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Abstract—This paper introduces a new unsupervised method
for dimensionality reduction via regression (DRR). The algorithm
belongs to the family of invertible transforms that generalize
principal component analysis (PCA) by using curvilinear instead
of linear features. DRR identifies the nonlinear features through
multivariate regression to ensure the reduction in redundancy
between the PCA coefficients, the reduction of the variance of
the scores, and the reduction in the reconstruction error. More
importantly, unlike other nonlinear dimensionality reduction
methods, the invertibility, volume-preservation, and straightfor-
ward out-of-sample extension, makes DRR interpretable and easy
to apply. The properties of DRR enable learning a more broader
class of data manifolds than the recently proposed non-linear
principal components analysis (NLPCA) and principal polynomial
analysis (PPA). We illustrate the performance of the represen-
tation in reducing the dimensionality of remote sensing data. In
particular, we tackle two common problems: processing very high
dimensional spectral information such as in hyperspectral image
sounding data, and dealing with spatial-spectral image patches of
multispectral images. Both settings pose collinearity and ill-de-
termination problems. Evaluation of the expressive power of
the features is assessed in terms of truncation error, estimating
atmospheric variables, and surface land cover classification error.
Results show that DRR outperforms linear PCA and recently pro-
posed invertible extensions based on neural networks (NLPCA)
and univariate regressions (PPA).

Index Terms—Dimensionality reduction via regression, hyper-
spectral sounder, Infrared Atmospheric Sounding Interferometer
(IASI), landsat, manifold learning, nonlinear dimensionality re-
duction, principal component analysis (PCA).

I. INTRODUCTION

I n the last decades, the technological evolution of optical
sensors has provided remote sensing analysts with rich spa-

tial, spectral, and temporal information. In particular, the in-
crease in spectral resolution of hyperspectral sensors in general,
and of infrared sounders in particular, opens the doors to new
application domains and poses new methodological challenges
in data analysis. The distinct highly-resolved spectra offered by
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hyperspectral images (HSI) allow us to characterize land-cover
classes with unprecedented accuracy. For instance, hyperspec-
tral instruments such as NASA's Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) covers the wavelength region
from 0.4 to 2.5 using more than 200 spectral channels, at a
nominal spectral resolution of 10 nm. The MetOp/IASI infrared
sounder poses even more complex image processing problems,
as it acquires more than 8000 channels per iFOV. Actually,
such improvements in spectral resolution have called for ad-
vances in signal processing and exploitation algorithms capable
of summarizing the information content in as few components
as possible [1]–[4].
In addition to its eventual high dimensionality, the com-

plex interaction between radiation, atmosphere, and objects
in the surface leads to irradiance manifolds which consist of
non-aligned clusters that may change nonlinearly in different
acquisition conditions [5], [6]. Fortunately, it has been shown
that, given the spatial-spectral smoothness of the signal, the
intrinsic dimensionality of the data is small, and this can be
used both for efficient signal coding [3], [7], and for knowledge
extraction from a reduced set of features [8], [9]. The high
dimensionality problem is not only affecting the hyperspectral
data: very often, multispectral data processing applications
involve using spatial, multi-temporal or multi-angular features
that are combined with the spectral features [10], [11]. In
such cases, the representation space becomes more redundant
and pose challenging problems of collinearity for the algo-
rithms. In both cases, the key in coding, classification, and in
bio-geo-physical parameter retrieval applications reduces to
finding the appropriate set of features, that should be neces-
sarily flexible and nonlinear.
In order to find these features, in recent years a number of

feature extraction and dimensionality reduction methods have
been presented. Most of them are based on nonlinear functions
to allow describing data manifolds that exhibit nonlinear rela-
tions (see [12] for a comprehensive review). Approaches range
from localmethods [13]–[17], kernel-based and spectral decom-
positions [9], [18], [19], [20], neural networks [21]–[23], or pro-
jection pursuit formulations [24], [25]. Despite the theoretical
advantages of nonlinear methods, the fact is that classical prin-
cipal component analysis (PCA) [26] is still the most widely
used dimensionality reduction technique in real remote sensing
applications [3], [27], [28], [29]. This is mainly because PCA
has different properties that make it useful in real examples: it
is easy to apply since it involves solving a linear and convex
problem, and it has a straightforward out-of-sample extension.
Moreover, the PCA transformation is invertible and, as a result,
the features extracted can be easily interpreted.
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The new dimensionality reduction algorithms that involve
nonlinearities rarely fulfill the above properties. Nonlinear
models usually have complex formulations, which introduce
a number of non-intuitive free parameters. Tuning these
parameters implies strong assumptions about the manifold
characteristics (e.g. local Gaussianity or special symmetries),
or a high computational cost training. This complexity reduces
the applicability of nonlinear feature extraction to specific
data, i.e. the performance of these methods do not significantly
improve that of PCA on many remote sensing problems [3],
[9], [27]. Moreover, these methods have problems to obtain
out-of-sample predictions, which is mandatory in most of the
real applications. Another critical point is that the transform
involved by the nonlinear models is hard to interpret. This
problem could be alleviated if the methods were invertible
since then one could get the data back to the input domain
(where units are meaningful) and understand the results therein.
Invertibility allows to characterize the transformed domain,
and to evaluate its quality. However, invertibility is scarcely
achieved in the manifold learning literature. For instance,
spectral and kernel methods involve implicitmappings between
the original and the curvilinear coordinates, but these implicit
features are not easily invertible nor interpretable [30].
The desirable properties of PCA are straightforward in

methods that find projections onto explicit features in the
input domain. These explicit features may be either straight
lines or curves. This family of projection methods may be
understood as a generalization of linear transforms extending
linear components to curvilinear components. This family
ranges between two extreme cases: (1) rigid approaches where
features are straight lines in the input space (e.g. conventional
PCA, Independent Components Analysis -ICA- [31]), and
(2) flexible non-parametric techniques that closely follow the
data, such as Self-Organizing Maps (SOM) [32], or the related
Sequential Principal Curves Analysis (SPCA) [6], [33]. This
family is discussed in Section II below. Both extreme cases are
undesirable because of different reasons: limited performance
(in too rigid methods), and complex tuning of free parame-
ters and/or unaffordable computational cost (in too flexible
methods). In this projection-onto-explicit-features context,
autoencoders such as Nonlinear-PCA (NLPCA) [23], and
approaches based on fitting functional curves, such as Principal
Polynomial Analysis (PPA) [34], [35], represent convenient
intermediate points between the extreme cases in the family.
Note that these methods have shown better performance than
PCA on a variety of real data [35], [36]. Actually, in the case
of PPA, it is theoretically ensured to obtain better results than
PCA. The method proposed here, Dimensionality Reduction
via Regression (DRR), represents a qualitative step towards the
flexible end in this family because of the multivariate nature of
the regression (as opposed to the univariate regressions done in
PPA) while keeping the convenient properties of PPA and PCA
which make it suitable for practical high dimensional problems
(as opposed to SPCA and SOM). Therefore, it extends the
applicability of PPA to more general manifolds, such as those
encountered in remote sensing data analysis.
Following the taxonomy in [35] these three methods

(NLPCA, PPA and DRR) could be included in the Principal

Curves Analysis framework [37]. This framework includes
both parametric (fitting analytic curves) [26], [38], [39], and
non-parametric [6], [33], [40]–[42] methods. NLPCA, PPA
and DRR exploit the idea behind this framework to define
generalizations of PCA of controlled flexibility.
Preliminary results of DRR were presented in [43]. Here

we extend the theoretical analysis of the method and the ex-
perimental confirmation of the performance in hyperspectral
images. The remainder of the paper is organized as follows.
Section II reviews the properties and shortcomings of the
projection-onto-explicit-features family pointing out the quali-
tative advantages of the proposed DRR. Section III introduces
the mathematical details of DRR. We describe the DRR trans-
form and the key differences with PPA. We derive an explicit
expression for the inverse and we prove the volume preser-
vation property of DRR. The theoretical properties of DRR
are demonstrated and illustrated in controlled toy examples of
different complexity. In Section IV, we address two important
high dimensional problems in remote sensing: the estimation of
atmospheric state vectors from Infrared Atmospheric Sounding
Interferometer (IASI) hyperspectral sounding data, and the
dimensionality reduction and classification of spatio-spectral
Landsat image patches. In the experiments, DRR is compared
with conventional PCA [26], and with recent fast nonlinear
generalizations that belong to the same class of invertible
transforms, PPA [34], [35] and NLPCA [23]. Comparisons are
made both in terms of reconstruction error and of expressive
power of the extracted features. We end the paper with some
concluding remarks in Section V.

II. FROM RIGID TO FLEXIBLE FEATURES
Here we illustrate how DRR represents a step forward with

regard to NLPCA and PPA in the family of projections onto
explicit curvilinear features ranging from rigid to flexible ex-
tremes. First, we review the basic details of previous projection
methods, and then we illustrate the advantages of the proposed
method in an easy to visualize example.

A. Representative Projections Onto Lines and Curves
Classical techniques such as PCA [26] or ICA [31] repre-

sent the rigid extreme of the family, where, zero-mean samples
are projected onto rectilinear features through the pro-

jection matrix, :

where are the Principal Components (PC scores for PCA) or
the Independent Components (for ICA), and the linear features
in the input space are the column vectors (straight directions) in

. These rigid techniques use a single set of global features
regardless of the input.
On the contrary, flexible techniques adapt the set of features

to the local properties of the input. Examples include SOM [32]
where a flexible grid is adapted to the data and samples can be
represented by projections onto the local axes defined by the
edges of the parallelepiped corresponding to the closest node.
Similarly, local-PCA [44] and local-ICA [45] project the data
onto local axes corresponding to the closest code vector. More
generally, local-to-global methods integrate these local-linear
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representations into a single global curvilinear representation
[46]. In particular, using the fact that local eigenvectors are
tangent to first and secondary principal curves [47], Sequen-
tial Principal Curves Analysis (SPCA) [6], [33] integrates local
PCAs, , along a sequence of principal curves to get a
curvilinear representation

where the local metric, , sets the line element along the
curves. SPCA is inverted by taking the lengths, , along the se-
quence of principal curves drawn from the origin, . Similarly
to SOM, SPCA assumes a grid of curves adapted to the data.
However, as opposed to SOM, SPCA does not learn the whole
grid, but only segments of principal curves per sample.
The above methods identify explicit curves/features that

follow the data, but they are hard to train (e.g. parameters to
control their flexibility depend on the problem) and require
many samples to be reliable, which make them hard to use
in high-dimensional scenarios. Other methods have been pro-
posed to generalize the rigid representations by considering
curvilinear features instead of straight lines [26]. For instance,
in NLPCA [21], [23] an invertible internal representation is
computed through a two stage neural network,

where the matrices represent sets of linear receptive fields,
and is a set of fixed point-wise nonlinearities. The inverse
of this autoencoder [22] can be used to make the curvilinear
coordinates explicit.
Fitting general parametric curves in , as done in [38], [39],

is difficult because of the unconstrained nature of the problem
[26], [35]. Alternatively, PPA [35] follows a deflationary se-
quence in which a single polynomial depending on a straight
line (univariate fit) is computed at a time. Specifically, the -th
stage of PPA accounts for the -th curvilinear dimension by
using two elements: (1) one-dimensional projection onto the
leading vector , and (2) polynomial prediction of the average
at the orthogonal subspace,

(1)

where the polynomial prediction, , is removed from the
data in the orthogonal subspace. Superindices in the above for-
mula represent the stage. As a result, data at the -th stage is
represented by and by the -dimensional residual that
cannot be predicted from that projection. Prediction using this
univariate polynomial is a way to remove possible nonlinear de-
pendencies between the linear subspace of and its orthog-
onal complement. Despite its convenience, the univariate nature
of the fits restricts the kind of dependencies that can be taken
into account since more information about the orthogonal sub-
space (better predictions) could be obtained if more dimensions
were used in the prediction. Moreover, using a single parameter,
, to build the -th polynomial implies that the -th curvilinear

feature has the same shape along the -th curve.

DRR addresses these limitations by using multivariate in-
stead of univariate regressions in the nonlinear predictions. As
a result, DRR improves energy compaction and extends the ap-
plicability of PPA to more general manifolds while keeping its
simplicity, which make it suitable in high dimensional problems
(as opposed to SPCA and SOM).

B. Qualitative Advantages of DRR
The advantages of DRR are illustrated in Fig. 1 where we

compare representative invertible representations of this family
on two curved and noisy manifolds of the class introduced by
Delicado [47] (in red and blue). This class of manifolds, origi-
nally presented to illustrate the concept of secondary principal
curves [47], is convenient since one can easily control the com-
plexity of the problem by introducing tilt (non-stationarity) on
the secondary principal curves (dark color) along the first prin-
cipal curve (light color). This controlled complexity is useful to
point out the limitations of previous techniques (e.g. required
symmetry in the manifold) and how these limitations are allevi-
ated by using the (more general) DRR model The performance
is compared in the input domain through the dimensionality re-
duction error and through the accuracy of the identified curvi-
linear features. These manifolds come from a two-dimensional
space of latent variables (positions along the first and secondary
curves). As a result, the dimensionality reduction error depends
on the unfolding ability of the forward transform: the closer the
transformed data fit a flat rectangle, the smaller the error when
truncating the representation. On the other hand, the identified
features depend on how the inverse transform bends a Cartesian
grid in the latent space: the better the model represents the cur-
vature of data, the bigger the fidelity of the identified features.
Let us start by considering the performance on the easy case:

manifold in red with no tilt along the second principal curve.
The previously reported techniques perform as expected: on the
one hand, progressively more flexible techniques (from PCA to
SPCA) reduce the distortion after dimensionality reduction (in

terms) because they better unfold test data. As a result,
removing the third dimension in the rigid-to-flexible family pro-
gressively introduces less error. On the other hand, the identified
features in the input domain are progressively more similar to
the actual curvilinear latent variables when going from the rigid
to the flexible extremes. In this specific easy example the pro-
posed DRR outperforms even the flexible SPCA in
terms. Moreover, since this particular manifold may not require
increased flexibility (and hence may be better suited to the PPA
model), PPA slightly outperforms DRR in terms.
Results for the more complex manifold (tilted secondary

curves, in blue) provide more insight into the techniques since it
pushes them (specifically PPA) to their limits. Firstly, note that
the increase in complexity is illustrated by an increase in the
errors in all methods. For instance, linear PCA, that identifies
the same features in both cases, doubles the normalized MSEs.
While the reduction in performance is not that relevant in
SPCA (remember these flexible techniques cannot be applied
in high dimensional scenarios), this twisted manifold certainly
challenges fast generalizations of PCA: the MSEs dramatically
increase for NLPCA and PPA. Even though NLPCA identifies
certain tilt in the secondary feature along the first curve, it seems
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Fig. 1. Performance of the family of invertible representations on illustrative manifolds of different complexity. Complexity of the considered manifolds (top
panel) depends on the tilt in secondary principal curves along the first principal curve [47]. Sample data are shown together with the first and secondary principal
curves generated by the latent variables (angle and radius) in the input domain. Results of the different techniques for the considered manifolds are depicted in
the same color as the input data (red for the no-tilt manifold, and blue for the tilted manifold). Previously reported representations range from rigid schemes such
as PCA [26] to flexible schemes such as SPCA [6], [33], including practical nonlinear generalizations of PCA such as NLPCA [23] and PPA [35] which are
examples of intermediate flexibility between the extreme cases. Performance is compared in terms of reconstruction error when removing the third dimension
(dimensionality reduction numbers are relative to the PCA error in the easy case), and in terms of the mean squared distance between the identified
and the actual curvilinear features ( numbers are relative to the PCA error in the easy case). is related to the unfolding ability of the model (see
the Transform rows), and is related to its ability to get appropriate curvilinear features from an assumed latent Cartesian grid (see the Identified Features
rows). We used training samples and optimal settings in all methods. Dimensionality reduction was tested on the 17 13 highlighted curvilinear grid sampled
from the true latent variables. The features in the input space were identified by inverting a 17 13 2- Cartesian grid in the transform domain. This (assumed)
latent grid was scaled in every representation to minimize . Standard deviations in errors come from models trained on 10 different data set realizations.

too rigid to follow the data structure. PPA displays a different
problem: as stated above, by construction, the -th curvilinear
feature in PPA cannot handle relations with the -th

curve beyond the prediction of the mean. This is because the
data in all orthogonal subspaces along the -th curve
collapse, and are described by a single curve depending on a
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single parameter (univariate regression). This leads to using
the same -th curve all along the -th feature (note the
repeated secondary curves along the first curve in both, red and
blue, cases). This is good enough when data manifolds have the
required symmetry (PPA performance is over NLPCA in the
first case), but leads to dramatic errors when the method have to
deal with relations between three or more variables, as for the
manifold in blue, where PPA performance is below NLPCA.
This latter effect frequently appears in hyperspectral images, as
different (non-stationary) nonlinear relations between spectral
channels occur for different objects [3], [48], [49].
Finally, note that DRR clearly improves PPA in the chal-

lenging example in blue, mainly because it uses multiple di-
mensions (instead of a single one) to predict each lower vari-
ance dimension in the data. As a result, it can handle non-sta-
tionarity along the principal curves leading to better unfolding
(lower ) and tilted secondary features (lower ).
This removes the symmetry requirement in PPA and broadens
the class of manifolds suited to DRR.

III. DIMENSIONALITY REDUCTION VIA REGRESSION
PCA removes the second order dependencies between the

signal components, i.e. PCA scores are decorrelated [26].
Equivalently, PCA can be casted as the linear transform that
minimizes reconstruction error when a fixed number of features
are neglected. However, for general non-Gaussian sources, and
in particular for hyperspectral images, PCA scores still display
significant statistical relations, see [3] [ch. 2]. The scheme
presented here tries to nonlinearly remove the information still
shared by different PCA components.

A. DRR Scheme
It is well known that, even though PCA leads to a domain with

decorrelated dimensions, complete independence (or non redun-
dant coefficients) is guaranteed only if the signal has a Gaussian
probability density function (PDF). Here, we propose a scheme
to remove this redundancy (or uninformative data). The idea is
simple: just predict the redundant information in each coefficient
that can be extracted from the others. Only the non-predictable
information (the residual prediction error) should be retained for
data representation. Specifically, we start from the linear PCA
representation outlined above: . Then, we propose to
predict each coefficient, , through a multivariate regression
function, , that takes the higher variance components as in-
puts for prediction. The non-predictable information is:

(2)

and this residual, , is the -th dimension of the DRR domain.
This prediction+substraction is applied times,

, where is the dimension of the input. As a result, the
DRR representation of each input vector , is:

B. Properties of DRR
a) DRR generalizes PCA: In the particular case of using

linear regressions in , i.e. linear-DRR, the prediction
would be equal to zero. Note that this is the result when using

classical (least squares) solution since is uncorrelated with
each . Therefore ,
and then , i.e. linear-DRR reduces to PCA.
As a result, if the employed nonlinear functions gen-

eralize the linear functions, DRR will obtain at least as good
results as PCA. The flexibility of these functions with regard
to the linear case will reduce the variance of the residuals, and
hence the reconstruction error in dimensionality reduction.

b) DRR is invertible: Given the DRR transformed vector,
, and knowing the functions of model ,

the inverse is straightforward since it reduces to sequentially
undo the forward transformation: we first predict coefficient

-th from previous (known) coefficients using the known
regression function, and then, we use the known residual to cor-
rect the prediction:

(3)

c) DRR has an easy out-of-sample extension: Note that
forward and inverse DRR transforms can be applied to new data
(not in the training set) since there is no restriction to apply the
prediction functions . See Section III-C for a discussion on
the selected regression functions in this work.

d) DRR is a volume preserving transform: A nonlinear
transform preserves the volume of the input space if the deter-
minant of its Jacobian is one for all [50]. Here we prove that
the nature of DRR ensures that its Jacobian fulfills this property.
DDR can be thought of as a sequential algorithm in which

only one dimension is addressed at a time through the elemen-
tary transform consisting of prediction and substraction
((2)). Yet mathematically convenient to formulate the Jacobian,
this sequential view is does not prevent the parallelization
discussed later. Hence, the (global) Jacobian of DRR, , is
the product of the Jacobians of the elementary transforms in
this sequence times the matrix of the initial PCA as follows:

The -th elementary transform leaves all, but the -th di-
mension, unaltered. Therefore, each elementary Jacobian is
the identity matrix except for the -th row, which depends on

through the derivatives of the -th regression
function with regard to each component in the previous stage:

. . .

. . .

Whatever these derivatives are (whatever regression function
is selected), the determinant of such a simple matrix is always
one at every point . Therefore, the determinant of the global
Jacobian is guaranteed to be one including the PCA transform,
, which is orthonormal.
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e) Parallelization of DRR: Multivariate regression inDRR
is a qualitative advantage over other methods (as discussed in
Section II). However it is computationally expensive. Fortu-
nately, the proposed DRR allows trivial parallel implementation
of the forward transform. Note that the prediction of each com-
ponent is actually done from a subset of the original PC scores.
Therefore, all the prediction functions, , can be applied at
the same time after the initial PCA step, and sequential imple-
mentation is not necessary. This is an obvious computational
advantage over PPA, which necessarily requires a sequential
implementation, but it represents a qualitative advantage too,
since in PPA each feature depends on the previous nonlinear fea-
tures (see (1)), while in DRR nonlinear regressions only depend
on linear features, but not on previous curvilinear coefficients.
As opposed to the forward transform, the inverse is not paral-
lelizable since, in order to predict the -th PCA coefficient, we
need the previous linear PCs, which implies operating sequen-
tially from .

C. Selecting the Class of Regression Functions
In practice, the prediction functions reduce to

training a set of nonlinear regression models. In our experi-
ments, we used the kernel ridge regression (KRR) [51] to im-
plement the prediction functions , although any alternative
regression method could be also applied. Notationally, given
data points, the prediction for all of them is estimated as:

where is a kernel (similarity) function reproducing a dot
product in Hilbert space, , is
the matrix containing all the training samples in rows,

is the -th column of to be estimated,
denotes a submatrix containing columns of used
as input data to fit the prediction model, and
represents the feature vector in row of . In this predic-
tion function, is the dual weight vector obtained by
solving the least squares linear regression problem in Hilbert
space:

where is the kernel matrix with entries
, being . Two pa-

rameters must be tuned for the regression: the regularization
parameter and the kernel parameters. In our experiments
we used the standard squared exponential kernel function,

, as it is a universal kernel
which involves estimating only the length-scale . Both and
can be estimated by standard cross-validation.
KRR can be quite convenient in the DRR scheme because

it implements flexible nonlinear regression functions, and re-
duces to solving a matrix inversion problem with unique solu-
tion. KRR offers a moderate training and testing computational
cost1, includes regularization in a natural way, and also offers

1While naive implementations scale as for training, recent sparse
and low-rank approximations [52], [53] along with divide-and-conquer schemes
[54] can make KRR very efficient.

the possibility to generate multi-output nonlinear regression.
The latter is an important feature to extend the DRR scheme to
multiple outputs approximation. Finally, KRR has been success-
fully used in many real applications [51], [55] including remote
sensing data analysis involving hyperspectral data [27]. How-
ever, it should be noted that, even in such cases, a previous fea-
ture extraction was mandatory to attain significant results [27],
[53], [56], [57].

IV. EXPERIMENTAL RESULTS

In this section, we give experimental evidence of the perfor-
mance of the proposed algorithm in two illustrative settings.
First, we show results on the truncation error in a multispec-
tral image classification problem including spatial context. Then
we evaluate the performance of DRR in terms of both the re-
construction error and the expressive power of the features to
perform multi-output regression of a challenging problem in-
volving hyperspectral infrared sounding data2
Focusing in these two experiments is not arbitrary. The two

applications imply challenging high dimensional data: (1) mul-
tispectral image classification in which contextual information
is stacked to the spectral information highly increases the di-
mensionality, and (2) hyperspectral infrared sounding data used
to estimate atmospheric state vectors is densely sampled. In both
cases the input space may become redundant because of the
collinearity introduced either by the (locally stationary) spatial
features or by the spectral continuity of natural sources. In these
experiments, in which , we compare DRR with members
of the invertible projection family described in Section II suited
to high dimensional scenarios. This implies focusing on PCA,
NLPCA and PPA, excluding SPCA and SOM because of their
prohibitive cost.

A. Experiment 1: Multispectral Image Classification

For our first set of experiments, we considered a Landsat
MSS image consisting of 82 100 pixels with a spatial res-
olution of 80 m 80 m (all data acquired from a rectangular
area approximately 8 km wide)3. Six classes are identified in the
image, namely red soil, cotton crop, grey soil, damp grey soil,
soil with vegetation stubble and very damp grey soil. A total
of 6435 labeled samples are available. Contextual information
was included stacking neighboring pixels in 3 3 windows.
Therefore, 36-dimensional input samples were generated, with
a high degree of redundancy and collinearity. We address two
problemswith this dataset: a pure spatio-spectral dimensionality
reduction problem, and the effect of the reduced dimension in
image classification.
1) Reconstruction Accuracy: In the first problem, we com-

pare the dimensionality reduction performance in terms of
Mean Absolute Error (MAE) in the original domain. Note
that this kind of evaluation can be used only with invertible
methods. For each method, the data are transformed and
then inverted using less dimensions. This is equivalent to

2Reproduction of the experiments in this work is possible using the generic
DRR toolbox at, http://isp.uv.es/drr.html.

3Image available at http://www.ics.uci.edu/mlearn/MLRepository.html
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Fig. 2. Reconstruction error results on the contextual multispectral image classification. Comparison between PCA, PPA, NLPCA and DRR for different number
of extracted features, in both mean absolute reconstruction error (MAE) (left) and relative MAE with respect to PCA error (right), for which going below the PCA
means better results (less error).

Fig. 3. Classification results on the contextual multispectral image classification. Comparison between PCA, PPA, NLPCA and DRR for different number of
extracted features, in both classification error (left) and relative classification error with respect to PCA accuracy (right), for which going below the PCA means
better results (less error).

truncate dimensions in PCA. In order to illustrate the ad-
vantage of using a given method instead of PCA, results
are shown in percentage with regard to the PCA perfor-
mance: , where

and refer to the MAE obtained with the
considered method and PCA, respectively.
Fig. 2 shows the results of the experiment. We divided the

available labeled data into two sets (training and test) with equal
number of samples. The samples of each set have been randomly
selected from the original image dataset. The MAE of recon-
struction in the test set averaged over ten independent realiza-
tions is shown. Several conclusions can be obtained: Specifi-
cally, NLPCA obtains good results when a few number of ex-
tracted features are obtained, but rapidly degrades its perfor-
mance with more than 10 extracted features, revealing a clear
inability to handle high-dimensional problems. Note that the
available implementation of NLPCA4 is restricted to extract at

4http://www.nlpca.org/

most 20 features. For a given number of extracted features, the
reconstruction error increases substantially with regard to PCA
(Fig. 2 right). PPA shows better results than NLPCA, and it is
better suited than PCA in all the number of extracted features.
Nevertheless, it is noticeable that DRR is in all cases better than
all the other methods, revealing a maximum gain of 25% over
PCA for very few features.
2) Classification Accuracy: The second problem with this

dataset shows the classification results using the inverted data
into the original input space of the different methods. We used
the standard linear discriminant analysis on top of the inverted
data5. In all cases, we used 3200 randomly selected examples
for training and the same amount for testing. Test results are
averaged over five realizations, and are shown in Fig. 3. The
performance results indicate similar trends observed in the re-

5While other more sophisticated nonlinear classifiers could be used here, we
are actually interested in this setting that allows us to study the expressive power
of the extracted features. An homologous setting will be also used in the regres-
sion experiments of next subsection.
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TABLE I
COMPUTATIONAL COST LANDSAT DATASET

construction error in Fig. 2. Essentially, DRR outperforms the
other methods, especially noticeable when a few number of
components are used for reconstruction and classification. As
the number of components increase, DRR and PPA show sim-
ilar results. These results suggest that DRR better compacts the
information in a lower number of components, which is useful
for both reconstruction and data classification.
3) Computational Load: Table I shows the computation

cost for all considered methods for training and testing6. The
experiments used 3200 training and 3200 test samples, with

. Two main conclusions can be extracted: NLPCA is the
most computationally costly algorithm for training and DRR
for testing.

B. Experiment 2: Regression From Infrared Sounding Data
We here analyze the benefits of using DRR for the estima-

tion of atmospheric parameters from hyperspectral infrared
sounding data with a reduced dimensionality. We first motivate
the problem, and then describe the considered dataset. Again,
we are interested in analyzing the impact of the reduced dimen-
sionality both in the reconstruction error and in a different task,
in this case, the retrieval of geophysical parameters.
Temperature and water vapor are atmospheric parameters

of high importance for weather forecast and atmospheric
chemistry studies [58], [59]. Observations from spaceborne
high spectral resolution infrared sounding instruments can be
used to calculate the profiles of such atmospheric parameters
with unprecedented accuracy and vertical resolution [60].
In this work we focus on the data coming from the Infrared
Atmospheric Sounding Interferometer (IASI), the Microwave
Humidity Sensor (MHS) and the Advanced Microwave Sensor
Unit (AMSU) onboard of the MetOp-A satellite7. The IASI
instrument is the one that poses the major dimensionality
challenge due to its dense spectrum sampling: while MHS and
AMSU spectra consist of about twenty values together, IASI
spectra consist of 8461 spectral channels, between 3.62 and
15.5 , with a spectral resolution of 0.5 after apodiza-
tion [61], [62]. Its spatial resolution is 25 km at nadir with an
Instantaneous Field of View (IFOV) size of 12 km at an altitude
of 819 km. This huge data dimensionality typically requires
simple and computationally efficient processing techniques.
One of the retrieval techniques available in the MetOp-IASI

Level 2 Product Processing Facility (L2 PPF) is a computation-
ally inexpensive method based on linear regression from the
principal components of the measured brightness spectra and
the atmospheric state parameters. We aim to introduce DRR in
such scheme as an alternative to PCA. In this application it is

6Experiments were performed using Matlab on an Intel 3.3 GHz processor
with 48 GB RAM memory. No parallelization was applied on DRR in this
experiment.

7https://directory.eoportal.org/web/eoportal/satellite-missions/m/metop

Fig. 4. Surface temperature [in K] world map provided by the official ECMWF
model, http://www.ecmwf.int/.

important that dimensionality reduction minimizes the recon-
struction error and that the identified features are useful in the
retrieval stage.
We used a collection of 23 datasets of input data from the dif-

ferent sensors: IASI, MHS and AMSU. The considered output
atmospheric variables are diverse, e.g. temperature, moisture,
and surface pressure. In each dataset provided by EUMETSAT,
the preprocessed input data were 110-dimensional. Each input
vector consisted of the following: one scalar indicating the se-
cant of satellite zenith angle, 19 radiance values from the AMSU
and MHS sensors, and 90 values from the IASI sensor. The data
from IASI were actually three separate sets of 30 PC scores
each, from three different IASI bands. Note that, despite intra-
band decorrelation, the vector elements may still exhibit sta-
tistical dependency, which may be significant even at a second
order level, among different bands and instruments. The data to
be predicted (or output data) is 277-dimensional. Each output
vector consists of the following: 4 data corresponding to the
surface temperature andmoisture, the skin temperature, and the
surface pressure; and 273 data corresponding to altitude profiles
of temperature, moisture, and ozone at 91 model levels each.
An example of surface temperature is shown in Fig. 4. Data
was provided by the official European Center forMedium-range
Weather Forecasting (ECMWF) model, http://www.ecmwf.int/,
on March 4th, 2008.
1) Reconstruction Accuracy: In this experiment, we study

the representation power of a small number of features ex-
tracted by DRR. The 110 input features are processed with PCA
[26], PPA [34], [35], NLPCA [21], [23] and the presented DRR
method. Here, the quality of the transformation is evaluated
solely with the mean absolute error (MAE) in the input space
between the original signal and the reconstructed with the most
relevant coefficients retained. Fig. 5 illustrates the effect of
reconstructing the input data when using PCA, PPA, NLPCA
and DRR for different numbers of components. On the one
hand, as reported in [35], the performance in PPA is similar
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Fig. 5. Reconstruction error. Left: Absolute reconstruction error for different number of retained features obtained when using different DR methods on the first
(just one) dataset. Right: Relative error (percentage) with regard to the error in PCA, mean and standard deviation have been obtained over the 23 (all) datasets.

Fig. 6. Retrieval performance. Accuracy of the parameter retrieval (MAE) with regard to the number of retained features. Results are given for different feature
extraction (PCA, PPA, NLPCA, DRR) methods. Left: Absolute MAE for the first dataset. Right: Relative (to the PCA MAE in each dimension) results. Results
for the remainder 23 are similar.

or better than in NLPCA in reconstruction error. On the other
hand, it is important to note that results in absolute and relative
terms show that DRR clearly obtains less reconstruction error
than PCA and PPA for an arbitrary number of features.
2) Retrieval Accuracy: Fig. 6 illustrates the effect of using

the features either from PCA, PPA or DRR for the retrieval
of the physical parameters described before. We used linear
regression in the features-to-parameters estimation. We plotted
the mean absolute error (MAE) for different number of fea-
tures. These plots show the effect of using different (linear
and non-linear) dimensionality reduction methods for retrieval.
Fig. 6 shows the results for the first dataset for illustration
purposes (similar results were obtained for the remainder
datasets). Note that using DRR features to estimate the features
has clear benefits. For instance, using just the 20% of the DRR
features obtains the same accuracy as PCA when using all the
components.
3) Computational Load: Times for training and testing are

shown in Table II (same computer resources as before). In this
experiment, we took 10000 training and 10000 test samples, and

. As in the previous experiment, NLPCA and DRR are

TABLE II
COMPUTATIONAL COST IASI DATASET

the most expensive in training and test, respectively. In this ex-
periment, however, times for DRR are notably higher due to the
increase in dimensionality but mostly to the bigger training set.

V. CONCLUSIONS

We introduced a novel unsupervised method for dimension-
ality reduction via the application of a multivariate nonlinear
regression to approximate each projection from the higher
variance scores. The method is shown to generalize PCA and
to achieve more data compression (smaller MSE for a fixed
number of retained components) and better features for predic-
tion (less error in classification and regression problems) than
competitive nonlinear methods like NLPCA and PPA. Besides,
unlike other nonlinear dimensionality reduction methods, DRR
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is easy to apply, it has out-of-sample extension, it is invert-
ible, and the learned transformation is volume-preserving. We
focused on the challenging problems of spatial-spectral multi-
spectral land cover classification, and atmospheric parameter
retrieval from hyperspectral infrared sounding data. Extension
of DRR to cope with multiset/output regression, as well as
impact of the data dimensionality and noise sources, will be
explored in the future.
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