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ABSTRACT

Kernel methods constitute a family of powerful machine
learning algorithms, which have found wide use in remote
sensing and geosciences. However, kernel methods are still
not widely adopted because of the high computational cost
when dealing with large scale problems, such as the inver-
sion of radiative transfer models. This paper introduces the
method of random kitchen sinks (RKS) for fast statistical
retrieval of bio-geo-physical parameters. The RKS method
allows to approximate a kernel matrix with a set of random
bases sampled from the Fourier domain. We extend their use
to other bases, such as wavelets, stumps, and Walsh expan-
sions. We show that kernel regression is now possible for
datasets with millions of examples and high dimensionality.
Examples on atmospheric parameter retrieval from infrared
sounders and biophysical parameter retrieval by inverting
PROSAIL radiative transfer models with simulated Sentinel-
2 data show the effectiveness of the technique.

1. INTRODUCTION

Kernel methods constitute an appropriate framework to ap-
proach many statistical inference problems [1]. In the last
decade these methods have replaced other techniques in many
fields of science and engineering, and have become the new
standard in remote sensing data analysis [2, 3]. Kernel meth-
ods allow treating in the very same framework different prob-
lems, from feature extraction [4] to classification [5] and re-
gression [6]. The fundamental building block of the theory of
kernel learning is the kernel function, which compares (pos-
sibly complex) multidimensional data objects. In a nutshell,
given n data points, all kernel methods have to operate with
a squared (eventually huge) matrix of size n× n, which con-
tains all pairwise sample similarities. Designing an appropri-
ate kernel function that captures data dependencies is, nev-
ertheless, not easy in general. Many approaches have been
followed so far to tackle this problem: from learning the met-
ric implicit in the kernel [7], to learning compositions of sim-
pler kernels [8]. Selecting and optimizing a kernel function is
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very challenging even with moderate amounts of data. Many
efforts have been done to deliver large-scale versions of ker-
nel machines able to work with several thousands of exam-
ples. They typically resort to reduce the dimensionality of the
problem by decomposing the kernel matrix using a subset of
bases: for instance using Nyström eigendecompositions [9],
sparse and low rank approximations [10, 4], or smart sample
selection [11]. However, there is no clear evidence that these
approaches work in general, given that they are mere approxi-
mations to the kernel computed with all (possibly millions of)
samples.

In this paper, we explore an alternative pathway: rather
than optimization we will follow randomization. While odd
at a first glance, the approach has surprisingly yielded com-
petitive results in the last years, being able to exploit many
samples at a fraction of the computational cost. Besides its
practical convenience, the approximation of the kernel with
random bases is also theoretically consistent. The seminal
work in [12] presented the randomization framework. Given
a sample set {xi ∈ Rd|i = 1, . . . , n}, the idea is to approxi-
mate the kernel function with an empirical kernel mapping of
the form:

k(xi,xj) = 〈φ(xi),φ(xj)〉 ≈ z(xi)
>z(xj),

where the implicit mapping φ(·) is replaced with an explicit
(low-dimensional) feature mapping z(·) of dimension D.
Consequently, one can simply transform the input with z,
and then apply fast linear learning methods to approximate
the corresponding nonlinear kernel machine. This approach
not only provides extremely fast learning algorithms, but also
good performance in the test phase: for a given test point x,
instead of f(x) =

∑n
i=1 αik(xi,x), which requires O(nd)

operations, one simply does a linear projection f(x) = w>z,
which requires O(D + d) operations. The question now is
how to construct efficient and sensible z mappings. The work
in [12] also introduced a particular technique to do so, called
random kitchen sinks (RKS).

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the RKS method, and introduces the different
expansions used in this work. Section 3 presents and dis-
cusses the experimental results in two challenging problems
of bio-geo-physical parameter retrieval: atmospheric param-
eter retrieval from infrared sounders such as IASI and inver-
sion of PROSAIL radiative transfer models with Sentinel-2
simulated data. Section 4 concludes the paper.



2. KERNEL APPROXIMATION WITH RANDOM
KITCHEN SINKS

2.1. Random kitchen sinks

Random kitchen sinks exploit a classical definition in har-
monic analysis [12], by which a continuous kernel k(x,y) =
k(x − y) on Rd is positive definite if and only if k is the
Fourier transform of a non-negative measure. If a shift-
invariant kernel k is properly scaled, its Fourier transform
p(ω) is a proper probability distribution. Defining the func-
tion Cω(x) = ejω

>x, we obtain

k(x− y) =

∫
Rd

p(ω)ejω
>(x−y)dω = Eω[Cω(x)Cω(y)

∗],

so Cω(x)Cω(y)
∗ is an unbiased estimate of k(x − y) when

ω is drawn from p. In our case, both p(ω) and k(x − y) are
real valued, what allows us to substitute the complex expo-
nentials by cosines and to use zω(x)>zω(y), where zω(x) =√
2cos(ω>x+ b), as an estimator of k(x− y) as long as ω is

drawn from p(ω) and b is drawn uniformly from [0, 2π]. Also
note that zω(x)>zω(y) has expected value k(x,y) because of
the sum of angles formula. Now, one can lower the variance
of the estimate of the kernel by concatenating D randomly
chosen zω into one D-dimensional vector z and normalizing
each component by

√
D. An illustrative example of how RKS

approximates k with random bases is given in Fig. 1.

RBF, ideal RKS, D = 1

RKS, D = 5 RKS, D = 1000

Fig. 1: Illustration of the effect of randomly sampling D bases from
the Fourier domain on the kernel matrix. With sufficiently large D,
the kernel matrix generated by RKS approximates that of the RBF
kernel, at a fraction of the time.

2.2. RKS in practice

The RKS algorithm reduces to the following steps:

1. Draw D i.i.d. samples ω1, . . . , ωD ∈ Rd from p, and
b1, . . . , bD ∈ R from the uniform distribution [0, 2π]

2. Construct the low-dimensional feature map:

z =
√

2
D [cos(ω>1 x+ b1), . . . , cos(ω

>
Dx+ bD)]

3. Approximate the kernel function: k ≈ z>z, and asso-
ciated kernel matrix, K = ZZ>

The method is very efficient in both speed and memory re-
quirements, as shown in Table 1.

Table 1: Computational and memory costs for different approxi-
mate kernel methods in problems with d dimensions, D features, n
samples.

Method Train time Test time Train mem Test mem
Naive [1] O(n2d) O(nd) O(nd) O(nd)

Low Rank [10] O(nDd) O(Dd) O(Dd) O(Dd)

RKS [12] O(nDd) O(Dd) O(Dd) O(Dd)

2.3. RKS beyond Fourier bases

The RKS algorithm can actually exploit other approximating
functions besides Fourier expansions. Note that actually any
shift-invariant kernel, i.e. k(x,y) = k(x − y), can be rep-
resented using random cosine features. Randomly sampling
distribution functions impacts the definition of the corre-
sponding reproducing kernel Hilbert space (rkHs): sampling
the Fourier bases with zω(x) =

√
2 cos(ω>o x + b) actually

leads to the Gaussian RBF kernel k(x,y) = exp(−‖x −
y‖2/(2σ2)), while a random stump (i.e. sigmoid-shaped
functions) sampling defined by zω(x) = sign(x − ω) leads
to the kernel k(x,y) = 1 − 1

a‖x − y‖1. Another possibility
is to resort to binning bases functions, which partition the
input space using an axis-aligned grid, and assign a binary
indicator to each partition, which is shown to approximate a
Laplacian kernel, k(x,y) = exp(−‖x−y‖1/(2σ2)) [12]. In
this paper we will also explore the possibility of Walsh and
the Gabor basis functions widely used in signal and image
processing.

3. EXPERIMENTS

This paper presents experimental results on the use in RKS in
two remote sensing applications. We exploit several kitchen
sinks: the standard random Fourier basis functions, along
with the Walsh, Haar, wavelets and stumps.

3.1. Experiment 1: Atmospheric parameter retrieval

In this first experiment, we exploit random kernels in a chal-
lenging regression problem in remote sensing: the estima-
tion of atmospheric profiles from large scale hyperspectral
infrared sounders. Temperature and water vapor are atmo-
spheric parameters of high importance for weather forecast
and atmospheric chemistry studies [13]. Observations from
spaceborne high spectral resolution infrared sounding instru-
ments can be used to calculate the profiles of such atmo-
spheric parameters with unprecedented accuracy and vertical
resolution [14]. In this work we focus on the data com-
ing from the Infrared Atmospheric Sounding Interferometer
(IASI), that provides radiances in 8461 spectral channels,
between 3.62 and 15.5 µm with a spectral resolution of
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Fig. 2: Results of the RKS approach for different random sinks: (a) RMSE [K] and (b) training time [sec] versus the number of random
features drawn; and (c) RMSE [K] versus training time [sec].

0.5 cm−1 after apodization [15]. Its spatial resolution is
25 km at nadir with an Instantaneous Field of View (IFOV)
size of 12 km at an altitude of 819 km. This huge data di-
mensionality typically requires simple and computationally
efficient processing techniques that can exploit the wealth of
available observations provided by ECMWF re-analysis.

Figure 2 shows results for the prediction of the temper-
ature atmospheric profile. We trained linear regression (LR)
and kernel ridge regression (KRR) using the first 100 prin-
cipal components of an IASI orbit (2008-07-17), both using
5000 samples. The RKS approximations were all trained with
the ensemble of 100,000 examples. All models were then
tested on the same independent test set of 20,000 examples.
Experiments were performed using Matlab on an Intel 3.3
GHz processor with 8 GB RAM memory under Ubuntu 14.4.
Figure 2(a) shows that LR cannot cope with the nonlinearity
of the problem, which can be adressed by using the kernel
least squares regression method, KRR. However, training the
KRR with more than 5000 samples turns out to be hard in
regular machines. Using RKS instead is beneficial. It is ac-
tually observed that a sufficiently large number of randomly
sampled bases for kernel approximation can improve the re-
sults in terms of accuracy and computational efficiency: in
this case > 600 random features were enough to beat the full
5000-samples KRR. The big leap in computational cost is ob-
served in Fig. 2(b) (note the log-scale). A trade-off compar-
ison in Fig. 2(c) reveals that the best accuracy-cost compro-
mise in this particular example is to sample from the tradi-
tional squared-shaped Haar wavelet.

3.2. Experiment 2: Inversion of PROSAIL data

The second experiment deals with the inversion of PROSAIL
radiative transfer model1. PROSAIL is the combination of
the PROSPECT leaf optical properties model and the SAIL
canopy bidirectional reflectance model. PROSAIL has been

1http://teledetection.ipgp.jussieu.fr/prosail/

used to develop new methods for retrieval of vegetation bio-
physical properties. Essentially, PROSAIL links the spectral
variation of canopy reflectance, which is mainly related to leaf
biochemical contents, with its directional variation, which is
primarily related to canopy architecture and soil/vegetation
contrast. This link is key to simultaneous estimation of
canopy biophysical/structural variables for applications in
agriculture, plant physiology, and ecology at different scales.
PROSAIL has become one of the most popular radiative
transfer tool due to its ease of use, robustness, and consistent
validation by lab/field/space experiments over the years.

Table 2: Configuration parameters of the simulated data.

Parameter Sampling Min Max
RTM model: Prospect 4
Leaf Structural Parameter Fixed 1.50 1.50
Cab, chlorophyll a+b [µg/cm2] U(14, 49) 0.067 79.97
Cw, equivalent water thickness [mg/cm2] U(10, 31) 2 50
Cm, dry matter [mg/cm2] U(5.9, 19) 1.0 3.0
RTM model: 4SAIL
Diffuse/direct light Fixed 10 10
Soil Coefficient Fixed 0 0
Hot spot Fixed 0.01 0.01
Observer zenit angle Fixed 0 0
LAI, Leaf Area Index U(1.2, 4.3) 0.01 6.99
LAD, Leaf Angle Distribution U(28, 51) 20.04 69.93
SZA, Solar Zenit Angle U(8.5, 31) 0.082 49.96
PSI, Azimut Angle U(30, 100) 0.099 179.83

In this section, we used PROSAIL to generate 1,000,000
pairs of Sentinel-2 spectral (13 spectral channels) and 7 asso-
ciated parameters: Total Leaf Area Index (LAI), Leaf angle
distribution (LAD), Solar Zenit Angle (SZA), Azimut Angle
(PSI), chlorophyll a+b content Cab [µg/cm2], equivalent wa-
ter thicknessCw [g/cm2] and dry matter content,Cm [g/cm2].
See Table 2 for some configuration details of the simulation.
This constitutes a challenging multi-output regression prob-
lem.
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Fig. 3: RMSE results in the PROSAIL inversion experiment for the
seven parameters and the computational cost (bottom right).

Figure 3 shows the obtained results for the inversion of
PROSAIL. We show both the normalized RMSE and the com-
putational cost of a regularized linear regression, KRR and
RKS. In all cases we predict the seven parameters with a sin-
gle multiple-output regression model. We trained KRR with
2,000 samples, and consequently trained RKS for a maximum
of D = 2000. RKS employed 400,000 samples and cosine
basis. Several conclusions can be derived: 1) RKS yields in
general competitive performance versus KRR; and 2) RKS
largely improves predictions for LAD, SZA, and PSI estima-
tion, while similar in accuracy to KRR for the rest of param-
eters.

4. CONCLUSIONS

This paper explored the use of randomly-generated bases for
large-scale kernel regression in remote sensing biophysical
parameter estimation. We exploited the approximation of the
kernel function via random sampling from Fourier, wavelets,
Walsh and stump functions. We showed results in two prob-
lems. First we tackled a high-dimensional large scale prob-
lem very common in remote sensing: the estimation of atmo-
spheric profiles from large scale hyperspectral infrared sound-
ing IASI radiances. Second, we explored RKS for the inver-
sion of the widely used PROSAIL radiative transfer model
for which we used 400,000 pairs of Sentinel-2 simulations.
Both are multi-output problems. Results showed that we can
train kernel regression models with several thousands of data
points, which is not possible in standard kernel optimization
strategies. The RKS model produced big gains in accuracy
and computational efficiency.

We noted however that RKS has two shortcomings. First,
the memory bottleneck is still present as one has to store the
Z matrix, which is D × n, to compute the approximate ker-
nel matrix, K = ZZ>. This will be addressed in the future
through low-rank and blocky approximation of Z. And sec-
ond, other (sparser) bases can be more appropriate. In this
work, we used the Walsh basis but results did not improve
those of standard Fourier bases. Alternatives to Hadamard
expansions, much in line of Fastfood [16], could eventually
improve further the results and efficiency.

5. REFERENCES

[1] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, 2004.

[2] G. Camps-Valls and L. Bruzzone, Eds., Kernel methods for
Remote Sensing Data Analysis, Wiley & Sons, UK, Dec 2009.

[3] G. Camps-Valls, D. Tuia, L. Gómez-Chova, S. Jiménez, and
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