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ABSTRACT

This paper shows an empirical analysis of the trade-off be-
tween the spectral and the spatial information content of hy-
perspectral images. The objective of this study is to provide
some insights into how changes and variations of both res-
olutions may affect the information content of the resulting
image. This is useful for different stages of hyperspectral im-
age processing: from acquisition to final applications. We
propose two alternative approaches to measure the informa-
tion content of a hyperspectral image: first, a second order
approximation where the data distribution is supposed to be
Gaussian, and secondly a higher order approximation where
no assumption about the data distribution is made.

Keywords: Information, hyperspectral images, dimen-
sionality reduction

1. INTRODUCTION

Hyperspectral imaging is facing new methodological chal-
lenges. First of all, the availability of satellite images has
increased exponentially over the last few years, imposing im-
portant constraints in order to effectively deal with the data.
Secondly, much work has been devoted to develop optical
sensors that provide unprecedented spectral and spatial res-
olution. Thanks to these advances, a wide variety of appli-
cations, ranging from monitoring the development and health
of crops to surveillance, benefit from more accurate results
and also new application domains have emerged [1]. How-
ever, even a single hyperspectral image has become a very
complex high dimensional object that requires both adequate
storage and efficient processing.

In order to alleviate this problem, usually some of the
less informative data used to be discarded along the life cy-
cle of a hyperspectral image, from the acquisition stage to the
application-dependent post-processing. Even before that, the
initial decision occurs during the design of the sensor, where
the spatial and the spectral resolution are selected. Neverthe-
less, at acquisition time, there may still be room for maneu-
ver. For example, NASA’s AVIRIS has a spatial resolution of
around 20 meters when flown above sea level at its typical al-
titude of 20 kilometers, but a 4-meter resolution when flown
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at an altitude of 4 kilometers over land. Once the image is
captured, one has to decide among different compression al-
gorithms, which will determine the actual image storage size.
Finally, depending on the application, a variety of feature ex-
traction algorithms and dimensionality reduction techniques
(such as Principal Component Analysis) are applied. Through
these subsequent steps, some of the data is kept or otherwise
discarded according to different criteria. The choices are usu-
ally based on prior knowledge, experience o commonly used
heuristics. Unfortunately, the theoretical justification of some
of these criteria may be very convoluted.

The main contribution of this work is to measure the infor-
mation trade-off between the spatial and the spectral resolu-
tion. To this end, we estimate the information content of a hy-
perspectral image in the terms of Shannon’s entropy [2]. This
concept provides a simple yet effective procedure to discard
data. Previous works have suggested similar criteria to ana-
lyze hyperspectral images [3, 4, 5] but, up to our knowledge, a
thorough analysis of this problem has not been presented be-
fore. Due to the high dimensional nature of hyperspectral im-
ages, we will use measures that effectively take into account
these multidimensional relations. A interesting novelty of this
work lies in the use of a non-parametric method to estimate
the multidimensional entropy. In this way, we directly address
the problem of spatial versus spectral information, providing
a fair comparison for different configurations of spatial and
spectral resolution.

The conclusions of our analysis can be applied to a wide
variety of tasks. As we mentioned before, when designing
an optical sensor a key decision is to select the spectral and
the spatial resolution. Additionally, regarding the storage of
huge amounts of gathered images, although all data may be
necessary temporarily (e.g. to predict the weather), a lighter
version of the images are kept as representative historical data
(e.g. to study the climate over time), where the information
criteria would used in order to decide which data we should
persist. Lastly, how we handle the data is specially critical
for statistical learning methods, both in terms of performance
and scalability of the learning algorithms. For instance, ap-
plications such as weather forecasting or biological variable
prediction are inherently high dimensional problems. In this
sense, the information criteria would be interesting for feature
selection, as an usual preprocessing step in all these models.



The remaining of this paper is organized as follows. In
section 2 we describe the two different methods that we will
use to empirically measure the information content. In section
3 we describe both the data and the methodology we follow.
Finally, section 4 discusses the empirical results and the future
lines.

2. MEASURING THE INFORMATION CONTENT

In order to measure the amount of information content for
different spatio-spectral resolutions, we use the standard in-
formation definition by Shannon [2]. As a measure of in-
formation, we use the notion of entropy. Given a particular
selection of spatial and spectral resolution, the entropy of an
image gives the average amount of information that this con-
figuration has for that scene.

Entropy is usually defined in the context of a probabilistic
model. However, as the underlying probability distribution
of hyperspectral images is unknown, we can not compute en-
tropy using a closed-form expression and we face a multidi-
mensional estimation problem. To measure entropy we pro-
pose two methods. The first one assumes that images follow
a Gaussian distribution. This method is easy to implement
while keeping a small estimation error. This approximation
was originally presented in [3]. However, although it is a
reasonable first choice, the distribution of the hyperspectral
images is known to be different from a Gaussian [6]. The
second approach is a non-parametric method (i.e. it does not
assume any particular distribution of the data). Although it
is a much more realistic model, measures are noisier. In sec-
tion 3 we will analyze the different results obtained by both
alternatives.

2.1. Gaussian distribution assumption

The first approximation is based on the assumption that the
data is distributed as a multidimensional Gaussian. Assum-
ing a functional model of the data distribution always implies
an error in the results. Mainly we are taking into account
just second order relationships, and therefore discarding any
higher order terms. Since multidimensional probability es-
timation is a difficult problem, by assuming this model we
greatly simplify the computation. Additionally, although im-
ages are not distributed as multidimensional Gaussians, the
assumption is not completely unrealistic [6]. Actually, the
error caused by ignoring higher order relations in natural im-
ages is usually not very high [7]. Given a hyperspectral image
in matrix form X, the expression of the entropy of a multidi-
mensional Gaussian distribution is as follows:

d 1
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where d is he number of dimensions, and |X| is the determi-
nant of the covariance matrix. Note that the error in this mea-
sure will be determined by the error in the estimation of the

covariance matrix, which is not critical when a large number
of samples are available. In order to reduce the dimensional-
ity, using the entropy is an alternative (although similar) cri-
teria to just selecting the number of retained features given by
Principal Component Analysis.

2.2. Non-parametric approach

Rotation based iterative Gaussianization (RBIG) [8] is a non-
parametric method that has been successfully applied to es-
timate different multidimensional information-theoretic mea-
sures. RBIG is especially interesting for our problem because
it works particularly well in high dimensional scenarios while
keeping a low computational cost. In [8] its ability for mea-
suring multi-information was shown, and more recently, in
[9], RBIG was used to estimate the Kullback-Leibler diver-
gence between multidimensional probability distributions. As
opposed to the previous method, RBIG does not assume a
functional form for the data distribution. Due to its formu-
lation its accuracy depends mainly on marginal entropy esti-
mations. In particular we can take advantage of its ability for
measuring multi-information and apply the following formula
to then estimate the multidimensional entropy:

h(X) = Z hX;) — I(X) )

where h represents the entropy (both for multidimensional
data, h(X), and for unidimensional data, h(X;)), and I is the
multi-information. Note that marginal entropies are easy to
estimate and multi-information can be estimated using RBIG.

3. EXPERIMENTS

We aim to empirically determine the trade-off between spa-
tial information and spectral information, comparing the two
aforementioned approaches. The underlying objective is to
analyze images with a collection of spatial and spectral reso-
lutions, and show the amount of information that is kept when
using limited spatial or spectral resolutions and how this value
varies for each configuration.

3.1. Experimental setup

Ideally, we would want to analyze different types of hyper-
spectral images with a variety of spatial and spectral reso-
lution configurations and similar content. Up to our knowl-
edge, a dataset with these properties does not exist, so we
synthetically reproduce the effects of different resolutions us-
ing an image with medium spatial and spectral resolution.
For these experiments, the selected image was captured us-
ing NASA AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer) instrument in the Salinas Valley in California in



1998 !. The image has 224 bands of 10 nm width with center
wavelengths from 400 - 2500 nm. The KSC data, acquired
from an altitude of approximately 20 km, have a spatial reso-
lution of 18 m. The data generation process takes the selected
image as the starting point, and iteratively constructs images
with lower spatial and spectral resolution to explore different
resolution configurations.

3.2. Results

Starting from the AVIRIS image, which has moderate spatial
and spectral resolution, we synthetically simulate images with
different spatial and spectral resolutions. Then, we compute
the entropy of each of these new images - with a fixed number
samples (20.000) in each estimation - as a measurement of
the amount of information captured by each spatial/spectral
configuration. The results are reported in Figure 1 for the
Gaussian distribution assumption (Gaussian) and Figure 2 for
the non-parametric approach (RBIG).

Figures 1(a) and 2(a) show a matrix where each ele-
ment represents the estimated entropy for a specific spatial
and spectral resolution. In this case, although the values differ
slightly, both methods present a similar behavior: as expected,
the entropy grows as the spatial and spectral resolutions in-
crease. Figures 1(b) and 2(b), illustrate the comparison of
the information content for different configuration with fixed
number of coefficients. Using either of the methods, combin-
ing spectral and spatial data clearly provides more informa-
tion when using the same number of coefficients. However,
determining the exact trade-off between spectral and spatial
information requires a more detailed analysis. In this case,
the accuracy of RBIG becomes very relevant. Although it
is computationally cheaper, the Gaussian assumption is not
entirely realistic for hyperspectral images. RBIG does not
assume an underlying model achieving a better performance
specially in high dimensional problems [8]. While the Gaus-
sian approach suggests that a higher spatial resolution results
in a higher information content, RBIG encourages a slightly
higher spectral resolution.

4. CONCLUSION

This paper reports an empirical analysis of the trade-off be-
tween the spectral and the spatial information content of hy-
perspectral images. We illustrate how variations of both res-
olutions determine the entropy of the corresponding image.
In order to estimate the entropy of a hyperspectral image, we
try two different methods: first, a second order approxima-
tion where the data distribution is assumed to be Gaussian,
and secondly a non-parametric model (RBIG). While the first
approach is easily computed (just a covariance matrix eigen-
values computation is required), it assumes a Gaussian model.
The second approach is more accurate in this sense since it is
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adapted to the real model of the hyperspectral images. How-
ever it is more expensive computationally. Results show that
the combining spectral and spatial data provides clearly more
information when using the same number of dimensions. In-
terestingly, the results show that, for a constant number of
coefficients, a higher spectral resolution provides a higher
information content. Although these are preliminary results
obtained with just one image, multiple images with different
content will be considered in future works.
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Spectral resolution

Fig. 1. Entropy estimation in AVIRIS using the Gaussian model: (a) entropy for different configurations of spatial and spectral
resolution. Entropy values are in logarithmic scale for visualization pourposes. (b) Entropy for a fixed number of coefficients

(selected diagonals of the entropy matrix).

Spectral resolution

Fig. 2. Entropy estimation in AVIRIS using RBIG: (a) entropy for different configurations of spatial and spectral resolution.
Entropy values are in logarithmic scale for visualization pourposes. (b) Entropy for a fixed number of coefficients (selected
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