point, improving on accuracy hurts Perceptual Score, as can be seen in Figure 3.5. This
could indicate that, maybe, a model becomes more human as it trains, but its "humanness"
can go away in favor of improving its performance at a task by overfitting it.

[Hernández-Cámara et al., 2023] extends previous works to assess not only the perfor-
mance of different architectures on a single task but to test how their Perceptual Score is
affected by the training goal, the training data, and the read-out operation. According to
our results, training with more than 1M natural images proved to be beneficial, which is
on par with the idea that training with natural images should provide more human-like
results. It’s interesting to note that when comparing self-supervised and supervised tasks,
supervised models presented higher Perceptual Scores.
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Figure 3.5: Perceptual Score obtained for different models that attain different accuracy
scores on ImageNet classification. Surprisingly, an increase in validation accuracy is not di-
rectly correlated with an increase in Perceptual Score. Extracted from [Kumar et al., 2022].

Figure 3.6: Schematic representation of the retina-LGN-V1 standard model of the visual
system with their respective receptive fields (center-surround for retina-LGN and Gabor
for V1. Receptive fields representations taken from [Carandini et al., 2005].

3.2.3 Models

The standard model of the early visual system is comprised of three stages: the retina,
the LGN and the V1 cortex. It has been shown that the retina-LGN stage can be satis-

factorily described by the difference of two Gaussians [Enroth-Cugell and Robson, 1966],
while in the cortical region the most efficient stationary stimulus was termed and edge

[Hubel and Wiesel, 1962], which corresponds to having Gabor-like receptive fields in V1.
An schematic representation of the standard model is shown in Figure 3.6. An additional
non-linear stage was then proposed in [Carandini and Heeger, 1994] consistent on dividing
the activity of a single cell by a pooling of the ther single cells, which corresponds to a
form of Divisive Normalization.

Following we will go over three models that were based on ideas taken from the hu-
man visual standard model: Normalized Laplacian Pyramid Decomposition or NLPD
[Laparra et al., 2016], Linear+Nonlinear cascade [Martinez-Garcia et al., 2018] and Per-
ceptNet [Hepburn et al., 2020].
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Figure 3.7: Schematic representation of NLPD for a single scale k. L(w) + downsampling
represents a Difference of Gaussians, while P (k)(w) corresponds to applying a Gaussian.
xk+1 is used as the input for the next scale. Extracted from [Laparra et al., 2016].

Normalized Laplacian Pyramid Decomposition (NLPD) [Laparra et al., 2016]

In this regard, an image quality metric based on the transformations associated with the

early visual system was proposed in [Laparra et al., 2016], where they take inspiration
from the human visual path to construct a pyramid of transformations that apply local
luminance subtraction and local gain control. This new image quality measurement is
based on applying center surround filtering to the inputs, reminiscent of the properties
seen in the retina and thalamus. They show that both stages lead to a significant

reduction in redundancy relative to the original image pixels consistent with efficient coding
[Barlow, 1961, Malo and Laparra, 2010], beating state-of-the-art models of that time. A
schematic representation of a single scale Normalized Laplacian pyramid is shown in Figure
3.7.

A Linear+Nonlinear cascade [Martinez-Garcia et al., 2018]

In an effort to move towards a model of the visual system that offers useful analytical
insight into the psychophysics, the physiology, and the function of the visual system,
[Martinez-Garcia et al., 2018] proposes a cascade of Linear+Nonlinear transforms, which
are known to be very successful in modeling a number of perceptual experiences. One of its
advantages versus the other models is that, as it employs known functional forms inspired
by the human visual system, its inverse can be calculated and studied, providing a lot of
insight into the model and expanding greatly the analysis and explainability of the model.
Something that deep learning-centered models fail to attain to this extent. The model
contains a sequence of modules that account for brightness, contrast, energy masking, and

wavelet masking, and is built around the idea of modularity so that different properties can
be checked by plugging and removing modules independently. Its nonlinearities are based
on canonical divisive normalization, which is also a biologically inspired function. The
Linear+Nonlinear cascade of modules and their inputs and outputs is shown in Figure 3.8.

When applying this model to the TID2008 database they obtain state-of-the-art
results (⇢p = 0.88) but in [Martinez-Garcia et al., 2019] they argue that focussing on the
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Figure 3.8: On the top, a simplified view of the cascade of Linear+Nonlinear modules.
Below is an example of the inputs & outputs for the different modules when using a sample
image as input to the model. Extracted from [Martinez-Garcia et al., 2018].
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correlation only missed reproducing certain phenomena, so they added extra frequential
constraints in the Gabor domain and in the kernel of the Divisive Normalization in order
to reproduce certain psychophysical behaviors. The modularity of the model allows the
authors to test the model with different selections of models, proving that each subsequent
stage helps to improve the previous result thus, implying that adding human visual-inspired
stages into the model is beneficial to its performance, at least in image quality assessment
tasks.

PerceptNet [Hepburn et al., 2020]

While both previous methods included explicit functional forms (center-surround in
[Laparra et al., 2016], CSFs, center-surround and Gabor filters in [Martinez-Garcia et al., 2018,
Martinez-Garcia et al., 2019]), the most recent trend in image quality assessment has been
moving into the usage of deep neural networks that were fitted on perceptual databases
as per the usual deep learning "brute force" approach. Two of the methods that could
be considered state of the art in the field are LPIPS [Zhang et al., 2018] and DISTS
[Ding et al., 2020], and both of them are based on a VGG network with no specific bi-
ological nor human-like behavior in them. To leverage the phenomenal capabilities of
deep neural networks but retain what made previous methods SOTA at their times,
[Hepburn et al., 2020] introduces PerceptNet, a convolutional neural network where the

architecture has been chosen to reflect the structure and various stages in the human visual

system. The idea behind it is to avoid stacking layers while hoping for better performance,
but to use operations that have a correspondence with a process happening in the human
visual system. Adding to it, instead of using the well-known ReLU non-linearity that is
so present in ANNs, it implements a divisive normalization nonlinearity, which is also
inspired by the human visual system, and it’s seen that its use can increase the ability of

the network to judge perceptual similarity. Following Figure 3.9, the architecture is defined
so that it could accommodate the following stages:

1. Gamma correction and opponent color space transformation.

2. Von Kries transform and center-surround filtering.

3. LGN normalization.

4. Orientation and multiscale sensitive transform (Gabor filters) and Divisive Normal-
ization in V1.

Choosing an architecture so heavily based on the visual path system is a big step towards
training biologically-inspired models but it may not be enough. In [Vila-Tomás et al., 2022a,
Vila-Tomás et al., 2022b], we studied the psychophysical properties of PerceptNet and
found that its learnt filters didn’t converge to the expected transformations they were
based on. For example, the receptive fields of the last convolutional layer of the network
are shown in Figure 3.10, where it can be seen that the layer that was supposed to perform
an orientation sensitive transform (i.e. Gabor filters) did get a set of filters that showcased
a lot of repetitions and no particular structure. In this same work, we didn’t obtain the
psychophysical properties that were to be expected from a model that had the intented
transformations stated before.

This served heavily to support our claim that choosing an achitecture and training
all the convolutional filters freely wasn’t enough to obtain models which had specific
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Figure 3.9: PerceptNet. Extracted from [Hepburn et al., 2020].

Figure 3.10: Receptive fields of the last convolutional layer of PerceptNet trained for
image quality assessment. This layer was supposed to perform an orientation sensitive
transform, but most of its learnt filters don’t show those properties. Extracted from
[Vila-Tomás et al., 2022a, Vila-Tomás et al., 2022b].
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properties, but one could have more success if the desired functional transformations could
be imposed into the model and optimized together through gradient descent. This may
indicate that the set of filters that give the best performance for a given task are not the
most human-like due to, for example, overfitting or particular biases of the data. What is
expected nonetheless is that a fully biologically-based model that reproduces all the human
psychophysics experiment should obtain a competitive performance in human perception
tasks.

In this work we will take PerceptNet as a base model and impose certain parametric
functions at specific layers in an effort to ensure that our model learns the desired set of
transformations in order to reproduce properly human behavior. In Section 4.4.3 we dive
deeper into the modifications made to the base model.

3.3 Bio-inspired functional forms

It is said that the ultimate test of whether the visual system is understood is predicting its
response to arbitrary stimuli [Carandini et al., 2005]. In the early decades of visual neuro-
science, the accepted standard model was the linear receptive field [Hubel and Wiesel, 1962].
This was based on a set of weights that were applied to an image in order to obtain an
output through a weighted sum (what we called convolution in Section 3.1.2). A weighted
sum is a simple approach that made the framework mathematically tractable and so it
could benefit from the advances in image processing and linear system analysis. Within this
approach, the output’s magnitude of a visual system model would be higher as the input is
more similar to its receptive field, while it would be very small if the inputs don’t resemble
it at all. Getting into more detail, the retina and LGN are known to have center-surround
receptive fields whose objective is to tune for the spatial frequency of a drifting grating

[Enroth-Cugell and Robson, 1966], while the filters in V1 are known to perform orientation
tuning and present an elongation along one spatial axis [Hubel and Wiesel, 1962]. Both of
these receptive fields can be modeled with a difference of Gaussians and a Gabor function
respectively.

In Section 3.2.3, PerceptNet’s original architecture was set in a way that resembled
the retina-LGN-V1 path but all the weights of the linear transformations were left free.
Instead, we could use the available biological information to constrain the weights so that
they match what we know about the visual system. More about this in Section 4.4.3.
Besides the benefits of having a linear approximation, there are nonlinear phenomena that

can’t be explained by a linear receptive field alone [Carandini et al., 2005]. This motivated
the addition of a second stage to these models that transforms the receptive fields’ outputs
into firing rate responses, taking the form of a nonlinearity that depends only on its
instantaneous input. Two notorious forms of nonlinearity are the rectification and the
saturation, which conform to the three most common activation functions in artificial neural
networks as we will see in Section 3.1.3. The combination of a linear filter and a static

nonlinearity creates the linear-nonlinear model of spiking neurons [Carandini et al., 2005],
which serves as inspiration for the computations in artificial neural networks and was as
well the building block on which the models in Section 3.2.3 were built upon.

The following sections will go briefly through some works that have implemented some
of these biological concepts into artificial neural networks.
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3.3.1 Center Surround

The appearance of center-surround-like filters in computer vision dates before the bloom
of deep learning. Edge detection is a crucial task when analyzing images with com-
puter vision and the usual approach to building edge detection filters is using Differ-
ences of Gaussians (DoG) which incidentally corresponds to using a center-surround cell
[Assirati et al., 2014]. It’s worth remembering that center-surround cells were also used
in [Laparra et al., 2016, Martinez-Garcia et al., 2018], as we already saw in Section 3.2.3.
Following a bio-inspired approach, [Hasani et al., 2019] designed new connections between

units and their surroundings in CNNs to achieve more biologically plausible networks.
Introducing center-surround operations appears to improve the performance of the models
in object recognition tasks at the same time improves the training speed of the model.
Note that their implementation is fully hard-coded and doesn’t add more parameters
to the model. Building on this work, [Babaiee et al., 2021] extends the receptive field of

convolutional neural networks with two residual components resembling the on-center and
off-center pathways in the visual system. Their main addition is that they compute the
hyperparameters of the DoG analytically from the size of the receptive fields. What they
find is that introducing edge detection biases in their models improves their performance
and makes them more robust to changes in lighting conditions.

3.3.2 Gabor

As happened with center-surround cells, the use of Gabor filters as feature and edge
detectors have been widely spread in the computer vision community for a long time
[Mehrotra et al., 1992]. It was even shown in [Bergstra et al., 2011] that one could out-

perform standard sparse coding by employing a dictionary with only a single element: a
Gabor-like filter. When working with images, traditional sparse coding leads to overcom-
plete bases of localized edge detectors at many locations, scales, and orientations that
require a lot of data to be trained but, by incorporating the Gabor prior into the problem,
the sparse coding dictionaries can be learned from much fewer data because they have
only one element.

Within the deep learning community, there have been several works [Calderón et al., 2003,
Kwolek, 2005, Luan et al., 2018] that try to introduce Gabor filters into convolutional
neural networks, but all of them resort to using them as fixed feature extractors in the
first layers to reduce the number of parameters and make the networks more robust.
[Alekseev and Bobe, 2019] is the first work that proposes including the Gabor parameters
in the optimization process and optimizing its parameters jointly with the rest of the
network with gradient descent. Based on previous approaches, they only use Gabors
in the first layer of their network, leaving the rest of the layers free as in conventional
convolutional neural networks. Additionally, [Pérez et al., 2020] explores the effect on

robustness against adversarial attacks when replacing the first layers with Gabor layers,
showing that they obtain a consistent boost in robustness over regular models. They go
a step further and introduce a regularizer to be used during training to further enhance

network robustness. A main difference with respect to [Alekseev and Bobe, 2019] is that
they pre-select a set of rotations ✓j and avoid training this parameter. When all the Gabor
filters are built, they are convolved with every input channel, producing Cin ⇥ nG feature
maps, where Cin corresponds to the number of channels of the input and nG corresponds to
the number of Gabor filters built. These feature maps are activated with a ReLU function
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and combined via a 1x1 convolution to obtain a pre-selected amount of feature maps, Cout,
which one could argue aren’t strictly Gabor features but a linear combination of them.

3.3.3 Divisive Normalization

Divisive Normalization (in image quality), first proposed in [Teo and Heeger, 1994], is a
canonical nonlinear saturating operation that has been widely studied as a biologically
plausible function of what happens in the visual path after the linear stage and up to the
V1 cortex [Carandini et al., 2005, Martinez-Garcia et al., 2018]. Its main feature is that
it can act as a contrast normalization between features [Martinez-Garcia et al., 2018], and
is different from the usual activation functions seen in artificial neural networks because it
computes the ratio of an individual neuron’s response with respect to the summed activity

of other neurons in its neighborhood [Veerabadran et al., 2021].
[Laparra et al., 2010] takes the Divisive Normalization function and employs it as a

Perceptual Metric optimized for a restricted set of complex distortions with simple stimuli

in the LIVE database, showing that it can reproduce low-level psychophysics. As we
have seen before, deep learning researchers also tried to introduce Divisive Normaliza-
tion into artificial neural networks and, surprisingly, one of the first works to do it was
[Krizhevsky et al., 2012], where they experiment with a form of divisive normalization that
took into account the values in nearby channels when normalizing pixels in i a certain chan-
nel c and obtained an increase in generalization. Later, in [Simonyan and Zisserman, 2015]
they decided not to use it in their final model (VGG) in favor of a ReLU nonlinearity
because Divisive Normalization increased the computation time and didn’t improve their
results. It’s worth noting that they only tested it in a small version of the model, so
it is unknown if it would have improved the performance of the final model or not. In
contrast with this, [Veerabadran et al., 2021] combines divisive normalization with linear

lateral interactions, showing a contrast invariance when applied in a self-supervised task
that wasn’t seen in a VGG16 pretrained on ImageNet [Miller et al., 2022]. A difference
with respect to [Krizhevsky et al., 2012] is that they don’t consider different channels in
the divisive normalization calculation. Improving on the neighborhood consideration,
[Cirincione et al., 2023] implements the neighborhood as a 2D Gaussian whose parameters
are optimized with gradient descent as in a traditional deep learning approach. Their
model shows not only a better accuracy but an improved robustness to common image

corruptions, particularly contrast and fog. The corruption to fog was also studied by
[Hernández-Cámara et al., 2022], where they show that by introducing a Divisive Normal-
ization after every convolutional block in a U-Net trained for semantic segmentation they
improve the performance and also make the model much more robust to fog. They show
this by training the model with images without fog and testing on three different fog levels,
where it can be seen that the model with Divisive Normalization can recover some of the
features hidden by the fog (Figure 3.11) and obtains a notably better performance on
out-of-the-training distribution data.
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Figure 3.11: Effect of the second Divisive Normalization in a U-Net trained for semantic
segmentation. It can be seen that, when corrupting the images with fog, the Divisive
Normalization is able to recover some of the features that were present in the original
image but were lost due to the fog. Extracted from [Hernández-Cámara et al., 2022].
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Chapter 4

Materials and methods

In this Chapter, we will begin by mathematically introducing the three functional forms
needed to reproduce the biologically-inspired receptive fields we have previously seen in
Section 3.3 and are consistent with optimal coding results. This will give us the context
for objective 1. Then, we will go through a set of simple toy problems that we can use
to check our implementations and how these parametric forms behave when optimizing
with gradient descent within a neural network, which constitutes objective 2. Finally, we
will touch on the setup of the two main problems we want to solve: image classification
and image quality, putting special emphasis on the image quality task. This consititutes
objectives 3a and 3b, and their results will be discussed in Chapter 5.

4.1 Functional forms

After reviewing the field’s landscape in Chapter 3 we know that we will need to implement
an optimizable Gaussian in order to be able to build the center-surround cell as a difference
of Gaussians and to consider (in a biologically plausible way) the neighborhoods in Divisive
Normalization. Apart from this, we will also implement an optimizable Gabor to mimic
the V1 receptive fields and the independent components of natural images. These functions
can be defined for RN , but we will focus only on R2 because we will be working only with
images.

Following the implementation of the most common deep learning frameworks, a
convolutional layer that takes as input an image with Cin channels (i.e. Cin = 3 for RGB
images) and outputs a single feature map, Cout = 1 it’s said to have one filter F , but
this filter is not a single bidimensional matrix. It is actually a tensor composed of Cin

2D matrices, and its output is calculated as Output =
P

Cin

i
Inputi ⇤ Fi. This is very

important because, when building our functional layers, if we want to obtain Cout feature
maps, we have to generate Cin ⇥ Cout functional kernels instead of only Cout. It is true
that another option would be generating only Cout filters and repeating them to match
the dimensionality of the input, which could induce some kind of regularization into the
model but would reduce the generalization capabilities of these functions. We leave that
for future exploration. A visual representation of this process is shown in Figure 4.1.

Another interesting fact relating these functional layers with conventional free-convolutions
is that in free-convolutions, the weights can be of different magnitude for each correspond-
ing input channel but when working with these parametric functions this is not so clear.



Chapter 4 Page 40

Figure 4.1: Sample image from CIFAR10 separated by its three RGB channels and three
Gabor filters generated to be convolved with them. Showcases that we need to generate as
many filters as input channels to generate a single output.

Two different filters generated by a parametric function will have different shapes but their
magnitude won’t be as different. In order to allow our model to weigh channels differently,
we will add a parameter A that will multiply each generated filter: F̂i = AiFi , where Fi

could be normalized (or not) in a particular way.

4.1.1 Gaussian

Gaussian functions have been broadly studied and are of a lot of interest in statistics and
probability because a lot of phenomena can be characterized with Gaussian probability
functions. As we’re going to be working only with images, we will show the expression for
the two-dimensional case in Eq. 4.1, where x0 and y0 represent the center point of the
Gaussian (the location of its peak), and � represents its width1. A visual representation
of the function is shown in Figure 4.2.

G(x, y) = Be�
(x�x0)

2+(y�y0)
2

2�2 (4.1)

When considering a Gaussian (or Normal) probability distribution, the coefficient B
can be set to B = 1

2⇡�2 so that the integral of the PDF is equal to 1. Its derivation, akin
to normalizing the Gaussian so that it has a volume of V = 1, is shown in 4.2:

V =

Z 1

�1

Z 1

�1
G(x, y)dxdy = 2⇡B�2 = 1 ! B =

1

2⇡�2
(4.2)

This normalization has more implications than only normalizing the probability since it
will "pull down" wider Gaussians and "pull up" sharper ones, meaning that we could end
up with very high or very low values in our filters if their width � becomes too low or too

1We’re considering only a symmetric Gaussian, but one could set different �i for each dimension so
that it could take an ellipse form by considering a covariance matrix.
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Figure 4.2: Gaussian function centered around (0, 0) with � = 3.5.

Figure 4.3: Comparison of 1D Gaussians when normalizing its volume (left), when not
normalizing its volume (center), and when normalizing its energy. It’s clear that normalizing
the volume changes drastically the height of the Gaussian for different values of �, while
normalizing the energy has a similar effect but is less drastic. Normalizing the energy
results in the lowest magnitude, which could be more aligned with the magnitude of
common free-convolutional kernels.

high respectively. If we chose not to normalize the probability, the peak of the Gaussian
would always have a value of 1 and only its width would be changed, while another option
would be normalizing the Gaussian so that it has unit norm, which could be understood
as normalizing its energy and would have similar effects as normalizing the volume but
being less extreme. The three different cases are shown in Figure 4.3. The implications of
this choice with respect to the training of the model will be analyzed in Section 4.2.1.

4.1.2 Center Surround (Difference of Gaussians)

The Center Surround receptive field may be defined by the Laplacian of a Gaussian (LoG),
but it is often approximated by a Difference of Gaussians (DoG) since it reduces the

computational costs for two or more dimmensions [Assirati et al., 2014]. Knowing this, it
is trivial to define after having defined a single Gaussian, by taking the difference between
two Gaussians of different widths and normalized probability:
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Figure 4.4: Center surround with a value of k = 1.05.

Figure 4.5: Center surround with a value of k = 0.95.

CS(x, y) = B1e
� (x�x0)

2+(y�y0)
2

2�2
1 � B2e

� (x�x0)
2+(y�y0)

2

2�2
2

It can be handy to choose �1 and �2 so that �2 = k�1 while k is a number close to 1
[Evans et al., 2022]. When k < 1 we will have a downward center-surround (which could
be interpreted as modelling an "off-centre" cell) and when k > 1, we will have an upward
center-surround (which could be interpreted as modelling an "on" cell). We will discuss
later the implications of this parametrization versus having two independent �i but, from
an optimization point of view, the parametrized choice is easier to initialize in a meaningful
way and can be better behaved when optimizing. Both cases can be seen in Figures 4.4
and 4.5.

Mention that you don’t get the expected form if you don’t normalize their individual
probabilities before calculating the difference.
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Figure 4.6: Gabor filter with f = 20 and (�x, �y) = (3.5, 2.5).

4.1.3 Gabor

Gabor functions [Gabor, 1946] emerge from the necessity of having sinusoids located in
space and while they were first defined in 1D, they were quickly extended to 2D in order
to process images and extract features from them [Granlund, 1978]. They are built by
composing a sinusoid with a Gaussian envelope like in Eq. 4.3, where ~x0 corresponds to
the domain ~x rotated by an angle ✓ (~x0 = R(✓)~x), ⌃ represents the covariance matrix,
↵ indicates the angle of rotation of the Gaussian envelope and f the frequency of the
sinusoid. Note that we will not consider the phase of the sinusoid because we will focus
on V1 simple cells [Carandini et al., 2005], but incorporating the phase and building V1
complex cells would be a very promising extension in the future.

G(~x0) = Be�
~x0TR(↵)T⌃�1

R(↵)~x0
cos
⇣
2⇡f ~x0

⌘
(4.3)

These kinds of functions are particularly useful because they have known frequency
and orientation, allowing for interpretability of the models in a way that is not possible
with usual convolutional neural networks, where the frequency and orientations of the
learnt filters can be very hard to estimate. Its properties even allow building models that
process differently different frequencies or orientations resembling a wavelet-like approach
[Graps, 1995], something that isn’t possible with non-Gabor filters either. An example of
a Gabor functions with different parameters are depicted in Figures 4.6, 4.7, 4.8. It can
be seen that the peak of the function is always at (x0, y0). This is due to the fact that we
are using a cosine without phase. Expanding our work to allow changes in phase would
generate slightly different filters that would make for a more complete base.

4.1.4 Optimizing for log�

Something to keep in mind is that, when considering conventional convolutional filters,
the values of the weights are not bounded, but that is not the case for all the parameters
of the parametric functions we have shown before. Specifically, the parameter � is positive
definite because we can’t have a negative width (it wouldn’t make sense). In that regard,
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Figure 4.7: Gabor filter with f = 50 and (�x, �y) = (3.5, 3.5).

Figure 4.8: Gabor filter with f = 20, (�x, �y) = (3.5, 3.5) and ✓ = 45�.
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Figure 4.9: On the left: logarithmic function. It can be seen that its range is defined
x 2 R. On the right: exponential function. Note that its domain is defined as x 2 R but
its range is defined as x 2 (0,1), recovering exactly the bounds we were looking for in
the case of �.

we could just clip it to a minimum value, but it doesn’t perform well during training
due to unstabilities when its value approaches 0, mainly due to the coefficient B = 1

2⇡�2 ,
and because the Gaussian (or the envelope in the Gabor filters) became of zero width,
NaN values arised during training. A useful approach to solve this issue is to optimize
for log� instead, a trick that is also used when implementing Variational AutoEncoders
[Kingma and Welling, 2013]. The usefulness of this transformation can be seen when
considering that the logarithm transforms the optimization range from � 2 [0,1) into
log� 2 (�1,1), thus turning it into an unbounded optimization problem. It’s also
worth noting that this transformation also ensures that we don’t get � = 0, because when
recovering the value of � = elog�, the exponential function is positive definite with an
asymptote in 0, as shown in Figure 4.9.

4.1.5 Divisive Normalization

Divise Normalization is considered to be one of the neural canonical computations happen-
ing in the visual system. Consist of computing a ratio between the responses of an individual

neuron and the summed activity of a pool of neurons [Carandini and Heeger, 2012], and
can be expressed mathematically by Eq. 4.4, where ↵ and ✏ are hyperparameters fixed at
↵ = 2 and ✏ = 1/2, and � and H are a bias and convolutional kernel respectively:

ypc =
xpc�

�c +Hp�p0cc0x↵

p0c0

�✏ (4.4)

Although it may seem daunting, this computation can be implemented very easily with
a usual convolution of kernel H and bias � by calculating the convolution over the input
x, which corresponds to performing a weighted sum of the neighborhood for each pixel in
the input. The exponents ↵ and ✏ are usually fixed because they are not well-behaved
when optimizing with gradient descent, but the bias and the kernel can be left free or
constrained to one of the functional forms that we have already seen. A common approach
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(a) Bias

(b) Kernel

Figure 4.10: Pixels of a sample image before and after applying Divisive Normalization (x
and y axes respectively). When changing the value of the Bias (�) the kernel’s magnitude
is set to H = 1, and the value of the Bias is set to � = 1 when changing the magnitude of
the kernel H.

[Watson and Solomon, 1997] and what we will do is constraining it to a Gaussian kernel,
enforcing that closer pixels will affect more than those afar, while the different channels
interact densely2 as stated in Eq. 4.4.

An interesting property of this function is that we can control "how" non-linear it is
with the magnitude of � and H (↵ and ✏ also affect this, but we will not explore them
because they are going to be fixed). Figure 4.10 presents the results of applying the
Divisive Normalization to a natural image (the same frog image from CIFAR10 as in
Figure 4.1) with different values of � (a) and H (b). Note that H was set as a (3 ⇥ 3)
kernel of 1s multiplied by a factor h: Hij = h. In this Figure we can see that the higher
the magnitude of � or H, the bigger the denominator will be, and the lower the output
will be.

One problem with the formulation in Eq. 4.4 is that, when the denominator gets big,
the point distribution gets squeezed to lower values (see rightmost scatter plots on Figure
4.10). In order to tackle this, [Martinez-Garcia et al., 2019] introduces a multiplicative
constant leading to Eq. 4.5:

ypc =
�
�c +Hp�p0cc0x

⇤
p0c0

↵
� xpc�

�c +Hp�p0cc0x↵

p0c0

�✏ (4.5)

This modification ensures that ypc = x⇤
pc

for a given x⇤
pc

, alleviating the squeeze effect
and improving the performance. The inclusion of this modification is not studied in this
work but could be of great interest in subsequent projects.

2This means that every channel can interact with every other channel without any restrictions or
penalties.
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Figure 4.11: The solution for a reconstruction task when applying convolutions is a 2D
Delta function. It can be approximated by a Gaussian where � ! 0.

4.2 Toy examples

The approach we’re taking is slightly deviating from the usual deep learning approach
(where every pixel of the convolution kernels is trained separately) which has been broadly
studied and optimized to work almost flawlessly out of the box, so it is expected that we
have to consider additional factors when dealing with functional layers. To be able to
assess these deviations and check that our implementations are as bug-free as possible, we
have come up with a set of toy problems that have known solutions so that we can make
sure they are operating as desired. To this effect, we have designed two toy tasks: (a)
reconstruction using a single Gaussian and (b) rotation prediction using four Gabor filters.

4.2.1 Reconstruction

The problem

The simplest problem that can be solved with a Gaussian and has a known solution is the
reconstruction task. Given an input vector ~x 2 Rn,n representing an image with only one
channel, a reconstruction problem is one such that a function f applied to ~x minimizes
the loss L = ||f(~x)� ~x||2.

Known solution

In general, the solution to this problem is the identity function, f(~x) = ~x, which corresponds
to a 2D Delta function (Figure 4.11) when constrained so that f has to apply a convolution
of a kernel ~k 2 Rs,s over ~x.

In the 2D case, its expression can be laid out as in Eq. 4.6.

�x0,y0(x, y) =

(
0, 8(x, y) 6= (x0, y0)

1, (x, y) = (x0, y0)
(4.6)
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Figure 4.12: Sample inputs used in the reconstruction task. Each pixel is sampled from a
uniform distribution U(0, 1).

We can show this by writing out the discrete convolution between ~x and �x0,y0 in Eq.
4.7 and taking into account that �x0,y0 is 0 everywhere but on (i = x0, j = y0):

(~x ⇤ �x0,y0)[n,m] =
1X

i=�1

1X

j=�1

~x[n,m]�x0,y0 [n� i,m� j] = ~x[n,m] (4.7)

To show that we can obtain this solution when imposing a Gaussian form, we can see
that a Delta function is no more than a Gaussian function in the limit where its width
goes to 0 (Eq. 4.8), so this solution is available in our constrained solution space.

�(x) = lim
�!0

1

�
p
2⇡

e�
(x�x0)

2

2�2 (4.8)

Keep in mind that the coefficient B tends to infinity, B ! 1, when � ! 0 so choosing
an appropriate normalization may prove to be crucial to ensure a good optimization.

Obtaining the solution

Having set everything up, we only need a dataset to reconstruct. Actually, the expression
in Eq. 4.7 doesn’t depend on the particular ~x chosen, so we can use uniformly distributed
noise as inputs to our model. Some examples of the input data are shown in Figure 4.12.
As simple as this task may seem, its results can provide us with some interesting insights
into the training dynamics of the layers we are introducing in this work.

The first interesting point we came across is that, when training for reconstruction with
a single Gaussian layer (normalizing its volume), our model can quickly find a shortcut
to minimize the loss: making the coefficient A ! 0. This can be seen in Figure 4.13.
Considering that the optimal solution is � ! 0 but this implies B ! 1, it is to be
expected that A ! 0 in order to compensate it. The problem in this case is that � is not
getting smaller but bigger, so we can assume that the model is finding a local minima (a
shortcut) instead of behaving as intended.

Fixing the parameter A = 1 should be an easy way of blocking this shortcut but,
funnily enough, it came up with a different one: making the Gaussian as wide as possible.
Recalling Eq. 4.2, we see that, when normalizing the volume of our Gaussian, making
� ! 1 would make G(x, y) ! 0 8(x, y) and thus achieving the same results as making
A ! 0. Figure 4.14 shows the training dynamics described above. Note that if we fix
A = 1, the optimal solution is outside the solution space because the optimal solution
when normalizing the volume should be � = 0 and A = 2⇡�2.
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Figure 4.13: Evolution of log (�) and A for a Gaussian reconstructing noise when its
volume is normalized to V = 1. The left axis corresponds to the value of the parameter
and the right axis corresponds to its gradient.

Figure 4.14: Evolution of log (�) and A for a Gaussian reconstructing noise when A = 1 is
fixed and its volume is normalized to V = 1. The left axis corresponds to the value of the
parameter and the right axis corresponds to its gradient.
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Figure 4.15: Evolution of log (�) and A for a Gaussian reconstructing noise when no
normalization is applied to the Gaussian filter. The left axis corresponds to the value of
the parameter and the right axis corresponds to its gradient.

This result leads to experimenting with not normalizing the Gaussian to unit volume.
This should help disentangle its relative height and its width, so the training should be
better behaved. Doing so results in Figure 4.15, where a narrowing of the Gaussian is
taking place (as we expected to happen since the beginning), but we also see a lowering in
the factor A, indicating that a shortcut could be still being used. More interestingly, we
see that at the end of the training, A has started to get bigger again.

Following our previous result, we repeated the experiment with a fixed A = 1, leading
to a steady narrowing of the Gaussian (we don’t see a plateau like we saw when A was
free) and obtaining an even lower value of �, as can be seen in Figure 4.16. We finally got
the result we were looking for!

To wrap up this experiment, we realized that the gradient values might be a little too
high compared with the usual values that are found in usual convolutional neural networks.
This is related to the range of the activations of our parametric layers which are, indeed,
orders of magnitude higher than those found in usual 2D convolutional layers. As it’s
known [LeCun et al., 2012], deep neural networks train best when the inputs and outputs
of each layer are between the range [�1, 1], so it would be very beneficial to control our
layers in a way that could make their activations closer to that range. A first approach to
this subject was normalizing the kernels so that their energy equals one, Ek = ||k||2 = 1,
where k represents a convolution kernel. With this final change, we repeat the previous
experiments (Figures 4.17 and 4.18) and find that normalizing the energy of the kernels
still leads to the desired results (even lower value of �) but with more controlled gradients,
which is exactly what we were looking for when applying this change. An evolution of
the Gaussian filter during training is shown in Figure 4.19. See that, in opposition to the
volume normalization, normalizing the energy of the Gaussian doesn’t impose that A ! 0
when � ! 0, allowing us to weight each filter properly.
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Figure 4.16: Evolution of log (�) and A for a Gaussian reconstructing noise when A = 1 is
fixed and no normalization is applied to the Gaussian filter. The left axis corresponds to
the value of the parameter and the right axis corresponds to its gradient.

Figure 4.17: Evolution of log (�) and A for a Gaussian reconstructing noise when its energy
is normalized to E = 1. The left axis corresponds to the value of the parameter and the
right axis corresponds to its gradient.
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Figure 4.18: Evolution of log (�) and A for a Gaussian reconstructing noise when A = 1 is
fixed and its energy is normalized to E = 1. The left axis corresponds to the value of the
parameter and the right axis corresponds to its gradient.

Figure 4.19: Evolution of a Gaussian filter whose parameter � is optimized to perform
reconstruction. We see the expected evolution of the Gaussian turning into a Delta. The
values of � are shown in degrees for a Gaussian filter comprising 1 deg.

Consequences

In the beginning, this experiment gave the impression that it was a very easy task that
couldn’t have more uses than testing our implementation but, in the end, it provided us
with a lot of insight and information about the training behavior of these parametric layers
that we can apply when moving forward into more complicated models. As a takeaway,
we were able to solve this task obtaining good results and found that using a proper
normalization of the filters is crucial. As an extra point, using a separate factor A to
weight the filters may be convenient and is better behaved when normalizing the filters to
have unit energy.



Page 53 Chapter 4

Figure 4.20: Possible inputs and their corresponding orientations for the rotation prediction
toy problem.

4.2.2 Rotation prediction

The problem

One of the many properties of Gabor filters is that they are tuned to a well-defined and
known orientation. By making use of this, we can set up a very simple classification task
where we will try to predict the rotation of a given 2D sinusoid using only our defined
Gabors. To make it simpler we will work only with 4 possible rotations: 0, 45, 90, and
135 degrees respectively. Figure 4.20 presents the four different inputs with corresponding
labels.

To this effect, our model will consist only of a Gabor layer with 4 outputs, meaning
that we will be optimizing 4 different Gabors to solve this task, as shown in Figure 4.21.
More specifically, we will present two cases: (a) optimizing all the parameters in Eq. 4.3
and (b) optimizing only the parameter ✓. By taking advantage of their known orientation,
we can get the final prediction by taking the spatial average of each output and choosing
the orientation that corresponds to the higher one. This would be equivalent to choosing
the highest mean activation, which makes a lot of sense considering that a Gabor filter
will produce greater activations if it is more aligned with the input sinusoid, thus giving
us a good estimate of the input’s orientation. It could be interesting to experiment with
the L2 norm instead of the mean as a summarizing function.

Known solution

Having said this, we expect that each of the Gabors aligns itself with a different orientation,
which would solve the problem with a 100% accuracy. The orientation of all the Gabors
will be initialized at 0 degrees to assess their capability to choose different orientations in
order to minimize the loss. Because the labels are encoded as (0, 1, 2, 3), the maximum
activation has to be on the filter of the same index to minimize the loss so, even though
the filters are initialized at the same angle, there is only one configuration in which the
loss is minimized, i.e. the first filter must be aligned with 0�, the second must be aligned
with 45� and so on.

An interesting note would be that usual deep learning approaches would flatten or
average the Gabor’s outputs and put them through a dense layer in order to predict the
input’s class, but this would make it harder to disentangle the contribution of the Gabors
and the dense layer. By following our approach we know that everything is performed
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Figure 4.21: Schematic representation of the models used in Section 4.2.2. It consists of a
first layer with 4 Gabor filters whose outputs are summarized by taking their spatial mean.
The final prediction is obtained by taking the index of the maximum summary value.

only by the Gabor filters.

Obtaining the solution

Taking into consideration our findings from Section 4.2.1, we normalize the energy of the
Gabor filters instead of their volume. It’s interesting to note that this task, Rotation
prediction, doesn’t have such an easy shortcut as we found before because the only way
of solving this problem is to actually orient the trainable Gabors according to the four
different classes available: 0, 45, 90 and 135 degrees. As said before, we trained two
variants of our model: one (a) that can optimize all the parameters of the filters and one
(b) that can only modify its orientation ✓, whose results are presented in Figure 4.22.

When looking only into the values of the orientations, we see differences in the
convergence speed and its stability, which is quicker in the more constrained scenario.
Notice that, this same behavior happened in the reconstruction task, where having more
trainable parameters besides � led to some plateaus during training (Figures 4.15 and
4.17). It comes to our attention that in scenario (a) the values of ✓ don’t exactly align
with the expected values. This can be attributed to the fact that the "effective rotation"
of the filter depends on both ✓ and ↵, so the model is able to align the filters using both
angles instead of only ✓. This leads to interesting differences in the final trained filters,
shown in Figures 4.23 and 4.24.

Here we see that when all the parameters are free to change, the filters don’t only
align with the desired orientations but change their widths and frequencies, resulting in
a considerably lower loss value (L = 6.5 · 10�5 when optimizing all the parameters vs
L = 1.25 when optimizing only ✓). At first, this difference can be surprising but can
be given an explanation taking into account the loss function used to train this model.
The usual approach when working on a classification problem within the deep learning
framework is to minimize the cross-entropy function. This function is not only concerned
about the correct class having the highest probability, it also enforces that the other classes
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Figure 4.22: Evolution of the four different ✓ when leaving all the Gabor parameters free
(left) and when constrained so that only ✓ is free to change (right).

Figure 4.23: Final Gabor filters when all of its parameters are free to change during
training.

Figure 4.24: Final Gabor filters when only its orientation is free to change during training.



Chapter 4 Page 56

have as a low probability as possible. This might be troublesome within the task at hand
because the classes we want to predict are not perpendicular between all of them, and
thus when a filter is aligned with 0 deg, the filter aligned with 45 or 135 deg will still have
a relatively high activation. This can be mitigated when we allow the filters to change
also their widths and frequencies so that this loss can be minimized completely.

Consequences

All in all, we were able to obtain the expected results in both toy problems and extracted
a lot of useful information from them, while also identifying that these kinds of parametric
filters may have some quirky behaviors during training because of the entanglement
between their variables and the different shortcuts that could solve a given task. Some
interesting findings of this experiment are that, sometimes, restricting the parameters
that are allowed to change might be beneficial to enforce a specific behavior but utilizing
more parameters may lead to a lower loss value. Also, normalizing the filters in different
ways may push the solution outside of the available solution space, as happened when
normalizing the Gaussian’s volume, while normalizing the filters’ energy provided the best
results. As a side note, we found that cross-entropy breaks non-orthogonal problems in
unusual ways due to its contrastive nature.

4.3 Classification

Problem setup

Moving away from toy problems, we would be interested in seeing if the use of parametric
layers would improve the results obtained in a real classification problem. It is known
[Krizhevsky et al., 2012] that the earlier layers of deep convolutional networks tend to learn
Gabor-like features, so it would make sense to replace these early layers with parametric
Gabor layers in order to reduce the number of parameters of our model and to speed up
the training process in a similar fashion as in [Alekseev and Bobe, 2019]. A particular
benefit of parametric filters is that the features they learn may be more general than those
learnt by free-convolutions and as so, it may be possible to train a parametric model on a
small dataset and then obtain good results on a different/bigger dataset resulting in a lot
less training time. The idea supporting this is that free-convolutions might overfit more
easily the data and thus would perform worse on different data.

With this objective in mind, we will tackle the well-known CIFAR10 classification
problem [Krizhevsky, 2009]: 32x32 images in RGB representing 10 different classes. The
approach will be to establish a baseline using a usual convolutional neural network and
then try to improve upon it with a network based on parametric layers, taking into
special consideration the difference in the number of trainable parameters. Once our
models are trained on this small dataset, we will perform transfer learning to ImageNette
[Howard, 2019], a subset of ImageNet, to see how they behave on 256x256 images which
are indeed harder to classify. Keep in mind that this requires re-training the final dense
layer because the classes are different, but it should favor the model that is able to extract
the most useful and general features. These two stages would give us some insight into the
advantage of using parametric filters for obtaining better results overall and its implications
with regard to transfer learning. Some data samples from both datasets are shown in
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(a) CIFAR10

(b) ImageNette

Figure 4.25: First four images of (a) CIFAR10 and (b) ImageNette. The most notable
difference is that CIFAR10 images are 32x32 while ImageNette’s are 256x256 while also
being harder to classify.

Figure 4.25. It’s clear that ImageNette images have a higher resolution than the ones in
CIFAR10.

Within this task, we can compare parametric and non-parametric models in two different
ways: (1) choosing the same architecture for both and comparing their performances
with respect to the number of trainable parameters of each, and (2) adjusting different
architectures but keeping the number of trainable parameters as close as possible by
increasing the number of filters in the parametric model. (1) Has interest because it
represents a 1-to-1 mapping on architectures but may be biased towards the non-parametric
model because it doesn’t have any restriction to its weights and could obtain better results.
On the other hand, (2) is interesting because it compares models with presumably the
same expressive capabilities, but may be biased towards the parametric model because
increasing its number of filters will increase the width of the final dense layer, making it
harder to attribute the improvement of performance to the parametric layer.

Experimental setup

The models used for this task (1) will be composed of a convolutional layer (either a
parametric Gabor or a free-convolution) with 512 (11⇥11) filters, a global average pooling,
and a dense layer at the end, making it the most simple model possible. In case (2) we
will train a non-parametric model with 64 (11⇥ 11) filters as well. It can be seen in Figure
4.26. The models are trained with a learning rate of 3 · 10�3 and a batch size of 128 for
500 epochs on CIFAR10 and a batch size of 64 for 500 epochs on ImageNette.
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Figure 4.26: Representation of the models used to solve the classification task. For (1), we
will be training a parametric and a non-parametric model with 512 filters, while for (2)
we will train a non-parametric model with 64 filters. All the features extracted by the
first parametric or non-parametric layer are summarized by taking the spatial mean and
fed into a dense layer that outputs the probability of an image pertaining to one of the
ten classes available in the dataset. When transferring the models from CIFAR10 into
ImageNette, we will leave the first layers’ weights fixed and modify the Dense layer to
adapt to the new classes.

Keep in mind that the Gabor layer to be used has 7 ⇥ 512 ⇥ 3 + 512 = 10752
parameters, while the free-convolutions have 11 ⇥ 11 ⇥ 3 ⇥ 512 + 512 = 186.368 and
11⇥ 11⇥ 3⇥ 64 + 64 = 23.296 for the 512 and 64 filters cases respectively.

4.4 Image Quality Assessment

Finally, we are going to face the main problem of this work: Image Quality Assessment
(IQA). The explanation as to why this is our main problem is dual. First of all, the
inspiration for this project came from a network built to serve as an IQA metric, so our
final objective should be to compare with their result. But secondly, the three functional
forms chosen are heavily inspired by visual science, and implementing them in a task that
tries to resemble human behavior as much as possible seems like a very fitting task for
these tools.

When working on a problem of regression or classification, our objective is usually to
build a model that can take something as an input and then produces an output that can
be, for example, its class, the location of an object in an image, a segmentation mask,
etc. In an IQA task, we will deviate slightly from this approach and aim to build a model
that takes an image as input and transforms it into a different space where the concept
of distance is more aligned with the human concept of distance or, in other words, to a
different space where the concept of distance is more correlated with human perception.
We want to build a model that acts as a perceptual metric.

To this effect, IQA datasets are built like this: a not too big set of high quality images
are selected as base or reference images. Then, a set of known transformations (brightness,
noise, etc.) are applied to them in order to obtain different distortions of each image.
Finally, a big group of humans is asked about how different the references and distorted
images look to them, and this is taken as the Mean Opinion Score or MOS.
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Whereas in other machine learning tasks a sample of data would consist of a 2-tuple
(Features, Desired Output), in an IQA task we will consider a sample of data a 3-tuple
(Reference image, Distorted image, MOS). With this in mind, our model f will be trained
in order to maximize the correlation between the distances calculated on the transformed
domain and the Mean Opinion Score. The corresponding loss function is laid out in Eq.
4.9, where xo and xd correspond to the reference and the distorted image respectively and
⇢ represents the Pearson correlation:

L = ⇢ (||f(xo)� f(xd)||2 ,MOS) (4.9)

4.4.1 Perceptual distance

Most humaness tests used to evaluate artificial models rely on measuring differences
between images (i.e. psychophysical tests [Graham, 1989, Regan, 1991] or correlation with
human perception on image quality tasks). This perceptual decisions will be made on the

basis of the information available in the response space and not the input space. The idea is
to use a model to transform the images from the original domain into a response space and
calculate the Euclidean distance between them in this transformed space. This distance
is known by the name of Perceptual Distance, dp, and can be written as in Eq. 4.10,
where xn represents the transformed version of the image x0. Ideally, a good perceptual

distance mimics the human rating of similarity between two stimuli with high accuracy

[Hepburn et al., 2022].
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It’s very important to keep in mind that the Euclidean distance calculated on the trans-
formed domain can be very different from that calculated on the original domain. It can be
seen that it is, in fact, a non-Euclidean distance (in the original space) where the Jacobian of
the model, rxS, acts as a non-Euclidean metric in Eq. 4.11 [Martinez-Garcia et al., 2018]:
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4.4.2 Data

There are quite IQA datasets in the wild, but we are going to utilize three of them: TID2008
[Ponomarenko et al., 2009], TID2013 [Ponomarenko et al., 2015], and KADID10K [Lin et al., 2019].

In our experiments, TID2008 will be used for training our model while TID2013 and
KADID10K will act as validation and test sets respectively. This is the case because
TID2008 and TID2013 share the same reference images but have different distortions, so
validating with TID2013 allows us to assess the distortion generalization capabilities of
our model. On the other hand, KADID10K is chosen as a test set because it has different
reference and distorted images, so it can be considered as a good approximation to the
image and distortion generalization capabilities of the model when deployed in the real
world. Samples from TID and KADID are shown in Figures 4.27 and 4.28. Keep in mind
that we will be using the smallest dataset to train our model, which is also interesting
on its own because being able to obtain good generalization performances with as little
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Table 4.1: Statistics of the datasets to be used: TID2008, TID2013, and KADID10K.
TID2013 employs the same reference images as TID2008 but includes new distortions
and intensities, so it is a good indicator of the generalization capabilities of the model to
new distortions. KADID10K, on the other hand, utilizes a different set of both reference
images and distortions, so it is a good proxy for the generalization capabilities of our
models when deployed in the real world.

Dataset Samples # Refs # Dists # Intensities Max. ⇢
TID2008 1700 25 17 4 0.86
TID2013 3000 25 24 5 0.83

KADID10K 10125 81 25 5 0.78

training data as possible is always a thing to look out for. Some useful information about
the dataset sizes is provided in Table 4.1.

Maximum attainable performance

A particularity of these datasets is that they provide the mean, µ, and the standard
deviation, �, of the measured Mean Opinion Scores and, by making use of these, we can
calculate the maximum attainable correlation by our model through a basic Monte Carlo
experiment: one can sample data from a Normal distribution with the given µ and � to
generate "sampled" experiment executions. Then, it’s easy to calculate the correlation
between each sampled experiment and the given MOS, obtaining a correlation for each
repetition. By repeating the simulation N times, we obtain N values of correlation with
respect to the given MOS and then obtain the maximum attainable correlation by taking
their mean. The results obtained for each dataset are shown in the rightmost column of
Table 4.1.

Our results are quite surprising because TID2008 and TID2013 have a maximum
attainable correlation of ⇢ = 0.86 and ⇢ = 0.83 respectively, while KADID10K’s is a
bit lower at ⇢ = 0.78. This can be attributed to the fact that KADID10K is a much
bigger dataset and, because of that, they couldn’t record as many human evaluations as
they needed to reduce the disparity of the measures. Adding to this, their distortions
include some higher-level distortions that are usually harder to assess and could result in
less precise measurements. It is to be taken into consideration that the authors of these
datasets make the assumption that the evaluations for each (Reference, Distorted) pair
follow a Normal distribution, but as we only see the summary values, we can’t confirm this.
If the data wasn’t normally distributed but, maybe, Laplacian, the maximum attainable
correlation may be different.

With this in mind, we can consider a good result for any model that obtains above the
corresponding maximum correlations on each dataset.

4.4.3 Model

As we reviewed in Section 3.2.3, PerceptNet’s architecture is chosen in order to perform
a specific set of transformations, but its weights did not converge to it. We will take all
the parametric layers we defined in Section 4.1 and place them at specific locations in the
architecture so that they perform their given task. Getting into the details: (1) all the
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Figure 4.27: A Reference and Distored pair of images from TID2008 with a corresponding
MOS of 2.5143.

Figure 4.28: A Reference and Distored pair of images from KADID10K with a corresponding
MOS of 9.
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Figure 4.29: Parametric version of PerceptNet [Hepburn et al., 2020]. Spatial Gaussians
replace the convolutional kernels of the Divisive Normalization to allow for capturing more
information about the surroundings. Filters in the retina-LGN section are constrained
to be center-surround cells and the ones in the V1 section are parametrized by Gabor
functions. Some of the kernels’ spatial size has been increased. The new sizes are shown
in green.

Divisive Normalizations (gdn2-4 ) but the first one will have their convolutional kernel
changed into a parametric spatial Gaussian that will allow it to take into consideration
the neighbor pixels in the operation. (2) The second convolutional layer (conv2 ), whose
task is resembling the retina-LGN section in the visual pathway, will be changed into a
parametric center-surround, and (3) the final convolutional layer (conv3 ), acting as the V1
section, will be changed by a parametric Gabor layer. All of these choices are motivated
by the literature we went through in Section 3.3 and the design choices of PerceptNet and,
by performing these changes, we no longer train all the weights in the kernels separately
and hope that they end up performing the transformations that we want. Now we impose
the form of the computations that we want to happen and optimize only the parameters
of those transformations, which makes sense if what we want to achieve is a vision model
that performs as human-like as possible. These changes are introduced in Figure 4.29,
where we show which layers are changed by what parametric layers and the sizes of the
new kernels as well.

Apart from training the fully parametric model, we will also perform an ablation study
of the three changes [(1),(2),(3)] with the objective of studying which modifications affect
more our results and which are going to be the most important changes in the architecture.

Another important part of our study is showing how the number of parameters in the
model is reduced when introducing parametric layers. We have to keep in mind that in
the original architecture, the Divisive Normalization layers uses 1x1 convolutions which
have a very minimum number of parameters thus when using spatial Gaussians, we will
surely introduce more parameters. As an example, the final Divisive Normalization (gdn4 )
in the original model has 16.512 parameters, but when parametrizing it with Gaussians
we need 32.896. The intuition behind this is that a 1x1 kernel only has one weight per
input channel, while we need to build a parametric filter for each input channel and the
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Table 4.2: Number of parameters of each of PerceptNet’s parametric variations.

Model variation # Parameters % to Original
Original 36.368 1.0

GDNGaussian (1) 52.660 1.45
CenterSurround (2) 35.966 0.99

GaborLast (3) 22.544 0.62
GDNGaussian + CenterSurround (1+2) 52.258 1.44

GDNGaussian + GaborLast (1+3) 38.845 1.07
CenterSurround + GaborLast (2+3) 22.014 0.61

Full (1+2+3) 38.306 1.05
Original (Same Size) 2.334.824 64.2

Gaussians have two parameters: � and A, doubling the number of parameters. This is
negligible when considering that the parametric filters don’t increase their number of
parameters when increasing the kernel size, but the free-convolution does increase so, if we
wanted to use Divisive Normalizations whose kernels were the same size as the Gaussians
(11x), we would have almost 2M parameters, proving to be an impressive reduction in this
case. Table 4.2 summarizes the number of parameters each of the parametric PerceptNet’s
variations have and its relative value with respect to the original non-parametric model.
We have also added the number of parameters of a free-convolutional model with the same
kernel sizes as those in the parametric models, which goes well above 2M parameters but
we won’t be training this model, its shown only for demonstration purposes. Be aware
that the most reduction in the number of parameters comes from substituting the last
free-convolution with a Gabor layer (even though the kernel size of the Gabor is more
than 4 times bigger). All the models have been trained for 500 epochs with a batch size of
64 and a learning rate of 3 · 10�4 to ensure that the differences in performance could be
attributed to the changes in the architecture.
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Chapter 5

Results

This Chapter will go through the results obtained for the experiments layed out in Sections
4.3 and 4.4, which corresponds to our objectives 3a and 3b. We will be comparing the
performance of the parametric and non-parametric models for a classification and an
image quality task by checking their final performances and their training dynamics, while
also paying attention to some details found when training deep learning models including
functional forms.

5.1 Classification

The accuracy obtained for both parametric and non-parametric models on CIFAR10 and
ImageNette is shown in Table 5.1, where it can be seen that the best performance on
CIFAR10 is obtained by the parametric model which, in fact, has more than 11 times
fewer parameters than the non-parametric model with the same number of filters, case
(1), and 1.5 times fewer parameters than the non-parametric model with the closest
amount of parameters, case (2). By taking a look at [Jeevan and Sethi, 2021] we see that
it obtains even better performance than different variations of the Visual Transformer
[Dosovitskiy et al., 2021] with a number of parameters ranging from 400k-8M parameters1.

More interesting than the raw accuracy number itself are the training dynamics of the
three models, shown in Figure 5.1. It’s clear from this Figure that the non-parametric
model with higher number of filters (1) is much more prone to overfitting the training
data than the parametric model, and the parametric model could even be trained further
to obtain higher accuracy. The reduced non-parametric model doesn’t show signs of
overfitting but lacks the expressive capability to attain a result as good as the other models.

1This has to be taken with a grain of salt because our non-parametric model also obtains better
performances, but still is a nice comparison to take into account.

Table 5.1: Accuracies in CIFAR10 and ImageNette for the parametric and non-parametric
model.

Model variation # Parameters CIFAR10 (Acc.) ImageNette (Acc.)
Non-Parametric 23,946 60.1 46.6

Non-Parametric (512) 191.498 65.0 52.0
Parametric 16.394 67.0 51.0
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Figure 5.1: Training dynamics of the parametric (blue) and non-parametric (orange)
models in a classification task on the validation set of CIFAR10. It’s clear that the
non-parametric model quickly overfits the training distribution while the parametric model
doesn’t, indicating its robustness with high learning rates.

This makes sense because the parametrization of the kernels can be seen as a form of
regularization, which is a technique often used to overcome overfitting. These results can
serve as a confirmation, although it would require training on more datasets and with bigger
models, that parametric convolutional kernels can be trained at higher learning rates than
free-convolutions, reducing training times and therefore reducing costs and expenses. On
a side note, our results are much tighter than those shown in [Alekseev and Bobe, 2019],
where they show that the parametric Gabor filters obtain a better performance since the
beginning of the training, but this can be attributed to their initialization, which is based
on the parameters of a specific filter bank while our parameters are initialized randomly
within a set of ranges that make sense.

Regarding its transfer learning capabilities, the non-parametric model obtained a
slightly better accuracy but when looking at the losses of the models with same amount
of filters (Figure 5.2) the parametric model obtained better values at every step during
training.

To wrap up, we can see some of the most important2 convolutional filters learnt by the
models in Figure 5.3. The filters learnt by the free-convolution don’t have any particular
shapes or characteristics that could be analyzed, while the parametric Gabors show different
widths, orientations, and frequencies, suggesting a good variety of features to be extracted.
The repetition of a very sharp filter seems interesting but we didn’t find any specific
explanation for it. Another difference with respect to free-convolutions is that we could
choose to remove the filters that have too similar properties because their parameters are
easily interpretable, something that is much harder to do with free-convolutions, where we
see a lot of repetitions of the same kind of filter which doesn’t have much meaning.

2We choose the most important filters by looking at their norm (in the case of free-convolutions) or at
the parameter Â for parametric Gabors.
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Figure 5.2: Training dynamics of the parametric (blue) and non-parametric (orange &
green) models when performing transfer learning from CIFAR10 into ImageNette. The
non-parametric model obtains a slightly better accuracy, but the parametric model obtains
lower loss across all training epochs.

5.2 Image Quality Assessment

Pearson correlation on the different datasets for all the model variations are shown in
Table 5.2. Spearman correlations are also shown in Table 5.3 but only for completion, as
we will only focus on Pearson correlation.

The first and most important result is that the non-parametric baseline is surpassed
in performance by almost every parametric variant studied, even by those with lower
number of trainable parameters. We also see that almost all of the parametric models
obtain correlations, on all three datasets, higher than the maximum attainable correlation
calculated in Section 4.4.2, allowing us to say that they have good enough generalization
capabilities because they pass the benchmark. On a different note, we see noticeable
differences in results obtained by models that employ different forms of normalization (as
was expected from Section 4.2) as well as slight differences in training dynamics when
using (or not using) biases within the parametric layers. This may indicate that: (1)
introducing biologically inspired functional forms into our model leads to an increase in
performance, and (2) using functional forms in conjunction with the more common deep
learning approaches may require more investigation related to their training dynamics if
we want to attain their maximum potential. It is natural to think that the deep learning
framework has been greatly optimized to work with non-parametric functions and, as such,
it could require further tweaking to work best with restricted or parametric forms.

An important subtlety we found out when performing the experiments is that, for the
Divisive Normalization to work properly, its kernel must be clipped to allow only values
Hij >= 0. This was not a problem when working with Gaussians because they are positive
definite, but it was a problem when testing the free-convolution implementation. We knew
we had to constrain the denominator of the Divisive Normalization because of the square
root and so we applied a ReLU non-linearity to it. Turns out this approach induces a lot
of instabilities during training that don’t happen when clipping the kernel values directly,
as is shown in Figure 5.4. Because the convolution is applied to the input squared, we can
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(a) Parametric

(b) Non-Parametric (512) (c) Non-Parametric (64)

Figure 5.3: Final learnt filters by the parametric (a) and non-parametric (b) & (c) models.
We see that the filters learnt by the free-convolution don’t have specific shapes and show
a lot of repetitions while the parametric filters are a lot easier to interpret, have defined
shapes, and are show more variety.
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Table 5.2: Pearson correlation for different model configurations in the different perceptual
databases considered.

Name TID2008 TID2013 KADID10K
Baseline -0.92 -0.90 -0.76
GaussianGDN + NormEnergy (1) -0.93 -0.90 -0.82
CenterSurround_NormEnergyProb (2) -0.94 -0.91 -0.76
CenterSurround (2) -0.94 -0.92 -0.65
GaborLast_NormEnergy (3) -0.94 -0.91 -0.83
GDNGaussian + CenterSurround (1+2) -0.91 -0.89 -0.78
GaussianGDN + GaborLast (1+3) -0.94 -0.91 -0.82
CenterSurroundK + GaborLast (2+3) -0.93 -0.90 -0.79
GDNGaussian + CenterSurround + GaborLast (1+2+3) -0.93 -0.90 -0.79

Table 5.3: Spearman correlation for different model configurations in the different percep-
tual databases considered.

Name TID2008 TID2013 KADID10K
Baseline -0.92 -0.89 -0.84
GaussianGDN_NormEnergy (1) -0.92 -0.89 -0.86
CenterSurround_NormEnergyProb (2) -0.94 -0.90 -0.83
CenterSurround_K (2) -0.94 -0.91 -0.79
GaborLast_NormEnergy (3) -0.94 -0.90 -0.86
GDNGaussian + CenterSurround_Bias (1+2) -0.91 -0.88 -0.84
GaussianGDN + GaborLast (1+3) -0.94 -0.89 -0.86
CenterSurroundK + GaborLast (2+3) -0.93 -0.89 -0.83
GDNGaussian + CenterSurround + GaborLast (1+2+3) -0.93 -0.89 -0.84
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Figure 5.4: Training dynamics of the Baseline PerceptNet model while clipping the weights
of the Divisive Normalization (blue) kernel and not clipping them but applying a ReLU
non-linearity to the output of the convolution (orange).

enforce an all-positive output by clipping the values of the kernel, which resulted in a very
smooth training that yielded much better results indeed. We can blame these instabilities
on the ReLU producing a lot of 0s that didn’t behave properly with the division operation
(while still having negative numbers in the kernels), whereas by clipping the values of its
kernel, the weights quickly move away from negative numbers and are better-behaved
during training.

On a different note, we found that modeling the center-surround cell with �2 = k�1

produced better results than treating both �1 & �2 as independent parameters, probably
due to the fact that they are indeed coupled and gradient descent may lead them to
an incorrect optimum because it doesn’t know that information if we don’t introduce
it ourselves. It is also noteworthy that the center-surround model obtained the best
performance on TID, both 2008 (train) and 2013 (validation), but failed to generalize well
to KADID10K until we normalized the energy of its filters, adding to our findings in Section
4.2. Touching briefly on it, when the filters were not normalized their outputs’ magnitude
were 20 times higher, resulting in very different outputs for slightly different inputs: a
known source of poor generalization in machine learning models [LeCun et al., 2012].

Finishing up with the analysis of the results, we found that while it’s common practice
to add biases to convolutional layers, using a bias in our parametric Gabor layers introduced
slight instabilities that the model had to recover from during training. These instabilities
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Figure 5.5: Training dynamics of the GaborLast with (blue) and without (orange) bias.
We can observe that the use of bias increases the instabilities during training but doesn’t
affect greatly the performance of the model nonetheless.

arose in the form of sudden peaks in the loss function, as shown in Figure 5.5, but it’s worth
noting that the overall dynamics of the model weren’t altered and their final performance
was quite similar.

Summing up, we found the most success with the models that used Gabors and
Gaussian Divisive Normalizations, as opposed to center-surround-based models, which
performed slightly better on the training and validation sets but generalized worse to
KADID10K. This is in line with [Evans et al., 2022], where they found that introducing
Gabors into fully convolutional networks resulted in a performance boost while adding the
Difference of Gaussian filters did not. Even a combination of both performed worse, which
is still seen in our experiments.
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Chapter 6

Conclusions & Future Work

Considering the technical objectives we laid out at the beginning of the project, we
can confirm that this work has been a success because we were able to implement a
set of parametric forms so that their parameters could be optimized through gradient
descent, while the two toy problems that we designed were very useful both to test our
implementations and extract a lot of information of the ins and outs of optimizing these
kinds of functions within the conventional deep learning framework.

Building from these technicalities, we were also able to apply our functional forms to
two real-world problems: classification and image quality assessment. In the first one, we
showed the potential of restricting artificial neural networks with parametric forms by
obtaining better performance with a parametric model than with a non-parametric model
while also having a lot fewer parameters, even though we didn’t find the same success
when applying transfer learning into a different dataset, where the non-parametric model
performed slightly better. Even if it wasn’t our initial intention, we also showed that
parametric models are more robust to overfitting and as such can be trained with higher
learning rates, leading to shorter training times. Finally, we modified an already published
model (PerceptNet) to impose a set of parametric operations inspired by statistics and
biology, allowing us to obtain better results than the original model and fulfilling the
original purpose of PerceptNet: applying a known set of transformations, which wasn’t
happening originally because the non-parametric convolutions weren’t learning the intended
operations.

All in all, we can consider that this work has been completed with great success and
opens a very interesting path for future investigation by allowing us to constraint models
in a flexible way that can be included as a drop-in replacement in artificial neural networks
and has shown both a potential increase in performance and a notable reduction in the
number of parameters.

As continuations and extensions of this work, we propose including the phase in
the Gabors and implementing complex V1 cells, exploring the effect of introducing the
coefficient in the Divisive Normalization, and investigating additional forms of normalizing
the filters taking inspiration from already-used weight initialization techniques, exploring
the implications of repeating filters (i.e. using the same filter for all the input channels) to
reduce more the number of parameters while performing a stronger form of regularization,
and looking into performing parameter-aware pruning, where we could make us of the
known parametric forms to prune repeated filters and improve our models to reduce
redundancy.
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