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Abstract
We present an image quality metric based on the transfor-

mations associated with the early visual system: local luminance
subtraction and local gain control. Images are first decomposed
using a Laplacian pyramid, which subtracts a local estimate of
the mean luminance at multiple scales. Each pyramid coefficient
is then divided by a local estimate of amplitude (weighted sum of
absolute values), where the weights are optimized for prediction
of local amplitude using (undistorted) images from a separated
database. The quality of a distorted image, relative to its undis-
torted original, is the root mean squared error in this “normal-
ized Laplacian” domain. We show that both luminance subtrac-
tion and amplitude division stages lead to significant reductions
in redundancy, relative to the original image pixels. We also show
that the resulting quality metric provides a better account of hu-
man perceptual judgements than either MS-SSIM or a recently-
published gain-control metric based on oriented filters.

Introduction
Many problems in image processing rely, at least implic-

itly, on a measure of image quality. Although mean squared er-
ror (MSE) is the near-universal choice, it is well known that it is
not very well matched to the distortion perceived by human ob-
servers [1, 2]. Objective measures of perceptual image quality
attempt to correct this by incorporating known characteristics of
human perception, such as the dependence of contrast sensitivity
on spatial frequency (see reviews [3, 4]). In many cases, this is
accomplished by transforming the reference and distorted images
into a new format that mimics physiological representations of the
early stages of the visual system, and quantifying the root mean
squared error within that “perceptual” space. But existing exam-
ples skip over the effects of the earliest part of the visual system
(the retina and thalamus) and build their transformations based on
the properties of primary visual cortex (area V1). Specifically,
they typically include multi-scale oriented filtering followed by
local gain control to normalize response amplitudes (e.g. [5, 6, 7]).

While these models are motivated by physiology, they also
are well matched to the statistical properties of natural images,
consistent with theories of biological coding efficiency and re-
dundancy reduction [8, 9]. In particular, application of Indepen-
dent Component Analysis (ICA) [10], which seeks a linear trans-
formation optimizing statistical independence of the data dimen-
sions, produces oriented filters resembling V1 receptive fields.
Local gain control, in a form known as "divisive normalization"
that is often used to describe sensory neurons [11], has been

shown to decrease the dependencies between neighboring coef-
ficients [12, 13, 14, 15].

To date, the most widely used measure of perceptual distor-
tion is the structural similarity metric (SSIM) [16], which is de-
signed to be invariant to so-called nuisance variables (local mean,
local standard deviation) while retaining sensitivity to the remain-
ing “structure” of the image. SSIM is generally used within a
multi-scale representation (MS-SSIM), so as to handle features
of all sizes [17]. While SSIM is informed by the invariances of
human perception, the form of its computation (a product of the
correlations between mean-subtracted, variance-normalized, and
structure terms) has no obvious mapping onto physiological rep-
resentation. Nevertheless, the computations that underlie the em-
bedding of those invariances – subtraction of the local mean, and
division by the local standard deviation – are reminiscent of the
response properties of neurons in the retina and thalamus. In par-
ticular, responses of these cells are often modeled as bandpass fil-
ters ("center-surround") whose responses are rectified and subject
to gain control according to local luminance and contrast (e.g.,
[18]).

Here, we define a new quality metric, computed as the root
mean squared error of an early visual representation based on
center-surround filtering followed by local gain control. The fil-
tering is performed at multiple scales, using the Laplacian pyra-
mid [19]. While the model architecture and choice of operations
are motivated by the physiology of the early visual system, we
use a statistical criterion to select the local gain control param-
eters. Specifically, the weights used in computing the gain sig-
nal are chosen so as to minimize the conditional dependency of
neighboring transformed coefficients. Despite the simplicity of
this representation, we find that it provides an excellent account
of human perceptual data, outperforming MS-SSIM, as well as
V1-inspired models, in predicting the human quality judgments
in the TID 2008 database [20].

Normalized Laplacian model
Our model is comprised of two stages (figure 1): the image x

is subjected to local luminance removal, which is implemented by
subtracting a local estimate of the mean, followed by a local gain
control, which is implemented by dividing by a local estimate of
fluctuation around the mean. The perceptual metric is then simply
the root mean squared error in this transformed domain.

We view the local luminance subtraction and contrast nor-
malization as a means of reducing redundancy in natural images.
Most of the redundant information in natural images is local; i.e.,



Figure 1. Normalized Laplacian model diagram, shown for a single scale (k). Starting from image, x(k) (k = 1 corresponds to the original image), the intermediate

image z(k) is computed by subtracting the local mean (eq. 2). This is accomplished using the standard Laplacian pyramid construction: convolve with lowpass

filter L(ω), downsample by a factor of two in each dimension, upsample, convolve again with L(ω), and subtract from the input image x(k). This intermediate

image is then normalized by an estimate of local amplitude , obtained by computing the absolute value, convolving with scale-specific filter P(k)(ω), and adding

the scale-specific constant σ (k) (eq. 3)). The downsampled image x(k+1) forms the starting image for scale (k+1).

the distribution of an image pixel (xi) conditioned on all others
can be well approximated by the conditional

p(xi|xNi), (1)

where xNi is its immediate neighborhood. This is a form of
Markov property and motivates our use of local mean and ampli-
tude estimates. In each stage of the model, a parametric estimate
of a statistic of the central pixel is gathered from its neighbors,
and then removed; in the first stage, this statistic is the mean fL:

zi = xi− fL(xNi), (2)

and in the second stage, the amplitude fC:

yi = zi/ fC(zNi). (3)

Decomposition of an example image is shown in figure 2. All
transformations in the model are translation invariant (i.e., the pa-
rameters of the two operations are identical for all locations). This
considerably reduces the number of parameters of the model.

Luminance subtraction stage
We used the Laplacian pyramid [19] to implement luminance

subtraction. This effectively decomposes the image using a multi-
scale array of linear “difference of Gaussians” bandpass filters.
At each scale, a lower resolution (blurred) version of the image is
computed, and subtracted, implementing equation 2 (see fig. 1).
The process is then applied recursively to the blurred (and down-
sampled) image. This linear stage has no free parameters, except
for the number of scales, N, which is chosen according to the res-
olution of the images (for examples in this paper N = 6).

Contrast normalization stage
As an estimate of the local amplitude around the mean, we

use a linear combination of rectified neighbors:

f (k)C (zNi) = σ
(k)+ ∑

j∈Ni
p(k)j

∣∣∣z(k)j

∣∣∣ , (4)

where p(k) is the vector of weights used at scale k. We constrain
the elements of this vector to be non-negative and introduce a

small constant σ (k) such that f (k)C (zNi) is guaranteed to be pos-
itive for all neighborhoods, avoiding division by zero. For each
scale, the constant is set to the average of the absolute value:

σ
(k) =

1
Ns(k)

Ns(k)

∑
i=1

∣∣∣z(k)i

∣∣∣ , (5)

where N(k)
s is the number of coefficients in the subband at scale

k. The weight vector is chosen as the solution of the optimization
problem

p̂(k) = argmin
p

N(k)
s

∑
i=1

(∣∣∣z(k)i

∣∣∣− fC(z
(k)
Ni )
)2
. (6)

Note that σ (k) may be considered as an initial approximation
for the absolute value of z, and the weighted sum acts to adap-
tively tune this value. All parameters are optimized over a
large set of (undistorted) images from the McGill natural image
database [21]. This optimization was performed only on these
undistorted images, with no access to information about the type
of distortions nor perceptual data on which we subsequently tested
the model.

Distance metric
Finally, our proposed perceptual metric is given by:

D(x, x̃) =
1
N

N

∑
k=1

1√
N(k)

s

∥∥y(k)− ỹ(k)∥∥
2, (7)

where y(k) and ỹ(k) denote vectors containing the transformed
reference and distorted image data, respectively. Note that we
compute root mean squared error for each scale, and then average
over these, effectively giving larger weight to the lower frequency
coefficients (which are fewer in number, due to subsampling).

Results
To evaluate our model, we fit the parameters of the gain con-

trol (eq. 6) using the McGill image dataset [21] and then evaluated
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Figure 2. Representation of an example image. x is the original image (left). z is the decomposition of the image using the Laplacian pyramid (three scales

shown), each image corresponding to a different scale. Note that the Laplacian pyramid includes downsampling in each scale. The examples shown here have

been upsampled for visualization purposes. y are the corresponding locally contrast-normalized images.

the resulting model in two different ways 1. First, we examined
the ability of each stage of the normalized Laplacian transform
to reduce redundant information between the central coefficient
and its neighbors. Second, we compared the model distances to
human perceptual responses over a large set of distorted images.

Mutual information measurements
Figure 3 illustrates the reduction of redundant information at

each stage of the model. Each image shows the empirical pairwise
mutual information [22] between a given coefficient (central pixel
of each image) and each of its neighbors. Mutual information
has been computed using one million samples from the reference
images in the TID database [20]. The figure reports the results
for the first scale – results for the other scales are similar. The
information reduction from both stages of processing is seen to be
quite substantial – a factor of roughly six and three, respectively.

Image Laplacian Normalized Laplacian
MI avg = 0.98 MI avg = 0.16 MI avg = 0.06

Figure 3. Local mutual information between neighbors. The brightness of

each pixel is proportional to the mutual information between a central coef-

ficient and the neighbor at that relative location. Values are estimated from

one million image patches. The average mutual information over the whole

neighborhood is given above each panel.

1Code with the implementation of the proposed model can be found at
http://www.cns.nyu.edu/~valero/NLP/NLP.html

Image quality assessment
In this experiment, we analyze how well our perceptual met-

ric correlates with human reports of perceptual distortion. We use
a grayscale version of the TID database [20] which consists of
1700 different distorted images (17 different distortion types, at 4
different strengths, for each of 25 original images), each with its
own mean opinion score (MOS). The MOS represents the mean
distortion rating of all participants who assessed a particular dis-
torted image. For reference, we also show the results of measur-
ing the RMSE between the reference and the distorted image in
the image domain, as well as in the Laplacian domain. We com-
pare the performance of our metric with the multi-scale version of
the most widely used perceptual metric, MS-SSIM [17]. We also
compare with a metric based on a V1-based model [7], which uses
an oriented wavelet decomposition followed by divisive normal-
ization. The parameters of this model were chosen based on a
separate set of perceptual measurements.

Figure 4 shows DMOS (which is inversely proportional to
the MOS) against the predictions of each of the distance metrics.
We present three different numerical evaluations of the predictive
ability of each metric. The first (ρ1) is the Pearson correlation
between each metric and the DMOS (correlations are, up to the
sign, identical for MOS and DMOS). To compute the second (ρ2)
and the third (RMSE), we first fitted generalized logistic functions
with four parameters to the measurements (black line). Then, we
computed the DMOS prediction from that curve for each image
and evaluated its correlation and the RMSE respectively.

As expected, the RMSE in the image domain gives the worst
correlation with human perception. This is a classical result and
is the primary motivation for seeking better perceptual metrics.
MS-SSIM and the V1 model perform comparably, with the V1
model exhibiting slightly better correlation (ρ1), but MS-SSIM
providing slightly better prediction error. The normalized Lapla-

http://www.cns.nyu.edu/~valero/NLP/NLP.html


cian metric achieves notable improvements in Pearson correla-
tions and prediction error. Note that this is particularly surpris-
ing given that both the V1 model and MS-SSIM are optimized for
perceptual performance, whereas the normalized Laplacian model
parameters were optimized for statistical performance on an inde-
pendent database of (undistorted) natural images. In addition, the
logistic regression for the normalized Laplacian model (as well as
the V1 model) is almost linear. Finally, note that most of the per-
formance is derived from the nonlinear normalization stage: the
unnormalized Laplacian offers only a modest improvement over
RMSE in the image domain.

Discussion
We have presented a perceptual quality metric computed as

the root mean squared error of images represented in a nonlinear
multi-scale decomposition in which the local mean and ampli-
tude have been removed, with parameters optimized to remove
redundancy in natural images. We have shown that this repre-
sentation accomplishes a significant reduction of redundancy, and
transforms the data to a more perceptually relevant space. In par-
ticular, the model provides a better account of human perceptual
quality judgements than either the widely-used MS-SSIM met-
ric, or a biologically-inspired V1 model based on locally normal-
ized responses of oriented filters. We expect this performance gap
could be increased by choosing model parameters that optimize
the fit to the human distortion ratings.

A number of previous image quality metrics have used local
gain control [5, 6, 7], but all of them did so in the context of an
oriented linear transform. Despite a large body of work that has
been interpreted as evidence that oriented linear filters are an opti-
mal choice for capturing statistical regularities in images [23, 24],
several articles have suggested that this optimum is shallow [25],
and that non-oriented filters are nearly as effective [26, 27]. The
comparisons of Fig. 4 suggest that the non-oriented bandpass rep-
resentation that we propose here may offer a better substrate for
a quality metric than an oriented representation. But this is a pre-
liminary finding, and a more thorough comparison is needed. An
interesting possibility is that a cascaded representation, in which
the normalized Laplacian pyramid is followed by further decom-
position into oriented subands (and possibly another stage of local
gain control), would be consistent with the stages of the human vi-
sual system, and may prove an even stronger platform on which
to build a quality metric.

It is worth emphasizing that the normalized Laplacian model
parameters are optimized to minimize redundancies in the rep-
resentation of undistorted natural images. Thus, although they
embed no specific knowledge of the types of distortions on which
the model is tested, they do capture important information about
the statistical properties of natural images. This suggests that the
model might be useful as a platform for a no-reference image
quality metric. Specifically, one could use a measure of mutual
information (or another measure of statistical independence) of
the normalized Laplacian representation of an image, to quantify
its "naturalness" (and thus, the level of distortion), similar to the
work in [28].

Finally, the TID database provides a useful, but limited,
means of assessing the performance of a metric in matching hu-
man judgements. The set of distortions includes only those en-
countered in typical image processing settings, and the human

responses are quite variable across observers. A more directed as-
sessment can arise from examining artificial images, synthesized
to maximize or minimize the distortions of one metric while hold-
ing constant another (MAD competition [29]). For example, im-
ages that maximize/minimize our metric while adhering to a fixed
RMSE distortion in the pixel domain would provide a direct visu-
alization of the types of error that the metric deems "worst" and
"best". And such "adversarial" images generated with the nor-
malized Laplacian metric while holding the MS-SSIM constant
(or vice versa), would provide a direct visualization of how the
two models differ, and thus an effective means of distinguishing
the advantages and disadvantages of each.
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Figure 4. Comparison of metrics to human perceptual data. Each plot shows the inverse of the mean opinion score of human observers (DMOS) as a function

of prediction of a quality metric, for 1700 images corrupted by different types and magnitudes of distortion (see key, first row left). Performance of each metric

is summarized with three numbers (provided above each plot): the Pearson correlation before fitting a logistic function (ρ1), the Pearson correlation (ρ2) and the

prediction error (RMSE) after fitting a logistic function (black line). First row right: root mean square error (RMSE) in the image domain. Second row left: MSE

in a normalized oriented V1 model [7]. Second row right: multi-scale structural similarity index (MS-SSIM) [16]. Third row left: RMSE in the Laplacian pyramid

domain. Third row right: RMSE in the normalized Laplacian domain (eq. 7).
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