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Abstract 
 
In recent years, deep learning has enjoyed great success in a variety of applications. 
Experimental results indicate that the performance of using deep learning is superior 
compared to traditional machine learning methods in areas such as image 
processing, computer vision, speech recognition and robotics. 

In the automotive sector, many companies are actively working to develop 
autonomous driving technologies with the goal of eliminating the human factor in 
traffic accidents and urban road congestion and making the travel more comfortable. 
However, the technologies currently used are still in relatively early stages of 
development and further research is needed. Some of the biggest problems related 
to self-driving cars include image recognition inaccuracy which involves image 
segmentation. 

This work is a technical project in which the accuracy of image recognition in traffic 
context is evaluated by comparing the performance of different edge devices. While 
numerous hardware and software can be utilized for this purpose, the comparison 
has been limited to three devices: Raspberry Pi 4, Jetson Nano and Intel Neural 
Compute Stick 2. 
 
Deep learning models were implemented on the edge devices in order to perform 
traffic sign classification and lane detection. The learning process and the 
performance of the selected edge devices is evaluated for their capacity to process 
artificial intelligence in recognizing images from a moving vehicle through the means 
of lane detection and traffic sign training. For each of these devices, advantages 
and limitations will be discussed in the context of deep learning in autonomous 
driving. 

Keywords: self-driving car, autonomous driving, traffic signs, image recognition, 
edge devices, lane detection, deep learning, computer vision, Raspberry Pi 

 

 

 

 

 

 

 

 



 
   
   
 

 

Resumen 
 
En los últimos años, el aprendizaje profundo ha cosechado un gran éxito en 
diversas aplicaciones. Los resultados experimentales indican que el rendimiento 
del uso del aprendizaje profundo es superior en comparación con los métodos 
tradicionales de aprendizaje automático en áreas como el procesamiento de 
imágenes, la visión por ordenador, el reconocimiento del habla y la robótica. 

En el sector de la automoción, muchas empresas trabajan activamente para 
desarrollar tecnologías de conducción autónoma con el objetivo de eliminar el factor 
humano en los accidentes de tráfico y la congestión de las vías urbanas y hacer 
más cómodos los desplazamientos. Sin embargo, las tecnologías utilizadas 
actualmente se encuentran aún en fases relativamente tempranas de desarrollo y 
es necesario seguir investigando. Algunos de los mayores problemas relacionados 
con los coches autoconducidos son la imprecisión en el reconocimiento de 
imágenes, que implica la segmentación de las mismas. 

Este trabajo es un proyecto técnico en el que se evalúa la precisión del 
reconocimiento de imágenes en el contexto del tráfico comparando el rendimiento 
de distintos dispositivos de borde. Aunque pueden utilizarse numerosos hardware 
y software para este fin, la comparación se ha limitado a tres dispositivos: 
Raspberry Pi 4, Jetson Nano e Intel Neural Compute Stick 2. 

Se implementaron modelos de aprendizaje profundo en los dispositivos de borde 
para realizar la clasificación de señales de tráfico y la detección de carriles. Se 
evalúa el proceso de aprendizaje y el rendimiento de los dispositivos de borde 
seleccionados por su capacidad para procesar inteligencia artificial en el 
reconocimiento de imágenes de un vehículo en movimiento a través de los medios 
de detección de carriles y formación de señales de tráfico. Para cada uno de estos 
dispositivos, se discutirán las ventajas y limitaciones en el contexto del aprendizaje 
profundo en la conducción autónoma. 

Palabras clave: coche autoconducido, conducción autónoma, señales de tráfico, 
reconocimiento de imágenes, dispositivos de borde, detección de carriles, 
aprendizaje profundo, visión por computador, Raspberry Pi. 

 

 

 

 

 



 
   
   
 

 

Resum 
  
En els darrers anys, l'aprenentatge profund ha aconseguit un gran èxit en diverses 
aplicacions. Els resultats experimentals indiquen que el rendiment de lús de 
laprenentatge profund és superior en comparació amb els mètodes tradicionals 
daprenentatge automàtic en àrees com el processament dimatges, la visió per 
ordinador, el reconeixement de la parla i la robòtica. 

Al sector de l'automoció, moltes empreses treballen activament per desenvolupar 
tecnologies de conducció autònoma amb l'objectiu d'eliminar el factor humà en els 
accidents de trànsit i la congestió de les vies urbanes i fer més còmodes els 
desplaçaments. No obstant això, les tecnologies utilitzades actualment es troben 
encara en fases relativament primerenques de desenvolupament i cal continuar 
investigant. Alguns dels problemes més importants relacionats amb els cotxes 
autoconduïts són la imprecisió en el reconeixement d'imatges, que implica la 
segmentació de les mateixes. 

Aquest treball és un projecte tècnic on s'avalua la precisió del reconeixement 
d'imatges en el context del trànsit comparant el rendiment de diferents dispositius 
de vora. Tot i que es poden utilitzar nombrosos maquinari i programari per a aquesta 
finalitat, la comparació s'ha limitat a tres dispositius: Raspberry Pi 4, Jetson Nano i 
Intel Neural Compute Stick 2. 

Es van implementar models d'aprenentatge profund als dispositius de vora per fer 
la classificació de senyals de trànsit i la detecció de carrils. Savalua el procés 
daprenentatge i el rendiment dels dispositius de vora seleccionats per la seva 
capacitat per processar intel·ligència artificial en el reconeixement dimatges dun 
vehicle en moviment a través dels mitjans de detecció de carrils i formació de 
senyals de trànsit. Per a cadascun d'aquests dispositius, es discutiran els 
avantatges i les limitacions en el context de l'aprenentatge profund en la conducció 
autònoma. 

Paraules clau: cotxe autoconduït, conducció autònoma, senyals de trànsit, 
reconeixement d'imatges, dispositius de vora, detecció de carrils, aprenentatge 
profund, visió per ordinador, Raspberry Pi.
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1 Introduction 

Deep learning as a subset of machine learning has gone through dramatic 
development in the recent years, and as a result, state-of-the-art deep learning 
techniques are being widely applied across industries. Particularly in the automotive 
domain, a wealth of potential use cases for deep learning techniques can be found 
in such areas as autonomous driving, advanced driving assistance systems and 
predictive maintenance of vehicles. These applications typically require storing and 
processing massive volumes of unstructured data, which is facilitated by the large 
neural networks utilized in deep learning. 
 

Despite the rapid development, the deep technologies are still in relatively early 
stages of development and further research is needed. One of the biggest problems 
related to self-driving cars is the inaccuracy of image classification and prediction, 
which lays the foundation for the topic of this final project. 
 

This work is a technical project in which the accuracy of image recognition in 
traffic is evaluated by comparing the performance of different edge devices. Deep 
learning methodologies serve here as the basis for classification and segmentation 
of images of driving paths and traffic signs. After testing the programming on edge 
devices, the results are analyzed in order to highlight the differences between each 
of them. 
 
 

1.1 Objective 
 
The main objective of this project is to compare the performance of different 

edge devices in the context of image recognition. While infinite opportunities for 
implementation exist, the specific area of interest here is the self-driving car 
technology, which is currently undergoing significant development and resulting in 
higher levels of automation in vehicles. 
 

In order to perform tests for comparison, a system is developed with the ability 
to read and interpret simplified traffic scenarios. Deep learning methodologies serve 
here as the basis for classification and segmentation of images of driving paths and 
traffic signs. A number of libraries are used here to train the traffic sign classification 
and lane detection models.  
 

The programming consists of a traffic sign training model and a lane detection 
algorithm, which are run on the selected edge devices. A camera is used to capture 
images of traffic signs and traffic lanes. Using Jetson Nano, Raspberry Pi 4 alone 
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and Raspberry Pi 4 together with Neural Compute Stick 2 as an accelerator, these 
images are then processed based on the trained models. The obtained results will 
be used to highlight the differences between the edge devices. 

 
 
. 



 

 

2 State of the Art Analysis 

The concept of edge learning and reliable image recognition in autonomous 
driving offers an opportunity to develop technologies that improve people’s daily 
activities, particularly through the advancement in the application of technologies 
such as artificial intelligence, machine learning and deep learning. 

In a broad sense, cars with driving assistance functions can be referred to as 
“self-driving cars”. Other terms that have been used to refer to self-driving cars 
include “autonomous vehicles”, “robocars”, “smart transportation robots (STR)” or 
“driverless cars” [1]. 

In recent years, a wealth of literature on autonomous driving studies has 
emerged from a wide range of academic disciplines. While autonomous driving is a 
classic feature in countless sci-fi movies, it is now becoming a reality and seen as 
the new modality, which will enable easier transportation in the future. One of the 
reasons that has sparked interest in the concept of unmanned vehicles is their 
potential in helping to avoid car accidents, which are typically caused by “human 
operation errors”. However, it is safe to say that their existence would improve the 
outlook of our lives in numerous ways. 

While autonomous driving has only recently been regarded as a viable solution 
to facilitate transportation, the idea is not exactly novel. Already nearly 80 years ago, 
the concept of an autonomous car was presented at the 1939 New York World’s 
Fair in the form of General Motor’s Futurama [1]. According to [2], the cornerstones 
of autonomous driving systems consist of contemporary developments in 
communication networks and wireless connectivity, the advent of precise and robust 
sensors that continuously miniaturize in size and cost, alongside with artificial 
intelligence. 

To better understand the current state of the art, it is important to first have an 

overview to what the level the development of autonomous vehicles is today. As 

demonstrated in Table 1, various levels of autonomy can be identified in self-driving 

cars. While altogether six different levels ranging from 0 to 5 have been defined, the 

current technology has not been able to create a fully automated car yet. One of the 

most advanced vehicles developed so far is the Chinese electric passenger 

carmaker Arcfox, whose new Alpha S model published in April 2021 is said to 

possess the best capabilities in self-driving to date, placing it at Level 4 [3]. 
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Level Defining Characteristics 

Level 0: No 
automation 

The driver is responsible for all core driving tasks. However, Level 
0 vehicles may still include features like automatic emergency 
braking, blind-spot warnings, and lane-departure warnings. 

Level 1: Driver 
assistance 

Vehicle navigation is controlled by the driver, but driving-assist 
features like lane centering or adaptive cruise control are included. 

Level 2: 
Partial 
automation 

Core vehicle is still controlled by the driver, but the vehicle is 
capable of using assisted-driving features like lane centering and 
adaptive cruise control simultaneously. 

Level 3: 
Conditional 
automation 

Driver is still required but is not needed to navigate or monitor the 
environment if certain criteria are met. However, the driver must 
remain ready to resume control of the vehicle once the conditions 
permitting an autonomous driving system are no longer met. 

Level 4: High 
automation 

The vehicle can carry out all driving functions and does not require 
that the driver remain ready to take control of navigation. 
However, the quality of the autonomous driving system navigation 
may decline under certain conditions such as off-road driving or 
other types of abnormal or hazardous situations. The driver may 
have the option to control the vehicle. 

Level 5: Full 
automation 

The autonomous driving system is advanced enough that the 
vehicle can carry out all driving functions no matter the conditions. 
The driver may have the option to control the vehicle. 

Table 1: Levels of autonomy in self-driving cars 
Adapted from [4] 

 
 In relation to the problem of how a self-driving car can navigate its way from 

Point A to Point B safely, a human-like observation and decision-making is required, 

which is made possible by deep learning. In order for a vehicle to make such 

observations and smart decisions about driving, at least Level 4 or ideally Level 5 

of autonomy would be required. 
 
 

2.1 Current activity in the field of autonomous driving 
  
 Autonomous driving is seen as having a potentially revolutionary impact on 

future traffic and social patterns across countries, which is why it has become the 

focus of attention on a global scale. Through countless development projects 
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worldwide, particularly in the United States and China, promising prototypes of self-

driving vehicles have been developed in recent years. 
 
 Also, governments and other decision-making units across the world are 
prepared to welcome the arrival of the era of autonomous driving. Driverless mobility 
is discussed in the “On the road to automated mobility: An EU strategy for mobility 
of the future” [5], where it is estimated that fully autonomous driving could become 
commonplace by 2030. Since its publication, the Commission has been actively 
supporting research on cooperative, connected and automated mobility. Similarly, 
according to a report issued by the Japan Cabinet Office and the Japan Automobile 
Manufacturers Association, autonomous driving could be performed on national and 
local roads as soon as 2025 [6]. 
 
 It should be pointed out that while self-driving cars are still under development, 
unmanned transportation has been in existence for more than a decade [7]. The 
example of train transportation is mentioned, in which self-driving technology has 
been successfully used for years. The SkyTrain in Vancouver, Canada and 
Yurikamome in Tokyo, Japan are listed as some of the examples of autonomous 
rail systems which effortlessly transport massive crowds of passengers on a daily 
basis. However, the introduction of self-driving cars in public roads is much higher 
in complexity due to the need to constantly interact with other vehicles and 
pedestrians and react appropriately to frequently changing traffic circumstances. 
 
 While still under development, there are currently taxis, minibuses and cars on 
roads that have already been established with this type of technology. [8] brings up 
the Google spin-off project Waymo as a well-known example which is regarded as 
the world leader in unmanned driving technology and specifically fully autonomous 
ride services. Its ride-hailing service Waymo One currently operates in the suburbs 
of Phoenix, USA with a fleet of several hundred autonomous vehicles [9]. The 
robotaxi can be ordered through a mobile app, after which the vehicle will drive to 
your location and transport you to the desired destination just like an ordinary taxi 
— except this one has no driver. For safety reasons, only the back seat is currently 
open for passengers [8]. 
 
 Waymo is certainly not the only major project in the field of autonomous 
transportation. Many manufacturers internationally have been developing and 
testing autonomous technologies in their vehicles, including General Motors and 
Pony.AI. The extensive efforts put into their development can be seen in the 
published number of kilometers traveled with autonomous cars. According to [8], 
Waymo logged 628,000 miles (about 1 million kilometers) in the year 2020, while 
GM (General Motors) Cruise reached 770,000 miles (about 1.23 million kilometers), 
and the Chinese Pony.AI logged the third highest mileage with 225,000 miles (about 
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360,000 kilometers). 
 

As demonstrated in Figure 1, most of the leading manufacturers in autonomous 
car advancements are of Chinese or American origin. According to [8], 
approximately 10% of new cars sold in China in the first half of 2020 incorporated 
Tier 2 automation technology. Furthermore, the Chinese automotive companies’ 
plans to build Tier 2 and Tier 3 autonomous driving technology vehicles by 2025 
account for 50% of all new car sales, which is estimated to reach as high as 70% 
by 2030 [10]. 
 

 
Figure 1: Autonomous test mileage in different companies [8] 

 
 

2.2 Current challenges 
Alongside the obvious benefits such as reduction of traffic congestion and 

accidents as well as facilitating our lives in general, there are many challenges and 
uncertainties that autonomous driving must overcome to be fully accepted globally. 

 
Most of the autonomous vehicles developed until now can guarantee 

autonomous driving only to a certain extent. However, to ensure for a car to achieve 
fully autonomous driving and the ability to adapt to all road conditions, it must have 
the ability to self-learn, a complete environmental perception system, a central 
decision-making system, high-precision positioning system and so on, all of which 
still require further research and development. The perception of vehicles relies on 
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sensory input devices such as cameras, radar, and lasers to allow it to perceive the 
world around it, in a way creating a digital map to follow. 
 
 Firstly, a significant challenge at this point relates to the safety concerns and 

particularly the vehicle’s ability to react correctly to unexpected situations and 

constantly changing situations. Diverse road types, complex traffic scenarios and 

extreme weather environments pose enormous challenges to the perception, 

decision-making and control systems of autonomous driving. At the same time, 

because the responsibility for safety is transferred to the vehicle, high requirements 

are imposed on the reliability of the automated driving system. The maturity of 

existing technologies, such as environmental perception, planning and decision-

making, and cable control execution, is currently insufficient to support high-level 

autonomous driving mass production applications [10]. 
 

Secondly, infrastructural challenges can also be identified. Autonomous driving 
not only involves the product of the car itself, but also requires the coordinated 
development of vehicles, networks, roads, and clouds. It also requires the 
construction of various infrastructures such as smart roads, wireless communication 
networks and high-precision location services. 
 

[6] points out that the development of transport infrastructure faces problems 
such as long investment cycles and large investment quotas, which have affected 
the progress of construction. As an example, China has been one of the forerunners 
in introducing self-driving cars to its roads. [10] predicts that autonomous vehicles 
are becoming a big business in China, but also points out that the lack of 
standardization of traffic signs and traffic lights hinders the development. Because 
Chinese drivers tend to ignore traffic rules, programming and training autonomous 
vehicles increases uncertainty. It is therefore necessary to optimize the decision-
making algorithm for Chinese roads, which may require further effort and training. 

 
Finally, the development of autonomous vehicles has a direct impact on data 

security. The self-driving car itself is a powerful information-gathering device. In the 
process of autonomous driving, geographic information, vehicle information and 
passenger information will be collected and recorded, and much of the information 
will be uploaded to the cloud for storage. Without strict management regulations, 
the leakage of a lot of sensitive information could cause national strategic security 
issues. If information security protection is lacking, vehicle data can be leaked or 
controlled remotely, leading to serious security risks that are difficult to control 
without sufficient policies and regulations on car data security [6].  
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3  Theoretical Framework of Deep Learning 

This section provides a broad overview of the concept of deep learning. 
Additionally, some of the key applications used in deep learning in the context of 
autonomous driving as well as in this thesis are defined and described more in depth. 
 
 

3.1 Deep learning  
 

Deep learning is a relatively new concept which emerged around a decade ago. 
It can be classified as a very advanced machine learning technique which imitates 
the functions of the human brain. Deep learning is a crucial element of data science, 
including statistics and predictive models. It has proven to be beneficial for data 
scientists who are tasked with collecting, analyzing, and interpreting enormous 
amounts of data, as deep learning makes this process much faster and easier [11]. 
Figure 2 illustrates how deep learning is related to machine learning and artificial 
intelligence in a broader sense. 

Figure 2: Artificial intelligence, machine learning and deep learning distinguished [12] 

 
Deep learning processes data and creates patterns, which can be used to make 

decisions exactly how a human being would [11]. In deep learning, the device can 
be trained with example data from the learning process, and it continues to learn 
more and more based on the collected information. The science behind deep 
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learning is rather complex, as it describes a family of learning algorithms rather than 
a single method that can be used to learn complex prediction models, such as multi-
layer neural networks with many hidden units [13]. With the powerful capability of 
automatic feature extraction, deep learning has achieved surprisingly excellent 
performance in applications that machine learning has not been able to overcome, 
enabling such functions that computers could not perform in the past [11]. 
 

Deep learning can be applied to countless purposes. Some examples of this 
include automatic machine translations, voice recognition, visual translations and 
cybersecurity, which are technologies that most people have already adopted to 
daily use. Over the past decade, numerous deep learning applications have 
emerged. In addition to solving classification and regression problems of traditional 
machine learning, they can also be applied to dimensionality reduction and even 
allow the computer to automatically generate text and images [14]. 
 

Enabling higher accuracy, there is significant potential for deep learning 
particularly in technologies involving image recognition. Among the most promising 
fields is the automotive industry and specifically self-driving vehicles, which is 
expected to be revolutionized by deep learning applications in the future. 
 

3.1.1 Measuring deep learning performance 
 
Deep learning can be used for both supervised and unsupervised learning. The 

success metric depends on the specific application area in which deep learning is 
applied. [15] suggests that one effective way to measure accuracy in object 
detection is by Mean Average Accuracy (mAP), which measures the degree of 
overlap between the predicted position of the object and the actual position of the 
terrain, and the average value across various categories of objects. 
 

In machine translation, accuracy can be measured by the bilingual assessment 
index, which compares candidates' translations with several basic authentic 
reference translations. Other general indicators of system performance which are 
not related to the application include performance, latency, and power, as listed in 
Figure 3. 
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Figure 3: Performance indicators [15] 
 

3.1.2 Deep learning in autonomous driving 
  
 Autonomous driving involves extremely complex multi-sectoral integration. In 

addition to traditional vehicle manufacturing, it also involves many emerging 

technologies, such as artificial intelligence and the Internet of Things. Because it is 

difficult for traditional manufacturers to form relevant technology research and 

development capabilities in a short time, this has given the industry several 

disadvantages in the production of autonomous vehicles. Technology companies 

related to engineering and technology have an excellent opportunity to enter this 

massive emerging market [16]. 
 
 In order to make the self-driving cars more intelligent, they need to be equipped 

with smart sensors and analytics tools that collect and analyze heterogeneous data 

related to passengers on-board, pedestrians, and the environment in real-time, in 

which artificial intelligence plays a significant role [17]. It is applied to the three main 

components of self-driving car technology, namely cameras, radar and lidar, which 

give the car a clear understanding of the environment so it can navigate safely [18]. 
 

Through the application of deep learning, the ultimate goal is to reduce the 
number of traffic accidents caused by human error, as well as to increase the 
general convenience of transportation. Although further development and research 
is still required before self-driving cars based on deep learning technologies can be 
mass-produced, the technology is developing rapidly. As a result, more and more 
services and products are being created for future needs. 
 
 

3.2 Edge computing 
 
The exponential use of deep learning in a variety of applications has led to cloud 

servers processing larger volumes of data than ever before. As stated by [19], while 
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deep learning algorithms are continuously being refined to deliver better results, 
centralized cloud computing as the preferred computing model is struggling to meet 
the bandwidth and latency requirements. Such potential latency constraints, when 
not fulfilled, could lead to catastrophic consequences particularly in such 
applications as autonomous driving. 
 

In the context of autonomous driving, [10] pinpoints intelligent sensing and 
perception as the most critical issues. As vehicles must first collect the information 
from sensors such as cameras and radars, and then conduct an intelligent 
perception and decision, relying entirely on vehicle-based and cloud-based 
solutions may not meet the computational capacity requirements for computational 
capacity, real-time feedback and security. 
 

For this purpose, edge computing is seen as a viable solution which offers 
sufficient capacity to reduce the server overload and guarantees low latency. This 
is particularly beneficial in applications where short response times are critical, such 
as in autonomous vehicles as well as wearables and other devices based on IoT. 
 

According to [20], the easiest way to use an edge server is to transfer all the 
computation from the terminal device to the edge server. In this case, the terminal 
device sends its data to a nearby edge server and receives the corresponding result 
after it has been processed by the server. Since edge computing involves delegating 
data processing tasks to devices at the edge of the network, as close as possible to 
data sources, this enables real-time data processing at a very high speed, which is 
a must for complex IoT solutions with machine learning capabilities. On top of that, 
it mitigates network limitations, reduces power consumption, increases security, and 
improves data privacy [21]. 

 
To distinguish the key differences between cloud computing and edge 

computing, some of the different features are compared in Table 2 as follows. 
 

Features Cloud servers Edge servers and devices 

Security 

Moderate. As sensitive 
data is shared in a public 

cloud, security and 
privacy may be 
compromised. 

High. Less sensitive data 
transferred improves privacy 

and security. 

Computing 
power 

High. Computationally 
powerful, but shared by 

many users. 

Moderate. Less powerful, but 
shared only within a limited 

area. 
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Features Cloud servers Edge servers and devices 

Latency 

High. As large volumes 
of data is exchanged in 

public networks, the 
latency can be high. 

Low. The proximity of edge 
servers/devices to data 
sources requires less 
bandwidth, therefore 

improving the latency. 

Storage capacity 
High. Large volumes of 
data can be processed 
and scaled accordingly. 

Low. Limited availability of 
resources. 

Management 
capability 

High. Easier to manage 
due to centralization. 

Low. Harder to manage due to 
distribution. 

Advantages 
Accessibility 
Scalability 

Easier to manage 

High responsiveness 
Low latency 

Security 

Table 2: Comparison of key features in cloud and edge computing 
Own elaboration based on [19] 

 
Edge computing devices are becoming increasingly efficient in their 

computational capabilities. Because of growing demand, numerous manufacturers 
have released their own versions of edge computing devices to act as nodes in the 
edge computing environment. Among the most common edge hardware are NVIDIA 
Jetson Nano, Raspberry Pi 4, Intel Neural Compute Stick, ASUS Tinker Edge R and 
Google Coral Dev Board. In this thesis, the three first-mentioned edge devices will 
be analyzed in more detail. 
 
 

3.3 Computer vision and image recognition 

 
Deep learning is regarded as the latest technology in image classification and 

target detection, which form a crucial part of autonomous driving. According to [16], 
image classification and object detection are basic computer vision tasks that are 
required in specific fields, such as video surveillance, object counting, and vehicle 
detection. This data comes naturally from cameras located at the edge of the 
network, and some commercial cameras have built-in deep learning capabilities. 
Real-time reasoning in computer vision is usually measured by the frame rate which 
can reach the camera's frame rate, usually 30 to 60 frames per second. 
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The need for edge computing in computer vision tasks is stimulated by various 
potential issues related to the technology. [16] points out that uploading camera data 
to the cloud involves certain privacy issues, particularly if the camera frame contains 
sensitive information, such as human faces or private documents. Scalability is 
mentioned as another reason why edge computing is useful in computer vision tasks 
— if many cameras load large streams of video, the upstream bandwidth to the 
cloud server can become a bottleneck. To ensure traffic safety relying increasingly 
on self-driving technology, such risks must be minimized before autonomous driving 
can be introduced on a larger scale. 
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4 Software development  

This section focuses on the software used for the project. The different libraries 
and functions present in the used software are described in detail as follows. 
 
 

4.1 Python 
 
Python is a general-purpose, high-level computer programming language which 

was created based on a dynamic type of system and an emphasis on readability 
and rapid prototyping [22]. It combines remarkable power with clear syntax and 
provides interfaces to many system calls and libraries as well as to various window 
systems, and is extensible in C or C++ or for applications requiring a programmable 
interface [22]. 
 

As a programming language, Python is highly versatile, user-friendly and 
applicable to many different classes of problems. Some of the areas covered by its 
extensive standard library include string processing (regular expressions, Unicode, 
calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-
RPC, POP, IMAP, CGI programming), software engineering (unit testing, logging, 
profiling, parsing Python code), and operating system interfaces (system calls, 
filesystems, TCP/IP sockets) [22]. 
 
 

4.2 OpenCV 
 
OpenCV (Open-Source Computer Vision Library) is an open-source computer 

vision and machine learning software library. OpenCV was built to provide a 
common infrastructure for computer vision applications. The library consists of more 
than 2,500 optimized algorithms, which includes a comprehensive set of both 
classic and state-of-the-art computer vision and machine learning algorithms.  

 
 These algorithms can be used to detect and recognize faces, identify objects, 
classify human actions in videos, track camera movements, track moving objects, 
extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch 
images together to produce a high resolution image of an entire scene, find similar 
images from an image database, remove red eyes from images taken using flash, 
follow eye movements, recognize scenery and establish markers to overlay it with 
augmented reality [23]. 
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4.3 TensorFlow and Convolutional Neural Network 
 
TensorFlow is an end-to-end open-source platform for machine learning. It has 

a comprehensive, flexible ecosystem of tools, libraries and community resources 
that allows researchers to push the state-of-the-art in ML and developers easily build 
and deploy ML powered applications [24]. 
 

Convolutional Neural Network, also known as CNN, is a common deep learning 
method often used in complex computer vision and image recognition applications. 
It can be run as a part of TensorFlow for the purpose of processing and classifying 
visual images in a highly accurate manner [25]. 
 

Before the advent of CNN, image processing was a very tedious process with a 
large amount of data. An image is made up of pixels, each of which is made up of 
colors. To demonstrate the complexity of processing a singular image of about 
500*500 pixels, as many as 500*500*3 parameters can be found, because every 
pixel requires parameters to indicate color information [25]. CNN has the ability to 
pack large parameters into a compact form, and at the same time preserve the 
features of an image. It should be noted that a typical CNN is not just a three-layer 
structure as mentioned above, but a multi-layer structure such as the LeNet-5 
network illustrated in Figure 4. 

 

 
Figure 4: The LeNet5 architecture [26] 
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5 Programming Content 

While driving on the road, self-driving vehicles use image recognition to identify 
various objects, such as pedestrians, vehicles, roads, and traffic signs. In this 
project, two of these parts, driving paths and traffic signs, are taken to observe how 
Python accomplishes the recognition process through the captured images. The 
procedure followed for this alongside the coding are presented in the following 
sections. 
 
 

5.1 Lane detection 
The lane detection function is incorporated in two files. The first one, named 

“lane_detection”, contains the function files required in the program. The other file, 
named “lane_detection_main”, is the file used to run the program. The steps of 
programming the lane detection function is visualized as follows. 

 
 

5.1.1 lane_detection 
The code for preprocessing the input images is presented in Figure 5, followed 

by a more detailed description of the steps taken. 
 

 
Figure 5: Programming for pre-processing input images 

1. Importing libraries. As Python does not contain all the libraries, a third-party 
library must be imported first. This includes NumPy and matplotlib(.pyplot).  

2. Pre-processing of input images. This procedure consists of graying, blurring 
and cannying the imported image as demonstrated in Figures 6, 7 and 8. 
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Figure 6: Graying the image  

 
Figure 7: Blurring the image 
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Figure 8: Cannying the image 

3. Overwriting unwanted areas and keeping the areas of interest in image 
analysis. 
 

 
Figure 9: The area of interest 

Based on the results shown in Figure 9, it can be observed that the road is 
deformed. This is not conducive to analyzing the results, so the resulting image 
needs to be processed further. 
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As the next step, image warping is performed through programming, the code of 
which is demonstrated in Figure 10. 
 

 
Figure 10: Programming for image warping 

 
4.  The area of interest in the image is warped as elaborated in Figure 11 

below. 
 

 
Figure 11: Warping area of interest 

Own elaboration based on [26] 
 

Warping the image is crucial for the next step, because when the vehicle is 
driving on the road, the low position of the camera results in the lane lines appearing 
to be intersecting at a distance when in reality, the lane lines are indeed parallel. 
The resulting image must therefore be processed in order to generate a “bird’s-eye 
view” of the image. 
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Figure 12: Programming for histogram to mark lanes 
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5. Determining the location of the lane by using a histogram of colors to find 
the starting points of the left, right and center lanes within the captured 
image. In order to ensure that the lane markings are detected accurately, 
the first step is to determine the maximum area of probability. This can be 
done through the use of bird’s-eye view histogram in which the peaks for 
the right and left lanes are clearly visible. Firstly, four points from the source 
image and four points from the target image are specified, and then the 
function cv2.getPerspectiveTransform() is performed. When transforming 
an image with the cv2.warpPerspective() function, a 3x3 transformation 
matrix is computed.  
 
A neural network can be taught detect multiple objects within an image by 
using a computational technique called sliding windows. As the name 
implies, the sliding window algorithm slides a window over some input array 
and applies an operation to the content under the window. The network 
then relies on a metric called intersection-over-union to pick the best box 
and non-max suppression to discard boxes that are less accurate. [29] 

 
Through the use of the sliding window search approach, different areas of 
the frame can be detected, pinpointing the regions with the highest pixel 
density and thus resulting in the correct identification of lanes. As shown in 
Figure 13, the starting point of pixels shows the most likely location of a 
specific lane line. Based on this, sliding windows running over the pixel 
coordinates are used to determine the position and direction of lanes. The 
coefficients of the line curves on both right and left lanes are computed by 
using the Numpy Polyfit method. 

 

 
Figure 13: Road line recognition [27] 
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6. As demonstrated in Figure 14, the pixel value corresponding to the column 

with the lane line is larger, and two peaks appear. These can be used to 
locate the center of the lane line in the X-direction, which then serves as the 
starting point for finding the location of the lane line in the image through the 
sliding window. 
 

 
Figure 14: Programming for parameter return values 

 
7. Establishing the return values of several required parameters in the form of 

a dictionary, as shown in Figure 15. 
 

 
Figure 15: Programming for orientation and position calculations 

 
8. Calculating the orientation and position of the vehicle relative to the center of 

the lane, as demonstrated in Figure 16. 
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Figure 16: Programming for lane line integration 

 
9. Integrating the calculated lane lines into the original image. 
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5.1.2 lane_detection_main 
All the functions must be run separately and then together to ensure correct lane 

detection. The programming used is displayed in Figure 17. 
 

 
Figure 17: Running functions for verification 

 
1. Importing the required libraries. 
2. Running each function individually to check that they deliver the desired 

results, and then running all the functions together to make sure that the lanes 
are detected correctly. 

 
 

5.2 Identification of traffic signs 
 
This part of the program is divided into three files. Firstly, “traffic_sign_training” 

is used for training the traffic sign data, and throughout the training process, the 
program is trained, verified, and tested by using pictures of the corresponding traffic 
signs. To simulate the versatility of real-life traffic scenarios, the training file used for 
the traffic sign identification function consists of 43 traffic signs commonly used in 
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traffic. Among others, these include “30 km/h”, “120 km/h”, “road works” and 
“vehicles over 3.5 metric tons prohibited”. Secondly, “traffic_sign_module” includes 
functions which are needed in the program. Finally, get_traffic_sign is the 
executable file. 

 

5.2.1 traffic_sign_training 
 

The programming used for traffic sign training is presented in Figure 18, followed 
by a brief explanation of the steps taken. 
 

 
Figure 18: Programming for path selection 

 
1. Importing the required libraries. 

 
2. Training traffic signs. The training part consists of two kinds of files. The first 

one includes the training images for each of the traffic signs. The other file, 
called ‘labels.csv’, includes the names and numbers of the traffic signs. 
These variables can be used to read and access data and labels from the 
specified directory and file within the code.  
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Figure 19: Programming for image import 

 
3. Importing all the traffic signs images used as shown in Figure 19. This part 

prepares images and labels for learning steps.  
 

 
Figure 20: Programming for splitting image data and preprocessing image 
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4. Splitting all the image data into three parts used for training, validation, and 
the rest for testing, as demonstrated in Figure 20. 
 

5. Preprocessing the image, including grayscale performance and processing 
equalization. These preprocessing functions can be used to improve the 
quality and consistency of images. In particular, they help to improve the 
quality and readability of the images, thus improving model performance. 

 

 
Figure 21: Programming for preprocessing and augmenting images 

 
6. Preprocessing all the images, iterating them, and then changing reshaping 

images into a 4D array. For now, the format of data is suitable for input into 
a model that expects 32x32 grayscale images. This preprocessing is 
typically performed to ensure the consistency and compatibility of the input 
data with the model's architecture and requirements. 
 

7. Augmenting all the images to make them more generic. Since there are too 
few traffic sign samples of certain categories in the training set, and to 
increase the diversity of training samples so that the network learns more 
stable and essential features, some common enhancements to the training 
images must be performed. This can be done by using ImageDataGenerator. 
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Figure 22: Programming for convolution neural network model 

 
8. Implementing a convolutional neural network model, as shown in Figure 22. 

The model has two convolutional blocks, and each with two convolutional 
layers followed by max-pooling, which helps in learning hierarchical 
features from the input images. The fully connected layers at the end make 
the final predictions for the classes. The dropout layers are used for 
regularization to prevent overfitting. 
 

 
Figure 23: Programming for training 

 
9. Conducting the training process by using epochs as 10 and giving 50 

samples at a time, as demonstrated in Figure 23. The code trains the model 
for the specified number of epochs while using the training data generated 
by the data generator. The validation data is used to monitor the model's 
performance during training. The purpose of the training process is to 
optimize the model parameters. 
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10.  Printing the training result and saving the result as “traffic_sign_model”. By 
evaluating the model on the test dataset, it can be assessed how well it 
generalizes to new, unseen data. Saving the model permits reusing it in 
various applications, such as later controlling of the donkey car. 
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5.2.2 traffic_sign_module 
 
The image is preprocessed for specified color removal, in order to facilitate the 
reading of the traffic signs. The programming is presented in Figure 24.  
 

 
Figure 24: Programming for specified color removal 

 
1. Importing libraries. 
2. This preprocessing function is tailored for detecting blue and red signs in 

images, and removing the specified color to read the traffic sign more clearly. 
The results obtained are exemplified by “STOP” and “60km/h” as shown in 
Figure 25. 
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Figure 25: Color removal for better traffic sign readability 

 

 
Figure 26: Programming for contour detection 

 
3. This step is used to identify and extract specific regions of interest. Detecting 

the contour and returning the contour as a rectangular box, as displayed by 
Figure 26. 
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Figure 27: Programming for image preprocessing and traffic sign number listing 

 
4. Preprocessing the image as demonstrated in Figure 27, including the running 

of grayscale and equalizing functions. The overall effect of these 
preprocessing steps is to convert the input image into a preprocessed 
grayscale image with enhanced contrast and normalized pixel values. This 
preprocessed image is often more suitable for tasks like object detection and 
classification. 
 

5. Listing the traffic sign numbers based on the feedback value. The step turns 
the image into the corresponding labeling, which is fed back into the result. 
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5.2.3 get_traffic_sign 
 

 
Figure 28: Programming for traffic sign number definition 

 
1. Determining the number of the traffic sign from the image and returning this 

value, as shown in Figure 28. 
 

2. Predicting the type of traffic signs in the image based on the training results 
and adding text to the result if it is greater than the set percentage. 
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6 Hardware Implementation 

 
For the implementation part of this thesis, a donkey car equipped with a camera 

for image recognition was used. To conduct a comparison of the image recognition 
performance in program execution, three types of hardware were selected: 
Raspberry Pi 4, Jetson Nano and Intel Neural Compute Stick 2. Prior to analysing 
the performance, these three selected hardware types alongside the donkey car 
setup are briefly introduced. 
 
 

6.1 Raspberry Pi 4 
 

Raspberry Pi, launched in 2012, is a series of small single-board 
computers (SBCs). It was developed in the United Kingdom by the Raspberry Pi 
Foundation in association with Broadcom [28]. It was originally created so that more 
people could afford to use computers. 
 

The Raspberry Pi 4B is a "plug and play" type single board computer, which 
also serves as a great starting point for learning different kinds of AI projects. Based 
on the Linux operating system, the Raspberry Pi has access to a wide range of free 
software and tools for Linux [28]. Its user-friendliness makes it suitable also for 
people with less experience to learn programming languages such as Python. It can 
also do everything one would expect a desktop computer to do, from browsing the 
web and playing HD video to creating spreadsheets, word processing and playing 
games. 

 

6.1.1 Interface of Raspberry Pi 4  
 
Raspberry Pi 4 has numerous interfaces which can be used together with 

external devices, such as the keyboard and the monitor. The different parts of the 
Raspberry Pi 4 hardware are illustrated in more detail in Figure 29. 
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Figure 29: The Raspberry Pi 4 hardware 

Own elaboration 

 

6.2 Jetson Nano 

 
The Jetson Nano development board is also a powerful small AI computer, 

which can be booted by simply inserting a microSD card with a system image. It has 
a built-in SOC system-on-chip that can parallelize neural networks, such as 
TensorFlow, PyTorch, Caffe/Caffe2, Keras and MXNet. These neural networks can 
be used for image classification, target detection, speech segmentation and 
intelligent analysis, as well as to build autonomous robots and complex AI systems 
[29]. 

 

6.2.1 Interface of Jetson Nano 
 
Jetson Nano contains numerous interfaces. Just like in the case of Raspberry 

Pi, these can be used together with external devices, such as the keyboard and the 
monitor. The different parts of the Jetson Nano hardware are described in more 
detail in Figure 30 below. 
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 Figure 30: The Jetson Nano interface 

Own elaboration 
 
 

6.3 Neural Compute Stick 2 
 
Neural Compute Stick 2, or NCS2, is a small neural network training device in 

the shape of a USB stick, which can be plugged into the host computer through the 
USB port of other devices. The composition of NCS2 is demonstrated in Figure 31 
below. 
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Figure 31: The Neural Compute Stick 2 Interface 

Own elaboration 

 
This device is often used in artificial programming at the edge where processing 

large amounts of data can become very labor-intensive. NCS2 functions as an 
accelerator, supporting the edge device CPU in running deep learning models in 
order to improve efficiency [30]. 
 

The NCS2 device is compatible with a variety of operating systems. It contains 
a built-in Intel Movidius Myriad X VPU vision processor dedicated to accelerated 
computing of neural networks [33]. The device supports TensorFlow, Caffe and 
other development frameworks. 
 

6.3.1 Connecting Diagram 
 
In this project, the camera, Raspberry Pi4 and a dual motor driver called L298N are 
linked to each other. Here, the L298N acts as a power module between the 
controller and the DC motor. It is used to simultaneously control both the speed and 
direction of the four DC motors in the autonomous vehicle constructed for the 
project. 
 
In order to control the speed of the vehicle, the input voltage is altered through the 
use of a technique called Pulse Width Modulation (PWM). This technique allows for 
the average value of the input voltage to be changed according to the width of the 
pulses, so lower average voltage applied to the DC motor slows down the motor 
speed, whereas higher average voltage amplifies the motor speed. Besides speed, 
also the spinning of the DC motors can be controlled in the autonomous vehicle by 
switching the polarity of the input voltage. When the specific switches are closed 
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simultaneously, the polarity of the voltage is reversed, and as a result, the spinning 
direction of the DC motor changes. 
 
After the camera captures the image, the Raspberry Pi4 processes it, and then 
transmits the result to the L298N to control the operation of the motor. The parts are 
connected to each other as illustrated in Figure 32. 
 

 
Figure 32: The donkey car connection diagram 

Own elaboration 

 
 

6.4 Hardware configuration comparison 
 
Both Raspberry Pi and Jetson Nano are relatively scalable as hardware devices. 

The devices provide a wealth of interfaces, allowing users to connect many practical 
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devices, such as monitors, cameras, mice and keyboards and other external 
devices. This enables users to feel like using a computer in the traditional sense. 
 

However, some differences can still be found in the design between the two 
hardware. Firstly, a significant difference in the hardware part is that Raspberry Pi 
4 includes a wireless network module, whereas Jetson Nano does not. If the user 
wants to have a wireless network module in the Jetson Nano device, additional 
modules must be purchased, which will undoubtedly increase the total cost. If one 
does not want to buy additional wireless module function, the connection must be 
established through the network cable, greatly limiting the use of the location. 
 

Some of the key differences in terms of features are gathered in Table 3 below. 
On a separate note, Neural Computer Stick 2 is not included in this table, because 
it is used as an accelerator device. 
 

 
Table 3: Comparison of hardware configuration 

Own elaboration 
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6.5 Installing the operating system 
 
As there are significant differences in the processes of installing the operating 

system for the different edge devices, this section provides a more in-depth 
description and comparison for each of them. 
 

6.5.1 Installation on Raspberry Pi 4 
 
There are two ways to install the Raspberry Pi 4 system. It is officially 

recommended to use the Raspberry Pi imager, but an alternative option is to burn 
the image directly, which may be easier. Nevertheless, in order to avoid errors, for 
first-time use it is officially recommended to use an installation tool for Raspberry Pi 
4, which is why this method was chosen for this thesis for the installation of the 
system. This was done as described in the following steps: 
 

1. Download the Raspberry Pi imager from the official website. There are two 
versions available: one for Windows and one for MacOS. When opened, the 
software interface looks as shown in Figure 33. 
 
In this software, four different operating systems are included in total, two of 
which do not include desktop environment while the other two do. One of 
them is the full version of Raspberry Pi OS, which includes Python 3.9 and 
in which some office software and programming applications are pre-
installed. Another one is the Raspberry Pi Lite version, which includes Python 
3.7. In this thesis, the Raspberry Pi Lite version is used, and the specific 
reasons for this decision will be described further on. 
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Figure 33: The Raspberry Pi installer 

 
2. Select the correct operating system. In this case, Raspberry Pi OS Full (32-

bit) was selected as when compared to Raspberry Pi OS Lite, this version 
includes more software functions, such as office software and education. 
 

 
Figure 34: Raspberry Pi OS selection 
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3. Selecting storage SD card, after which the software installs the operating 
system automatically. 

4. After installing the system, insert the SD card to the Raspberry Pi device. 
After following simple steps to setup, Raspberry Pi 4 is ready to use. 
 

6.5.2 Problems on Raspberry Pi 4 and their solutions 
 

As previously mentioned, Raspberry Pi includes two versions of Python: Version 
3.7 and Version 3.9. Users must decide which version to install according to different 
application scenarios. In this thesis, OpenCV and TensorFlow have been used as 
application programming interfaces (API) for installation, but the installation process 
is not equal in the two Python versions. 
 

Python 3.7 seemed to be compatible with both OpenCV and TensorFlow, and 
no major issues occurred during the steps of installation. However, when using 
Python 3.9, two major problems could be identified. Firstly, it turned out that 
installing TensorFlow was impossible for this version of Python. Secondly, when 
installing the OpenCV, constant issues occurred during the installation process. 
These issues as well as the solutions are presented as follows. 

 
1. An error message appears during sudo make -j1: c++: error: unrecognized 

command-line option ‘--param=ipcp-unit-growth=100000’; did you mean ‘--
param=ipa-cp-unit-growth=’?. 
Solution: Attempt to modify build.make and flags.make in the prompted 
directory, replacing all the ipcp-unit-growth inside with ipa-cp-unit-growth. 
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Figure 35: Unrecognized command line 

 
Figure 36: Files requiring modifications 

 
 

2. Import Error: Numpy.core.multiarray failed to import. 
Solution: pip install -U numpy. 
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Figure 37: Numpy.core.multiarray failed to import 

 
3. Import Error: Cannot show CV2. 

Solution: Run sudo apt-get install python3-opencv to fix it. 
 

 
Figure 38: Cannot find cv2 

 

 
Figure 39: Showing the cv2 version 

 

6.5.3 Installation on Jetson Nano 
 
For Jetson Nano, the installation was performed by burning the image directly. 

It is possible to install the system into the Jetson Nano in the same way. The detailed 
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installation process of the system is described in the steps below, supported by 
Figures 40 and 41. 

 
1. Install BalenaEtcher on the computer. 
2. Download operating systems from the official Jetson Nano website. 
3. Insert the SD memory card, using the SD Memory Card Formatter to format 

two microSD cards to FAT (both FAT16 and FAT32) file system. 
4. Click “Flash from file” and choose the previously downloaded zipped image, 

then select SD card to install systems. 
 

 
Figure 40: Zipped image selection 

 

 
Figure 41: SD card selection 

 
1. After installing the system, insert the SD card to Jetson Nano and switching the 

power on. 
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6.5.4 Problems on Jetson Nano and their solutions 
 
Running the camera on Jetson Nano requires a more extensive programming 

setup, while on Raspberry Pi it only requires cap=cv2.videocapture(0). When 
running the camera on Jetson Nano, more parameters are needed, as 
demonstrated in Figures 42 and 43. 

 

 
Figure 42: The camera code from Jetson Nano 

 
Figure 43: The camera code from Raspberry Pi 4 

 
In addition, when running a compiled program on Jetson Nano, certain 

problematic prompts appear. Before they can be fixed, it is necessary to install some 
additional software support, whereas in Raspberry Pi 4 and NCS2, such problems 
do not exist. Some examples of the problems occurring with Jetson Nano are 
presented as follows. 
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• The following error message appears: ModuleNotFoundError: No module 
named ’numpy.testing.nosetester’ 
Solution: This problem can be fixed by running scipy => 1.1.0. 

 

 
Figure 44: No module named ‘numpy.testing.nosetester 

 

• The following error message appears: Failed to find bogomips or clock in 
/proc/cpuinfo; cannot determine CPU frequency 
Solution: This problem can be fixed by running python3 heelo.py. 

 

 
Figure 45: Cannot determine CPU frequency 

• The following error message appears: ARM64 does not support NUMA – 
returning NUMA node zero 
Solution: This problem can be fixed by running apt-get install -y libcudnn8 
nvidia-cudnn8. 

 

 
Figure 46: ARM64 does not support NUMA 

 
6.5.5 Installation of Neural Computer Stick 2 

 
Because NCS2 depends on other devices with a USB interface to run, users 

need to install the driver in another device, for instance Windows or Raspbian. The 
installation method described on the official Intel website [31] can be used as a 
reference. 

 
Although the website indicates that the device can run on the Linux and Mac 

operating systems, the process is not particularly straightforward. Firstly, while the 
drive could previously be installed on the Linux system, this system is no longer 
supported. For MacOS, an older version is required, as it only can run on versions 
10.13, 10.14 or 10.15. In the end, the final composition appears as demonstrated in 
Figures 47-49. 
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Figure 47: The macOS version used 

 
Figure 48: Notification message when installing the driver on macOS 

 

 
Figure 49: Notification message when installing the driver on Jetson Nano 
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7 Results and evaluation 

In this section, the results for the comparison of running Python on Jetson Nano, 
Raspberry Pi and Neural Compute Stick 2 are presented. They will then be 
evaluated to determine which one is the most suitable for traffic sign training and 
lane detection when using Python. 
 
 

7.1 Comparison on running the training programming 
 
In order to conduct a relative comparison on different edge devices, the 

trafficSign_training file was used to run it on the Raspberry Pi 4, Jetson Nano and 
NCS2. To complete the calculation of the time the program runs on each of the 
devices, the following code was used: 
 

 
Figure 50: Programming for time calculation 

This code calculates the running time of the entire program by subtracting the start 
time from the completion time. 
 
 

7.2 Observations on Raspberry Pi 4 
 
In order to give Raspberry Pi 4 its compact and thin design, it has no cooling 

device installed on it. However, the temperature still has a certain impact on the 
running time of the program.  

 
During the tests, when turning the Raspberry Pi on, and while nothing is running 

on the device, the CPU temperature rises to around 50 to 60 celsius degrees. When 
installing libraries, such as OpenCV, Pandas and NumPy, the temperature climbs 
up to around 70 celsius degrees. Then when Raspberry Pi is running 
trafficSign_training file in room temperature of approximately 20 celsius degrees, 
the temperature of the CPU climbs up to 78 celsius degrees. 
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Figure 51: Total processing time of Raspberry Pi 4 

 

While running the code, GL-Z software can be used to monitor the GPU working 
status as seen in Figure 52. However, it is not possible to clearly determine whether 
the GPU contributes to the calculation process, because the GPU remains 
unchanged even when other programs are running. 

 

 
Figure 52: GL-Z software monitoring the GPU 

 

7.3 Observations on Jetson Nano  
 
The results seen on Jetson Nano are quite the opposite. Since the device 

includes a heat sink, the CPU temperature can be maintained between 40 and 50 
celsius degrees at all times, in addition to which the Jetson-Stat software shows that 
the GPU is working during training. The training time is also shorter compared to 
Raspberry Pi 4. 
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Figure 53: Total processing time on Jetson Nano 

 
Figure 54: Jtop software monitoring the GPU 

 

7.4 Observations on Neural Compute Stick 2  
 
The NCS2 device was run on the USB3 interface of the Raspberry Pi 4. During 

the testing phase, the device did not seem to significantly improve the running time 
on Raspberry Pi. The obtained result is presented in Figure 55. 

 

 
Figure 55: Total processing time on Raspberry Pi 4 + NCS2 

 

7.5 Edge device comparison for image processing 
speeds 
 

Speed is an important indicator in image processing, particularly in the context 
of autonomous vehicle technology where adequate reaction speed in rapidly 
changing situations is critical. The objective of this section is to detect differences 
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between the image processing speeds on the three edge devices depicted in Figure 
56, and as a result, determine which of the devices reaches the best results for 
traffic sign recognition and lane detection in terms of speed.  

 

   
 

Figure 56: Edge devices + camera 
Own elaboration 

 
In order to compare the performance of these three devices, the concept of 

Frames Per Second (FPS) is introduced here to evaluate the image processing 
speeds of the devices. FPS indicates the number of frames per second of an image 
that is displayed, and is a measure of graphics rendering performance and 
smoothness. A high FPS indicates that the image is updated faster and will therefore 
appear smoother, whereas a low FPS can cause image lag. However, while 
computing speed may affect the performance of graphics rendering, it should not be 
regarded as the only indicator. The FPS value also affected by other factors, such 
as graphics card performance and memory speed. 

 
In this project, the devices were complemented with small camera which was 

used to read varying traffic situations. To facilitate comparison during the reading 
process, two screen captures for each of the traffic signs and lanes were taken at 
random moments to obtain two randomized speed results for image recognition. 
The FPS measure is used here as a general indicator. 

 
The comparison was conducted through the following steps: 

 
1. Prior to introducing any driving paths or traffic signs to the camera, blank 

images without such elements were used to measure the standard speeds 
on the edge devices. 

  

Raspberry Pi 4 + camera Raspberry Pi 4 + NCS2 + camera Jetson Nano + camera 



 
   
   
 

 66 

2. In the next step, thirteen distinct and commonly seen traffic signs were 
introduced to the camera to see how quickly they were identified by the 
different edge devices. Here, both miniature plastic traffic signs as well as 
images displayed on a screen were used. 

 
3. Finally, self-constructed lanes were laid out firstly to verify the code’s ability 

to detect lanes, and secondly to measure the image processing speeds on 
the different edge devices. It should be noted that as the test road was built 
by hand, the side borders were not always completely parallel. As a result of 
this misalignment, the road measurements appear somewhat distorted in the 
image. 

 
Next, the code used is introduced in Figure 57. This is followed by Table 4 

presenting the randomly captured images alongside with the results measured in 
FPS which were obtained in the moment of capturing the images. 
 

 
Figure 57: Programming for time calculation 

 
 
 



 
   
   
 

 67 

 

Raspberry Pi 4 
(With camera) 

Neural Compute 
Stick 2 on 

Raspberry Pi 4  
(With camera) 

Jetson Nano 
(With camera) 

Pixels  480*240 480*240 480*240 

Without traffic sign or lane 

FPS 28~31 28~30 50~60 
 

 

   

Lane detection 

FPS 8~10 7~8 6~8 
 

 

   

Traffic sign identification 

FPS 10~15 11~17 20~24 

Stop  

   

30km/h limit 
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Traffic sign identification 

FPS 10~15 11~17 20~24 

50km/h limit 

   

60km/h limit 

   

No passing 

   

No entry  

   

Road work 
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Traffic sign identification 
FPS 10~15 11~17 20~24 

Turn right 
ahead 

   

Turn left 
ahead 

   

Bumpy road 

   

Go straight 
or right 

   

Ahead only 

   

Beware of 
ice/snow 

   
Table 4: Lane detection comparison (Own elaboration) 
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Figure 58: Comparison graph of traffic sign recognition speeds 

 
It can be concluded that while the FPS of the three devices do not differ much 

when running the lane_detection_main code, the differences are more noticeable 
when  running the get_traffic_sign. These differences are visualized in Figure 58, 
which marks the higher FPS measurement for each of the randomly captured image 
pairs during image recognition tests. 

 
As illustrated by the comparison graph, Jetson Nano is significantly faster 

regardless of the traffic sign in question. Raspberry Pi 4 and NCS2 on Raspberry Pi 
4 showed similar results, with a very slight improvement in speed in eight of the 
thirteen traffic sign recognition runs. However, based on these tests, the differences 
between Raspberry Pi 4 with NCS2 and without are not clear enough to draw 
definite conclusions on the processing speed. 
 
 

7.6 Donkey car 
As an extension to this project, a donkey car was constructed to serve as an 

intelligent small-scale car, equipped with a road and traffic sign recognition system. 
The algorithm of this system is based on deep learning and end-to-end control, 
which gives it the ability to recognize different roads and traffic signs and thus, 
enabling automatic driving. In this project, a camera was installed on the donkey car 
in order to capture data of the environment. 
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This part explains how an edge device, in this case Raspberry Pi, was used to 
run the donkey car and how the communication between software and hardware 
was realized. Figure 59 demonstrates the variety of information that can be utilized 
by the donkey car in autonomous driving. 
 

 
Figure 59: The donkey car control schematic 

Own elaboration 

 
To serve the purpose of this project, the lane detection for the donkey car was 

enabled through three stages as follows: 
 
1. Firstly, a series of images was collected through the use of code containing 

information collected in the camera file, the joystick file, the data  
collection file and the motor control file. 

2. In the next stage, the PC was used to process all the data, including the 
analysis of lane images and traffic sign training, in order to enable the 
donkey car to detect its course and take responsive action. 

3. The last step was to use all the files to control the donkey car running on the 
lane and to observe its performance. The schematic diagram is presented in 
Figure 60. 
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Figure 60: The schematic diagram 

Own elaboration 
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7.6.1 The donkey car setup 
 
In order to capture images for analysis and to put the training into practice to 
evaluate the performance on different edge devices, a donkey car was constructed 
with the following composition:  
 

• 1 x Raspberry Pi 4 
• 1 x L298 Dual Full Bridge Driver 
• 1 x Raspberry camera  
• 8 x AA size batteries 
• 1 x Powerbank (the output must be 5V/3A to drive the Raspberry Pi 4) 
• Various 3D-printed parts 
• 1 x PS4 controller 

 
Due to various size-related issues, some 3D-printed parts had to be replaced. In the 
end, the final donkey car setup is as demonstrated in Figure 61 below. 
 

 
Figure 61: The donkey car setup 

Own elaboration 

The L298N motor driver permits high voltage and can be driven by both DC 
motors and stepper motors. One driver chip can control two DC geared motors to 
perform different actions simultaneously in the voltage range of 6V to 46V. The 
module is presented in Figure 62. 
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Figure 62: L298N Motor Driver Module Pinout [32] 

 
 
7.6.2 Results on the donkey car 

 
As the final step, the previous programming is applied to a simulated traffic 

scenario. An edge device, in this case Raspberry Pi 4, is used to control the donkey 
car to determine how accurately it is able to react to an example traffic scenario. 
The camera installed on the donkey car captures images and transmits them to the 
edge device, where they are processed and used to control the speed of the motor. 
 

To test the programming, a simple traffic scenario including a curving lane and 
two traffic sign types is created. As shown in Figure 63, the donkey car collects two 
images in real time; one to determine the center of the lane to ensure the car follows 
the road direction, and the other one to identify the traffic sign. In addition, when 
encountering the traffic sign recognized by the program, the car responds with an 
appropriate decision.  
 

During the test, the motor power of the donkey car is set at 20% of the maximum 
motor power. When testing the speed limit function, upon encountering the 60 km/h 
sign, the car adjusts its speed accordingly by increasing it to 30%. When testing the 
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stop sign function, upon encountering the stop sign, the car stops for 3 seconds. 
 
 

 
Figure 63: Testing a traffic scenario 
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8 Conclusion 

While it can be concluded that each of these edge devices provides a solid 
platform for AI interference at the edge, conducting a fair comparison between them 
is not a straightforward task. In terms of hardware performance in the context of this 
thesis project, some minor differences could be detected during the tests. Speed in 
terms of FPS was selected as an indicator to determine differences between the 
edge devices. 

 
When testing image recognition speed, Jetson Nano achieved higher FPS rates 

compared to Raspberry Pi and NCS2 when there were no traffic signs or lanes in 
the camera view. Upon testing traffic sign recognition, Raspberry Pi and NCS2 
showed similar results in terms of FPS, whereas Jetson Nano performed the traffic 
sign recognition at a rate approximately 50-60% faster compared to the other two. 
Although all three devices demonstrated similar FPS rates during the tests for lane 
detection, Raspberry Pi performed slightly faster than the other two. 

 
On a more general level, some key advantages and disadvantages were 

identified for each device during the research, as well as the implementation stage. 
These are summarized in Table 5 below. 
 

Raspberry Pi 4 Jetson Nano NCS2 

Pros 

 
User-friendly interface. 
 
Suitable for beginners who 
want to get started in the 
field of AI or learn more 
about Python 
programming. 
 
Plenty of resources 
available online. 
 
Programs from other 
computer devices can run 
directly in the Raspberry 
Pi 4 with essentially no 
subsequent changes.  
 
 
 

 
Running the training code 
was significantly faster 
than with the other two 
devices. 
 
Better temperature control 
due to heat sink. 

 
Reliability (decentralized, 
network connections not 
required). 
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Raspberry Pi 4 Jetson Nano NCS2 

Cons 

 
Overheating in the CPU. 
 
The program crashes 
easily. 
 
No restart button, the only 
option is unplugging the 
power. 

 
Not recommendable for 
beginners. 
 
Compatibility issues; 
Every API must work well 
together before the 
programming can be run 
properly; running certain 
programs requires 
changes to the dictionary 
and program details to 
meet the specific needs of 
Jetson Nano. 
 
Crashes easily (e.g. 
during the installation of 
OpenCV). 
 
Lacking a restart button, 
leaving unplugging the 
power as the only option. 
 

 
Cannot be used 
independently; requires 
installation to another 
device with a USB port in 
order to be used. 
 
Tedious installation 
process. 
 
Did not work with Jetson 
Nano. 
 
The latest macOS is not 
supported. 

Table 5: Summary of differences between edge devices 
Own elaboration 
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