

MASTER’S PROGRAM IN ELECTRONIC ENGINEERING

MASTER’S THESIS

RELIABLE IMAGE RECOGNITION
IN AUTONOMOUS DRIVING:

EVALUATION OF EDGE DEVICES
FOR DEEP LEARNING SOFTWARE

AUTHOR:
YANZHANG SONG

SUPERVISORS:
VALERO LAPARRA PÉREZ-MUELAS
VICENT GIRBÉS JUAN

Declaration of Academic Integrity

 I hereby confirm that the contents of this master thesis are original, and that

no sources other than the ones mentioned in the text and listed in the references
have been used. This thesis has not been previously presented to another

examination board and has not been published.

Espoo, Finland, 26th of November, 2023

Yanzhang Song

Acknowledgements

It’s been a long and winding road. First of all, I would like to acknowledge and
give my warmest thanks to my supervisors Valero Laparra Pérez-Muelas and Vicent
Girbés Juan for their continuous guidance and patience while I carried through all
the stages of my project.

I would also like to thank the University of Valencia for giving me the fantastic
opportunity to increase my knowledge and thus, paving the road towards my
professional goals. I am deeply grateful for the kindness shown by my classmates,
particularly Camilo, Joaquín, Lucía and Jorge. You have encouraged and motivated
me along the way. Because of you, I now have many wonderful and funny memories
about my time in Valencia and I will cherish them forever.

My parents have always been there for me, supported me and made it possible
for me to pursue my dreams and study in Europe. Xie xie nimen.

Finally, thank you Erika for your endless love and support, and for constantly
pushing me to keep on going, even when I thought it was not possible.

Abstract

In recent years, deep learning has enjoyed great success in a variety of applications.
Experimental results indicate that the performance of using deep learning is superior
compared to traditional machine learning methods in areas such as image
processing, computer vision, speech recognition and robotics.

In the automotive sector, many companies are actively working to develop
autonomous driving technologies with the goal of eliminating the human factor in
traffic accidents and urban road congestion and making the travel more comfortable.
However, the technologies currently used are still in relatively early stages of
development and further research is needed. Some of the biggest problems related
to self-driving cars include image recognition inaccuracy which involves image
segmentation.

This work is a technical project in which the accuracy of image recognition in traffic
context is evaluated by comparing the performance of different edge devices. While
numerous hardware and software can be utilized for this purpose, the comparison
has been limited to three devices: Raspberry Pi 4, Jetson Nano and Intel Neural
Compute Stick 2.

Deep learning models were implemented on the edge devices in order to perform
traffic sign classification and lane detection. The learning process and the
performance of the selected edge devices is evaluated for their capacity to process
artificial intelligence in recognizing images from a moving vehicle through the means
of lane detection and traffic sign training. For each of these devices, advantages
and limitations will be discussed in the context of deep learning in autonomous
driving.

Keywords: self-driving car, autonomous driving, traffic signs, image recognition,
edge devices, lane detection, deep learning, computer vision, Raspberry Pi

Resumen

En los últimos años, el aprendizaje profundo ha cosechado un gran éxito en
diversas aplicaciones. Los resultados experimentales indican que el rendimiento
del uso del aprendizaje profundo es superior en comparación con los métodos
tradicionales de aprendizaje automático en áreas como el procesamiento de
imágenes, la visión por ordenador, el reconocimiento del habla y la robótica.

En el sector de la automoción, muchas empresas trabajan activamente para
desarrollar tecnologías de conducción autónoma con el objetivo de eliminar el factor
humano en los accidentes de tráfico y la congestión de las vías urbanas y hacer
más cómodos los desplazamientos. Sin embargo, las tecnologías utilizadas
actualmente se encuentran aún en fases relativamente tempranas de desarrollo y
es necesario seguir investigando. Algunos de los mayores problemas relacionados
con los coches autoconducidos son la imprecisión en el reconocimiento de
imágenes, que implica la segmentación de las mismas.

Este trabajo es un proyecto técnico en el que se evalúa la precisión del
reconocimiento de imágenes en el contexto del tráfico comparando el rendimiento
de distintos dispositivos de borde. Aunque pueden utilizarse numerosos hardware
y software para este fin, la comparación se ha limitado a tres dispositivos:
Raspberry Pi 4, Jetson Nano e Intel Neural Compute Stick 2.

Se implementaron modelos de aprendizaje profundo en los dispositivos de borde
para realizar la clasificación de señales de tráfico y la detección de carriles. Se
evalúa el proceso de aprendizaje y el rendimiento de los dispositivos de borde
seleccionados por su capacidad para procesar inteligencia artificial en el
reconocimiento de imágenes de un vehículo en movimiento a través de los medios
de detección de carriles y formación de señales de tráfico. Para cada uno de estos
dispositivos, se discutirán las ventajas y limitaciones en el contexto del aprendizaje
profundo en la conducción autónoma.

Palabras clave: coche autoconducido, conducción autónoma, señales de tráfico,
reconocimiento de imágenes, dispositivos de borde, detección de carriles,
aprendizaje profundo, visión por computador, Raspberry Pi.

Resum

En els darrers anys, l'aprenentatge profund ha aconseguit un gran èxit en diverses
aplicacions. Els resultats experimentals indiquen que el rendiment de lús de
laprenentatge profund és superior en comparació amb els mètodes tradicionals
daprenentatge automàtic en àrees com el processament dimatges, la visió per
ordinador, el reconeixement de la parla i la robòtica.

Al sector de l'automoció, moltes empreses treballen activament per desenvolupar
tecnologies de conducció autònoma amb l'objectiu d'eliminar el factor humà en els
accidents de trànsit i la congestió de les vies urbanes i fer més còmodes els
desplaçaments. No obstant això, les tecnologies utilitzades actualment es troben
encara en fases relativament primerenques de desenvolupament i cal continuar
investigant. Alguns dels problemes més importants relacionats amb els cotxes
autoconduïts són la imprecisió en el reconeixement d'imatges, que implica la
segmentació de les mateixes.

Aquest treball és un projecte tècnic on s'avalua la precisió del reconeixement
d'imatges en el context del trànsit comparant el rendiment de diferents dispositius
de vora. Tot i que es poden utilitzar nombrosos maquinari i programari per a aquesta
finalitat, la comparació s'ha limitat a tres dispositius: Raspberry Pi 4, Jetson Nano i
Intel Neural Compute Stick 2.

Es van implementar models d'aprenentatge profund als dispositius de vora per fer
la classificació de senyals de trànsit i la detecció de carrils. Savalua el procés
daprenentatge i el rendiment dels dispositius de vora seleccionats per la seva
capacitat per processar intel·ligència artificial en el reconeixement dimatges dun
vehicle en moviment a través dels mitjans de detecció de carrils i formació de
senyals de trànsit. Per a cadascun d'aquests dispositius, es discutiran els
avantatges i les limitacions en el context de l'aprenentatge profund en la conducció
autònoma.

Paraules clau: cotxe autoconduït, conducció autònoma, senyals de trànsit,
reconeixement d'imatges, dispositius de vora, detecció de carrils, aprenentatge
profund, visió per ordinador, Raspberry Pi.

 9

Index

1 Introduction ... 14

1.1 Objective .. 14

2 State of the Art Analysis ... 16

2.1 Current activity in the field of autonomous driving .. 17

2.2 Current challenges .. 19

3 Theoretical Framework of Deep Learning ... 21

3.1 Deep learning.. 21

3.1.1 Measuring deep learning performance ... 22

3.1.2 Deep learning in autonomous driving ... 23

3.2 Edge computing .. 23

3.3 Computer vision and image recognition ... 25

4 Software development ... 27

4.1 Python .. 27

4.2 OpenCV .. 27

4.3 TensorFlow and Convolutional Neural Network ... 28

5 Programming Content.. 29

5.1 Lane detection .. 29

5.1.1 lane_detection ... 29

5.1.2 lane_detection_main.. 37

5.2 Identification of traffic signs .. 37

5.2.1 traffic_sign_training ... 38

5.2.2 traffic_sign_module ... 43

5.2.3 get_traffic_sign .. 46

6 Hardware Implementation ... 47

6.1 Raspberry Pi 4 ... 47

6.1.1 Interface of Raspberry Pi 4.. 47

6.2 Jetson Nano .. 48

6.2.1 Interface of Jetson Nano ... 48

6.3 Neural Compute Stick 2 ... 49

 10

6.3.1 Connecting Diagram ... 50

6.4 Hardware configuration comparison.. 51

6.5 Installing the operating system .. 53

6.5.1 Installation on Raspberry Pi 4 ... 53

6.5.2 Problems on Raspberry Pi 4 and their solutions..................................... 55

6.5.3 Installation on Jetson Nano .. 57

6.5.4 Problems on Jetson Nano and their solutions .. 59

6.5.5 Installation of Neural Computer Stick 2 ... 60

7 Results and evaluation ... 62

7.1 Comparison on running the training programming ... 62

7.2 Observations on Raspberry Pi 4 ... 62

7.3 Observations on Jetson Nano .. 63

7.4 Observations on Neural Compute Stick 2 ... 64

7.5 Edge device comparison for image processing speeds 64

7.6 Donkey car .. 70

7.6.1 The donkey car setup ... 73

7.6.2 Results on the donkey car ... 74

8 Conclusion ... 76

9 References ... 78

 11

Index of Figures

Figure 1: Autonomous test mileage in different companies [8] 19

Figure 2: Artificial intelligence, machine learning and deep learning distinguished 21

Figure 3: Performance indicators .. 23

Figure 4: The LeNet5 architecture ... 28

Figure 5: Programming for pre-processing input images .. 29

Figure 6: Graying the image.. 30

Figure 7: Blurring the image ... 30

Figure 8: Cannying the image .. 31

Figure 9: The area of interest.. 31

Figure 10: Programming for image warping ... 32

Figure 11: Warping area of interest .. 32

Figure 12: Programming for histogram to mark lanes .. 33

Figure 13: Road line recognition ... 34

Figure 14: Programming for parameter return values ... 35

Figure 15: Programming for orientation and position calculations 35

Figure 16: Programming for lane line integration ... 36

Figure 17: Running functions for verification .. 37

Figure 18: Programming for path selection .. 38

Figure 19: Programming for image import.. 39

Figure 20: Programming for splitting image data and preprocessing image.............. 39

Figure 21: Programming for preprocessing and augmenting images 40

Figure 22: Programming for convolution neural network model 41

Figure 23: Programming for training .. 41

Figure 24: Programming for specified color removal .. 43

Figure 25: Color removal for better traffic sign readability .. 44

Figure 26: Programming for contour detection ... 44

Figure 27: Programming for image preprocessing and traffic sign number listing .. 45

Figure 28: Programming for traffic sign number definition ... 46

Figure 29: The Raspberry Pi 4 hardware ... 48

Figure 30: The Jetson Nano interface .. 49

Figure 31: The Neural Compute Stick 2 Interface ... 50

Figure 32: The donkey car connection diagram .. 51

Figure 33: The Raspberry Pi installer ... 54

 12

Figure 34: Raspberry Pi OS selection ... 54

Figure 35: Unrecognized command line .. 56

Figure 36: Files requiring modifications .. 56

Figure 37: Numpy.core.multiarray failed to import ... 57

Figure 38: Cannot find cv2 ... 57

Figure 39: Showing the cv2 version .. 57

Figure 40: Zipped image selection .. 58

Figure 41: SD card selection ... 58

Figure 42: The camera code from Jetson Nano ... 59

Figure 43: The camera code from Raspberry Pi 4 ... 59

Figure 44: No module named ‘numpy.testing.nosetester ... 60

Figure 45: Cannot determine CPU frequency ... 60

Figure 46: ARM64 does not support NUMA .. 60

Figure 47: The macOS version used ... 61

Figure 48: Notification message when installing the driver on macOS 61

Figure 49: Notification message when installing the driver on Jetson Nano 61

Figure 50: Programming for time calculation ... 62

Figure 51: Total processing time of Raspberry Pi 4 ... 63

Figure 52: GL-Z software monitoring the GPU ... 63

Figure 53: Total processing time on Jetson Nano .. 64

Figure 54: Jtop software monitoring the GPU .. 64

Figure 55: Total processing time on Raspberry Pi 4 + NCS2 ... 64

Figure 56: Edge devices + camera... 65

Figure 57: Programming for time calculation ... 66

Figure 58: Comparison graph of traffic sign recognition speeds 70

Figure 59: The donkey car control schematic .. 71

Figure 60: The schematic diagram .. 72

Figure 61: The donkey car setup.. 73

Figure 62: L298N Motor Driver Module Pinout .. 74

Figure 63: Testing a traffic scenario ... 75

Index of Tables

Table 1: Levels of autonomy in self-driving cars ...17

Table 2: Comparison of key features in cloud and edge computing...........................25

 13

Table 3: Comparison of hardware configuration ... 52

Table 4: Lane detection comparison ... 69

Table 5: Summary of differences between edge devices ... 77

 14

1 Introduction

Deep learning as a subset of machine learning has gone through dramatic
development in the recent years, and as a result, state-of-the-art deep learning
techniques are being widely applied across industries. Particularly in the automotive
domain, a wealth of potential use cases for deep learning techniques can be found
in such areas as autonomous driving, advanced driving assistance systems and
predictive maintenance of vehicles. These applications typically require storing and
processing massive volumes of unstructured data, which is facilitated by the large
neural networks utilized in deep learning.

Despite the rapid development, the deep technologies are still in relatively early
stages of development and further research is needed. One of the biggest problems
related to self-driving cars is the inaccuracy of image classification and prediction,
which lays the foundation for the topic of this final project.

This work is a technical project in which the accuracy of image recognition in
traffic is evaluated by comparing the performance of different edge devices. Deep
learning methodologies serve here as the basis for classification and segmentation
of images of driving paths and traffic signs. After testing the programming on edge
devices, the results are analyzed in order to highlight the differences between each
of them.

1.1 Objective

The main objective of this project is to compare the performance of different

edge devices in the context of image recognition. While infinite opportunities for
implementation exist, the specific area of interest here is the self-driving car
technology, which is currently undergoing significant development and resulting in
higher levels of automation in vehicles.

In order to perform tests for comparison, a system is developed with the ability
to read and interpret simplified traffic scenarios. Deep learning methodologies serve
here as the basis for classification and segmentation of images of driving paths and
traffic signs. A number of libraries are used here to train the traffic sign classification
and lane detection models.

The programming consists of a traffic sign training model and a lane detection
algorithm, which are run on the selected edge devices. A camera is used to capture
images of traffic signs and traffic lanes. Using Jetson Nano, Raspberry Pi 4 alone

 15

and Raspberry Pi 4 together with Neural Compute Stick 2 as an accelerator, these
images are then processed based on the trained models. The obtained results will
be used to highlight the differences between the edge devices.

.

2 State of the Art Analysis

The concept of edge learning and reliable image recognition in autonomous
driving offers an opportunity to develop technologies that improve people’s daily
activities, particularly through the advancement in the application of technologies
such as artificial intelligence, machine learning and deep learning.

In a broad sense, cars with driving assistance functions can be referred to as
“self-driving cars”. Other terms that have been used to refer to self-driving cars
include “autonomous vehicles”, “robocars”, “smart transportation robots (STR)” or
“driverless cars” [1].

In recent years, a wealth of literature on autonomous driving studies has
emerged from a wide range of academic disciplines. While autonomous driving is a
classic feature in countless sci-fi movies, it is now becoming a reality and seen as
the new modality, which will enable easier transportation in the future. One of the
reasons that has sparked interest in the concept of unmanned vehicles is their
potential in helping to avoid car accidents, which are typically caused by “human
operation errors”. However, it is safe to say that their existence would improve the
outlook of our lives in numerous ways.

While autonomous driving has only recently been regarded as a viable solution
to facilitate transportation, the idea is not exactly novel. Already nearly 80 years ago,
the concept of an autonomous car was presented at the 1939 New York World’s
Fair in the form of General Motor’s Futurama [1]. According to [2], the cornerstones
of autonomous driving systems consist of contemporary developments in
communication networks and wireless connectivity, the advent of precise and robust
sensors that continuously miniaturize in size and cost, alongside with artificial
intelligence.

To better understand the current state of the art, it is important to first have an

overview to what the level the development of autonomous vehicles is today. As

demonstrated in Table 1, various levels of autonomy can be identified in self-driving

cars. While altogether six different levels ranging from 0 to 5 have been defined, the

current technology has not been able to create a fully automated car yet. One of the

most advanced vehicles developed so far is the Chinese electric passenger

carmaker Arcfox, whose new Alpha S model published in April 2021 is said to

possess the best capabilities in self-driving to date, placing it at Level 4 [3].

 17

Level Defining Characteristics

Level 0: No
automation

The driver is responsible for all core driving tasks. However, Level
0 vehicles may still include features like automatic emergency
braking, blind-spot warnings, and lane-departure warnings.

Level 1: Driver
assistance

Vehicle navigation is controlled by the driver, but driving-assist
features like lane centering or adaptive cruise control are included.

Level 2:
Partial
automation

Core vehicle is still controlled by the driver, but the vehicle is
capable of using assisted-driving features like lane centering and
adaptive cruise control simultaneously.

Level 3:
Conditional
automation

Driver is still required but is not needed to navigate or monitor the
environment if certain criteria are met. However, the driver must
remain ready to resume control of the vehicle once the conditions
permitting an autonomous driving system are no longer met.

Level 4: High
automation

The vehicle can carry out all driving functions and does not require
that the driver remain ready to take control of navigation.
However, the quality of the autonomous driving system navigation
may decline under certain conditions such as off-road driving or
other types of abnormal or hazardous situations. The driver may
have the option to control the vehicle.

Level 5: Full
automation

The autonomous driving system is advanced enough that the
vehicle can carry out all driving functions no matter the conditions.
The driver may have the option to control the vehicle.

Table 1: Levels of autonomy in self-driving cars
Adapted from [4]

 In relation to the problem of how a self-driving car can navigate its way from

Point A to Point B safely, a human-like observation and decision-making is required,

which is made possible by deep learning. In order for a vehicle to make such

observations and smart decisions about driving, at least Level 4 or ideally Level 5

of autonomy would be required.

2.1 Current activity in the field of autonomous driving

 Autonomous driving is seen as having a potentially revolutionary impact on

future traffic and social patterns across countries, which is why it has become the

focus of attention on a global scale. Through countless development projects

 18

worldwide, particularly in the United States and China, promising prototypes of self-

driving vehicles have been developed in recent years.

 Also, governments and other decision-making units across the world are
prepared to welcome the arrival of the era of autonomous driving. Driverless mobility
is discussed in the “On the road to automated mobility: An EU strategy for mobility
of the future” [5], where it is estimated that fully autonomous driving could become
commonplace by 2030. Since its publication, the Commission has been actively
supporting research on cooperative, connected and automated mobility. Similarly,
according to a report issued by the Japan Cabinet Office and the Japan Automobile
Manufacturers Association, autonomous driving could be performed on national and
local roads as soon as 2025 [6].

 It should be pointed out that while self-driving cars are still under development,
unmanned transportation has been in existence for more than a decade [7]. The
example of train transportation is mentioned, in which self-driving technology has
been successfully used for years. The SkyTrain in Vancouver, Canada and
Yurikamome in Tokyo, Japan are listed as some of the examples of autonomous
rail systems which effortlessly transport massive crowds of passengers on a daily
basis. However, the introduction of self-driving cars in public roads is much higher
in complexity due to the need to constantly interact with other vehicles and
pedestrians and react appropriately to frequently changing traffic circumstances.

 While still under development, there are currently taxis, minibuses and cars on
roads that have already been established with this type of technology. [8] brings up
the Google spin-off project Waymo as a well-known example which is regarded as
the world leader in unmanned driving technology and specifically fully autonomous
ride services. Its ride-hailing service Waymo One currently operates in the suburbs
of Phoenix, USA with a fleet of several hundred autonomous vehicles [9]. The
robotaxi can be ordered through a mobile app, after which the vehicle will drive to
your location and transport you to the desired destination just like an ordinary taxi
— except this one has no driver. For safety reasons, only the back seat is currently
open for passengers [8].

 Waymo is certainly not the only major project in the field of autonomous
transportation. Many manufacturers internationally have been developing and
testing autonomous technologies in their vehicles, including General Motors and
Pony.AI. The extensive efforts put into their development can be seen in the
published number of kilometers traveled with autonomous cars. According to [8],
Waymo logged 628,000 miles (about 1 million kilometers) in the year 2020, while
GM (General Motors) Cruise reached 770,000 miles (about 1.23 million kilometers),
and the Chinese Pony.AI logged the third highest mileage with 225,000 miles (about

 19

360,000 kilometers).

As demonstrated in Figure 1, most of the leading manufacturers in autonomous
car advancements are of Chinese or American origin. According to [8],
approximately 10% of new cars sold in China in the first half of 2020 incorporated
Tier 2 automation technology. Furthermore, the Chinese automotive companies’
plans to build Tier 2 and Tier 3 autonomous driving technology vehicles by 2025
account for 50% of all new car sales, which is estimated to reach as high as 70%
by 2030 [10].

Figure 1: Autonomous test mileage in different companies [8]

2.2 Current challenges
Alongside the obvious benefits such as reduction of traffic congestion and

accidents as well as facilitating our lives in general, there are many challenges and
uncertainties that autonomous driving must overcome to be fully accepted globally.

Most of the autonomous vehicles developed until now can guarantee

autonomous driving only to a certain extent. However, to ensure for a car to achieve
fully autonomous driving and the ability to adapt to all road conditions, it must have
the ability to self-learn, a complete environmental perception system, a central
decision-making system, high-precision positioning system and so on, all of which
still require further research and development. The perception of vehicles relies on

 20

sensory input devices such as cameras, radar, and lasers to allow it to perceive the
world around it, in a way creating a digital map to follow.

 Firstly, a significant challenge at this point relates to the safety concerns and

particularly the vehicle’s ability to react correctly to unexpected situations and

constantly changing situations. Diverse road types, complex traffic scenarios and

extreme weather environments pose enormous challenges to the perception,

decision-making and control systems of autonomous driving. At the same time,

because the responsibility for safety is transferred to the vehicle, high requirements

are imposed on the reliability of the automated driving system. The maturity of

existing technologies, such as environmental perception, planning and decision-

making, and cable control execution, is currently insufficient to support high-level

autonomous driving mass production applications [10].

Secondly, infrastructural challenges can also be identified. Autonomous driving
not only involves the product of the car itself, but also requires the coordinated
development of vehicles, networks, roads, and clouds. It also requires the
construction of various infrastructures such as smart roads, wireless communication
networks and high-precision location services.

[6] points out that the development of transport infrastructure faces problems
such as long investment cycles and large investment quotas, which have affected
the progress of construction. As an example, China has been one of the forerunners
in introducing self-driving cars to its roads. [10] predicts that autonomous vehicles
are becoming a big business in China, but also points out that the lack of
standardization of traffic signs and traffic lights hinders the development. Because
Chinese drivers tend to ignore traffic rules, programming and training autonomous
vehicles increases uncertainty. It is therefore necessary to optimize the decision-
making algorithm for Chinese roads, which may require further effort and training.

Finally, the development of autonomous vehicles has a direct impact on data

security. The self-driving car itself is a powerful information-gathering device. In the
process of autonomous driving, geographic information, vehicle information and
passenger information will be collected and recorded, and much of the information
will be uploaded to the cloud for storage. Without strict management regulations,
the leakage of a lot of sensitive information could cause national strategic security
issues. If information security protection is lacking, vehicle data can be leaked or
controlled remotely, leading to serious security risks that are difficult to control
without sufficient policies and regulations on car data security [6].

 21

3 Theoretical Framework of Deep Learning

This section provides a broad overview of the concept of deep learning.
Additionally, some of the key applications used in deep learning in the context of
autonomous driving as well as in this thesis are defined and described more in depth.

3.1 Deep learning

Deep learning is a relatively new concept which emerged around a decade ago.
It can be classified as a very advanced machine learning technique which imitates
the functions of the human brain. Deep learning is a crucial element of data science,
including statistics and predictive models. It has proven to be beneficial for data
scientists who are tasked with collecting, analyzing, and interpreting enormous
amounts of data, as deep learning makes this process much faster and easier [11].
Figure 2 illustrates how deep learning is related to machine learning and artificial
intelligence in a broader sense.

Figure 2: Artificial intelligence, machine learning and deep learning distinguished [12]

Deep learning processes data and creates patterns, which can be used to make

decisions exactly how a human being would [11]. In deep learning, the device can
be trained with example data from the learning process, and it continues to learn
more and more based on the collected information. The science behind deep

 22

learning is rather complex, as it describes a family of learning algorithms rather than
a single method that can be used to learn complex prediction models, such as multi-
layer neural networks with many hidden units [13]. With the powerful capability of
automatic feature extraction, deep learning has achieved surprisingly excellent
performance in applications that machine learning has not been able to overcome,
enabling such functions that computers could not perform in the past [11].

Deep learning can be applied to countless purposes. Some examples of this
include automatic machine translations, voice recognition, visual translations and
cybersecurity, which are technologies that most people have already adopted to
daily use. Over the past decade, numerous deep learning applications have
emerged. In addition to solving classification and regression problems of traditional
machine learning, they can also be applied to dimensionality reduction and even
allow the computer to automatically generate text and images [14].

Enabling higher accuracy, there is significant potential for deep learning
particularly in technologies involving image recognition. Among the most promising
fields is the automotive industry and specifically self-driving vehicles, which is
expected to be revolutionized by deep learning applications in the future.

3.1.1 Measuring deep learning performance

Deep learning can be used for both supervised and unsupervised learning. The

success metric depends on the specific application area in which deep learning is
applied. [15] suggests that one effective way to measure accuracy in object
detection is by Mean Average Accuracy (mAP), which measures the degree of
overlap between the predicted position of the object and the actual position of the
terrain, and the average value across various categories of objects.

In machine translation, accuracy can be measured by the bilingual assessment
index, which compares candidates' translations with several basic authentic
reference translations. Other general indicators of system performance which are
not related to the application include performance, latency, and power, as listed in
Figure 3.

 23

Figure 3: Performance indicators [15]

3.1.2 Deep learning in autonomous driving

 Autonomous driving involves extremely complex multi-sectoral integration. In

addition to traditional vehicle manufacturing, it also involves many emerging

technologies, such as artificial intelligence and the Internet of Things. Because it is

difficult for traditional manufacturers to form relevant technology research and

development capabilities in a short time, this has given the industry several

disadvantages in the production of autonomous vehicles. Technology companies

related to engineering and technology have an excellent opportunity to enter this

massive emerging market [16].

 In order to make the self-driving cars more intelligent, they need to be equipped

with smart sensors and analytics tools that collect and analyze heterogeneous data

related to passengers on-board, pedestrians, and the environment in real-time, in

which artificial intelligence plays a significant role [17]. It is applied to the three main

components of self-driving car technology, namely cameras, radar and lidar, which

give the car a clear understanding of the environment so it can navigate safely [18].

Through the application of deep learning, the ultimate goal is to reduce the
number of traffic accidents caused by human error, as well as to increase the
general convenience of transportation. Although further development and research
is still required before self-driving cars based on deep learning technologies can be
mass-produced, the technology is developing rapidly. As a result, more and more
services and products are being created for future needs.

3.2 Edge computing

The exponential use of deep learning in a variety of applications has led to cloud

servers processing larger volumes of data than ever before. As stated by [19], while

 24

deep learning algorithms are continuously being refined to deliver better results,
centralized cloud computing as the preferred computing model is struggling to meet
the bandwidth and latency requirements. Such potential latency constraints, when
not fulfilled, could lead to catastrophic consequences particularly in such
applications as autonomous driving.

In the context of autonomous driving, [10] pinpoints intelligent sensing and
perception as the most critical issues. As vehicles must first collect the information
from sensors such as cameras and radars, and then conduct an intelligent
perception and decision, relying entirely on vehicle-based and cloud-based
solutions may not meet the computational capacity requirements for computational
capacity, real-time feedback and security.

For this purpose, edge computing is seen as a viable solution which offers
sufficient capacity to reduce the server overload and guarantees low latency. This
is particularly beneficial in applications where short response times are critical, such
as in autonomous vehicles as well as wearables and other devices based on IoT.

According to [20], the easiest way to use an edge server is to transfer all the
computation from the terminal device to the edge server. In this case, the terminal
device sends its data to a nearby edge server and receives the corresponding result
after it has been processed by the server. Since edge computing involves delegating
data processing tasks to devices at the edge of the network, as close as possible to
data sources, this enables real-time data processing at a very high speed, which is
a must for complex IoT solutions with machine learning capabilities. On top of that,
it mitigates network limitations, reduces power consumption, increases security, and
improves data privacy [21].

To distinguish the key differences between cloud computing and edge

computing, some of the different features are compared in Table 2 as follows.

Features Cloud servers Edge servers and devices

Security

Moderate. As sensitive
data is shared in a public

cloud, security and
privacy may be
compromised.

High. Less sensitive data
transferred improves privacy

and security.

Computing
power

High. Computationally
powerful, but shared by

many users.

Moderate. Less powerful, but
shared only within a limited

area.

 25

Features Cloud servers Edge servers and devices

Latency

High. As large volumes
of data is exchanged in

public networks, the
latency can be high.

Low. The proximity of edge
servers/devices to data
sources requires less
bandwidth, therefore

improving the latency.

Storage capacity
High. Large volumes of
data can be processed
and scaled accordingly.

Low. Limited availability of
resources.

Management
capability

High. Easier to manage
due to centralization.

Low. Harder to manage due to
distribution.

Advantages
Accessibility
Scalability

Easier to manage

High responsiveness
Low latency

Security

Table 2: Comparison of key features in cloud and edge computing
Own elaboration based on [19]

Edge computing devices are becoming increasingly efficient in their

computational capabilities. Because of growing demand, numerous manufacturers
have released their own versions of edge computing devices to act as nodes in the
edge computing environment. Among the most common edge hardware are NVIDIA
Jetson Nano, Raspberry Pi 4, Intel Neural Compute Stick, ASUS Tinker Edge R and
Google Coral Dev Board. In this thesis, the three first-mentioned edge devices will
be analyzed in more detail.

3.3 Computer vision and image recognition

Deep learning is regarded as the latest technology in image classification and

target detection, which form a crucial part of autonomous driving. According to [16],
image classification and object detection are basic computer vision tasks that are
required in specific fields, such as video surveillance, object counting, and vehicle
detection. This data comes naturally from cameras located at the edge of the
network, and some commercial cameras have built-in deep learning capabilities.
Real-time reasoning in computer vision is usually measured by the frame rate which
can reach the camera's frame rate, usually 30 to 60 frames per second.

 26

The need for edge computing in computer vision tasks is stimulated by various
potential issues related to the technology. [16] points out that uploading camera data
to the cloud involves certain privacy issues, particularly if the camera frame contains
sensitive information, such as human faces or private documents. Scalability is
mentioned as another reason why edge computing is useful in computer vision tasks
— if many cameras load large streams of video, the upstream bandwidth to the
cloud server can become a bottleneck. To ensure traffic safety relying increasingly
on self-driving technology, such risks must be minimized before autonomous driving
can be introduced on a larger scale.

 27

4 Software development

This section focuses on the software used for the project. The different libraries
and functions present in the used software are described in detail as follows.

4.1 Python

Python is a general-purpose, high-level computer programming language which

was created based on a dynamic type of system and an emphasis on readability
and rapid prototyping [22]. It combines remarkable power with clear syntax and
provides interfaces to many system calls and libraries as well as to various window
systems, and is extensible in C or C++ or for applications requiring a programmable
interface [22].

As a programming language, Python is highly versatile, user-friendly and
applicable to many different classes of problems. Some of the areas covered by its
extensive standard library include string processing (regular expressions, Unicode,
calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-
RPC, POP, IMAP, CGI programming), software engineering (unit testing, logging,
profiling, parsing Python code), and operating system interfaces (system calls,
filesystems, TCP/IP sockets) [22].

4.2 OpenCV

OpenCV (Open-Source Computer Vision Library) is an open-source computer

vision and machine learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications. The library consists of more
than 2,500 optimized algorithms, which includes a comprehensive set of both
classic and state-of-the-art computer vision and machine learning algorithms.

 These algorithms can be used to detect and recognize faces, identify objects,
classify human actions in videos, track camera movements, track moving objects,
extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch
images together to produce a high resolution image of an entire scene, find similar
images from an image database, remove red eyes from images taken using flash,
follow eye movements, recognize scenery and establish markers to overlay it with
augmented reality [23].

 28

4.3 TensorFlow and Convolutional Neural Network

TensorFlow is an end-to-end open-source platform for machine learning. It has

a comprehensive, flexible ecosystem of tools, libraries and community resources
that allows researchers to push the state-of-the-art in ML and developers easily build
and deploy ML powered applications [24].

Convolutional Neural Network, also known as CNN, is a common deep learning
method often used in complex computer vision and image recognition applications.
It can be run as a part of TensorFlow for the purpose of processing and classifying
visual images in a highly accurate manner [25].

Before the advent of CNN, image processing was a very tedious process with a
large amount of data. An image is made up of pixels, each of which is made up of
colors. To demonstrate the complexity of processing a singular image of about
500*500 pixels, as many as 500*500*3 parameters can be found, because every
pixel requires parameters to indicate color information [25]. CNN has the ability to
pack large parameters into a compact form, and at the same time preserve the
features of an image. It should be noted that a typical CNN is not just a three-layer
structure as mentioned above, but a multi-layer structure such as the LeNet-5
network illustrated in Figure 4.

Figure 4: The LeNet5 architecture [26]

 29

5 Programming Content

While driving on the road, self-driving vehicles use image recognition to identify
various objects, such as pedestrians, vehicles, roads, and traffic signs. In this
project, two of these parts, driving paths and traffic signs, are taken to observe how
Python accomplishes the recognition process through the captured images. The
procedure followed for this alongside the coding are presented in the following
sections.

5.1 Lane detection
The lane detection function is incorporated in two files. The first one, named

“lane_detection”, contains the function files required in the program. The other file,
named “lane_detection_main”, is the file used to run the program. The steps of
programming the lane detection function is visualized as follows.

5.1.1 lane_detection
The code for preprocessing the input images is presented in Figure 5, followed

by a more detailed description of the steps taken.

Figure 5: Programming for pre-processing input images

1. Importing libraries. As Python does not contain all the libraries, a third-party
library must be imported first. This includes NumPy and matplotlib(.pyplot).

2. Pre-processing of input images. This procedure consists of graying, blurring
and cannying the imported image as demonstrated in Figures 6, 7 and 8.

 30

Figure 6: Graying the image

Figure 7: Blurring the image

 31

Figure 8: Cannying the image

3. Overwriting unwanted areas and keeping the areas of interest in image
analysis.

Figure 9: The area of interest

Based on the results shown in Figure 9, it can be observed that the road is
deformed. This is not conducive to analyzing the results, so the resulting image
needs to be processed further.

 32

As the next step, image warping is performed through programming, the code of
which is demonstrated in Figure 10.

Figure 10: Programming for image warping

4. The area of interest in the image is warped as elaborated in Figure 11

below.

Figure 11: Warping area of interest

Own elaboration based on [26]

Warping the image is crucial for the next step, because when the vehicle is
driving on the road, the low position of the camera results in the lane lines appearing
to be intersecting at a distance when in reality, the lane lines are indeed parallel.
The resulting image must therefore be processed in order to generate a “bird’s-eye
view” of the image.

 33

Figure 12: Programming for histogram to mark lanes

 34

5. Determining the location of the lane by using a histogram of colors to find
the starting points of the left, right and center lanes within the captured
image. In order to ensure that the lane markings are detected accurately,
the first step is to determine the maximum area of probability. This can be
done through the use of bird’s-eye view histogram in which the peaks for
the right and left lanes are clearly visible. Firstly, four points from the source
image and four points from the target image are specified, and then the
function cv2.getPerspectiveTransform() is performed. When transforming
an image with the cv2.warpPerspective() function, a 3x3 transformation
matrix is computed.

A neural network can be taught detect multiple objects within an image by
using a computational technique called sliding windows. As the name
implies, the sliding window algorithm slides a window over some input array
and applies an operation to the content under the window. The network
then relies on a metric called intersection-over-union to pick the best box
and non-max suppression to discard boxes that are less accurate. [29]

Through the use of the sliding window search approach, different areas of
the frame can be detected, pinpointing the regions with the highest pixel
density and thus resulting in the correct identification of lanes. As shown in
Figure 13, the starting point of pixels shows the most likely location of a
specific lane line. Based on this, sliding windows running over the pixel
coordinates are used to determine the position and direction of lanes. The
coefficients of the line curves on both right and left lanes are computed by
using the Numpy Polyfit method.

Figure 13: Road line recognition [27]

 35

6. As demonstrated in Figure 14, the pixel value corresponding to the column

with the lane line is larger, and two peaks appear. These can be used to
locate the center of the lane line in the X-direction, which then serves as the
starting point for finding the location of the lane line in the image through the
sliding window.

Figure 14: Programming for parameter return values

7. Establishing the return values of several required parameters in the form of

a dictionary, as shown in Figure 15.

Figure 15: Programming for orientation and position calculations

8. Calculating the orientation and position of the vehicle relative to the center of

the lane, as demonstrated in Figure 16.

 36

Figure 16: Programming for lane line integration

9. Integrating the calculated lane lines into the original image.

 37

5.1.2 lane_detection_main
All the functions must be run separately and then together to ensure correct lane

detection. The programming used is displayed in Figure 17.

Figure 17: Running functions for verification

1. Importing the required libraries.
2. Running each function individually to check that they deliver the desired

results, and then running all the functions together to make sure that the lanes
are detected correctly.

5.2 Identification of traffic signs

This part of the program is divided into three files. Firstly, “traffic_sign_training”

is used for training the traffic sign data, and throughout the training process, the
program is trained, verified, and tested by using pictures of the corresponding traffic
signs. To simulate the versatility of real-life traffic scenarios, the training file used for
the traffic sign identification function consists of 43 traffic signs commonly used in

 38

traffic. Among others, these include “30 km/h”, “120 km/h”, “road works” and
“vehicles over 3.5 metric tons prohibited”. Secondly, “traffic_sign_module” includes
functions which are needed in the program. Finally, get_traffic_sign is the
executable file.

5.2.1 traffic_sign_training

The programming used for traffic sign training is presented in Figure 18, followed
by a brief explanation of the steps taken.

Figure 18: Programming for path selection

1. Importing the required libraries.

2. Training traffic signs. The training part consists of two kinds of files. The first

one includes the training images for each of the traffic signs. The other file,
called ‘labels.csv’, includes the names and numbers of the traffic signs.
These variables can be used to read and access data and labels from the
specified directory and file within the code.

 39

Figure 19: Programming for image import

3. Importing all the traffic signs images used as shown in Figure 19. This part

prepares images and labels for learning steps.

Figure 20: Programming for splitting image data and preprocessing image

 40

4. Splitting all the image data into three parts used for training, validation, and
the rest for testing, as demonstrated in Figure 20.

5. Preprocessing the image, including grayscale performance and processing
equalization. These preprocessing functions can be used to improve the
quality and consistency of images. In particular, they help to improve the
quality and readability of the images, thus improving model performance.

Figure 21: Programming for preprocessing and augmenting images

6. Preprocessing all the images, iterating them, and then changing reshaping

images into a 4D array. For now, the format of data is suitable for input into
a model that expects 32x32 grayscale images. This preprocessing is
typically performed to ensure the consistency and compatibility of the input
data with the model's architecture and requirements.

7. Augmenting all the images to make them more generic. Since there are too
few traffic sign samples of certain categories in the training set, and to
increase the diversity of training samples so that the network learns more
stable and essential features, some common enhancements to the training
images must be performed. This can be done by using ImageDataGenerator.

 41

Figure 22: Programming for convolution neural network model

8. Implementing a convolutional neural network model, as shown in Figure 22.

The model has two convolutional blocks, and each with two convolutional
layers followed by max-pooling, which helps in learning hierarchical
features from the input images. The fully connected layers at the end make
the final predictions for the classes. The dropout layers are used for
regularization to prevent overfitting.

Figure 23: Programming for training

9. Conducting the training process by using epochs as 10 and giving 50

samples at a time, as demonstrated in Figure 23. The code trains the model
for the specified number of epochs while using the training data generated
by the data generator. The validation data is used to monitor the model's
performance during training. The purpose of the training process is to
optimize the model parameters.

 42

10. Printing the training result and saving the result as “traffic_sign_model”. By
evaluating the model on the test dataset, it can be assessed how well it
generalizes to new, unseen data. Saving the model permits reusing it in
various applications, such as later controlling of the donkey car.

 43

5.2.2 traffic_sign_module

The image is preprocessed for specified color removal, in order to facilitate the
reading of the traffic signs. The programming is presented in Figure 24.

Figure 24: Programming for specified color removal

1. Importing libraries.
2. This preprocessing function is tailored for detecting blue and red signs in

images, and removing the specified color to read the traffic sign more clearly.
The results obtained are exemplified by “STOP” and “60km/h” as shown in
Figure 25.

 44

Figure 25: Color removal for better traffic sign readability

Figure 26: Programming for contour detection

3. This step is used to identify and extract specific regions of interest. Detecting

the contour and returning the contour as a rectangular box, as displayed by
Figure 26.

 45

Figure 27: Programming for image preprocessing and traffic sign number listing

4. Preprocessing the image as demonstrated in Figure 27, including the running

of grayscale and equalizing functions. The overall effect of these
preprocessing steps is to convert the input image into a preprocessed
grayscale image with enhanced contrast and normalized pixel values. This
preprocessed image is often more suitable for tasks like object detection and
classification.

5. Listing the traffic sign numbers based on the feedback value. The step turns
the image into the corresponding labeling, which is fed back into the result.

 46

5.2.3 get_traffic_sign

Figure 28: Programming for traffic sign number definition

1. Determining the number of the traffic sign from the image and returning this

value, as shown in Figure 28.

2. Predicting the type of traffic signs in the image based on the training results
and adding text to the result if it is greater than the set percentage.

 47

6 Hardware Implementation

For the implementation part of this thesis, a donkey car equipped with a camera

for image recognition was used. To conduct a comparison of the image recognition
performance in program execution, three types of hardware were selected:
Raspberry Pi 4, Jetson Nano and Intel Neural Compute Stick 2. Prior to analysing
the performance, these three selected hardware types alongside the donkey car
setup are briefly introduced.

6.1 Raspberry Pi 4

Raspberry Pi, launched in 2012, is a series of small single-board
computers (SBCs). It was developed in the United Kingdom by the Raspberry Pi
Foundation in association with Broadcom [28]. It was originally created so that more
people could afford to use computers.

The Raspberry Pi 4B is a "plug and play" type single board computer, which
also serves as a great starting point for learning different kinds of AI projects. Based
on the Linux operating system, the Raspberry Pi has access to a wide range of free
software and tools for Linux [28]. Its user-friendliness makes it suitable also for
people with less experience to learn programming languages such as Python. It can
also do everything one would expect a desktop computer to do, from browsing the
web and playing HD video to creating spreadsheets, word processing and playing
games.

6.1.1 Interface of Raspberry Pi 4

Raspberry Pi 4 has numerous interfaces which can be used together with

external devices, such as the keyboard and the monitor. The different parts of the
Raspberry Pi 4 hardware are illustrated in more detail in Figure 29.

 48

Figure 29: The Raspberry Pi 4 hardware

Own elaboration

6.2 Jetson Nano

The Jetson Nano development board is also a powerful small AI computer,

which can be booted by simply inserting a microSD card with a system image. It has
a built-in SOC system-on-chip that can parallelize neural networks, such as
TensorFlow, PyTorch, Caffe/Caffe2, Keras and MXNet. These neural networks can
be used for image classification, target detection, speech segmentation and
intelligent analysis, as well as to build autonomous robots and complex AI systems
[29].

6.2.1 Interface of Jetson Nano

Jetson Nano contains numerous interfaces. Just like in the case of Raspberry

Pi, these can be used together with external devices, such as the keyboard and the
monitor. The different parts of the Jetson Nano hardware are described in more
detail in Figure 30 below.

 49

 Figure 30: The Jetson Nano interface

Own elaboration

6.3 Neural Compute Stick 2

Neural Compute Stick 2, or NCS2, is a small neural network training device in

the shape of a USB stick, which can be plugged into the host computer through the
USB port of other devices. The composition of NCS2 is demonstrated in Figure 31
below.

 50

Figure 31: The Neural Compute Stick 2 Interface

Own elaboration

This device is often used in artificial programming at the edge where processing

large amounts of data can become very labor-intensive. NCS2 functions as an
accelerator, supporting the edge device CPU in running deep learning models in
order to improve efficiency [30].

The NCS2 device is compatible with a variety of operating systems. It contains
a built-in Intel Movidius Myriad X VPU vision processor dedicated to accelerated
computing of neural networks [33]. The device supports TensorFlow, Caffe and
other development frameworks.

6.3.1 Connecting Diagram

In this project, the camera, Raspberry Pi4 and a dual motor driver called L298N are
linked to each other. Here, the L298N acts as a power module between the
controller and the DC motor. It is used to simultaneously control both the speed and
direction of the four DC motors in the autonomous vehicle constructed for the
project.

In order to control the speed of the vehicle, the input voltage is altered through the
use of a technique called Pulse Width Modulation (PWM). This technique allows for
the average value of the input voltage to be changed according to the width of the
pulses, so lower average voltage applied to the DC motor slows down the motor
speed, whereas higher average voltage amplifies the motor speed. Besides speed,
also the spinning of the DC motors can be controlled in the autonomous vehicle by
switching the polarity of the input voltage. When the specific switches are closed

 51

simultaneously, the polarity of the voltage is reversed, and as a result, the spinning
direction of the DC motor changes.

After the camera captures the image, the Raspberry Pi4 processes it, and then
transmits the result to the L298N to control the operation of the motor. The parts are
connected to each other as illustrated in Figure 32.

Figure 32: The donkey car connection diagram

Own elaboration

6.4 Hardware configuration comparison

Both Raspberry Pi and Jetson Nano are relatively scalable as hardware devices.

The devices provide a wealth of interfaces, allowing users to connect many practical

 52

devices, such as monitors, cameras, mice and keyboards and other external
devices. This enables users to feel like using a computer in the traditional sense.

However, some differences can still be found in the design between the two
hardware. Firstly, a significant difference in the hardware part is that Raspberry Pi
4 includes a wireless network module, whereas Jetson Nano does not. If the user
wants to have a wireless network module in the Jetson Nano device, additional
modules must be purchased, which will undoubtedly increase the total cost. If one
does not want to buy additional wireless module function, the connection must be
established through the network cable, greatly limiting the use of the location.

Some of the key differences in terms of features are gathered in Table 3 below.
On a separate note, Neural Computer Stick 2 is not included in this table, because
it is used as an accelerator device.

Table 3: Comparison of hardware configuration

Own elaboration

 53

6.5 Installing the operating system

As there are significant differences in the processes of installing the operating

system for the different edge devices, this section provides a more in-depth
description and comparison for each of them.

6.5.1 Installation on Raspberry Pi 4

There are two ways to install the Raspberry Pi 4 system. It is officially

recommended to use the Raspberry Pi imager, but an alternative option is to burn
the image directly, which may be easier. Nevertheless, in order to avoid errors, for
first-time use it is officially recommended to use an installation tool for Raspberry Pi
4, which is why this method was chosen for this thesis for the installation of the
system. This was done as described in the following steps:

1. Download the Raspberry Pi imager from the official website. There are two
versions available: one for Windows and one for MacOS. When opened, the
software interface looks as shown in Figure 33.

In this software, four different operating systems are included in total, two of
which do not include desktop environment while the other two do. One of
them is the full version of Raspberry Pi OS, which includes Python 3.9 and
in which some office software and programming applications are pre-
installed. Another one is the Raspberry Pi Lite version, which includes Python
3.7. In this thesis, the Raspberry Pi Lite version is used, and the specific
reasons for this decision will be described further on.

 54

Figure 33: The Raspberry Pi installer

2. Select the correct operating system. In this case, Raspberry Pi OS Full (32-

bit) was selected as when compared to Raspberry Pi OS Lite, this version
includes more software functions, such as office software and education.

Figure 34: Raspberry Pi OS selection

 55

3. Selecting storage SD card, after which the software installs the operating
system automatically.

4. After installing the system, insert the SD card to the Raspberry Pi device.
After following simple steps to setup, Raspberry Pi 4 is ready to use.

6.5.2 Problems on Raspberry Pi 4 and their solutions

As previously mentioned, Raspberry Pi includes two versions of Python: Version
3.7 and Version 3.9. Users must decide which version to install according to different
application scenarios. In this thesis, OpenCV and TensorFlow have been used as
application programming interfaces (API) for installation, but the installation process
is not equal in the two Python versions.

Python 3.7 seemed to be compatible with both OpenCV and TensorFlow, and
no major issues occurred during the steps of installation. However, when using
Python 3.9, two major problems could be identified. Firstly, it turned out that
installing TensorFlow was impossible for this version of Python. Secondly, when
installing the OpenCV, constant issues occurred during the installation process.
These issues as well as the solutions are presented as follows.

1. An error message appears during sudo make -j1: c++: error: unrecognized

command-line option ‘--param=ipcp-unit-growth=100000’; did you mean ‘--
param=ipa-cp-unit-growth=’?.
Solution: Attempt to modify build.make and flags.make in the prompted
directory, replacing all the ipcp-unit-growth inside with ipa-cp-unit-growth.

 56

Figure 35: Unrecognized command line

Figure 36: Files requiring modifications

2. Import Error: Numpy.core.multiarray failed to import.
Solution: pip install -U numpy.

 57

Figure 37: Numpy.core.multiarray failed to import

3. Import Error: Cannot show CV2.

Solution: Run sudo apt-get install python3-opencv to fix it.

Figure 38: Cannot find cv2

Figure 39: Showing the cv2 version

6.5.3 Installation on Jetson Nano

For Jetson Nano, the installation was performed by burning the image directly.

It is possible to install the system into the Jetson Nano in the same way. The detailed

 58

installation process of the system is described in the steps below, supported by
Figures 40 and 41.

1. Install BalenaEtcher on the computer.
2. Download operating systems from the official Jetson Nano website.
3. Insert the SD memory card, using the SD Memory Card Formatter to format

two microSD cards to FAT (both FAT16 and FAT32) file system.
4. Click “Flash from file” and choose the previously downloaded zipped image,

then select SD card to install systems.

Figure 40: Zipped image selection

Figure 41: SD card selection

1. After installing the system, insert the SD card to Jetson Nano and switching the

power on.

 59

6.5.4 Problems on Jetson Nano and their solutions

Running the camera on Jetson Nano requires a more extensive programming

setup, while on Raspberry Pi it only requires cap=cv2.videocapture(0). When
running the camera on Jetson Nano, more parameters are needed, as
demonstrated in Figures 42 and 43.

Figure 42: The camera code from Jetson Nano

Figure 43: The camera code from Raspberry Pi 4

In addition, when running a compiled program on Jetson Nano, certain

problematic prompts appear. Before they can be fixed, it is necessary to install some
additional software support, whereas in Raspberry Pi 4 and NCS2, such problems
do not exist. Some examples of the problems occurring with Jetson Nano are
presented as follows.

 60

• The following error message appears: ModuleNotFoundError: No module
named ’numpy.testing.nosetester’
Solution: This problem can be fixed by running scipy => 1.1.0.

Figure 44: No module named ‘numpy.testing.nosetester

• The following error message appears: Failed to find bogomips or clock in
/proc/cpuinfo; cannot determine CPU frequency
Solution: This problem can be fixed by running python3 heelo.py.

Figure 45: Cannot determine CPU frequency

• The following error message appears: ARM64 does not support NUMA –
returning NUMA node zero
Solution: This problem can be fixed by running apt-get install -y libcudnn8
nvidia-cudnn8.

Figure 46: ARM64 does not support NUMA

6.5.5 Installation of Neural Computer Stick 2

Because NCS2 depends on other devices with a USB interface to run, users

need to install the driver in another device, for instance Windows or Raspbian. The
installation method described on the official Intel website [31] can be used as a
reference.

Although the website indicates that the device can run on the Linux and Mac

operating systems, the process is not particularly straightforward. Firstly, while the
drive could previously be installed on the Linux system, this system is no longer
supported. For MacOS, an older version is required, as it only can run on versions
10.13, 10.14 or 10.15. In the end, the final composition appears as demonstrated in
Figures 47-49.

 61

Figure 47: The macOS version used

Figure 48: Notification message when installing the driver on macOS

Figure 49: Notification message when installing the driver on Jetson Nano

 62

7 Results and evaluation

In this section, the results for the comparison of running Python on Jetson Nano,
Raspberry Pi and Neural Compute Stick 2 are presented. They will then be
evaluated to determine which one is the most suitable for traffic sign training and
lane detection when using Python.

7.1 Comparison on running the training programming

In order to conduct a relative comparison on different edge devices, the

trafficSign_training file was used to run it on the Raspberry Pi 4, Jetson Nano and
NCS2. To complete the calculation of the time the program runs on each of the
devices, the following code was used:

Figure 50: Programming for time calculation

This code calculates the running time of the entire program by subtracting the start
time from the completion time.

7.2 Observations on Raspberry Pi 4

In order to give Raspberry Pi 4 its compact and thin design, it has no cooling

device installed on it. However, the temperature still has a certain impact on the
running time of the program.

During the tests, when turning the Raspberry Pi on, and while nothing is running

on the device, the CPU temperature rises to around 50 to 60 celsius degrees. When
installing libraries, such as OpenCV, Pandas and NumPy, the temperature climbs
up to around 70 celsius degrees. Then when Raspberry Pi is running
trafficSign_training file in room temperature of approximately 20 celsius degrees,
the temperature of the CPU climbs up to 78 celsius degrees.

 63

Figure 51: Total processing time of Raspberry Pi 4

While running the code, GL-Z software can be used to monitor the GPU working
status as seen in Figure 52. However, it is not possible to clearly determine whether
the GPU contributes to the calculation process, because the GPU remains
unchanged even when other programs are running.

Figure 52: GL-Z software monitoring the GPU

7.3 Observations on Jetson Nano

The results seen on Jetson Nano are quite the opposite. Since the device

includes a heat sink, the CPU temperature can be maintained between 40 and 50
celsius degrees at all times, in addition to which the Jetson-Stat software shows that
the GPU is working during training. The training time is also shorter compared to
Raspberry Pi 4.

 64

Figure 53: Total processing time on Jetson Nano

Figure 54: Jtop software monitoring the GPU

7.4 Observations on Neural Compute Stick 2

The NCS2 device was run on the USB3 interface of the Raspberry Pi 4. During

the testing phase, the device did not seem to significantly improve the running time
on Raspberry Pi. The obtained result is presented in Figure 55.

Figure 55: Total processing time on Raspberry Pi 4 + NCS2

7.5 Edge device comparison for image processing
speeds

Speed is an important indicator in image processing, particularly in the context
of autonomous vehicle technology where adequate reaction speed in rapidly
changing situations is critical. The objective of this section is to detect differences

 65

between the image processing speeds on the three edge devices depicted in Figure
56, and as a result, determine which of the devices reaches the best results for
traffic sign recognition and lane detection in terms of speed.

Figure 56: Edge devices + camera
Own elaboration

In order to compare the performance of these three devices, the concept of

Frames Per Second (FPS) is introduced here to evaluate the image processing
speeds of the devices. FPS indicates the number of frames per second of an image
that is displayed, and is a measure of graphics rendering performance and
smoothness. A high FPS indicates that the image is updated faster and will therefore
appear smoother, whereas a low FPS can cause image lag. However, while
computing speed may affect the performance of graphics rendering, it should not be
regarded as the only indicator. The FPS value also affected by other factors, such
as graphics card performance and memory speed.

In this project, the devices were complemented with small camera which was

used to read varying traffic situations. To facilitate comparison during the reading
process, two screen captures for each of the traffic signs and lanes were taken at
random moments to obtain two randomized speed results for image recognition.
The FPS measure is used here as a general indicator.

The comparison was conducted through the following steps:

1. Prior to introducing any driving paths or traffic signs to the camera, blank

images without such elements were used to measure the standard speeds
on the edge devices.

Raspberry Pi 4 + camera Raspberry Pi 4 + NCS2 + camera Jetson Nano + camera

 66

2. In the next step, thirteen distinct and commonly seen traffic signs were
introduced to the camera to see how quickly they were identified by the
different edge devices. Here, both miniature plastic traffic signs as well as
images displayed on a screen were used.

3. Finally, self-constructed lanes were laid out firstly to verify the code’s ability

to detect lanes, and secondly to measure the image processing speeds on
the different edge devices. It should be noted that as the test road was built
by hand, the side borders were not always completely parallel. As a result of
this misalignment, the road measurements appear somewhat distorted in the
image.

Next, the code used is introduced in Figure 57. This is followed by Table 4

presenting the randomly captured images alongside with the results measured in
FPS which were obtained in the moment of capturing the images.

Figure 57: Programming for time calculation

 67

Raspberry Pi 4
(With camera)

Neural Compute
Stick 2 on

Raspberry Pi 4
(With camera)

Jetson Nano
(With camera)

Pixels 480*240 480*240 480*240

Without traffic sign or lane

FPS 28~31 28~30 50~60

Lane detection

FPS 8~10 7~8 6~8

Traffic sign identification

FPS 10~15 11~17 20~24

Stop

30km/h limit

 68

Traffic sign identification

FPS 10~15 11~17 20~24

50km/h limit

60km/h limit

No passing

No entry

Road work

 69

Traffic sign identification
FPS 10~15 11~17 20~24

Turn right
ahead

Turn left
ahead

Bumpy road

Go straight
or right

Ahead only

Beware of
ice/snow

Table 4: Lane detection comparison (Own elaboration)

 70

Figure 58: Comparison graph of traffic sign recognition speeds

It can be concluded that while the FPS of the three devices do not differ much

when running the lane_detection_main code, the differences are more noticeable
when running the get_traffic_sign. These differences are visualized in Figure 58,
which marks the higher FPS measurement for each of the randomly captured image
pairs during image recognition tests.

As illustrated by the comparison graph, Jetson Nano is significantly faster

regardless of the traffic sign in question. Raspberry Pi 4 and NCS2 on Raspberry Pi
4 showed similar results, with a very slight improvement in speed in eight of the
thirteen traffic sign recognition runs. However, based on these tests, the differences
between Raspberry Pi 4 with NCS2 and without are not clear enough to draw
definite conclusions on the processing speed.

7.6 Donkey car
As an extension to this project, a donkey car was constructed to serve as an

intelligent small-scale car, equipped with a road and traffic sign recognition system.
The algorithm of this system is based on deep learning and end-to-end control,
which gives it the ability to recognize different roads and traffic signs and thus,
enabling automatic driving. In this project, a camera was installed on the donkey car
in order to capture data of the environment.

0

5

10

15

20

25

30

FPS Comparison of traffic sign recognition speeds

Raspberry Pi 4 Neural Compute Stick 2 on Raspberry Pi 4 Jetson Nano

 71

This part explains how an edge device, in this case Raspberry Pi, was used to
run the donkey car and how the communication between software and hardware
was realized. Figure 59 demonstrates the variety of information that can be utilized
by the donkey car in autonomous driving.

Figure 59: The donkey car control schematic

Own elaboration

To serve the purpose of this project, the lane detection for the donkey car was

enabled through three stages as follows:

1. Firstly, a series of images was collected through the use of code containing

information collected in the camera file, the joystick file, the data
collection file and the motor control file.

2. In the next stage, the PC was used to process all the data, including the
analysis of lane images and traffic sign training, in order to enable the
donkey car to detect its course and take responsive action.

3. The last step was to use all the files to control the donkey car running on the
lane and to observe its performance. The schematic diagram is presented in
Figure 60.

 72

Figure 60: The schematic diagram

Own elaboration

 73

7.6.1 The donkey car setup

In order to capture images for analysis and to put the training into practice to
evaluate the performance on different edge devices, a donkey car was constructed
with the following composition:

• 1 x Raspberry Pi 4
• 1 x L298 Dual Full Bridge Driver
• 1 x Raspberry camera
• 8 x AA size batteries
• 1 x Powerbank (the output must be 5V/3A to drive the Raspberry Pi 4)
• Various 3D-printed parts
• 1 x PS4 controller

Due to various size-related issues, some 3D-printed parts had to be replaced. In the
end, the final donkey car setup is as demonstrated in Figure 61 below.

Figure 61: The donkey car setup

Own elaboration

The L298N motor driver permits high voltage and can be driven by both DC
motors and stepper motors. One driver chip can control two DC geared motors to
perform different actions simultaneously in the voltage range of 6V to 46V. The
module is presented in Figure 62.

 74

Figure 62: L298N Motor Driver Module Pinout [32]

7.6.2 Results on the donkey car

As the final step, the previous programming is applied to a simulated traffic

scenario. An edge device, in this case Raspberry Pi 4, is used to control the donkey
car to determine how accurately it is able to react to an example traffic scenario.
The camera installed on the donkey car captures images and transmits them to the
edge device, where they are processed and used to control the speed of the motor.

To test the programming, a simple traffic scenario including a curving lane and
two traffic sign types is created. As shown in Figure 63, the donkey car collects two
images in real time; one to determine the center of the lane to ensure the car follows
the road direction, and the other one to identify the traffic sign. In addition, when
encountering the traffic sign recognized by the program, the car responds with an
appropriate decision.

During the test, the motor power of the donkey car is set at 20% of the maximum
motor power. When testing the speed limit function, upon encountering the 60 km/h
sign, the car adjusts its speed accordingly by increasing it to 30%. When testing the

 75

stop sign function, upon encountering the stop sign, the car stops for 3 seconds.

Figure 63: Testing a traffic scenario

 76

8 Conclusion

While it can be concluded that each of these edge devices provides a solid
platform for AI interference at the edge, conducting a fair comparison between them
is not a straightforward task. In terms of hardware performance in the context of this
thesis project, some minor differences could be detected during the tests. Speed in
terms of FPS was selected as an indicator to determine differences between the
edge devices.

When testing image recognition speed, Jetson Nano achieved higher FPS rates

compared to Raspberry Pi and NCS2 when there were no traffic signs or lanes in
the camera view. Upon testing traffic sign recognition, Raspberry Pi and NCS2
showed similar results in terms of FPS, whereas Jetson Nano performed the traffic
sign recognition at a rate approximately 50-60% faster compared to the other two.
Although all three devices demonstrated similar FPS rates during the tests for lane
detection, Raspberry Pi performed slightly faster than the other two.

On a more general level, some key advantages and disadvantages were

identified for each device during the research, as well as the implementation stage.
These are summarized in Table 5 below.

Raspberry Pi 4 Jetson Nano NCS2

Pros

User-friendly interface.

Suitable for beginners who
want to get started in the
field of AI or learn more
about Python
programming.

Plenty of resources
available online.

Programs from other
computer devices can run
directly in the Raspberry
Pi 4 with essentially no
subsequent changes.

Running the training code
was significantly faster
than with the other two
devices.

Better temperature control
due to heat sink.

Reliability (decentralized,
network connections not
required).

 77

Raspberry Pi 4 Jetson Nano NCS2

Cons

Overheating in the CPU.

The program crashes
easily.

No restart button, the only
option is unplugging the
power.

Not recommendable for
beginners.

Compatibility issues;
Every API must work well
together before the
programming can be run
properly; running certain
programs requires
changes to the dictionary
and program details to
meet the specific needs of
Jetson Nano.

Crashes easily (e.g.
during the installation of
OpenCV).

Lacking a restart button,
leaving unplugging the
power as the only option.

Cannot be used
independently; requires
installation to another
device with a USB port in
order to be used.

Tedious installation
process.

Did not work with Jetson
Nano.

The latest macOS is not
supported.

Table 5: Summary of differences between edge devices
Own elaboration

 78

9 References

[1] A. Gupta, A. Anpalagan, L. Guan and K. Shaharyar, "Deep learning for object
detection and scene perception in self-driving cars: Survey, challenges, and
open issues.," Array, vol. 10, 2021.

[2] V. &. M. O. Santos, "Special issue on autonomous driving and driver
assistance systems.," in Robotics and Autonomous Systems 91, Elsevier,
2017, pp. 208-209.

[3] R. Liao, "Huawei says it’s not a carmaker — it wants to be the Bosch of
China," 2021a. [Online]. Available: https://techcrunch.com/2019/07/26/ethics-
in-the-age-of-autonomous-vehicles/. [Accessed 20 12 2021].

[4] R. Gordon, "Explained: Levels of autonomy in self-driving cars," CSAIL, 10
December 2020. [Online]. Available:
https://www.csail.mit.edu/news/explained-levels-autonomy-self-driving-cars.
[Accessed 19 12 2021].

[5] European Commission, "On the road to automated mobility: An EU strategy
for mobility of the future. Eur-lex.europa.eu. https://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2018:0283:FIN:EN:PDF,"
17 May 2018. [Online]. Available: https://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2018:0283:FIN:EN:PDF.
[Accessed 31 12 2021].

[6] D. Yifan, "Autonomous software-defined control," 22 July 2021. [Online].
Available: http://finance.people.com.cn/BIG5/n1/2021/0722/c1004-
32165709.html. [Accessed 29 November 2021].

[7] T. Brell, R. Philipsen and M. Ziefle, "Suspicious minds?–users’ perceptions of

autonomous and connected driving," Theoretical issues in ergonomics
science, vol. 20, no. 3, pp. 301-331, 2019.

[8] K. Chen, "The World's #1 Autonomous Driving Competition Begins," 21 April
2021. [Online]. Available: https://technews.tw/2021/04/21/who-is-the-best-
autonomous-vehicle/. [Accessed 21 December 2021].

[9] Y. Huang, "Autonomous driving technology is coming in force, five years
later, half of China's new cars will beautonomous," TechNews, 2020.
[Online]. Available: https://technews.tw/2020/11/12/self-driving-cars-in-china-
will-boom/.

[10] J. Wang, "Overcome the challenges of autonomous driving technology
development and accelerate the launch of a new era of intelligent life," 22
December 2020. [Online]. Available:
https://view.ctee.com.tw/technology/25655.html. [Accessed 2 January 2021].

 79

[11] E. Burns, "Aprendizaje profundo (Deep learning)," ComputerWeekly,
September 2021. [Online]. Available:
https://www.computerweekly.com/es/definicion/Aprendizaje-profundo-deep-
learning. [Accessed 31 December 2021].

[12] M. Dhande, "What is the difference between AI, machine learning and deep
learning?," Geospatial World, 7 March 2020. [Online]. Available:
https://www.geospatialworld.net/blogs/difference-between-ai%EF%BB%BF-
machine-learning-and-deep-learning/. [Accessed 15 01 2022].

[13] Y. LeCun, Y. Bengio and G. Hinton, "Deep Learning," Nature, 7 May 2015.
[Online]. Available: https://doi.org/10.1038/nature14539. [Accessed 5
January 2022].

[14] I. E. Sarker, "Deep Learning: A Comprehensive Overview on Techniques,
Taxonomy, Applications and Research Directions," SN Computer Science,
18 August 2021. [Online]. Available: https://doi.org/10.1007/s42979-021-
00815-1. [Accessed 09 January 2022].

[15] J. Chen and X. Ran, "Deep Learning With Edge Computing: A Review,"
Proceedings of the IEEE, vol. PP, pp. 1-20, 2019.

[16] K. Zhang, X. Gui, D. Ren, J. Li, J. Wu and D. Ren, "Zhang K., Gui X., Ren D.,
Li J., Wu J. & Ren D. (2019). Mobile Edge Network Computing Download
and Content Caching Survey," Journal of Software, vol. 30, no. 8, pp. 2491-
2516, 2019.

[17] A. Ferdowsi, U. Challita and W. Saad, "Deep Learning for Reliable Mobile
Edge Analytics in Intelligent Transportation Systems: An Overview," IEEE
Vehicular Technology Magazine, vol. 14, no. 1, pp. 62-70, 2019.

[18] D. J. Yeong, G. Velasco-Hernandez and J. Barry, "Sensor and Sensor
Fusion Technology in Autonomous Vehicles: A Review. Sensors 2021.,"
Sensors, vol. 6, 2021.

[19] M. Véstias, R. Duarte, J. Sousa and H. Neto, "Moving Deep Learning to the
Edge," Algorithms, vol. 13, no. 5, 2020.

[20] W. Shi, X. Zhang and Q. Zhang, "Edge Computing: State-of-the-Art and
Future Directions," Journal of Computer Research and Development, vol. 56,
no. 1, pp. 69-89, 2019.

[21] J. Gonzales, "Machine learning edge devices: benchmark report," Tryo Labs,
9 October 2019. [Online]. Available: https://tryolabs.com/blog/machine-
learning-on-edge-devices-benchmark-report. [Accessed 03 February 2022].

[22] Python, "General Python FAQ," [Online]. Available:
https://docs.python.org/3/faq/general.html#general-python-faq. [Accessed 03
December 2022].

[23] OpenCV, "About," [Online]. Available: https://opencv.org/about/. [Accessed
08 January 2022].

 80

[24] TensorFlow, "Overview," [Online]. Available:
https://www.tensorflow.org/overview. [Accessed 15 January 2022].

[25] DeepAI, "Convolutional Neural Network," [Online]. Available:
https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-
network. [Accessed 29 February 2022].

[26] CSDN, "In-depth look at autonomous driving - Image recognition," 15
December 2016. [Online]. Available:
https://blog.csdn.net/weixin_33829657/article/details/89128806. [Accessed
09 01 2021].

[27] Seb, "Foundations of Deep Learning for Object Detection: From Sliding Windows to
Anchor Boxes", May 2022. [Online] Available:
https://programmathically.com/foundations-of-deep-learning-for-object-detection-
from-sliding-windows-to-anchor-boxes/. [Accessed 22 Oct, 2023].

[28] OpenSource, "What is a Raspberry Pi?," [Online]. Available:
https://opensource.com/resources/raspberry-pi. [Accessed 7 January 2022].

[29] NVIDIA, "Jetson Nano Developer Kit," [Online]. Available:
https://developer.nvidia.com/embedded/jetson-nano-developer-kit. [Accessed
1 December 2022].

[30] VISO.AI, "Intel Neural Compute Stick 2 – AI Vision Accelerator Review
2021," [Online]. Available: https://viso.ai/edge-ai/intel-neural-compute-stick-
2/. [Accessed 28 December 2021].

[31] Intel, "Get Started with Intel® Neural Compute Stick 2," [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/guide/get-
started-with-neural-compute-stick.html. [Accessed 20 November 2021].

[32] Last Minute Engineers, "Interface L298N DC Motor Driver Module with
Arduino," [Online]. Available: https://lastminuteengineers.com/l298n-dc-
stepper-driver-arduino-tutorial/. [Accessed 10 January 2022].

[33] K. Korosec, "Waymo’s driverless taxi service can now be accessed on

Google Maps," TechCrunch, 3 June 2021. [Online]. Available:
https://tcrn.ch/3ighhEM. [Accessed 29 December 2021].

[34] V. Ayumi, L. M. Rere, M. I. Fanamy and A. M. Aryurthy, "Optimization of
Convolutional Neural Network using Microcanonical Annealing Algorithm," in
ICACSIS, 2016.

[35] P. Virtanen et al., "SciPy 1.0: fundamental algorithms for scientific computing
in Python," Nat Methods, vol. 17, pp. 261-272, 2020.

	1 Introduction
	1.1 Objective

	2 State of the Art Analysis
	2.1 Current activity in the field of autonomous driving
	2.2 Current challenges

	3 Theoretical Framework of Deep Learning
	3.1 Deep learning
	3.1.1 Measuring deep learning performance
	3.1.2 Deep learning in autonomous driving

	3.2 Edge computing
	3.3 Computer vision and image recognition

	4 Software development
	4.1 Python
	4.2 OpenCV
	4.3 TensorFlow and Convolutional Neural Network

	5 Programming Content
	5.1 Lane detection
	5.1.1 lane_detection
	5.1.2 lane_detection_main

	5.2 Identification of traffic signs
	5.2.1 traffic_sign_training
	5.2.2 traffic_sign_module
	5.2.3 get_traffic_sign

	6 Hardware Implementation
	6.1 Raspberry Pi 4
	6.1.1 Interface of Raspberry Pi 4

	6.2 Jetson Nano
	6.2.1 Interface of Jetson Nano

	6.3 Neural Compute Stick 2
	6.3.1 Connecting Diagram

	6.4 Hardware configuration comparison
	6.5 Installing the operating system
	6.5.1 Installation on Raspberry Pi 4
	6.5.2 Problems on Raspberry Pi 4 and their solutions
	6.5.3 Installation on Jetson Nano
	6.5.4 Problems on Jetson Nano and their solutions
	6.5.5 Installation of Neural Computer Stick 2

	7 Results and evaluation
	7.1 Comparison on running the training programming
	7.2 Observations on Raspberry Pi 4
	7.3 Observations on Jetson Nano
	7.4 Observations on Neural Compute Stick 2
	7.5 Edge device comparison for image processing speeds
	7.6 Donkey car
	7.6.1 The donkey car setup
	7.6.2 Results on the donkey car

	8 Conclusion
	9 References

