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Resumen:

La incidencia de la colitis ulcerosa (UC), una enfermedad intestinal inflamatoria
crónica, está experimentando un aumento mundial. En el tratamiento de la UC,
es crucial reducir la inflamación intestinal, y la evaluación histológica desempeña
un papel esencial, ya que la remisión histológica (RH) es el principal indicador
de la enfermedad. Trabajos recientes en este campo han propuesto un nove-
doso índice denominado PHRI que cuantifica la actividad de la UC basándose
en la presencia o ausencia de neutrófilos en diferentes compartimentos celulares:
lámina propia, epitelio criptal, epitelio superficial y lumen criptal. La identi-
ficación de neutrófilos en las diferentes áreas de la imagen histológica para la
gradación del índice PHRI utilizado para el diagnóstico de la UC es esencial,
y el diagnóstico asistido por ordenador (CAD) se ha convertido en una valiosa
herramienta. Debido a los avances en patología digital, los sistemas CAD se
utilizan para digitalizar biopsias en whole-slide images (WSI) y permiten que
sean compartidas entre centros clínicos y analizadas por varios patólogos. Este
estudio introduce un algoritmo de active learning (AL), un enfoque innovador
para aliviar la carga de trabajo de los patólogos mejorando la eficiencia en la
identificación de regiones cruciales en estas imágenes para el diagnóstico de la
colitis ulcerosa. Aprovechando una base de datos diversa de imágenes de diapos-
itivas completas anotadas y un proceso de entrenamiento iterativo, el objetivo
es optimizar el rendimiento del modelo de segmentación basado en un marco
encoder-decoder.





Abstract:

The incidence of Ulcerative colitis (UC), a chronic inflammatory bowel disease,
is experiencing a global increase. In the treatment of UC, it is crucial to reduce
intestinal inflammation, and histological evaluation plays an essential role, as
histological remission (HR) is the primary disease indicator. Recent works in the
field have proposed a novel index called PHRI that quantifies UC activity based
on the presence or absence of neutrophils in different cellular compartments:
lamina propia, cryptal epithelium, surface epithelium and cryptal lumen. The
identification of neutrophils in the different areas of the histological image for the
grading of the PHRI index used for diagnosis of UC is essential, and computer-
aided diagnosis (CAD) has become a valuable tool. Due to advances in digital
pathology, CAD systems are used to digitalise biopsies into whole-slide images
(WSI) and allow them to be shared between clinical centres and analysed by
several pathologists. This study introduces an active learning (AL) algorithm,
an innovative approach to alleviating the workload of pathologists by improving
the efficiency in identifying crucial regions in these images for ulcerative colitis
diagnosis. Leveraging a diverse database of annotated whole-slide images and an
iterative training process, the aim is to optimize the performance of the encoder-
decoder-based segmentation model.





Resum:

La incidència de la colitis ulcerosa (UC), una malaltia intestinal inflamatòria
crònica, està experimentant un augment a nivell mundial. En el tractament de
la UC, és crucial reduir la inflamació intestinal, i l’avaluació histològica juga un
paper essencial, ja que la remissió histològica (RH) és el principal indicador de la
malaltia. Treballs recents en aquest camp han proposat un nou índex anomenat
PHRI que quantifica l’activitat de la UC basant-se en la presència o absència de
neutròfils en diferents compartiments cel·lulars: làmina pròpia, epitelis criptal,
epitelis superficial i llumen criptal. La identificació de neutròfils en les diferents
àrees de la imatge histològica per a la graduació de l’índex PHRI utilitzat per
al diagnòstic de la UC és essencial, i el diagnòstic assistit per ordinador (CAD)
s’ha convertit en una eina valuosa. A causa dels avanços en patologia digital, els
sistemes CAD s’utilitzen per digitalitzar biòpsies en whole-slide images (WSI)
i permeten que siguen compartides entre centres clínics i analitzades per diver-
sos patòlegs. Aquest estudi introdueix un algoritme d’active learning (AL), un
enfocament innovador per alleujar la càrrega de treball dels patòlegs millorant
l’eficiència en la identificació de les regions crucials en aquestes imatges per al
diagnòstic de la colitis ulcerosa. Aprofitant una base de dades diversa d’imatges
de diapositives completes anotades i un procés d’entrenament iteratiu, l’objectiu
és optimitzar el rendiment del model de segmentació basat en un marc encoder-
decoder.
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Part I

Memory





Chapter 1

Introduction

1.1. Motivation and description of the problem

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) characterized
by inflammation and ulcers in the lining of the large intestine (colon) and rectum. The
motivation for studying UC is rooted in its significant impact on the quality of life of
affected individuals [5]. Understanding, diagnosing, and effectively treating UC are cru-
cial for the successful management of the disease. UC has seen an increasing incidence
worldwide [6]. It affects individuals of all ages but often manifests in young adulthood.
Understanding its causes and mechanisms is essential to address this rising trend.

UC typically follows a relapsing-remitting cycle, with periods of active inflammation
(flares) followed by remission. Managing these cycles effectively is critical to reducing
symptoms and complications. UC also can vary in severity and extent and can be divided
into categories depending on its extension, like proctitis, left-sided colitis or pancolitis [7].
The primary goal of UC treatment is to induce and maintain remission while improving
the patient’s quality of life. This involves:

1. Symptom control: Alleviating symptoms such as diarrhoea, abdominal pain, and
rectal bleeding.

2. Inflammation reduction: Minimizing inflammation to promote colon lining healing.

3. Preventing relapses: Reducing the frequency and severity of disease flares.

4. Minimizing complications: Preventing or managing complications like colonic stric-
tures, perforations, and colorectal cancer, which can arise from chronic inflamma-
tion.

5. Improving quality of life: Enhancing the patient’s overall well-being, as UC can
significantly impact daily activities.

Histological remission, beyond clinical remission, is an essential treatment target. It
involves the complete healing of the mucosal lining of the colon, which can reduce the
risk of relapse and complications [8]. Patients diagnosed with UC typically undergo
clinical procedures like colonoscopies, during which endoscopists collect colon biopsies for
pathologists to examine under a microscope, searching for disease-specific patterns.
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To manage the disease, computer-aided diagnosis has become an indispensable tool in
UC, complementing the expertise of pathologists and leading to more accurate, efficient,
and personalized patient care. Digital pathology involves acquiring, managing, and inter-
preting pathology information using computer technology. In the context of UC, it can
be used to assist pathologists in accurately diagnosing UC by providing digital slides for
examination, and efficiently storing and retrieving large amounts of histological data. As
digital pathology advances, biopsies are now transformed into whole-slide images (WSI),
which are high-resolution, gigapixel images. These can be easily shared among medical
centres and reviewed by various pathologists for collaborative study.

Deep learning, a subset of machine learning, is particularly valuable in the field of
digital pathology for UC. Deep learning models can segment digital pathology images to
identify inflammation, ulceration, and healthy tissue regions in colon biopsies. This en-
ables a more detailed analysis of the disease’s extent and severity. These models can assist
pathologists by automatically detecting and quantifying histological features associated
with UC, providing objective metrics for disease severity and healing. Nevertheless, the
correct identification of tissues and structures by these segmentation algorithms requires
exhaustive and time-consuming prior annotation work by specialist personnel, who must
manually select the pixels belonging to one region or another.

In this context, this work presents an innovative algorithm based on Active Learning
(AL), applied for the first time to the segmentation of regions of interest in the context of
ulcerative colitis. This algorithm aims to significantly reduce the workload of pathologists
by improving the efficiency of identifying these critical regions in histological images.
Through a careful selection of data samples and an iterative training process, the algorithm
allows for optimising the performance of the segmentation model, rooted in encoder-
decoder techniques, which in turn results in a faster and more accurate diagnostic process
for this disease. This framework strikes a balance between acquiring a diverse database of
annotated WSIs while managing the annotation time cost for pathologists. The project
relies on an extensive private database comprising WSIs from UC patients, along with
pixel-level annotations for selected biopsies.

1.2. Project framework

This project falls under the research initiative ’Development of Artificial Intelligence
using i-scan videos and digital histological images’, led by the University of Birmingham.
The project is also referred to as PICaSSO because of the development of a novel endo-
scopic scoring system for ulcerative colitis, known as the Paddington International virtual
ChromoendoScopy ScOre (PICaSSO) [9].

The primary objective of the PICaSSO project is to create a comprehensive system
for caring for patients with ulcerative colitis, which integrates endoscopic procedures and
histological analysis. In pursuit of this aim, a groundbreaking scoring system (PICaSSO)
was introduced to assess UC through endoscopy, demonstrating superior interobserver
agreement compared to existing endoscopic scoring criteria [9]. They also created the
PICaSSO Histologic Remission Index (PHRI), a simplified and neutrophil-based scor-
ing system designed for tracking mucosal healing at the histological level [4]. Its main
advantage, when contrasted with previous histologic remission indexes, lies in its simplic-
ity and reliance on neutrophils, which diminishes the subjectivity typically linked with
pathologists. This characteristic also renders the score well-suited for integrating deep
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learning-based computer-aided diagnostic (CAD) systems.
The data utilised in this project were acquired through the study titled "A multicenter,

international validation study of the i-scan endoscopic scoring system and a new histologic
scoring system to define subtle mucosal inflammation in ulcerative colitis" (i-scan), which
received approval from the West Midlands Research Ethics Committee (17/WM/0223).

The UPV, notably the Computer Vision and Behavior Analysis Lab (CVBLab), is
actively involved in this project by designing and implementing automated algorithms for
examining WSI (Whole Slide Images) from patients diagnosed with UC. These algorithms
are rooted in deep learning methods. They are intended to categorise the acquired WSI
as either indicative of histological remission or activity, following the novel, simplified,
neutrophil-based scoring system known as PHRI.

1.3. Objetives

The primary objective of this TFM is to design and develop an innovative algorithm
based on Active Learning, applied to the automatic segmentation of regions of interest
of WSIs of patients with ulcerative colitis. To achieve the main objective, secondary
objectives are detailed below:

1. Compile the histological image database, which comprises high-resolution WSIs from
an international multicentre study. The management of these images poses chal-
lenges due to their considerable file size, ranging from 500 MB to 3 GB. The biopsies
were acquired and digitised using similar methodologies at several centres and sub-
sequently shared with the corresponding annotations provided by the pathologists.

2. Conduct a literature review to study the state-of-the-art (SoA) techniques of studies
where active learning approaches have been employed for WSI segmentation with
deep learning algorithms.

3. Perform pre-processing of the database. This process includes transforming the
annotations into a label of the various areas of interest and removal of the image
background.

4. Perform patient-level partitioning of the database. These partitions are conditioned
by the availability of pixel-level annotation in certain WSIs.

5. Design and develop a segmentation algorithm based on deep learning for the pre-
diction of regions of interest in WSI of patients diagnosed with UC.

6. Design and develop an active learning methodology to reduce the pathologists’ work-
flow.

7. Analyse the minimum and efficient number of samples required to improve the
performance of the region of interest segmentation network.

8. Propose future directions for the improvement of results obtained considering prob-
lems and constraints encountered during the project.
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1.4. Document structure

In Chapter 2, ulcerative colitis is detailed in terms of epidemiology, scoring, and man-
agement. A brief review of the CAD systems implemented for UC diagnosis and treatment,
which focus on endoscopy, is also presented alongside a novel index for histologic scoring
in UC called PHRI. This chapter also introduces deep learning and active learning meth-
ods applied to histopathology image analysis.

In Chapter 3, the materials used in the project are described with a particular focus on
the dataset of whole-slide images from patients with a UC diagnosis. The dataset contains
pixel-level annotations of regions of interest with neutrophils for certain biopsies.

Chapter 4 first includes the methods for WSI preprocessing and a description of the
data partitions carried out. It also contains the development of segmentation algorithms
to predict the regions of interest in histologic images and the design and implementation
of an AL and Human-in-the-loop framework to queue the sample selection.

The results and discussion for the different experiments are presented in Chapter
5. This section includes the external validation metrics in the test set and the results
regarding calculating and visualising the uncertainty for the active learning framework
implementation, as a metric for sample selection for retraining.

Finally, Chapter 6 is composed of the findings regarding the project and some notes
about limitations and future lines of investigation in this field.



Chapter 2

Teoretical Framework

2.1. Ulcerative colitis

2.1.1. Definition, epidemiology and management

Ulcerative colitis is a chronic inflammatory bowel disease (IBD) that primarily affects
the colon (large intestine) and the rectum. It is characterized by inflammation and the
presence of ulcers (open sores or lesions) in the lining of the colon and rectum. This
condition is one of the two main types of IBD, with the other being Crohn’s disease [5].
A condition affecting solely the furthest part of the colon and the rectum is labelled as
ulcerative proctitis. When the condition extends from the descending colon downwards,
it is termed left-sided colitis. Disease that encompasses the entirety of the colon is known
as pancolitis (Figure 2.1).

Figure 2.1: Ulcerative colitis disease extent [1].

The exact cause of UC is not fully understood but is believed to involve a combination
of genetic, environmental, and immune system factors [5]. UC exhibits four distinct
disease activity states: remission, mild, moderate, and severe [7]. The typical progression
of UC involves intervals of remission alternating with episodes of acute exacerbation or
disease flares, potentially necessitating an escalation of treatment, hospitalisation, and,
in severe instances, surgical removal of the colon (colectomy). This is critical since a
patient diagnosed with UC may not exhibit active inflammation at the endoscopic or
histologic level. Therefore, it is imperative to distinguish between active UC and phases
characterised by remitting inflammation or complete remission. The primary objective of
treatment is to attain remission of the disease and avert complications such as infections,



Chapter 2 Page 30

the need for surgery, and the development of neoplastic growths, all while preserving the
quality of life for patients [1].

The prevalence of UC is 24.3 per 100,000 person-years in Europe, while the rate in Asia
and the Middle East is 6.3 per 100,000 person-years. In North America, the incidence is
19.2 per 100,000 person-years. These numbers reveal that the incidence and prevalence of
IBD are rising globally and in various regions, underscoring its emergence as a worldwide
health concern [6]. UC can occur at any stage of life, but it is often identified before
age 30, and the condition seems to impact both men and women in equal proportions.
Notably, around 20 per cent of individuals with UC have a close family member who
also suffers from some form of inflammatory bowel disease (IBD) [5, 10]. The worldwide
impact of ulcerative colitis is steadily increasing, leading to higher healthcare and societal
expenditures. In the United States, it is estimated that the annual costs, encompassing
both direct and indirect expenses associated with UC, range from $8.1 billion to $14.9
billion. In Europe, these costs are estimated to be between e12.5 billion and e29.1
billion [11]. These data show that the increasing disease incidence results in a rise in
both direct and indirect costs. One potential solution to this issue is to harness the power
of CAD systems, particularly emphasising using artificial intelligence (AI) methods that
have demonstrated effectiveness in medical image processing. This approach can help
manage the increasing incidence of disease and mitigate the associated rise in direct and
indirect costs.

The diagnosis of ulcerative colitis cannot be definitively confirmed through a single
diagnostic test. Instead, it is determined through a comprehensive evaluation of clini-
cal symptoms, laboratory examinations, and assessments of endoscopic, histological, and
radiological findings [12]. The management of UC patients has undergone significant
advancements in recent years, mainly due to the development of innovative diagnostic
techniques. Initially, management focused on inducing and sustaining clinical remission
to prevent patient disability and colorectal cancer. Subsequently, endoscopy emerged as a
pivotal protocol for disease assessment. Achieving endoscopy remission or mucosal healing
became the gold standard for disease prognosis because it relies less on the highly subjec-
tive nature of clinical symptoms [13]. Recently, ulcerative colitis has included histologic
remission as a treatment goal. In [8], it was found that UC patients in histological remis-
sion had a significantly lower relative risk of experiencing clinical relapse than patients
with active histological inflammation.

Since management can be conducted at both the endoscopic and histologic levels,
various tissue characteristics are affected as inflammatory activity increases. Among the
endoscopic features, alterations in the vascular pattern and tissue bleeding are observed.
Similarly, histological patterns seen in biopsies with active colitis include changes in crypt
architecture, mucin depletion, and inflammatory infiltration by cells such as eosinophils
and neutrophils [14]. In Figure 2.2, the connection between the endoscopic view and the
histopathological examination is illustrated for both active (upper row) and remission
(lower row) tissues.

Several factors, including the disease’s severity, location, and progression, influence
treatment decisions for ulcerative colitis. Proctitis, for instance, is typically managed
with topical therapy involving 5-aminosalicylic acid (5-ASA) compounds. In cases of
more extensive or severe disease, a combination of oral and local 5-ASA compounds,
along with corticosteroids, may be employed to induce remission [12, 7]. Patients who
do not respond to the initial treatment may necessitate hospitalisation. In such cases,
intravenous steroids are commonly administered. If the condition remains unresponsive or
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Figure 2.2: (a) Endoscopic appearance of severe ulcerative colitis. (b) Concordant biopsy with the
endoscopic impression in (a); severely active ulcerative colitis with erosion. (c) Endoscopic appearance
of apparent normal mucosa in a patient with a history of ulcerative colitis. (d) A random biopsy from
(c): a histologic active disease with foci of neutrophilic cryptitis and crypt destruction [2].

refractory, additional therapeutic options are taken. These interventions are considered
to address the more severe or treatment-resistant cases of ulcerative colitis. The most
frequently conducted surgical procedure for patients with medically unresponsive UC,
provided there are no complications such as perforation, is the restorative proctocolectomy
(RPC) with ileal pouch-anal anastomosis (IPAA) [1].

2.1.2. Scoring on Ulcerative Colitis

In this context, we are introducing various indices for endoscopic and histologic assess-
ment, with particular emphasis on a newly developed index that will serve as the central
element in the deep learning algorithm.

Endoscopic scoring: In UC, it is used to evaluate the extent and severity of inflam-
mation in the colon and rectum. It helps clinicians determine the disease’s activity
level and guide treatment decisions. It may not capture microscopic inflammation,
and inter-observer variability can influence scoring, where different endoscopists may
assign slightly different scores to the same findings.

• Mayo score: It is the most commonly used system. It grades disease activity
on a scale from 0 to 3, with 0 indicating normal or inactive disease and 3
indicating severe disease with ulceration. This index was originally developed
in 1987 and was initially employed in a clinical trial to assess the effectiveness
of a novel therapy for UC [15].

• UCEIS : The Ulcerative Colitis Endoscopic Index of Severity (UCEIS) was in-
troduced in 2011, with a primary focus on assessing the endoscopic aspects of
the disease, distinguishing it from the Mayo score. This scoring system consid-
ered as many as ten descriptors but ultimately selected three critical criteria to
determine the final score. These criteria evaluate the vascular pattern, bleed-
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ing, and erosions/ulcers, with grading based on the most severe lesion observed
[16].

Histologic scoring: It assesses the microscopic features of colonic tissue to deter-
mine the degree of inflammation, injury, and healing. It considers various histologi-
cal features, including crypt architecture, mucin depletion, inflammatory infiltration
and ulceration. It assigns a score based on the observed histological changes, al-
lowing for a quantitative assessment of disease activity. Histological indices also
present a particular component of subjectivity related to the scorer because specific
patterns could have different interpretations, which may complicate its applicability
to automatic CAD systems.

• Robarts Histologic Index (RHI): The RHI assigns scores to features such as
ulcerations, inflammatory infiltration, and neutrophils presence, with higher
scores indicating more severe disease activity. The scores are then summed
to provide an overall assessment of histologic disease activity. Each of these
components of the score can be graded from 0 to 4 each [17].

• Nancy Histologic Index (NHI): The Nancy Histologic Index assigns scores to
histologic features, with higher scores indicating more severe disease activity.
These histologic features include distortions of the crypt architecture, acute
inflammatory cell presence, and ulceration, among others. These scores are
then combined to provide an overall assessment of histologic disease activity.
Unlike the RHI score, NHI does not grade these features between 0 and 4 [18].

It’s important to note that both RHI and NHI take into account the presence of
neutrophil infiltration within the mucosal tissue. Neutrophils are one of the three primary
types of white blood cells, alongside basophils and eosinophils. Each cell type has its
distinct nucleus and cytoplasmic characteristics, contributing to their unique appearances
under microscopic examination.

This work primarily centres around a newly established histological scoring system
for evaluating ulcerative colitis developed within the framework of the PICaSSO research
initiative, in which the CVBLab participates. The PICaSSO Histologic Remission Index
(PHRI) represents an innovative and simplified histologic index specifically designed to
assess mucosal healing or disease activity in individuals diagnosed with UC [4].

PHRI assesses neutrophil infiltration in four distinct biopsy compartments: the lamina
propria, surface epithelium, cryptal epithelium, and cryptal lumen. The lamina propria
is the connective tissue that surrounds the crypts and typically contains varying numbers
of plasma cells, neutrophils, and eosinophils, depending on the level of inflammation. The
surface intestinal epithelium comprises a single layer of epithelial cells, forming a barrier
between the tissue and the external environment. Lastly, the crypts are tube-like glands
with a bordering cryptal epithelium that encircles the cryptal lumen. Visual examples for
each of the four compartments from a WSI are presented in Figure 2.3.

The PHRI scoring system examines and analyses four distinct regions of interest within
the biopsy sample. Within these four compartments, the degree of neutrophil infiltration,
indicative of ulcerative colitis activity, is assessed. The PHRI grade for an individual
biopsy is determined by adding the number of regions displaying significant histological
findings, as outlined in Table 2.1.

This scoring system is notably recognised for its simplicity compared to other histo-
logical indices, such as NHI. PHRI assigns a grade to each biopsy on a five-point scale,
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Figure 2.3: A Whole Slide Image of a biopsy with ulcerative colitis activity and its four structures of
interest. The right column patches correspond to (a) lamina propria, (b) surface epithelium, (c) cryptal
epithelium and (d) cryptal lumen. The black mark indicates the presence of a neutrophil [3].

ranging from 0 to 4. It’s worth mentioning that the minimum score achievable on this
index is zero, and is therefore considered to be in histological remission. In contrast,
those with a PHRI score greater than zero are considered to have ongoing UC activity.
The maximum score is four, indicating the presence of neutrophil infiltration in all com-
partments [4]. This threshold has effectively stratified patients into low and high-risk
categories for adverse outcomes.

The primary objective in developing the PHRI was to create a straightforward grading
system for ulcerative colitis to minimise the variability and subjectivity that can arise
when pathologists examine tissue samples under a microscope. This scoring system has
been aligned with endoscopic findings and has strongly correlated with clinical outcomes,
such as RHI and NHI [4].

Table 2.1: PICaSSO Histologic Remission Index (PHRI) to predict histological remission [4].

Histologic finding Score

Neutrophil infiltration in lamina propria

Absent (No)
Present(Yes)

0
1

Neutrophil infiltration in epithelium

Absent (No)
Present (Yes)

0

- Surface epithelium
- Cryptal epithelium
- Crypt lumen

1
1
1

Total Score = sum of all above (maximum 4)
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Additionally, the inter-rater agreement among pathologists when using PHRI is excel-
lent, surpassing the consensus achieved with other histological scoring systems. Simulta-
neously, the simplicity inherent in PHRI makes it well-suited for integration into artificial
intelligence-based systems.

To classify the four areas of interest for PHRI calculation based on the presence or
absence of neutrophils, as shown in Figure 2.3, experienced pathologists from the PICaSSO
project performed pixel-level annotations indicating the four regions of interest. These
annotations and the WSIs constitute the database with which the present work will be
developed using deep learning and active learning techniques. With the workflow required
by active learning, explained in the next section of the chapter, the aim is to improve the
accuracy and performance of the segmentation algorithms as a preliminary step to a future
calculation of the PHRI index.

2.1.3. CAD systems in Ulcerative Colitis

Computer-aided diagnosis has become a critical tool for clinicians, revolutionising med-
ical decision-making. These systems, driven by advanced algorithms, artificial intelligence,
and recent digital and medical technology advancements, substantially elevate diagnostic
accuracy and efficiency [19]. They empower early disease detection and provide quantita-
tive data for objective assessments. This synergy ultimately raises healthcare quality and
augments patient outcomes. CAD’s multidisciplinary approach encompasses multi-modal
image processing, extensive data analysis, pattern recognition, and AI, enhancing its role
in supporting clinical decision-making [20, 21]. Real-time clinical decision support, such as
live video analysis during endoscopic procedures, exemplifies CAD’s practical application.
However, addressing model interpretability remains critical in implementing AI-based al-
gorithms in medicine, as many deep learning methods function like black boxes, rendering
their decision-making processes opaque [22].

As previously mentioned, the global rise in ulcerative colitis increases hospital work-
load. This trend underscores the growing importance of implementing CAD systems to
support clinicians in managing this condition efficiently and effectively. Powered by ad-
vanced algorithms and artificial intelligence, CAD systems can help healthcare profession-
als diagnose and treat UC by providing valuable insights, enhancing diagnostic accuracy,
and improving patient care [23]. Prior research in the field has achieved remarkable ac-
curacy in tasks related to the classification of UC endoscopy images. These earlier AI
systems primarily concentrated on classifying images and videos using established scoring
systems such as Mayo and UCEIS. Remarkably, these AI systems exhibited results on par
with those achieved by medical professionals, underlining the potential of AI in improving
UC diagnosis and management [24].

Histopathology has received considerable attention in recent years, as it is the gold
standard for cancer detection, which has an important clinical and societal impact. One
of the most noteworthy advancements in this field is the digitalisation of histological tissue
samples into WSIs. WSIs are high-resolution, gigapixel images of stained biopsy slides
traditionally observed under microscopes in clinical settings. However, computational
pathology has enabled the digitisation of these images. Although WSIs present a chal-
lenge for AI-based applications due to their immense complexity stemming from the vast
number of pixels, they also offer the advantage of being analysable at various resolutions,
depending on the desired magnification level [25].
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While histological assessment plays a critical role in UC diagnosis and management,
it’s noteworthy that few studies have thus far concentrated on the analysis of whole-slide
images to predict UC. In [26], the authors developed a deep-learning algorithm specifically
designed to quantify the density of eosinophils within tissue samples from sigmoid colon
biopsies. In this research, the assessment of disease severity was based on histological
scoring systems, namely the Goebes and RHI scores. Authors in [3] used a Multiple
Instance Learning (MIL) approach to predict UC activity (active or in remission) in
WSI patches. In MIL tasks, the training dataset is structured into bags, with each bag
comprising a collection of instances, and its goal is to teach a model to predict the bag
label. They introduced a location constraint module that forces the feature framework to
focus on the most significant patterns in the patches of each bag. However, they highlight
the importance of improving neutrophil detection for a correct PHRI grading. Therefore,
the primary goal of this work is to enhance the segmentation of the regions of interest
where the presence or absence of neutrophils determines the area’s activity. Improving this
segmentation is deemed crucial, as it is expected to enhance the evaluation and grading
of the PHRI index.

2.2. Active Learning

This section introduces the concept of active learning, a novel branch of deep learning
focusing on the algorithms developed in this project.

2.2.1. Deep Learning

Deep learning is a subfield of artificial intelligence that focuses on training neural
networks to perform complex tasks. Its success is attributed to its ability to handle
large and diverse datasets, making it a powerful tool for solving complex problems and
advancing AI research.

Deep learning has revolutionised various domains, including computer vision, which
comprises object detection, semantic segmentation and image classification tasks. It is
characterised by using deep neural networks with multiple layers and activation functions
with trainable parameters, enabling the model to learn hierarchical features from data
automatically. The training process in deep learning is marked by back-propagation, a
technique that involves iteratively adjusting the model’s weights based on the learning
rate to minimise the network’s error.

Ground truth is the variable we want to predict within the model. Deep learning-
based algorithms can be classified into three types based on the availability of ground
truth. They include supervised learning when ground truth is available for all the data,
unsupervised learning when the ground truth is unknown, and semi-supervised knowledge
when only a portion of the data contains ground truth annotations, while the remainder
does not.

2.2.2. Definition of Active Learning

Active learning is a strategy employed in machine learning to minimise the quantity
of labelled data required for a learning task. It involves selecting specific samples from an
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unlabeled dataset, which are subsequently annotated by domain experts and integrated
into the model’s training process [27]. By utilising a well-designed sampling approach,
AL can effectively reduce the overall volume of labelled data needed to train a model
while enhancing its resilience to class imbalances. However, it’s important to note that
traditional AL methods do not inherently address the problem of noisy labels, which can
still impact model performance.

In the field of computer vision, and in particular, in the field of semantic segmentation
in the medical domain, medical image analysis is often confronted with the scarcity and
cost of obtaining labelled data. In active learning frameworks, Human-in-the-loop is
defined as a process in which users or specialists actively participate in the improvement
of machine learning models by annotating data that is incorporated into the training
set, gradually improving model performance while reducing annotation effort [28]. This
approach is especially valuable for tasks requiring specialised knowledge, as it effectively
combines human expertise with machine learning to train accurate models. Therefore,
AL is invaluable for optimising the annotation process and improving the performance of
segmentation models.

The application of AL for semantic segmentation in the medical domain follows a
structured approach. Initially, an initial segmentation model is trained on a small la-
belled dataset as a starting point. AL algorithms then come into play, selecting regions
or instances in unlabeled data where the model exhibits uncertainty or low confidence
in its predictions [29]. In the context of semantic segmentation, this entails identifying
image regions where the model struggles to differentiate between different classes or where
boundaries are ambiguous. After selecting uncertain data samples, domain experts anno-
tate these samples, and the resulting annotations are integrated into the training dataset
(Human-in-the-loop). The model undergoes a fine-tuning process using this newly labelled
data. This process becomes iterative; the model is re-evaluated on the labelled data, and
uncertainty sampling is used again to pinpoint additional samples for annotation (Figure
2.4). This iterative process continues until the model reaches a satisfactory level of per-
formance [30, 31, 32]. The iterative approach described accelerates model convergence,
enhances segmentation accuracy, and is a valuable strategy for increasing the efficiency
and effectiveness of medical image analysis systems.

Figure 2.4: Active learning strategy in AI. Own elaboration.
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2.2.3. AL in Histopathology

In recent years, Active Learning has been used in many applications of classifica-
tion and segmentation of histopathology images [33]. Annotation of medical data is a
time-consuming and labour-intensive task that requires significant dedication from skilled
medical professionals. Active learning emerges as a valuable strategy in the medical field
to alleviate this burden by reducing the need for extensive manual annotation efforts [34].

Most authors focus their research in histopathology images on finding the best strategy
to extract the maximum information from the most informative unlabelled samples to
be selected, queried for labels and then added to train the model further [29]. Several
uncertainty measures have been researched to quantify a model’s lack of confidence in its
predictions for specific data points [35, 36].

If we focus on histopathology segmentation, several studies have been carried out
with active learning approaches with good results, adjusting the number of annotations
required. The authors from [37] developed a fully convolutional network (FCN) based seg-
mentation model with an AL framework to select the most informative patches or regions
from WSIs of each iteration. In this work, the authors generate a pixel-level uncertainty
map of each area and then select the most informative unlabeled regions to annotate and
append to the train set with satisfying model performance. In [38], the authors developed
a patched-based segmentation assessment framework to evaluate the quality of segmen-
tations in histopathology images with promising results. In [39], the authors propose an
AL framework, which progressively integrates pixel-level annotations during training. It
enabled a better CNN visualisation and interpretation of CNN predictions. As can be
seen, many examples in the literature of AL frameworks applied to histopathology exist.
Still, to the author’s knowledge, there needs to be research focusing on using AL strategies
for pixel-level segmentation of histological images of patients with ulcerative colitis.
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Materials

3.1. Database of Whole Slide Images

This section commences with a comprehensive database description, emphasising the
acquisition protocol applied to capture the whole-slide images and pixel-level annotations.
Additionally, it provides insight into the software and hardware infrastructure harnessed
throughout the project, offering a global view of the project’s data and computational
resources.

3.1.1. Description of the database

The database of histological images employed in this project was sourced from a col-
laborative effort involving numerous medical centres worldwide, which conducted an in-
ternational multicenter real-life prospective study on endoscopy and histology in UC [40].
During the respective endoscopic procedures, over 600 digitised biopsy samples were col-
lected from patients diagnosed with UC.

These slides were initially utilised to validate the PHRI, a novel scoring system for
assessing histological remission in UC. The clinical protocol involved the extraction of
two biopsies from each patient, obtained from distinct sections of the colon (one from the
sigmoid and another from the rectum) during the endoscopic procedure. It’s worth noting
that biopsies from the same patient were analysed independently, as active inflammation
was not expected to be present in both samples simultaneously.

Following the surgical removal of colon tissue, samples must undergo a series of histo-
logic procedures before being examined under a microscope by pathologists. These pro-
cedures encompass tissue fixation, which preserves cell morphology; tissue embedding to
provide consistency; sectioning the tissue into thin slices using a microtome; and staining
these slices, often with hematoxylin and eosin (HE) stain. Subsequently, the HE-stained
tissue samples are transformed into digital WSIs using specialised scanning machines, a
technology that has become prominent with the advancements in digital pathology.

Whole Slide Images are high-resolution, gigapixel-sized images obtained by digitising
tissue samples, posing a unique challenge for deep learning systems due to their memory
and computational resource demands. While all the biopsies in this study underwent
a similar process of extraction and digitisation, a multi-centre database provides the
opportunity to validate the model using images from various hospitals. This diversity
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allows for assessing the model’s performance across images exhibiting variations in staining
colours or biopsy orientation, reflecting real-world clinical scenarios and enhancing the
model’s robustness and generalizability.

As previously highlighted in Table 2.1, PHRI is a histological remission index used to
assess ulcerative colitis. Its primary focus is identifying neutrophils within four distinct
tissue section regions: the lamina propria, cryptal epithelium, cryptal lumen, and sur-
face epithelium. Pathologists meticulously analyse these compartments to score a single
biopsy and determine the overall score by summing the number of regions exhibiting sig-
nificant neutrophil presence. This scoring approach comprehensively assesses the biopsy’s
histological characteristics of ulcerative colitis activity.

In Figure 3.1, a large WSI exhibiting a high level of ulcerative colitis activity is show-
cased. The regions marked in the four colours are, in descending order, lamina propria
(blue), cryptal epithelium (green), surface epithelium (cyan), and cryptal lumen (yellow),
providing a comprehensive view of different areas of interest. All WSIs have been anno-
tated with their four corresponding pixel-level regions, which serve as the ground truth
(GT) for both model training and evaluation purposes.

Figure 3.1: A Whole Slide Image of a biopsy with ulcerative colitis activity and its four structures of
interest. In the right-hand column, each region is labelled according to the colour of the annotation. Own
elaboration.

3.1.2. WSI annotations

Detailed image annotations hold immense significance in developing supervised deep-
learning algorithms. However, obtaining such annotations in large datasets can be labo-
rious and sometimes impractical. This challenge is particularly pronounced in medical
imaging, where data availability is often constrained, and in digital histopathology, where
the complexity of images can be exceedingly high.
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The pathologists collaborating in the PICaSSO project were tasked with performing
pixel-level annotations on only a small subset of WSIs from the entire database as a
basis for addressing this challenge. In the beginning, they annotated 52 WSIs of the
whole dataset. The aim of requesting these specific annotations was to have a first set
of images to build the first segmentation algorithm for the regions of interest and to
perform ablation experiments to optimise the model’s hyperparameters. This first set of
images and annotations, subdivided into train and test sets, form the basis from which
the workflow of the active learning methodology used has been developed and which is
explained in later sections.

These annotations used various colours to delineate the biopsy’s four specific com-
partments of interest. This annotation process was facilitated by employing custom in-
house software known as PIXNORMOUS, which had been tailored by engineers from the
CVBLab to cater specifically to WSI annotations. This software gave the annotators a
high degree of flexibility, enhancing their ability to carry out precise and detailed anno-
tations. Finally, some annotation examples are presented in Figure 3.1.

3.2. Software

The deep learning algorithm was implemented using the Python 3.7 programming
environment. Python is a versatile, high-level, interpreted, interactive, and object-oriented
programming language renowned for its wide-ranging applications. Python’s strength lies
in its ability to seamlessly integrate modules and packages tailored for addressing specific
tasks, making it an ideal choice for developing and executing complex machine learning
algorithms.

The most used package for this work is PyTorch, a state-of-the-art open-source machine
learning framework developed by Facebook’s AI Research lab (FAIR), which is playing a
pivotal role in the field of artificial intelligence. Renowned for its dynamic computa-
tional graph construction and pythonic programming interface, PyTorch offers a versatile
platform for scientists and researchers. Its dynamic nature enables on-the-fly model archi-
tecture modifications, facilitating experimentation and innovation. PyTorch is especially
appealing for deep learning, thanks to its automatic differentiation capabilities, simplify-
ing the complex task of gradient computation. With seamless GPU support and a thriving
ecosystem of libraries, PyTorch empowers scientists to develop, train, and deploy sophis-
ticated machine learning models, making it a fundamental tool in AI scientific research.

The training phase of the deep learning process, known for its significant computational
demands, was executed on a remote server boasting high computational capabilities. To
establish a seamless connection between the local working computer and the remote server,
VisualStudio Code (Version 1.80.2) software was employed. This software enables the
creation of an SSH (Secure SHell) connection. This secure and efficient communication
protocol bridges the gap between the two systems, facilitating the execution of deep model
training on the powerful server.

Another essential software utilised in this project is MATLAB (Version R2019b), a
versatile application developed by MathWorks. MATLAB encompasses a multi-paradigm
programming language and a robust numeric computing environment, making it an in-
valuable tool for tackling scientific and engineering challenges. In this project, MATLAB
was harnessed for image processing tasks, underlining its utility in handling and analysing
visual data.
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3.3. Hardware

The project’s core operations were executed on a computer equipped with an Intel
Core i7-7700HQ processor, operating on a 64-bit Windows 10 system. This computer
boasted 8GB of RAM, a 1TB external storage hard drive disk (HDD), and an NVIDIA
GTX1050-4GB graphics card. However, a more robust resource for the intensive deep
model training, the NVIDIA DGX A100 (now DGX), housed in the CVBLab, was em-
ployed. The DGX is one of the most potent hardware assets for artificial intelligence de-
velopment, characterised by unparalleled computational density and performance, thanks
to its 8 NVIDIA A100 GPUs, each equipped with 640GB of GPU memory.

Given the substantial size of WSI, ranging from 500MB to 2GB, a Synology DS918
NAS server with a substantial storage capacity of 32TB was utilized. The project workflow
involved storing data and generating code on the local computer and then transferring it
to the NAS server. An SSH connection was established between the NAS and the DGX
system, enabling the execution of various scripts for training and inference using the deep
models. This architecture allowed for the efficient handling of large WSI datasets and
resource-intensive deep-learning tasks.
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Methodology

4.1. Overall methodological framework

To introduce this section, Figure 4.1 provides a flowchart encompassing all the method-
ology processes associated with developing algorithms for predicting ulcerative colitis in
whole-slide images. Subsequent units will delve into the specific details of the methodol-
ogy as outlined in the flowchart.

Figure 4.1: Flow chart of the proposed methodology. Own elaboration.

As explained in the previous section, the database to develop the project is a substan-
tial dataset comprised of whole-slide images. WSI represents high-resolution, gigapixel
images achieved by digitalising biopsy samples using specialised scanners. These WSI
files are typically stored in .svs format, which requires specialised software like Amperio
Imagescope for visualisation. To make these images accessible through standard software,
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they must be converted into .png files. Some of these files come equipped with pixel-level
annotations created by pathologists. These annotations are crucial as they dictate which
images will be utilised for training and validating the machine learning models.

Afterwards, the model development includes all the programming stages for creating
the deep-learning-based algorithm for segmenting the four regions of interest in UC his-
tologic images. This algorithm based on encoder-decoder frameworks is trained using the
selected biopsy images and their annotations.

Ultimately, our objective was to assess the efficacy and resilience of our model across
a comprehensive database. To achieve this, we employed a collection of WSI pixel-level
annotations for the algorithm’s external validation. The evaluation of the test results
primarily focuses on performance metrics commonly employed in segmentation problems
and the efficiency of regions of interest segmentation.

Once this first model was evaluated, we used a batch of unlabeled WSIs to develop the
Active Learning framework to enhance the model performance, which will be explained
in subsequent sections.

4.2. WSI preprocessing

Whole-slide images represent digital biopsies of tissue sections, often containing re-
dundant information due to multiple slices from the microtome being placed within the
same crystal for subsequent digitisation using specialised scanners. Given the computa-
tional constraints associated with pixel-level segmentation in histopathology, selecting a
representative slice for processing by deep models becomes essential, thus reducing image
sizes.

Nevertheless, additional preprocessing steps, including image cropping and background
elimination, are indispensable for mitigating computational costs and addressing data
noise. In the database, all WSIs are downsampled to a 20x resolution, with the choice of
downsampling magnification determining the final image size.

Typically, WSIs exhibit regions devoid of tissue surrounding the main content. These
background pixels lack relevant information about the biopsy and should ideally be re-
moved. To achieve this, the Otsu thresholding method, applied to the red channel of the
RGB image, is employed to separate tissue from the background effectively.

4.3. Data partitioning

As mentioned earlier, the acquisition protocol involved obtaining two biopsies per pa-
tient. In light of this, patient-level partitions were implemented to construct the two
essential datasets for machine learning: training and test sets. In patient-level partition-
ing, whole slide images of the same patient are grouped together in the same dataset,
although they are analysed independently. The rationale behind this partitioning tech-
nique is to ensure that all images from a given patient reside within a single dataset. This
approach avoids including images from the same patient in different sets, which could
potentially introduce bias or inaccurately represent the model’s capabilities due to recur-
ring patterns or variations specific to individual patients. However, this issue only arises
when dealing with fewer patients with only one biopsy, as multiple images from the same
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patient are unavailable.
The division of the data into the subsets was based on the presence of pixel-level

annotations in specific whole-slide images. Only WSIs that had associated pixel-level
annotations to identify the four regions of interest were utilised for training the model.
Out of 529 PICaSSO project WSIs, ground truth with the four regions of interest was
obtained in only 52 WSIs (9,83%), manually annotated by the medical specialists for
training and initial model evaluation. As explained in previous sections, this annotation
task is exhaustive and time-consuming for pathologists, so the initial dataset available for
the development of the segmentation model is limited. From the whole database, fifteen
were selected as a WSI database without annotation for further use in the active learning
framework to improve the performance of the segmentation model. The distribution of
the data is shown in Table 4.1.

Table 4.1: Description of the WSI database

Database Number of images
PICaSSO database 529
Annotated WSIs 52

Unannotated WSIs 15
Project Database 67

From the annotated WSI database, 33 images were utilised to develop the model and
the remaining 19 histological images were designated as the test set to validate the model’s
performance externally (Table 4.2). Notably, this test set encompasses WSIs from medical
centres that must be represented in the training data. This diversity allows for evaluating
the model’s robustness in a multicenter dataset where factors like colour staining may
exhibit variations.

Table 4.2: Description of the database with pixel-level annotations.

Dataset Number of centres Number of patients Number of images
Train 6 15 33
Test 5 6 19
Total 7 21 52

4.4. AL Framework for Segmentation of Regions of In-
terest in WSIs

An active learning approach aims to improve the first static segmentation model
trained and evaluated with the first set of 52 WSIs annotated by the pathologists. Thirty-
three of these images constitute the initial training set with which the static model is built,
while the remaining 19 are kept out of the training as a test set for the whole process.

Once the first segmentation model has been built, the aim is to obtain the predic-
tion of new images from a set of 15 unannotated images. Based on these predictions,
the uncertainty of each of them will be estimated as a measure of the information they
can contribute to the next model. From this set, the most informative samples will be
selected, and pathologists will be required to correct the annotations predicted by the
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model (human-in-the-loop process). Finally, the dynamic or iterable segmentation model
will be retrained, and its performance will be evaluated with the test set. Figure 4.2 shows
the framework for segmentation with Active Learning and Human-in-the-loop described.

Human-in-the-loop consists of the iterative interaction with the model outputs to guide
the models to an optimum. In semantic segmentation problems, it can be implemented
by guiding the authors to correct the output prediction of the models. Annotation time
is considerably reduced as the annotators do not start the annotation from scratch.

Figure 4.2: Framework for segmentation with Active Learning and Human-in-the-loop. Own elabora-
tion.

4.4.1. U-Net for region segmentation

The proposed method consists of an end-to-end algorithm based on the implementation
of U-net architecture for image segmentation from Ronnenberg et al. (2015), to perform
whole-slide image segmentation [41]. The U-net formulation allows the detection of the
different regions in WSI from patients with an ulcerative colitis diagnosis.

The graphical abstract of the U-Net is presented in Figure 4.3, and it is comprised
of the encoder followed by the decoder. The encoder is a series of convolutional layers
that gradually reduce spatial dimensions while increasing the number of feature channels.
It extracts hierarchical features from the input image. The decoder is a symmetrical
structure that upsamples the feature maps back to the original image resolution. It
uses transposed convolutional layers to achieve this and gradually reduces the number
of feature channels. One of the distinctive features of the U-Net is the skip connections
(grey arrows in Figure 4.3) that directly connect corresponding layers between the encoder
and decoder. These connections allow the network to preserve fine-grained details during
upsampling. ReLU (Rectified Linear Unit) activations are used within the convolutional
layers. In the final layer, a Softmax activation is used to obtain the most probable class
out of the five in the images (four regions of interest and the background). The final layer
is a convolutional layer that produces the segmentation mask with five classes.
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Figure 4.3: Graphical abstract of the proposed U-Net for WSI segmentation. Own elaboration.

4.4.2. Uncertainty calculation

Active learning involves selecting the most appropriate samples to retrain the algo-
rithm optimally. For that purpose, we selected a subset of unannotated samples to eval-
uate the segmentation performance of the model. As a segmentation model, we trained
a U-Net with residual connections between the encoder and decoder. Only a qualitative
evaluation of the prediction can be made as the ground truth is unavailable for metrics
calculation. We argue that selecting the most discriminative samples to retrain the algo-
rithm will improve the model’s performance.

In this context, uncertainty has been proposed in the literature as a measure of the
informativeness of the samples [29]. One can assert that when a prediction carries higher
uncertainty, a more significant opportunity exists to enhance our knowledge by incor-
porating the actual ground truth of that particular sample into the training set. This
work also introduced three different measures for uncertainty estimation: least confident
sampling, margin sampling, and Shannon Entropy:

Least Confident Sampling : It is calculated as one minus the maximum predicted
probability. In other words, if the model assigns a high probability (close to 1) to
one class and a low probability (close to 0) to all other classes, the uncertainty
measure will be close to 0:

xLC = argmax
x

1� P✓(ŷ|x) (4.1)

where ŷ = argmaxy P✓(y|x) and P✓(y|x) is the estimated probability by the model
that data instance x belongs to the correct class y. Instances with the highest
uncertainty (lowest confidence) scores are selected for annotation. One limitation of
least confident sampling is that it solely considers the information regarding the most
likely label while disregarding information about the distribution of the remaining
labels.

Margin Sampling : The difference between the highest predicted class probability
and the second-highest predicted class probability is computed. A small margin
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suggests that the model is uncertain about the correct class, while a large margin
indicates higher confidence in the prediction:

xM = argmin
x

P✓(ŷ1|x)� P✓(ŷ2|x) (4.2)

where ŷ1 and ŷ2 are the first and second most probable labels. This sampling method
also does not consider the probabilities of all classes.

Shanon Entropy : Entropy serves as a metric to quantify the information needed
for encoding a distribution. Consequently, it is commonly regarded as a means to
assess uncertainty within machine learning tasks:

xE = argmax
x

�
X

i

P (yi|x) logP (ŷi|x) (4.3)

where yi covers all possible annotations. Entropy’s versatility in extending to prob-
abilistic multiclass annotations and accommodating more intricate structured data
points has solidified its position as the preferred option for uncertainty-based query
strategies.

4.4.3. Human-in-the-loop integration

Once the uncertainties of the images have been calculated, those with the highest
level of information are obtained and selected for correction by the pathologists. For the
calculation of the uncertainty metrics, the model obtains the prediction of the pixel-level
classes corresponding to the regions of interest. This prediction constitutes the base anno-
tation on which the pathologists had to correct those areas poorly predicted by the model
within the so-called Human-in-the-loop process. For this purpose, the images selected
with the highest uncertainty with their respective predicted annotation were uploaded to
the PIXNORMOUS annotation software. Once the image and its segmentation had been
uploaded, the pathologist modified those regions that had not been well predicted. Figure
4.4 shows an example of the Human-in-the-loop integration in the AL framework.

(a) Predicted segmentation (b) Corrected segmentation

Figure 4.4: Comparison between predicted and corrected segmentation after the Human-in-the-loop
process. Own elaboration.
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Firstly, Figure 4.4a reveals the predicted segmentation by the model. Once uploaded
to PIXNORMOUS software, with this base annotation, the specialist corrects the wrong
annotated regions according to its knowledge about the different tissue areas. Then, the
corrected segmentation in Figure 4.4b is obtained, and prepared to be added in the next
iteration of model retraining. In this way, the complete segmentations of the images with
the highest uncertainty are obtained to provide the model with more information in the
subsequent retraining process.

This protocol, which starts from the segmentation predicted by the model in that
iteration, avoids pathologists having to perform the segmentation of the new images from
scratch, having to correct only the regions where the network has performed worse. This
significantly reduces the workflow and time spent by them on image annotation, mitigating
the effort required for the improvement of the segmentation algorithm.
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Chapter 5

Experiments and results

5.1. Evaluation metrics

To facilitate the comparison of various methods and the presentation of results in
this chapter, we have chosen performance metrics commonly employed in segmentation
problems. After obtaining the model’s predictions and having access to the ground truth
(GT) for each whole-slide image, the metrics we used for evaluating the segmentation
performance of the different models are:

Categorical Dice evaluates the similarity between two sets of segmented pixels:
one produced by a segmentation model and another serving as the ground truth
reference. The Categorical Dice metric is primarily used in pixel classification prob-
lems with discrete categories:

Dice =
2 · |X \ Y |
|X|+ |Y | (5.1)

where X represents the set of pixels segmented by the model (the prediction), Y
represents the set of pixels from the ground truth, and \ represents the intersection
of sets, i.e., the number of pixels that overlap between the prediction and the ground
truth. The Dice coefficient varies between 0 and 1, where 0 indicates no overlap be-
tween the prediction and the ground truth, and 1 indicates a perfect match between
the two sets of pixels.

Intersection over Union (IoU), also known as the Jaccard Index, is a common
metric used in image segmentation tasks to evaluate the overlap between the pre-
dicted region (from a model) and the ground truth region. The following formula
expresses the IoU:

IoU =
|X \ Y |
|X [ Y | (5.2)

where [ represents the union of sets, the total number of pixels in either the pre-
diction or the ground truth (or both). The IoU metric ranges from 0 to 1, where 0
indicates no overlap between the prediction and the ground truth, and 1 indicates a
perfect match between the two regions. A higher IoU score indicates better agree-
ment between the model’s prediction and the ground truth.
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5.2. Results and discussion

After training and validating the proposed methodology explained in section 4 in
a subset of pixel-level annotated WSI, we retrained the model with the complete set
of annotated images from the training and validation subsets, comprised of 33 WSIs.
Once the final model was obtained, we performed an extensive external validation of the
algorithm on a hold-out test set of 19 images. In this context, the Dice and IoU metrics
were calculated for the initial model in the test set and were found to be 0.622 and 0.386
respectively.

Using the proposed framework, 15 new unlabelled images were selected from the WSIs
database to undertake the iterative process by Active Learning. First, the uncertainty of
each image was calculated according to the three methods explained in the section 4.4.2:
least confident sampling, margin sampling and Shanon entropy. For the calculation of
these metrics, the average uncertainty of each image was computed, considering only the
probabilities of the pixels of the regions of interest, to normalise the calculation. Table
5.1 shows the uncertainty metrics of the 15 ordered from highest to lowest according to
Shanon entropy.

Table 5.1: Uncertainty metrics for the complete AL batch. LC: Least confident sampling. M: Margin
sampling. SE: Shanon Entropy.

Image name LC M SE
01014 Rectum E_001 0.280 0.506 0.680
01014 Rectum E_002 0.260 0.534 0.625
03-06_Rectum_region_0 0.224 0.624 0.610
03-06_Rectum_region_3 0.210 0.645 0.578
12-03 Rectum_001 0.176 0.689 0.452
12-07 Rektum_002 0.164 0.716 0.435
04-06_RECTUM_002 0.161 0.722 0.430
04-12_SIGMOID_001 0.148 0.735 0.398
12-07 Rektum_001 0.144 0.746 0.386
04-12_SIGMOID_002 0.138 0.756 0.380
04-06_RECTUM_001 0.141 0.746 0.373
04-03_RECTUM_002 0.126 0.781 0.337
04-03_RECTUM_001 0.119 0.789 0.335
01010 Sigmoid D_001 0.121 0.780 0.325
12-05 Sigmoid_001 0.104 0.810 0.273

The sample with the highest uncertainty is shown below with its associated uncertainty
maps according to the least confident sampling, Margin sampling and Shannon entropy
methods, calculated at the pixel level (Figure 5.1). The uncertainty maps resolution
corresponds to the output size of the image in the model (1024x1024), and therefore, their
shape change compared with the raw WSI. It is worth noting that the margin sampling
map was inverted in the form 1�xM because, as explained in section 4.4.2, in the specific
case of margin sampling, the lowest value of the metric implies a higher uncertainty.
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Figure 5.1: WSI with the highest level of uncertainty. Own elaboration.

Looking at the resulting uncertainty maps qualitatively and the prediction of the sam-
ple shown in Figure 5.1, the model seems to have difficulties distinguishing the region
called lamina propia from other types of tissue that have no label. This could be be-
cause, as shown in Figure 3.1, the pathologists did not annotate all tissue zones, but
only annotated the regions of interest for neutrophil detection (lamina propria, cryptal
epithelium, cryptal lumen and surface epithelium) and segments of tissue were left unan-
notated, corresponding to the ’non-interest region’. As a consequence, the model confuses
and predicts in uncertain samples such as the one in Figure 5.1 the non-interest region as
lamina propria, given that in colour stain and cell structure they are very similar.
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In contrast, Figure 5.2 shows the sample with the lowest level of uncertainty according
to the Shanon entropy metric. On a qualitative level, it can be observed that most of the
pixel uncertainty values are directly 0 or very close to that minimum uncertainty value.
A higher level of uncertainty seems to be found at the edges of cryptal epithelium and
cryptal lumen structures.

Figure 5.2: WSI with the lowest level of uncertainty. Own elaboration.

Considering the average of the calculated metrics per image and the formulation of
each of them, we argue that the most appropriate selection criterion for this segmentation
problem would be the Shanon entropy. The reason for choosing this metric was that,
as explained in section 4.4.2, the Shanon entropy considers all classes’ predictions. In
contrast, the others only consider one or two probabilities. It is, therefore, the metric
that provides the most information about the distribution of probabilities.
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Afterwards, the model was re-trained first with the five samples with the highest
uncertainty to determine the number of samples needed to find a significant improvement
in network performance. For that purpose, with the preliminary model, we extracted the
prediction of the five most uncertain samples from the unlabeled batch, and we asked the
specialists to correct the annotations of these new five images (Human-in-the-loop). With
this approach, the annotation time is substantially reduced as the annotators do not start
the annotation from the beginning. The model was retrained jointly with the training
set and the five new annotated images (AL w/ 5) in the next iteration step. Finally, we
perform the external evaluation with the annotated hold-out test set to extract the test
results of this iteration. As shown in Table 5.2, the new model trained by adding the five
images with the highest uncertainty improves the Dice metric concerning the preliminary
model, while the IoU metric decreases slightly.

Based on this result, there was no significant improvement, so the pathologists were
asked to correct five more images to add the ten total images to the initial training set and
retrain the model. Thus, a new iteration was performed within the framework of Active
Learning and Human-in-the-loop, evaluating the performance of the retrained model with
the test images at the end of the process. As a result, as can be seen in table 5.2, the test
results of training with these ten additional images outperform the results of the previous
models, increasing both Dice and IoU.

Finally, despite the apparent improvement obtained by training with ten additional
corrected images, we requested specialists to correct the last five images to check if training
with 15 images would result in an even more significant improvement than with 10. This
way, we could assess the optimal number of images to correct in each iteration. Table
5.2 shows the results of the four models trained. As can be seen, the last model trained
with the training set and adding 15 corrected annotations does not improve the previous
model trained, adding the ten most uncertain samples. Therefore, we argue that the
optimal number of annotation corrections required to improve the prediction of regions of
interest in biopsies with UC through an active learning and human-in-the-loop approach
corresponds to 10 WSIs.

Table 5.2: Test results for the preliminary model and the models retrained adding the five (AL w/ 5),
the ten (AL w/ 10), and the 15 most uncertain samples (AL w/ 15).

WSI set Number of WSIs Dice IoU
Training set 33 0.622 0.386

AL w/ 5 33 + 5 0.636 0.384
AL w/ 10 33 + 10 0.651 0.415
AL w/ 15 33 + 15 0.651 0.416
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Chapter 6

Conclusions and future lines

6.1. Conclusions

The global rise in ulcerative colitis incidence presents a growing challenge for clini-
cal centres, straining their resources and management. As demonstrated in this project,
numerous scoring systems have been introduced to assess UC, encompassing both endo-
scopic and histological aspects. Recent clinical guidelines have endorsed histologic remis-
sion as the treatment objective, introducing a simplified, neutrophil-focused index known
as PHRI for assessing histologic remission. To address this, the PICaSSO project’s pri-
mary goal is to develop an automatic deep learning-based algorithm capable of predicting
histologic remission in whole-slide images. For that purpose, this work aimed to improve
the segmentation of regions of interest likely to contain neutrophils to further enhance
the accuracy of the subsequent classification of the PHRI index.

The project benefited from an extensive database comprising whole-slide images from
patients diagnosed with UC. This database was instrumental in validating the applicability
of PHRI as an index with AI potential and in developing the current project. Notably,
the dataset’s standout feature is its multicenter and international origin. While this
introduced challenges related to variability in acquisition techniques and colour staining,
it also served as a valuable means to assess the model’s robustness in predicting the diverse
regions of interest.

The dataset included pixel-level annotations for selected whole slide images, and these
annotations played a key role in the model development process. They provided critical
information by indicating the precise locations of neutrophils and other key cells, which
are essential for classifying UC according to the PHRI, as indicated in the table 2.1.
Importantly, the patient-level partitions proposed in the study were influenced by the
availability of annotations for each WSI, shaping the research approach accordingly.

Before algorithm development, an exhaustive literature review was conducted to ex-
plore novel techniques used in CAD systems for UC and the segmentation of whole-slide
images. This investigation unveiled that encoder-decoder algorithms were the cutting-
edge methods for image segmentation tasks, including WSIs. Furthermore, active learn-
ing methods were explored to enhance model performance by striking a balance between
the need for annotations from pathologists, which incurs significant time investments. In
addition to this, the review also delved into the primary uncertainty measures employed
in active learning frameworks for segmentation tasks. The objective was to extract the
most quantity of information from unlabeled images, a critical aspect of optimizing the
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active learning process.
Since PHRI is essentially a neutrophil-based scoring system, the goal in developing

the deep learning models was to improve the performance of an initial segmentation
model to identify regions where neutrophils might be present. Pixel-level data, while
valuable, can be challenging to acquire due to the time and effort required for annotation.
Nevertheless, in this project, a strategic approach was adopted to maximize the utility
of pixel-level annotations. This was achieved through the implementation of an active
learning methodology, which enabled the models to benefit from this valuable information
for enhanced performance.

The proposed active learning framework is based on the calculation of uncertainty
maps of an unlabelled set of WSIs and the aggregation of the most uncertain samples to
the training set, to obtain a more robust and accurate segmentation model. Before the
addition, from the batch selected, we extracted their predictions and pathologists were
asked to correct them. Then, the most uncertain WSIs with the corrected annotation
were aggregated to the training set to retrain de segmentation model. This process was
repeated in batches from three sizes (5, 10, 15) to find the optimum number of WSI
annotations to be corrected to improve the model without increasing unnecessarily the
implication of the pathologists.

In the last chapter, we aimed not only to present the results but also a further explain
how was the model constructed and evaluated. The most significant conclusion about
the results is that the model’s ability to segment the four regions of interest of WSI
improves when ten corrected annotations by pathologists are added to the training set.
In conclusion, we reached the goal of the project which aimed to design an automatic
deep learning-based system for segmenting histologic images before its PHRI classification
framework. As no other AL approaches have used WSI for UC diagnosis, we will present
for publication in clinical journals the algorithms and results obtained in this project.
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6.2. Future lines

One of the main limitations of the present project is the labelling strategy for the
various tissue segments, that determine the subsequent performance of the model. As
previously explained, the model gets confused sometimes and predicts the non-relevant
segments of tissue as a lamina propria, one of the interest areas, since they are very
similar. This is because pathologists did not annotate all tissue areas, but only annotated
the regions of interest for neutrophil detection, and tissue segments corresponding to the
non-interest region were left unannotated. For this reason, in the masks obtained, where
each of these areas is assigned a GT value between 1 and 4, the background and the
non-interest region were annotated as GT = 0. Despite efforts to predict the region of
non-interest, the results obtained remain unsatisfactory. Therefore, it will be imperative
to explore new approaches in future research aimed at providing the neural network with
the ability to distinguish between the region of non-interest and the lamina propria. Such
advances would substantially improve the accuracy of the neural network, leading to a
more reliable detection of the neutrophils present, thus contributing to a more accurate
estimation of the PHRI.

Another fundamental limitation of the study is the low number of annotated images
available for the initial training of the model. As mentioned above, the task of annotation
requires subject matter expertise that is only available to pathologists and is a time-
consuming task, being exhaustive in the annotations for better data quality. This is why,
as this is an initial study of this type of iterative technique applied to UC segmentation,
we had a small number of images with which to prepare the segmentation model. A
larger number of segmented images will be needed in the future to improve performance
and this is where the proposed active learning methodological framework can be of great
importance.

The segmentation problem we have faced is, as discussed throughout the document,
a step prior to full PHRI prediction for the characterisation of activity (in remission or
active) of histological images. Grading the UC disease using the PHRI can significantly
alleviate the pathologist’s workload and aid in clinical decision-making. However, ac-
curately predicting the clinical outcomes of UC patients based solely on the analysis of
histological slides or endoscopic videos remains challenging. Clinical outcomes in this
context cover various events that may occur during UC relapse phases. These events
include surgical procedures, treatment changes, or hospitalization. It’s worth noting that
the latter two are typically associated with relapse episodes where UC symptoms worsen
and clinical intervention becomes necessary.

Surgical intervention, often involving colectomy, is one such clinical outcome. Colec-
tomy is a procedure used not only for UC but also for other colon diseases like cancer and
diverticulitis. It entails the removal of the affected part of the bowel, where inflammation
or cancer has rapidly progressed, to prevent its spread to other sections of the colon [1].
Consequently, it is imperative to differentiate between active UC and phases character-
ized by inflammation that is subsiding or complete remission. Notably, early diagnosis
and improved treatments have contributed to a reduction in the incidence of colectomy in
UC cases [42]. However, it’s essential to recognize that both early and late postoperative
complications associated with colectomy should not be underestimated [43].

The development and validation of PHRI as a simplified score for UC management,
with applicability in AI-based systems, is part of a larger international project known
as PICaSSO. The overarching goal of this project is to create an integrated system that
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combines the analysis of endoscopic videos and histological evaluations to ultimately assess
the clinical outcome of UC patients.

However, at this juncture, it appears more reasonable to combine both endoscopic and
histological data. In the context of deep learning, the late fusion of multimodal informa-
tion involves merging the extracted features from different data sources. By exploring
feature fusion for endoscopic and histological data, the diagnostic capabilities of the out-
come prediction algorithm are expected to improve. One challenge to address in feature
fusion is the difference in feature sizes in the latent space. This difference arises from the
use of distinct convolutional neural network (CNN) backbone architectures, resulting in
different feature sizes. This discrepancy in feature dimensions will need to be managed
effectively to integrate the information from both modalities successfully.
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Chapter 7

Budget

7.1. Scope

This section is intended to conduct a financial assessment of the project’s economic
costs associated with the development of deep learning models for semantic segmentation
in WSIs with UC.

7.2. Partial budgets

The project’s overall budget has been subdivided into three distinct partial budgets:
personnel costs, software costs, and hardware costs. This division enables us to provide a
comprehensive breakdown and explanation of each of these individual budget components.

7.2.1. Personnel costs

This section aims to consider the human resources required to execute the project.
The project’s development has engaged the expertise of three researchers:

D Valero Laparra Pérez-Muelas, Ps.D. assistant professor (UV).

Dª Rocío del Amor del Amor, Ph.D. student (UPV - CVBLab).

D Pablo Meseguer Esbri, Ph.D. student (UPV - CVBLab).

D Fernando García Torres, master’s student.

The student can be considered a junior biomedical engineer and has taken the lead
in developing the majority of the project and writing this report. Since the master’s
thesis corresponds to 18 ECTS credits, the estimated time the student spent on project
development is approximately 450 hours.

The work received guidance from an assistant professor at the ’Universitat de València’,
who oversaw the project and reviewed the final manuscript. Simultaneously, two PhD
students from ’Universitat Politècnica de València’ supervised the development of all
project components. The breakdown of personnel costs is detailed in Table 7.1.
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Table 7.1: Breakdowns of personnel costs

Description Duration (h) Unitary cost (e/h) Total cost (e)
Assistant professor 15 30 450

Ph.D student 35 20 700
Ph.D student 50 20 1000

Student 450 12 5400
TOTAL e6650

7.2.2. Hardware costs

The following section outlines the hardware costs, which encompass expenses associ-
ated with both the personal computer and the specialized hardware resources required
for deep model training.

For the core activities of the project, such as programming and manuscript writing,
a Lenovo Legion Y520 laptop was used. This laptop is equipped with an Intel Core
i7® processor and an NVIDIA GTX 1050 graphics card. However, due to its limited
computing power, an NVIDIA DGX A100 system, owned by the CVBLab, was employed
for training the neural networks. While the overall cost of the DGX A100 system is
approximately e200,000, only one of its eight GPUs was utilized for this project, resulting
in a partial cost of e25,000. The breakdown of the hardware costs is presented in Table
7.2.

Table 7.2: Detail of hardware costs.

Description Units
(uds)

Unitary cost
(e/uds)

Useful life
(months)

Use time
(months)

Total cost
(e)

LENOVO LEGION Y520 1 999 84 8 95.14
NVIDIA DGX A100 (1 GPU) 1 25000 132 3 568.18

TOTAL e663.32

7.2.3. Software costs

In the following section, the software costs are detailed, which encompass expenses
related to licenses for computerized systems and programming environments.

It’s worth noting that some free software resources were also utilized, such as Visu-
alStudio Code software was utilized to establish a secure SSH connection between the
student’s computer and the DGX system for high-capacity GPU model training. Addi-
tionally, Overleaf for document writing and the Pytorch library for deep learning model
development in Python. These resources are not included in the table.

Matlab (Mathworks ®) in its R2019b version was employed for various tasks, including
image preprocessing tasks.

The breakdown of the software costs is presented in Table 7.3.
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Table 7.3: Detail of software costs.

Description Units
(uds)

Unitary cost
(e/uds)

Useful life
(months)

Use time
(months)

Total cost
(e)

Matlab R2019b 1 800 12 6 400
TOTAL 400e

7.3. Total project cost

In conclusion, the economic evaluation of the project is summarized in Table 7.4. The
total budget is calculated by summing the partial costs detailed in the preceding sections.

Table 7.4: Detail of the execution budget of the project.

Description Cost (e)
Personnel costs 6650
Software budget 400
Hardware costs 663.32
Total budget e7,712.32

Finally, the total cost of developing this Master’s Thesis is determined by combining
the material execution costs, general expenses, and industrial profit. The industrial profit
is calculated as 6% of the general expenses, and the general expenses are augmented by a
13% percentage. Additionally, the applicable taxes for Spain, including the Value Added
Tax (Impuesto sobre el Valor Añadido or IVA), which corresponds to 21% of the total
cost, are included. The total amount is presented in Table 7.5.

Table 7.5: Detail of the total budget of the project.

Description Cost (e)
Execution budget 7,712.32
General expenses 1,002.60
Industrial profit 462.80

SUM e9,177.72
IVA (21%) e1,927.32

TOTAL BUDGET e11,105.04

Therefore, the total projected budget is ELEVEN THOUSAND ONE HUN-
DRED AND AND FIVE EUROS AND FOUR CENTS.
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