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Gaussian processes (GPs) have experienced tremen-
dous success in biogeophysical parameter retriev-

al in the last few years. GPs constitute a solid Bayesian 
framework to consistently formulate many function-
approximation problems. This article reviews the main 
theoretical GP developments in the field, considering 
new algorithms that respect signal and noise character-

istics, extract knowledge via automatic relevance kernels 
to yield feature rankings automatically, and allow appli-
cability of associated uncertainty intervals to transport 
GP models in space and time that can be used to uncover 
causal relations between variables and can encode physi-
cally meaningful prior knowledge via radiative transfer 
model (RTM) emulation. The important issue of compu-
tational efficiency will also be addressed. These develop-
ments are illustrated in the field of geosciences and re-
mote sensing at local and global scales through a set of 
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illustrative examples. In particular, important problems 
for land, ocean, and atmosphere monitoring are con-
sidered, from accurately estimating oceanic chlorophyll 
content and pigments to retrieving vegetation properties 
from multi- and hyperspectral sensors as well as estimat-
ing atmospheric parameters (e.g., temperature, moisture, 
and ozone) from infrared sounders.

Unprecedented data Stream for Land, ocean, 
and atmoSphere monitoring 
The spatiotemporally explicit, quantitative retrieval meth-
ods for Earth’s surface and atmosphere characteristics are 
required in a variety of Earth system applications. Opti-
cal Earth-observing satellites that are endowed with high 
temporal resolution enable the retrieval and, hence, the 
monitoring of climate and biogeophysical variables [1], [2]. 
With the forthcoming superspectral Copernicus Sentinel-2 
(S2) [3] and Sentinel-3 missions [4], as well as the planned 
EnMAP [5], HyspIRI [6], PRISMA [7], and the European 
Space Agency’s candidate FLEX [8], an unprecedented data 
stream for land, ocean, and atmosphere monitoring will 
soon become available to a diverse user community. This 
vast data stream requires enhanced processing techniques 
that are accurate, robust, and fast. Additionally, the statisti-
cal models should capture plausible physical relationships 
and explain the problem at hand.

A wide variety of biogeophysical retrieval methods have 
been developed over the last few decades, but only a few 
of them have made it into operational processing chains, 
and many are still in their infancy [9]. Essentially, there are 
two main approaches to the inverse problem of estimating 
biophysical parameters from spectra: 1) parametric physi-
cally based models and 2) nonparametric statistical mod-
els. On one hand, parametric, physically based models are 
commonly used to model biological processes and climate 
variables in Earth monitoring. These models rely on es-
tablished physical relationships and implement complex 
combinations of scientific hypotheses. Unfortunately, they 
do not exploit empirical data to constrain simulation out-
comes; thus, despite their solid physical foundation, they 
are becoming more obscure because more complex pro-
cesses, parameterizations, and priors need to be included. 
These issues give rise to too-rigid solutions and large-model 
discrepancies (see [10] and the references therein). Alterna-
tively, nonparametric statistical models are typically only 
concerned with developing data-driven models, paying 
little attention to the physical rules governing the system. 
The field has proven to be successful in many disciplines 
of science and engineering [11], and, in general, nonlinear 
and nonparametric model instantiations typically lead to 
a more flexible and improved performance over physically 
based approximations [12].

In the last decade, machine learning has attained out-
standing results in estimating climate variables and the re-
lated biogeophysical parameters on local and global scales 
[13]. For example, the current operational vegetation prod-

ucts, such as leaf area index (LAI), are typically produced 
with neural networks [14], [15]; gross primary production, 
the largest global CO2 flux driving several ecosystem func-
tions, is estimated using ensembles of random forests and 
neural networks [16], [17]; biomass has been estimated 
with stepwise multiple regression [18]; principal compo-
nent analysis (PCA) and piecewise linear regression have 
been used for sun-induced fluorescence (SIF) estimation 
[19]; support vector regression (SVR) showed high efficien-
cy in modeling LAI; fractional vegetation cover (fCOVER), 
evapotranspiration [20], [21], and relevance vector ma-
chines (RVMs) were successful in estimating ocean chloro-
phyll [22]; and, recently, GPs [23] provided excellent results 
in estimating vegetation properties [24]–[27].

The family of Bayesian nonparametrics, and of GPs in 
particular [23], has been given great consideration in re-
mote sensing data analysis in recent years because they are 
endorsed with important properties that are relevant to 
common problems in our field. GPs can provide excellent 
accuracy estimations as well as error bars (i.e., uncertain-
ties) for the predictions. Also, and very importantly, they 
can easily accommodate different data sources (e.g., multi-
modal data, multiple sensors, multitemporal acquisitions) 
and can be designed to deal with different noise sources. 
The use of GPs in problems involving large data has tradi-
tionally been problematic, but recently advanced sparse, 
variational, and distributed computing techniques allow 
training models in almost linear cost. This article studies 
the modern approaches to tackle these issues.

Beyond these interesting features of GPs, statistical in-
ference methods should be able to fit data well (i.e., focus 
only on data exploitation) but should also show something 
about the physical rules governing the problem (i.e., data 
exploration). Therefore, these too-flexible models should 
be constrained to provide physically plausible predictions, 
which is why, in recent years, combining machine learning 
and physical models seems promising, either via data assim-
ilation, hybrid approaches, or the emulation of physically 
based RTMs. In this respect, GPs can be used to learn about 
the relevance of the problem features, as they can adapt to 
anisotropic data distributions, the derivatives of the predic-
tive mean and variance can be computed in closed form, 
and they are ideal for use in empirical (i.e., noninterven-
tional) causal inference. Additionally, GPs have been the 
first choice in emulating RTMs to endorse these statistical 
models with physically meaningful constraints [28]. 

gaUSSian proceSS regreSSion
Regression, function approximation, and function emulation 
are old, largely studied problems in statistics and machine 
learning. The problem boils down to optimizing a loss (e.g., 
cost or energy) function over a class of functions. In partic-
ular, a large class of regression problems are defined as the 
joint minimization of a loss function accounting for errors of 
the function f H!  to be learned and a regularization term, 
( )f 2

HX , that controls its capacity (i.e., excess of flexibility).
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GAUSSIAN PROCESSES: A GENTLE INTRODUCTION
GPs are Bayesian state-of-the-art tools for discrimina-
tive machine learning (i.e., regression [29], classification 
[30], and dimensionality reduction [31]). GPs were first 
proposed in statistics by Tony O’Hagan [32] and are well 
known to the geostatistics community as kriging. How-
ever, due to their high computational complexity, they 
did not become widely applied tools in machine learning 
until the early 21st century [23]. GPs can be understood 
as a family of kernel methods with the additional advan-
tage of providing a full conditional, statistical description 
for the predicted variable that can primarily be used to 
 establish confidence intervals and set hyperparameters. In 
a nutshell, GPs assume that a GP prior governs the possi-
ble latent functions, which are unobserved, and the likeli-
hood (of the latent function) and observations shape this 
prior to produce posterior probabilistic estimates. Conse-
quently, the joint distribution of training and test data is 
a multidimensional GP, and the predicted distribution is 
estimated by conditioning on the training data.

This article focuses on the recent success of GPs in deal-
ing with regression problems in biophysical parameter 
retrieval and the generic model inversion in geosciences. 
Standard regression approximates observations (which 
are often referred to as outputs) { }yn n

N
1=  as the sum of some 

 unknown latent function ( )f x  of the inputs { }x Rn
D

n
N

1! =  
plus constant power (homoscedastic) Gaussian noise, i.e.,

 ( ) ,    ( , ) .y f 0x Nn n n n
2+f f v= +  (1)

Instead of proposing a parametric form for ( )f x  and learn-
ing its parameters to fit observed data, GP regression (GPR) 
proceeds in a Bayesian, nonparametric way. It is custom-
ary to subtract the sample mean to data { }yn n

N
1=  and then 

to assume a zero mean model. A zero mean GP prior is 
placed on the latent function ( )f x  and a Gaussian prior is 
used for each latent noise term nf , ( ) ( , ( ))f k0 ,x x xGP+ i l ,  
where ( )k ,x xi l  is a covariance function parameterized by i  
and 2v  is a hyperparameter that specifies the noise power. Es-
sentially, a GP is a stochastic process whose marginals are dis-

tributed as a multivariate Gaussian. In particular, given the 
priors ,GP  samples drawn from ( )f x  at the set of locations 
{ }xn n

N
1=  follow a joint multivariate Gaussian with zero mean 

and covariance matrix Kff  with [ ] ( , )kK x xij i jff = i .
If considering a test location x* with corresponding out-

put y*, priors GP  induce a prior distribution between the 
observations { }yy n n

N
1/ =  and y*. Collecting available data 

in x{ , | , }y n N1D n n f/ = , it is possible to analytically 
 compute the posterior distribution over the unknown out-
put y* given the test input x* and the available training set D ,

 x( | , ) ( | , ),p y yD N 2
GP GPn v=* * * *

 (2)

which is a Gaussian with the following mean and variance:

 * ( )k K I yf ff N
2 1

GPn v= +< -

*  (3)

 * ( ) ,k K K I kN
2 2 2 1
GP f ff fv v v= + - +< -

****  (4)

where k RN 1
f ! #

*  contains the kernel similarities of the test 
point x* to all training points in ,KD ff  is an N N#  kernel 
(covariance) matrix whose entries contain the similarities 
between all training points, [ , , ] ,y yy RN

N
1

1 2f ! v= #<  is a 
hyperparameter accounting for the variance of the noise, k** 
is a scalar with the self-similarity of x*, and IN  is the identity 
matrix of size N . It is important to note that both the predic-
tive mean and the variance can be computed in closed form, 
and the predictive variance GP

2v * does not depend on the 
outputs/target variable. Also note that the predictive mean is 
computable in ( )NO 3  time since it involves the inversion of 
the N N#  matrix (K I2

ff v+ ) [23]. In addition to the com-
putational cost, GPs require large memory because, in naive 
implementations, one has to store the training kernel matrix, 
which amounts to ( )NO 2 . Recent improvements in efficien-
cy will be reviewed in the “Efficiency in Gaussian Process Re-
gression" section.

ON MODEL SELECTION
The corresponding hyperparameters { , }ni v  are typically se-
lected by the type-II maximum likelihood using the marginal 
likelihood, also called the evidence, of the observations, which 
is also analytical (explicitly conditioning on i and nv ):

 ( | , ) ( | ) .,log logp 0y y K INn n
2

ffi v v= +  (5)

When the derivatives of (5) are also analytical, which is often 
the case, conjugated gradient ascent is typically used for op-
timization. Therefore, the entire procedure of learning a GP 
model only depends on a very small set of hyperparameters 
that efficiently combats overfitting. Finally, inference of the 
hyperparameters and the weights for doing predictions, a, 
can be performed by continuous evidence optimization.

ON ThE COVARIANCE FUNCTION
In general, the core of any kernel method, and of GPs in 
particular, is the appropriate definition of the covariance 

KERNEL FUNCTION EXPRESSION 

Linear x x x x( , )k c= +<l l

Polynomial x x x x( , ) ( )k c da= +<l l

Gaussian x x x x( , ) ( || || /( ))expk 22 2v= - -l l

exponential x x x x( , ) ( || || /( ))expk 2 2v= - -l l

rational quadratic x x x x x x( , ) (|| || )/(|| || )k c1 2 2= - - - +l l l

multiquadric x x x x( , ) || ||k c2 2= - +l l

inverse multiquadratic x x x x( , ) /( || || )k 1 2 2i= - +l l l

Power x x x x( , ) || ||k d=- -l l

Log x x x x( , ) (|| || )logk 1d=- - +l l

TAbLE 1. SOME KERNEL FUNCTIONS USED IN THE 
 LITERATURE.
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(or kernel) function. A standard, widely used covariance 
function is the squared exponential (SE),

 ( , ) ( || || /( )),expk 2x x x xi j i j
2 2v= - -

which captures the sample similarity well in most of the un-
structured problems, and only one hyperparameter v needs 
to be tuned. Table 1 summarizes the most common kernel 
functions in standard applications with kernel methods.

In the context of GPs, kernels with more hyperparam-
eters can be efficiently inferred, which is an opportunity 
to exploit asymmetries in the feature space by including a 
parameter per feature, as in the very common anisotropic 
SE kernel function

 ( , ) (
( )

) ,expk
x x
2

x xi j
f

i
f

j
f

f

F

n ij2

2

1

2o
v

v d= -
-

+
=

/

where xi
f  represents the feature f of the input vector xi ,  

v is a scaling factor, nv  is the standard deviation of the (esti-
mated) noise, and fv  is the length scale per input features, 

, ,f F1 f= . This is a very flexible covariance function that 
typically suffices to tackle most of the problems. However, 
it is important to note that an SE can typically approxi-
mate smoothly varying functions, which may not be the 
case in some particular problems. Also, when the data is 
structured, i.e., when it reveals a particular structure (e.g., 
time or spatial), the covariance design is of paramount rel-
evance, and many approaches have exploited the standard 
properties of functional analysis to do so [33].

GAUSSIAN PROCESSES EXEMPLIFIED
Figure 1 presents an illustrative example with six training 
points that range between -2 and +2. Depicted are several 
random functions drawn from the GP  prior and functions 
drawn from the posterior. An isotropic Gaussian kernel and 

.0 1vv =  was chosen. The mean function has been plotted, 
plus or minus two standard deviations, corresponding to 
a 95% confidence interval. Typically, the hyperparameters 
are unknown, as are the mean, covariance, and likelihood 
functions. An SE covariance function was assumed and the 
optimal hyperparameters were learned by minimizing the 
negative log marginal likelihood (NLML) with respect to 
the hyperparameters. There are no samples below x = −1.5; 
hence, the GPR simply provides the solution given by the 
prior (zero mean and !2). At the center, where most of 
the data points lie, there is a very accurate view of the 
latent function with small error bars (i.e., close to 2! vo).  
The same behavior is observed since training samples 
for x > 0 are not available. GPs typically provide an ac-
curate solution where the data exists and high error bars 
where information is not available; consequently, it is 
presumed that the prediction in that area is inaccurate. 
For this reason, in regions of the input space without 
points, the confidence intervals are wide, resembling the 
prior distribution.

SOURCE CODE AND TOOLBOXES
The most widely known websites to obtain free source code 
on GP modeling are GPML, http://www.gaussianprocess.
org/, and GPstuff, http://becs.aalto.fi/en/research/bayes/
gpstuff/. The GPML website centralizes the main activities 
in GP modeling and provides up-to-date resources regard-
ing probabilistic modeling, inference, and learning based 
on GPs, while the GPstuff website is a versatile collection 
of GP models and computational tools required for infer-
ence, sparse approximations, and model assessment meth-
ods. Both sites are highly useful for readers interested in 
learning the main aspects of GP modeling, as they pro-
vide free code, demonstrations, and recommendations 
of  relevant tutorials and books. For readers interested in 

figUre 1. An example of a GP. (a) Some functions drawn at random 
from the GP prior. (b) Some random functions drawn from the 
posterior, i.e., the prior conditioned on six noise-free observa-
tions indicated by the black dots. The shaded area represents the 
point-wise mean plus and minus two times the standard deviation 
for each input value (corresponding to the 95% confidence region). 
The confidence intervals become larger in regions that are farther 
from the observations. (This is an animated figure that only works 
when viewing in Adobe Acrobat.)
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regression, in general, the MATLAB SimpleR toolbox is 
 recommended, http://www.uv.es/gcamps/software.html, 
which contains several regression tools that are organized 
into families (i.e., tree-based, bagging and boosting, neural 
nets, kernel regression methods, and several Bayesian non-
parametric models such as GPs). The toolbox is intended 
for practitioners with little expertise in machine learn-
ing who may want to easily assess advanced methods in  
their problems.

adVanceS in gaUSSian proceSS regreSSion
This section reviews some of the recent advances in GPR 
that are especially suited to remote sensing data analysis. 
Also discussed are the main aspects of design covariance 
functions that capture nonstationarities and multiscale 
time relations, as well as GPs that can learn arbitrary trans-
formations of the observed variable and noise models. The 
multitask and multioutput problems are also discussed.

STRUCTURED, NONSTATIONARY, AND MULTISCALE 
GAUSSIAN PROCESS REGRESSION
Commonly used kernel families include the SE, peri-
odic (Per), linear (Lin), and rational quadratic (RQ) 
(see  Table 1). Figure 2 shows the base kernel illustrations 
and drawings from the GP prior. These base kernels can 
be combined by following simple operations (i.e., sum-
mation, multiplication, or convolution) so that one may 
build sophisticated covariances from simpler ones. It is 
important to note that the same essential property of ker-
nel methods applies here; therefore, a valid covariance 
function must be positive semidefinite. In general, the 
kernel design should rely on the information available for 
each estimation problem and should strive for the most 
accurate solution with the fewest number of samples. 

In Figure 2, all of the base kernels are one-dimension-
al, but kernels over multidimensional inputs can be con-
structed by adding and multiplying kernels over individual 
dimensions. By summing kernels, the data can be modeled 
as a superposition of independent functions, possibly rep-
resenting different structures. For example, in multitem-

poral image analysis, one could dedicate one kernel for the 
time domain (perhaps trying to capture trends and sea-
sonal effects) and a kernel function for the spatial domain 
(equivalently capturing spatial patterns and autocorrela-
tions). In time-series models, the sums of kernels can ex-
press the superposition of different processes that are pos-
sibly operating at different scales; changes in geophysical 
variables through time often occur at different temporal 
resolutions (e.g., hours or days), and this can be incorporat-
ed into the prior covariance with those simple operations. 
In multiple dimensions, summing kernels gives additive 
structure over different dimensions, similar to general-
ized additive models [11]. Alternatively, multiplying ker-
nels allows us to account for interactions between differ-
ent input dimensions or different notions of similarity.  
The following section will explain how to design ker-
nels that incorporate particular time resolutions, trends,  
and periodicities.

GAUSSIAN PROCESS REGRESSION  
TIME-BASED COVARIANCE
As previously stated, time is an additional and important 
variable to consider in many remote sensing applications. 
Signals to be processed typically show particular character-
istics with time-dependent cycles and trends. One could, of 
course, include time, ti , as an additional feature in the input 
sample definition. This stacked approach [34] essentially 
relies on a covariance function ( , )k z zi j , where [ , ]tz xi ii = < ,  
which is convenient because it does not require learning 
additional hyperparameters. However, the shortcoming is 
that the time relationships are naively left to the nonlinear 
regression algorithm, and, hence, no explicit time-struc-
ture  model is assumed. To more consistently cope with 
such temporal behavior of the observed signal, one can use 
a linear combination (or composite) of different kernels, 
i.e., one dedicated to capturing the different temporal char-
acteristics and the other to the feature-based relationships.  
A simple strategy that is quite common in statistics and 
signal processing is to rely on a tensor kernel, as in

 ( , ) ( , ) ( , ),k k k t tz z xxi j i j i j#=

but more sophisticated structures can be adopted. The issue 
here is how to design kernels that are capable of dealing 
with nonstationary processes.

One possible approach is to use a stationary covariance 
operating on the variable of interest after being mapped with 
a nonlinear function engineered to discount such  undesired 
variations. This approach was used in [35] to model the 
spatial patterns of solar radiation with GPR. It is also pos-
sible to adopt an SE as a stationary covariance acting on the 
time variable mapped to a two-dimensional periodic space, 
( ) [ ( ), ( ))]cos sint t tz = < , as explained in [23],

 ( , )
|| ( ) ( ) ||

,exp
z z

k t t
t t
2i j

t

i j
2

2

v
= -

-d n  (6)

figUre 2. (a) The base kernels and two random draws from a 
GP with each (b) respective kernel. See Table 1 for the explicit 
functional form of each kernel.

Linear RBF Rat. Quadratic Periodic

(a)

(b)
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which gives rise to the following periodic covari-
ance  function:

 ( , )
[( )/ ]

,exp
sin

k t t
t t2 2

i j
t

i j
2

2

v
= -

-d n  (7)

where tv  is a hyperparameter characterizing the periodic 
scale and needs to be inferred. However, it is not clear 
that the seasonal trend is exactly periodic, so this equa-
tion is modified by taking the product with an SE compo-
nent to allow a decay away from exact periodicity

 ( , )
[ ( )] ( )

,exp
sin

k t t
t t t t2

2i j
t

i j

d

i j
2 2

2

2

2

c
v

r

v
= -

-
-

-d n  (8)

where the time variable t is measured in years, c gives the 
magnitude of the kernel function, vt is the smoothness of 
the periodic component, vd represents the decay time for 
the periodic component, and the period has been fixed to 
one year. Therefore, our final covariance is expressed as

 ([ , ], [ , ]) ( , ) ( , ),k t t k k t tx x x xi i j j i j i j1 2= +  (9)

where ( , )k x xi j1  and ( , )k t ti j2  are two kernel functions work-
ing with the input and the time variable, respectively. The 
kernel k is then parameterized by only three more hyperpa-
rameters collected in { , , , , , , , }F n t d1 fi o v v v v v c= .

The advantage of encoding this prior knowledge and 
structure in the relevant problem of solar irradiation pre-
diction is shown, which is an important and challenging 
problem with direct applications in renewable energy. So-
lar is one of the most important green sources of energy 
that is currently expanding in many countries, especially in 
those with more solar potential such as middle eastern and 
southern European countries [36], [37]. Accurately estimat-
ing energy production in solar energy systems involves cor-
rectly predicting solar irradiation, depending on different 
atmospheric variables [38]–[40]. Recently, a high number 
of machine-learning techniques have been introduced to 
tackle this problem, mostly based on neural networks and 
support vector machines. GPR is evaluated to estimate solar 
irradiation. Noting the nonstationary temporal behavior of 
the signal, a particular, time-based composite covariance 
is developed to account for relevant, seasonal signal varia-
tions. A unique meteorological data set is used that was ac-
quired at a radiometric station that includes measurements, 
radiosondes, and numerical weather prediction models. 
The target variable is the real global solar irradiation that 
reaches the ground. Data from the AEMET Radiometric 
Observatory of Murcia (Southern Spain, 38.0°N, 1.2°W) 
were used; specifically, global daily mean values from the 
measurements of a pyranometer were considered. Brewer 
and Cimel networks, as well as the pyranometer used, are 
managed under a quality management system certified to 
ISO 9001:2008. These data range from 1 January 2010 to 
31 December 2011. Data with missing values was removed, 
resulting with the final data set containing 512 examples 
and ten input features (see Table 2).

Table 3 shows the results obtained with GPR models 
and several statistical regression methods, i.e., regularized 
linear regression (RLR), SVR, RVM, and GPR. All of the 
methods were run with and without using two additional 
dummy-time features containing the year and day of year 
(DOY). The former case will be indicated with a subscript 
(e.g., SVRt). Including the time information can improve 
all of the baseline models. Additionally, the best overall re-
sults are obtained by the GPR models, whether they include 
time information or not. Also, the proposed TGPR particu-
larly outperforms the rest in accuracy [i.e., the root-mean-
squared error (RMSE) and mean absolute error (MAE)] and 
goodness-of-fit (R), and it closely follows the elastic net in 
bias (mean error, or ME). TGPR performs better than GPR 
and GPRt in all quality measures.

hETEROSCEDASTIC GAUSSIAN PROCESS REGRESSION: 
LEARNING ThE NOISE MODEL
The standard GPR is essentially homoscedastic, i.e., it as-
sumes the constant noise power v2 for all observations. 
This assumption can be too restrictive for some problems. 
Heteroscedastic GPs, on the other hand, let the noise power 
vary smoothly throughout the input space by changing the 
prior over nf  to 

 ~ ( , )e0N ( )
n

g xnf  

SOURCE DATA UNITS MIN–MAX 

cimel 
 sunphotometer 

aerosol 
optical depth 

— 0.01–1.38

Brewer 
 spectrophotometer

total ozone dobson 242.50–443.50

atmospheric 
 sounding 

total water 
precipitation

mm 1.33–41.53 

Global forecast 
system

cloud amount % 2–79.2 

Pyranometer measured global 
solar irradiation

kJ/m2 4.38–31.15 

TAbLE 2. THE VARIAbLES AND SOURCES CONSIDERED IN THE 
PRObLEM OF GLObAL SOLAR IRRADIATION PREDICTION. 

TAbLE 3. THE ESTIMATIONS OF THE DAILY SOLAR  
IRRADIATION OF LINEAR AND NONLINEAR MODELS.

METHOD ME RMSE MAE R

rLr 0.27 4.42 3.51 0.76

rLrt 0.25 4.33 3.42 0.78

sVr [41] 0.54 4.40 3.35 0.77

sVrt 0.42 4.23 3.12 0.79

rVm [42] 0.19 4.06 3.25 0.80

rVmt 0.14 3.71 3.11 0.81

GPr [23] 0.14 3.22 2.47 0.88

GPrt 0.13 3.15 2.27 0.88

TGPR 0.11 3.14 2.19 0.90
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and placing a GP prior over ( )~ ( , ( , ))g k1x x xGP 0 gn i l .  
It is important to note that the exponential is needed 
to describe the nonnegative variance. Of course, other 
transformations are possible, just not as convenient. The 
 hyperparameters of the covariance functions of both GPs 
are collected in fi  and gi , accounting for the signal and 
the noise relations, respectively.

Relaxing the homoscedasticity assumption into het-
eroscedasticity yields a richer, more flexible model that con-
tains the standard GP as a particular case corresponding to a 
constant ( )g x . Unfortunately, this also hampers analytical 
tractability, so approximate methods must be used to obtain 
posterior distributions for ( )f x  and ( )g x , which are, in turn, 
required to compute the predictive distribution over y*.

The heteroscedastic GP model was first described 
in [43], where an expensive Markov chain Monte Carlo 
(MCMC) procedure was used to implement full Bayesian 
inference. A faster but more limited method is presented in 
[44] to perform maximum a posteriori (MAP) estimation.  
These approaches have certain limitations, e.g., MCMC 

is hundreds of times slower, whereas MAP estimation 
does not integrate out all of the latent variables and is 
prone to overfitting. As an alternative to these costly ap-
proaches, variational techniques allow the approxima-
tion of intractable integrals arising in Bayesian inference 
and machine learning, in general. These techniques are 
typically used to provide analytical approximations to 
the posterior probability of the unobserved variables 
and, hence, do statistical inference over these vari-
ables, and they are also used to derive a lower bound for 
the marginal likelihood (or evidence) of the observed 
data, which allows model selection because the higher 
 marginal likelihoods relate to a greater probability of a 
 model generating the data.

To overcome the aforementioned problems, the sophis-
ticated marginalized variational (MV) approximation was 
introduced in [45], which renders approximate Bayesian 
inference in the heteroscedastic GP model, both fast and 
accurate. In [45], an analytical expression for the Kullback-
Leibler divergence between a proposal distribution and 
the true posterior distribution of ( )f x  and ( )g x  (up to a 
constant) was provided. Minimizing this quantity with re-
gard to the proposal distribution and the hyperparameters 
yields an accurate estimation of the true posterior while 
simultaneously performing model selection. Furthermore, 
the expression of the approximate mean and variance of 
the posterior of y* (i.e., predictions) can be computed in 
closed form. A simple comparison between the homosce-
dastic canonical GP and the variational approximation for 
heteroscedastic GP regression (VHGPR) model is shown  
in Figure 3. 

WARPED GAUSSIAN PROCESS REGRESSION: 
LEARNING ThE OUTPUT TRANSFORMATION
In practical applications, the observed variable is often 
transformed to better pose the problem. Actually, it is 
standard practice to linearize or uniformize observation 
distribution, which is commonly skewed due to the sam-
pling strategies in in-situ data collection, by applying non-
linear link functions such as logarithmic, exponential, or 
logistic functions.

The method called warped GPR (WGPR) [46] is a GP 
model that automatically learns the optimal transforma-
tion by warping the observation space and essentially 
warps observations y through a nonlinear parametric func-
tion g to a latent space

 ( ) ( ( ) ),z g y g f xi i i if= = +  

where f is a possibly noisy latent function with d inputs and 
g is a function with scalar inputs parameterized by } . The 
function g must be monotonic, otherwise the probability 
measure will not be conserved in the transformation and 
the distribution over the targets may not be valid [46]. Re-
placing yi  with zi  in the standard GP model leads to a fur-
ther problem that can be solved by taking derivatives of the 

figUre 3. The predictive mean and variance of (a) the standard 
GP and (b) the heteroscedastic GP. Notice that, in the low-noise re-
gime, the VHGP produces tighter confidence intervals as expected, 
while high noise variance associated with high signal variance (i.e., 
the middle of the observed signal) provides a more reasonable 
predictive variance, too. 
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negative log likelihood function in (5), but now with respect 
to both i and }  parameter vectors.

For both the GPR and WGPR models, the covariance 
(i.e., kernel or gram) function ,(· )k  needs to be defined, 
which should capture the similarity between samples. 
The standard automatic relevance determination (ARD) 
covariance was used [23], and the model hyperparam-
eters are collectively grouped in { , , , , }n d1 fi o v v v= .  
In addition, for the WGPR, a parametric smooth and 
monotonic form needs to be defined for g, which can be 
defined as

( ; )  (  ),     ,  ,tanhg y a b y c a b 0i

L

i
1

$} = +,

,

, , , ,

=

/

where { }, ,a b c} = . Although any other sensible parameter-
ization could be used, this one is convenient because it yields a 
set of smooth steps whose size, steepness, and position are con-
trolled by aℓ, bℓ, and cℓ parameters, respectively. Recently, flex-
ible nonparametric functions have replaced such  parametric 
forms [47], placing another prior for ( )~ ( , ( , ))g f c f fx GP l , 
whose model is learned via variational inference.

For illustration purposes, the focus is on the estima-
tion of imagesic chlorophyll-a concentrations from remote 
sensing upwelling radiance that is just above the image’s 
surface. A variety of bio-optical algorithms have been de-
veloped to relate the measurements of image radiance to 
in-situ concentrations of phytoplankton pigments, and, 
ultimately, most of these algorithms demonstrate the po-
tential to quantify chlorophyll-a concentrations accurately 
from multispectral-satellite-image color data. In this con-
text, robust and stable nonlinear regression methods that 
provide inverse models are desirable. In addition, most of 
the bio-optical models (e.g., Morel, CalCOFI, and OC2/
OC4 models) often rely on empirically adjusted, nonlinear 
transformation of the observed variable, which is tradition-
ally a ratio between bands.

Here, the SeaBAM  data set was used [48], [49], which 
gathers 919 in-situ pigment measurements around the 
United States and Europe. The data set contains coincident 
in-situ chlorophyll  concentration and remote sensing reflec-
tance measurements (Rrs(m), [sr –1]) at some wavelengths 
(i.e., 412, 443, 490, 510, and 555 nm) that are present in 
the SeaWiFS images color satellite sensor. The chlorophyll 
concentration values range from 0.019 to 32.79 mg/m3, re-
vealing a clear exponential distribution. Although SeaBAM 
data originate from various researchers, the variability in 
the radiometric data is limited. In fact, at high Chl-a con-
centrations, Ca [mg/m3], the dispersion of radiance ratios 
Rrs(490)/Rrs(555) increases, mostly because of the presence 
of case II waters. The shape of the scatterplots is approxi-
mately sigmoidal in log-to-log space. At their lowest con-
centrations, the highest Rrs(490)/Rrs(555) ratios are slightly 
lower than the theoretical limit for clear, natural waters (see 
the analysis in [22]).

Table 4 shows different scores, i.e., the bias (ME), ac-
curacy (RMSE), MAE, and goodness of fit (Pearson’s 

 correlation R), between the observed and predicted vari-
ables when using the raw data (i.e., with no ad-hoc trans-
form) and the empirically adjusted transform. The results 
are shown for three kinds of GPs: standard GPR [23],  
VHGPR [50], and the proposed WGPR [46], [47] for dif-
ferent rates of training samples. Empirically based warp-
ing slightly improves the results of working with raw data 
for the same number of training samples, but this requires 
prior knowledge of the problem, time, and effort to fit 
an appropriate function. On the other hand, WGPR out-
performs the other GPs in all comparisons over standard 
GPR and VHGPR (~ +1-10%). Finally, WGPR nicely com-
pensates for the lack of prior knowledge of the (possibly 
skewed) observation variable distribution.

MULTITASK AND MULTIOUTPUT  
GAUSSIAN PROCESS MODELS
Very often problems are dealt with that involve several 
variables that must be estimated. Individual models are 
typically trained separately, which ignores the potential 
cross-relations among output variables (e.g., between LAI, 
chlorophyll content, and fractional cover). Some multitask 
and multioutput GP models are available to account for this 
in the output. A simple, multioutput GP can model the re-
sponse vector as a linear combination of a set of M latent 
GPs, thus giving rise to a block-diagonal covariance matrix 
[ ] ( , )kK x xij

m
m i j= , where , ,m M1 f= . More sophisticated 

models are now available to account for fixed correlations 
between output variables; see http://gaussianprocess.com/
publications/multiple_output.php. An effective model 
based on GPs for the multitask problem, the GPR networks 
(GPRNs) [51], combines the properties of Bayesian neural 
networks with the nonparametric flexibility of GPs.

All these approaches, however, suffer when output di-
mensionality is very high. The following sections will show 
a much simpler approach to dealing with this problem, 
particularly focusing on estimating water vapor profiles, 
which are an important parameter for weather forecasting 
and atmospheric chemistry studies [52]. Observations from 
spaceborne, high-spectral-resolution, infrared-sounding 
instruments can be used to calculate the profiles of such 
atmospheric parameters with unprecedented accuracy and 

ME RMSE MAE R 

Raw 

GPr 0.02 1.74 0.33 0.82

VHGPr 0.29 2.51 0.46 0.65

WGPr 0.08 1.71 0.30 0.83

Empirically based

GPr 0.15 1.69 0.29 0.86

VHGPr 0.15 1.70 0.29 0.85

WGPr 0.17 1.75 0.30 0.86

TAbLE 4. THE RESULTS USING bOTH RAW AND EMPIRICALLY 
TRANSFORMED ObSERVATION VARIAbLES. 
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vertical resolution [53]. Focus is placed on the data coming 
from the Infrared Atmospheric Sounding Interferometer 
(IASI), which provides radiances in 8,461 spectral channels 
between 3.62 and 15.5 mn , with a spectral resolution of  
0.5 cm–1 after apodization [54]. This huge input data along 
the high-output dimensionality (the variable is sampled at 
137 points in the atmospheric column) makes the direct 
application of the previous methods unbearable. Alterna-
tively, noting the high vertical correlation of the profiles, a 
simpler strategy is developing a unique GP model that si-
multaneously predicts all of the PCA-projected state vectors 
onto the top p principal components, and solving

 ( ) ,K I YN
2 1

ff vK = + -

where Y columns contain the p scores (i.e., the projected 
variables). This approach will be exploited again for RTM 
emulation, as described in the “Emulating Radiative Trans-
fer Models Through Gaussian Processes” section. 

Figure 4 shows results of applying this strategy using IASI 
data to predict (multioutput, 137 dimensions) dew point 
temperature profiles. A linear regression (LR) and a GP mod-
el were trained using the first 100 principal components of 
an IASI orbit (2008-07-17), both using 5,000 samples and 
tested in several unseen data. Essentially, it was observed 
that GPs largely improve the LR models, with an average gain 
of +1.5 K, which is also statistically significant in all regions.

efficiencY in gaUSSian proceSS regreSSion
The naive implementation of GPs in (3) and (4) grows as 
( )NO 3 , where N is the number of training samples, which 

makes them unfeasible when a large number of training 
samples are available. To reduce the GPs’ computation 
 complexity, they are generally computed using approxima-
tions. (Other forms of efficiency that involve paralleliza-
tion and hardware-specific approaches and focus on pure 
GP algorithms are intentionally omitted here.) The approxi-
mation methods can be broadly classified as sparse, local-
ized regression, and matrix multiplication. Finally, some 
recent developments are highlighted in GP efficiency that 
exploit random features and particular kernel structures.

SPARSE METhODS
Sparse methods are also known as low-rank covariance matrix 
approximation methods and are based on approximating the 
full posterior by expressions using matrices of lower rank 
M N% , where the M samples are typically selected to well-
represent the data set (e.g., via clustering or smart sampling). 
Since the selected M samples represent all others, these meth-
ods are considered global, as opposed to the local methods 
described in the next section. These global methods are well 
suited to model smooth-varying functions with high cor-
relations (i.e., long length scales), and they use all the pre-
dictions data, such as full GPs. The methods in this fam-
ily are based on substituting the joint prior with a reduced 

figUre 4. The ME (thin dashed lines) and RMSE (solid lines) throughout the atmospheric column for a linear regression and a GP model 
predicting dew point temperature profiles. The results are averaged for the whole globe and considered orbits, as well as for different 
regions (i.e., north/south poles, north/south hemispheres, and tropics).
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one by using a set of m latent variables [ , , ]u uu M1 f= <   
called inducing variables [55]. These latent variables are values 
of the GP that correspond to a set of input locations called 
inducing inputs. By adopting a subsets-of-data approach, the 
computational complexity drastically reduces to ( )MO 3 ,  
being M N= .

Some examples of these approximation methods are 
the subsets of regressors (SoRs), deterministic training 
conditional (DTC), fully independent training conditional 
(FICT), partially independent training conditional (PICT) 
[55], and partially independent conditional (PIC) [56]. All 
of these methods, with some exceptions for PIC, are based 
on replacing the joint prior of training and test samples by 
an approximation, assuming that they are conditionally 
independent given the set of M-latent-inducing variables. 
The exact prior is substituted with approximations based 
on the latent variables, which effectively lowers the ranks 
of the covariance matrices. On the other hand, these ap-
proaches use the exact likelihood. Table 5  summarizes the 
predictive distributions for the aforementioned methods, 
together with their computational complexities for train-
ing and test.

Regarding the performance of these methods, SoR ob-
tains approximate predictive means but has unrealistic 
predictive variances because its approximate prior is so re-
strictive that, given enough training data, the family of 
plausible functions under the posterior is very limited, 
leading to overconfident predictive variances. DTC solves 
this issue by relaxing the SoR prior and using the exact 
test conditional. It obtains the same predictive mean and 
reliable predictive variances, but it cannot be considered a 
true GP because the training and test covariances are com-
puted in a different way. To partially solve and improve 
DTC, FITC approximates the training conditional using 
the exact values of the diagonal training covariance matrix.  
A further step in this direction comes from PITC [55] that 
uses a block  diagonal matrix instead of using a diagonal ma-
trix, thus preserving more exact values. Finally, the PIC [56] 
improves the PITC by relaxing the conditional independence 
condition between the training and test samples, treating 
them equally according only to their location, which allows 
one to efficiently exploit global and local  information.

LOCALIZED REGRESSION METhODS
All of the previously described methods are based on de-
fining a set of inducing variables of size M N%  that rep-
resent all N points, which is why these methods are clas-
sified as global methods as they are well suited to model 
smoothly varying function with high correlations. Howev-
er, if M is too small, representation of the whole set is poor 
and the associated GP’s performance is low. On the other 
hand, the so-called local methods are best suited to model 
highly varying functions with low correlations, but they 
only use local data for predictions. Local GPs are obtained 
by dividing the region of interest and training a GP in each 
division, which has two main advantages: 1) each local 
GP performs well in the small region on which it has been 
trained and 2) each local GP is trained with a relatively 
small number of training points, thus reducing the compu-
tational cost. If dividing in B blocks such as B = N∕M, the 
computational complexity goes from ( )NO 3  to ( )NMO 2 .  
The main disadvantages are that they show discontinuities 
at the limits between local GPs, and they perform poorly 
when predicting in regions far from their locality, which 
poses a problem when the training data is only available in 
parts of the input region.

New approximate methods have recently been pre-
sented that take the best from both approaches. One such 
method is the PIC [56]. As stated previously, the PIC suc-
cessfully combines global and local information by treating 
the input samples with regard to their location instead of 
whether they are training or test samples. Moreover, the PIC 
prior covariance is a general case covering full GPs, FITC, 
and local GPs. The exact covariance is obtained using M = 
N inducing variables and setting them as training samples. 
On the other hand, FITC is obtained if the block’s size is 
set to one, while a pure local GP predictor is obtained if the 
number of inducing variables M is set to zero. See [56] for 
further details.

MATRIX VECTOR MULTIPLICATION  
APPROXIMATION METhODS
Matrix vector multiplication (MVM) approximation methods 
are based on speeding up the process of solving the linear sys-
tem ( )K I y2 av+ =  using an iterative method, such as the 

METHOD PREDICTIVE MEAN, n* PREDICTIVE VARIANCE, v* TRAINING TEST MEAN TEST VARIANCE 

sor I y( )Q Qf f,f,
2 1v+ -

*  I( )Q Q Q Q, , , ,
2 1

f f f fv- + -
* * * *  o (NM2) o (M) o (M2)

dtc I y( )Q Qf f,f,
2 1v+ -

*  I( )K Q Q Q, , , ,
2 1

f f f fv- + -
* * * *  o (NM2) o (M) o (M2)

Fitc ( )Q Q y, ,
1

f f f K+ -
* ( )K Q Q Q, , ,

1
f f f f,K- + -

* * * *  o (NM2) o (M) o (M2)

Pitc as Fitc, but blkdiag/K
I[ ]K Qf,f f,f

2v- + . 
o (NM2) o (M) o (M2)

Pic ( )QK y,,
1

f ff
PIC K+ -

*
( )K Q QK, ,* ,

1
f f ff ,

PIC K- + -
* * *  o (NM2) o (M + B) o (M + B)

TAbLE 5. THE PREDICTIVE DISTRIbUTIONS FOR THE LOW-RANK APPROXIMATION METHODS DESCRIbED  
IN THE “EFFICIENCY IN GAUSSIAN PROCESS REGRESSION” SECTION. 

The last columns refer to the computational complexity for training, predictive mean and predictive variance. N is the number of samples, M is the number of latent inducing variables 

(see main text), and B = M∕N is the number of blocks for methods that use them. Q K K Ka,b a,u u,u u,b
1/ - .
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conjugate gradient (CG). Each iteration of the CG method re-
quires an MVM, which takes O(N2). The CG method obtains 
the exact solution if iterated N times, but one can obtain an 
approximate solution if the method is stopped earlier, so the 
total cost would be ( )BNO 2 , being B < N the number of CG 
iterations. To further speed up the computation, as ( )BNO 2  
is still too slow for large problems, MVM must be accelerated. 
In CG, step one needs to compute an MVM of the form k vi  
for different i and v, which is a sum of N products. This sum 
can be distributed and computed efficiently using hardware 
with a large number of cores, as in GPUs.

RECENT ADVANCES
There has been a huge improvement in GP runtime and 
memory demands in the recent years. Inducing methods 
has become popular but may lack the expressive power of 
the kernel. A useful approach is the sparse spectrum GP 
[57], which is somewhat related to random kitchen sinks in 
[58] that allow an approximation of a kernel matrix with a 
set of random bases sampled from the Fourier domain. On 
the other hand, some methods try to exploit structure in 
the kernel, either based on Kronecker or Toeplitz methods. 
The limitations of these methods in dealing with data in 
a grid have recently been remedied with the kernel inter-
polation for scalable structured GP [59], which generalizes 
inducing-point methods for scalable GPs and scales ( )NO  
in time and storage for GP inference.

anaLYSiS of gaUSSian proceSS modeLS
One possibility in using GP models is to extract knowledge 
from the trained model, for which there are three different 
approaches: 1) feature ranking that exploits the ARD cova-
riance, 2) uncertainty estimation looking at predictive vari-
ance estimates, and 3) the exploitation of the GP models to 
infer causal relations between biophysical variables under a 

fully empirical, noninterventional setting. The next section 
will discuss the use of GP models to mimic RTMs as a way 
to encode physical knowledge in the statistical models.

RANKING FEATURES ThROUGh ThE AUTOMATIC 
RELEVANCE DETERMINATION COVARIANCE
One of the advantages of GPs is that, during GP-model devel-
opment, the predictive power of each band is evaluated for 
the parameter of interest by calculating the ARD. Specifically, 
band ranking through bv  may reveal the bands that contrib-
ute most to GP-model development. An example of the bv

’s for one GP model trained with field leaf chlorophyll con-
tent (Chl) data and with 62 compact high resolution imag-
ing spectrometer (CHRIS) bands is shown in Figure 5(a). The 
band with the highest bv  contributes the least to the model. 
Relatively few bands (i.e., approximately eight) were evalu-
ated as crucial for Chl estimation, while the majority of bands 
were observed as contributing less. This is in agreement with 
earlier works [24], [25] and does not necessarily mean that 
other bands are obstructing optimized accuracies. For in-
stance, in [25], using the same CHRIS data set, it was dem-
onstrated that accuracies remained constant when iteratively 
removing the least contributing band. Only when fewer than 
four bands were left did accuracies start to rapidly degrade, as 
seen in Figure 5(b).

Hence, all CHRIS bands can be used without running the 
risk of losing accuracy. Of more interest here is identifying 
where the most relevant bands are located. Essentially, Figure 5  
suggests that the most relevant spectral region is between 
550 and 1,000 nm, meaning that, starting from the green 
spectral region, the full CHRIS spectrum proved to be a valu-
able Chl detector. Most contributing bands were positioned 
around the red edge, at 680 and 730 nm respectively, but 
not all bands within the red edge were evaluated as relevant 
because, when there is a large number of bands available, 

figUre 5. (a) The estimated vb values for one GP model using 62 CHRIS bands. The lower the vb, the more important the band is for 
regression. (b) The mean and standard deviation of the correlation coefficient r for training and validation for GP fittings using backward 
elimination of worst vb. 
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neighboring bands do not provide much additional infor-
mation and can thus be considered redundant. Remarkably, 
a few relevant bands fell within the 950–1,000 nm region, 
which is outside the Chl absorption region. One reason these 
bands were seen as important is that, at the canopy scale, 
the measured reflectance is not only related to biochemis-
try but is also governed by variation in structural descriptors 
and abiotic factors, such as variations in soil cover (e.g., due 
to soil composition and soil moisture). Effectively, the near-
infrared (NIR) part of the reflectance is particularly affected 
by the vegetation structure and water content [60]. Conse-
quently, the Chl sensitivity in the NIR may be driven by sec-
ondary relationships, as also observed in [61] and [62].

Consequently, the bv  proved to be a valuable tool to de-
tect most of the sensitive bands of a sensor toward a bio-
physical parameter. A more systematic analysis was applied 
by sorting the bands according to relevance and counting 
the band rankings over 50 repetitions. In [24], the four most 
relevant bands were tracked for Chl, LAI, fCOVER, and dif-
ferent S2 settings, demonstrating the potential of S2 with its 
new band in the red edge for estimating vegetation proper-
ties. Also in [12], bv  was used to analyze the band sensitivity 
of S2 toward LAI, and a similar approach was pursued when 
analyzing leaf Chl by tracking the most sensitive spectral re-
gions of SIF data [63], as displayed in Figure 6.

UNCERTAINTY INTERVALS
In this section, GP models for retrieval and portability in 
space and time are used. For this, the associated predictive 
variance (i.e. uncertainty interval) provided by GP models 
is exploited. Consequently, retrievals with high uncertain-
ties refer to pixel spectral information that deviates from 
what has been represented during the training phase. In 
turn, low uncertainties can refer to pixels that were well 
represented in the training phase. The quantification of 
variable-associated uncertainties is a strong requirement 
when remote sensing products are ingested in higher-level 
processing, e.g., to estimate ecosystem respiration, photo-
synthetic activity, or carbon sequestration [64].

Applying GPs to estimate biophysical parameters was ini-
tially demonstrated in [25]. A locally collected field data set, 
called scalable processor architecture (SPARC) 2003, in Barrax, 
Spain, was used to train and validate GPs for the vegetation 
parameters of LAI, Chl, and fCOVER. Sufficiently high vali-
dation accuracies were obtained (R2 > 0.86) for processing a 
CHRIS image into these parameters, as shown in Figure 7. 
Although generated maps can provide spatially explicit in-
formation about vegetation status, the associated uncertain-
ty maps can be more revealing. Within these maps, areas 
with reliable retrievals are clearly distinguished from areas 
with unreliable retrievals. Low uncertainties were found on 
irrigated areas and harvested fields, and high uncertainties 
were found on areas with remarkably different spectra, such 
as bright, whitish, calcareous soils or harvested fields. This 
does not necessarily mean that the estimates were wrong; 
rather, it shows that the input spectrum deviates from what 

was presented during the training stage, thereby imposing 
retrieval uncertainties. Hence, a practical implication of 
uncertainty maps is that they detect areas that may benefit 
from a denser sampling regime.

Nevertheless, one has to be careful with interpretation. 
Given that !v represents the uncertainty interval around 
the mean predictions , it is required that they be interpreted 
in relation to the estimates. For instance, a Chl uncertainty 
interval of about five would be more problematic for a mean 
estimate of 5 ng/cm2 than of 50 ng/cm2. Therefore, calcu-
lating the relative uncertainties, or the coefficient of varia-
tion [%] /CV 100# v n= , may be more meaningful. The 
relative-uncertainties maps can then be evaluated against 
an uncertainty threshold, e.g., the Global Climate Observ-
ing System (GCOS) proposed a threshold of 20% [65].  
Consequently, relative uncertainty intervals can be used as 
a quality mask to eliminate retrievals that are considered as 
unacceptable quality.

GP models were subsequently applied to the SPARC  
data set that was resampled to different S2 band settings 
(i.e., four, eight, and ten bands) and then the uncertainties 
were inspected [24]. On the whole, adding spectral informa-
tion led to reduced uncertainties and, thus, more meaning-
ful  biophysical parameter maps. Nevertheless, it remains to 
be seen how robust the locally trained GP models function 
when applied to other sites and conditions. In this respect, 
uncertainty estimates may enable the portability of the re-
gression model to be evaluated. Specifically, when uncer-
tainty intervals as produced by a locally trained GP model 
over an arbitrary site are on the same order as those pro-
duced over the successfully validated reference site, it can 
be reasonably assumed that the retrievals are of the same 
quality. Thus, when successfully validated over a reference 
imagery, the uncertainty estimates can work as a  quality 
 indicator. Note, however, that the previous conclusions 
should be taken with caution, as the GP-provided predictive 
variance is only an estimate of the actual uncertainty.

Accordingly, locally trained GP models were applied to 
simulated S2 images in a follow-up study [66]. A time series 

figUre 6. The frequency plots of the top-eight-ranked bands with 
the lowest vb values in 20 runs of the GPR prediction of Chl, based 
on upward fluorescence (Fup) emission. An emission curve is given 
as illustrated.
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over the local Barrax site, as well images across the world, 
were processed; the role of an extended training set (TrEx, 
adding spectra of nonvegetated surfaces) was evaluated; and 
uncertainty values were analyzed. Using TrEx not only fur-
ther improved performance but also allowed for a decrease 
in theoretical uncertainties, which underlines the impor-
tance of a broad and diverse training data set. More impor-
tantly, the GP models were successfully applied to simulat-
ed S2 images covering various sites, and associated relative 
uncertainties were on the same order as those generated by 
the reference image (i.e., vegetated surfaces were below the 
20% requirements). However, a typically large uncertainty 
variation within an image was observed due to surface het-
erogeneity. Contrary to the common belief that statistical 
methods are poorly transportable, larger uncertainty ranges 
were observed within an image rather than between images.

As a final example, uncertainty estimates were exploited 
to assess the robustness of the retrievals at multiple spatial 
scales. In [26], the retrievals from hyperspectral airborne and 
spaceborne data over the Barrax area were compared. The GP 

developed a model that was excellently validated (R2: 0.96) 
based on the spaceborne SPARC-2003 data set,  and the 
SPARC-trained GP model was subsequently applied to air-
borne CASI flight lines (Barrax, 2009) to generate Chl maps. 
The accompanying uncertainty maps provided insight as to 
the robustness of the retrievals, and, in general, similar uncer-
tainties were achieved by both sensors, which is encouraging 
in terms of upscaling estimates from field to landscape scale.

The high spatial resolution of CASI in combination with 
the uncertainties allows us to observe the spatial patterns 
of retrievals in more detail. However, uncertainties wors-
ened somewhat when inspecting the CASI airborne maps; 
particularly, poorer uncertainties were found on recently ir-
rigated agricultural areas, which was most likely due to the 
spectral mixture between elongated vegetation and wet soil 
cover. The reason for this decrease is that, at the airborne 
scale, a much more detailed variation in land-cover types 
is being observed than at the spaceborne scale of CHRIS. 
Some examples of MEs and associated uncertainties are 
shown in Figure 8.

figUre 8. Three examples (top, middle, and bottom) of (a) CASI RGB snapshots, (b) Chl estimates, and (c) related  
uncertainty intervals.

(a) (b) (c)
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FROM CORRELATION TO CAUSATION
Establishing causal relationships between random vari-
ables from empirical data is perhaps the most important 
challenge in science today. In this section, GP models are 
used for causal discovery, following the approach in [67] to 
discover causal relationships between the observed vari-
ables x and y. This methodology uses nonlinear regression 
from x"y (and vice versa, y"x) and assesses the indepen-
dence of the forward, ( )r fy xf = - , and backward residu-
als, ( )r gx yb = - , with the input variable y (or x). The sta-
tistical significance of the independence test tells the right 
direction of causation. Essentially, the framework exploits 
nonlinear, nonparametric regression to assess the plausi-
bility of the causal link between two random variables in 
both directions. Statistically significant residuals in just 
one direction indicate the true data-generating mecha-
nism. The framework was extended in [68] to discard the 
possibly strong assumption about noise distribution and 
to propose maximizing a dependency measure between 
residuals and regressors.

It is important to note that the estimation of causal rela-
tionships in this model suffers when the noise is not Gauss-
ian and when linear models are used. Both scenarios pose 
serious identification problems that have led to an increased 
interest in nonlinear regression models that consider even-
tually non-Gaussian noise [69], [70]. The interest here is to 
assess the causality by discounting the elusive masking ef-
fects due to the assumption of Gaussian noise, as well as the 
possibly skewed distributions of the observation variable. 
This is why the standard GPR, VHGPR, and WGPR are used 
for comparison.

An approach in a relevant geoscience problem is ex-
emplified. In the last few hundred years, human activities 
have precipitated an environmental crisis on Earth, which 
is commonly termed global climate change. Since the discov-
ery of fossil carbon as a convenient form of energy, the resi-
dues of past photosynthetic carbon assimilation have been 
combusted to CO2 and returned to Earth’s atmosphere. 
Terrestrial ecosystems absorb approximately 120 Gt of 
carbon annually from the atmosphere, and approximately 
half is returned as plant respiration and the remaining  

60 Gt yr -1 represents the net primary production (NPP). 
Out of this, approximately 50 Gt yr -1 is returned to 
the atmosphere as soil and litter respiration or via de-
composition, while approximately 10 Gt yr -1 results in 
the net ecosystem production (NEP). The problem is in 
estimating the causal relationship between photosyn-
thetic photon f lux density (PPFD), which is a measure 
of light intensity, and the NEP, which results from the  
potential of ecosystems to sequestrate atmospheric 
carbon. Here, the total PPFD was measured as the 
number of photons falling on an area of 1 m2/s, while 
the NEP was calculated by the photosynthetic uptake 
minus the release by respiration, which is known to 
be driven by either the total, diffuse, or direct PPFD. 
Discovering such relationships may be helpful in un-
derstanding the carbon f luxes and in establishing the 
sinks and sources of carbon across the globe. Three 
data sets are used, taken at a f lux tower at site DE-Hai, 
involving PPFD (total), PPFD (diffuse), PPFD (direct) 
drivers and the NEP consequence variable [71]. The 
results for all three scenarios are shown in Table 6.  
These results generally confirm the good capability 
of the presented methods, leading to lower p-values 
for the forward direction, pf (though similar p-values 
of the backward direction, pb) for the GP models. As 
more f lexible GP models are deployed, the sharpness 
in causal detection becomes more evident. Interest-
ingly, heteroscedastic GP discounts the noise effects 
so that the dependency estimate becomes slightly 
more reliable.

emULating radiatiVe tranSfer modeLS 
throUgh gaUSSian proceSSeS
A slightly different approach for the use of GPs in remote 
sensing is to use them as fast approximations to complex 
physical models, which is an approach with a long story 
in statistics [28], [32], [72]. These surrogate models, or 
metamodels, are generally orders of magnitude faster than 
the original model and, therefore, can be used to replace it, 
opening the door to more advanced biophysical-parameter-
estimation methods (e.g., using data assimilation (DA) con-
cepts] [73], [74], [76]).

FUNCTION APPROXIMATION, REGULARIZATION,  
AND EMULATION
A function is a mapping from an input parameter space to 
an output space. Consider that, for a particular application, 
a particular function is used, but the function can only 
be run a limited number of times (perhaps, for example, 
because the function is so complicated that it would take 
too long to run it repeatedly). For the purposes of this ex-
ample, consider such function to be an RTM. One way to 
get around this limitation is to carry out an inference on 
the function itself, which would require the placement of 
a prior that encodes our understanding in the properties of 
the function (e.g., smoothness, continuity, or finite  values) 

METHOD Pf Pb CONCLUSION 

GPr 3.86 × 10-61 1.57 × 10-119 PPFd(tot)" neP

WGPr 2.12 × 10-50 3.33 × 10-115 PPFd(tot)" neP

VHGPr 6.11 × 10-60 2.50 × 10-109 PPFd(tot)" neP

GPr 1.59 × 10-11 1.24 × 10-79 PPFd(diff)" neP

WGPr 1.17 × 10-11 9.40 × 10-77 PPFd(diff)" neP

VHGPr 2.44 × 10-12 9.16 × 10-75 PPFd(diff)" neP

GPr 2.05 × 10-8 1.56 × 10-112 PPFd(dir)" neP

WGPr 1.20 × 10-15 3.67 × 10-110 PPFd(dir)" neP

VHGPr 3.44 × 10-17 1.01 × 10-115 PPFd(dir)" neP

TAbLE 6. THE RESULTS OF THE PPFD AS A CAUSE  
OF THE NEP CASUAL PRObLEM. 
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and the use of the limited pairings of inputs and outputs 
of the function as our likelihood (e.g., the probability of 
the outputs given the inputs). A generic prior with the de-
sirable properties mentioned previously is a GP with an 
associated covariance function, as previously explained. 
Assuming the likelihood is also Gaussian and indepen-
dent additive noise, what results is a reparameterization 
of the prior GP as the posterior, meaning that the output 
of our function for an arbitrary input x* can now be pre-
dicted, conditional on the limited sampling of the original 
model’s input and output pairings. The prediction will pro-
vide an estimate of the function value *GPn , and, more im-
portantly, an estimate of the predictive uncertainty, *GP

2v .  
If the GP is able to correctly reproduce the function in 
which only a limited number of runs was available (which, 
in this context, is called the simulator), the GP can be used 
in its stead. This use of GPs is called emulation, and it is an 
exploitation of the versatility of GPs to effectively cope with 
varied mappings (or simulators). 

Although emulators may appear to be trivial diver-
sions, they have a number of important advantages. 
Firstly, if the simulator is computationally expensive, an 
emulator typically provides a very fast approximation to 
the simulator. Given a GP’s ability to cope with fairly non-
linear problems, this method can be effective for a large 
number of complex physical models, such as RTMs that 
describe in some detail the scattering and absorption of 
photons by the atmosphere and vegetation. The emulator 
can thus be seen as a drop-in replacement for a compli-
cated physical RTM. The fact that there is an associated un-
certainty with emulator prediction is important; the user 
can decide whether the emulation is accurate enough for 
the application at hand or can propagate this emulation 
model error through the application. Having access to fast 
physical models through machine learning opens new av-
enues that will be reviewed next.

FROM FORWARD AND BACKWARD MODELS  
TO STATISTICAL EMULATION
A particular problem often found in remote sensing is 
the inverse problem, in which a physical RTM is used to 
interpret observations of, e.g., surface directional reflec-
tance or microwave backscatter, in terms of biophysical 
parameters, such as LAI or soil roughness. The computa-
tional complexity of the models at hand usually makes 
analytic inversions intractable; thus, the inversion meth-
od typically results in a least-squares problem in which 
the model’s input parameters are varied until a minimum 
difference is found in the observations. However, remote 
sensing data are corrupted by uncertainties (e.g., addi-
tive noise and imaging artifacts) that degrade the data’s 
information content, and observations are typically only 
available over small spectral or angular regions, giving 
a partial overview of the land surface, for example. Ad-
ditionally, the processes that describe the interactions be-
tween photons and the scene are nonlinear. These effects 

conjure a situation in which many possible combinations 
of input parameters result in an adequate observation 
description and, therefore, a large amount of uncertain-
ty in the retrieved parameters. To help circumvent the 
inverse problem, either more prior information or more 
evidence (i.e., observations) would need to be added. The 
flexibility of RTMs makes the latter strategy possible, as 
they can usually account for different sensor configura-
tions (e.g., geometry and spectral sampling) while keeping 
a consistent description of the scene. New observations 
are typically hard to come by and will again be limited by 
uncertainty and partial observation of the whole system. 
Therefore, adding prior information is necessary to better 
constrain the inverse problem. Prior estimates include pa-
rameter distributions (derived, for example, from expert 
knowledge or historical data), expectations of smoothness 
in time and space, and physiological models of vegetation 
growth. Ultimately, the posterior calculation is a com-
plicated problem that can typically be solved by MCMC 
methods, requiring many iterations (and therefore many 
executions of the RTM) or, under some assumptions, by 
a nonlinear cost-function-minimization problem. The 
latter is typically an iterative procedure, and gradient de-
scent methods are required for efficiency. It is important 
to keep in mind that the goal here is to infer the land sur-
face parameters conditioned on the remote sensing data 
and other prior knowledge, estimating the uncertainty of 
the parameters.

GAUSSIAN PROCESS MODELS  
AS EFFICIENT EMULATORS
The GP emulators can be used advantageously in complex 
inverse problems. The physical model can be emulated 
 directly if MCMC methods are used, resulting in much fast-
er parameter space exploration. In cost-function minimiza-
tion, the emulator can be used instead of the full model, 
but GP may also be used to approximate the gradient of the 
emulated model, 

 .x x
k K I yN

2 1GP f
ff2

2
2
2n

v= +
<

-

**
** a ^k h  (10)

From (10), it is seen that higher-order partial derivatives 
(e.g., the Hessian matrix of second order derivatives) are 
straightforward. The Hessian is important because, in 
many cost-function-minimization approaches, the inverse 
of this matrix as the MAP point is the posterior covariance 
matrix, and thus a statement on the uncertainty of the re-
trieved parameters. A further benefit of numerically cheap 
approximations to the gradient is that local linearizations 
of the model are now available, allowing the use of efficient 
linear solvers to invert problems (either directly or as part 
of an internal linear loop in the solution to the nonlinear 
problem). Ultimately, having fast surrogate models of the 
most computationally demanding part of the inversion 
problem allows us to implement inversion strategies that 
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were practically impossible with these models and extend 
them to practical problem sizes.

A particular requirement in many RTMs is the pre-
diction of spectral reflectance over the solar reflective 
domain (i.e., broadly from 400 to 2,500 nm) so instru-
ment bandpass functions can be applied to the data. To 
emulate full spectra, the idea of the PCA of hyperspec-
tral data can be extended, where there are large degrees of 
spectral redundancy. Let the output y be given a stacking 
of Nt spectra. Each of these spectra can be approximately 
reconstructed from

 ,y wi j
j

L

j
1

. v
=

/  (11)

where only the first L principal components are consid-
ered, and vj is the jth score associated with the wj prin-
cipal component. In PCA, the principal components are 
orthogonal over the input set, so one strategy is to emu-
late the scores , , L1 fv v  with independent emulators, and 
then use these emulators to reconstruct a full spectrum 
[uncertainties and gradients can also follow through 
quite easily due to the linearity of (11)].

AN ILLUSTRATIVE EXAMPLE
As an example, consider a coupled, soil-leaf-canopy RTM 
over the solar reflective domain, PROSAIL [75]. A simple 
linear spectral mixture RTM for the soil (therefore assum-
ing the soil properties are isotropic), the leaf optical proper-
ties spectra (PROSPECT) model, and the scattering by arbi-
trarily inclined leaves (SAIL) canopy RTM will be used. The 
aim is to map from a state made up of soil, leaf, canopy, and 
parameters such as LAI and chlorophyll content to top-of-
canopy reflectance. This is an important example because 
the coupled model can be used within a DA system to infer 
the properties of the land surface (i.e., vegetation structure 
and biochemistry) from the atmospherically corrected di-
rectional surface reflectance. A validation of the emulation 
approach is shown in Figure 9, where the emulator has been 
trained with 250 input parameter-reflectance pairs, which 
were chosen using a Latin hypercube sampling design. Using 
the approach outlined in the previous section for multivari-
ate output, L in (11) was chosen to be 11 so as to encompass 
99% of the variance in the training set. It can be immediately 
seen that the emulator is virtually indistinguishable from the 
original model, with negligible bias in the validation, and 
a very small RMSE. Although PROSAIL is a fast RTM, this 
emulator is some 5,000-fold faster than the original in a con-
temporary PC. In evaluating the GP, the PROSAIL gradient 
is also calculated.

concLUSionS and fUrther WorK
This article provides a comprehensive survey of GPs in 
the context of remote sensing data analysis, particularly 
for statistical biophysical parameter estimation. The GPs’ 
main properties and their advantages over other estima-
tion methods were summarized to find that GPs can essen-
tially provide competitive predictive power, give error bars 
for estimations, allow design and optimization of sensible 
kernel functions, and analyze the encoded knowledge in a 
model via ARD kernels. The GP models also offer a solid 
Bayesian framework to formulate new algorithms that are 
well suited to signal characteristics. For example, it can be 
seen that, by incorporating proper priors, signal-depen-
dent noise can be encompassed and parametric forms of 
warping the observations as an alternative to either ad-
hoc filtering or linearization, respectively, can be inferred.  
A downside for GPs is the scalability issue, which is that, 
essentially, the optimization of GP models require com-
puting determinants and invert matrices of size n × n, 
which runs cubically in computational time and quadrati-
cally in memory storage. In recent years, however, great 
advances have been made in machine learning, and it is 
now possible to train GPs with millions of points in almost 
linear time.

All of the developments were illustrated on local and 
global scales through a full set of illustrative examples in 
geosciences and remote sensing. In particular, addressed 
were important problems of ocean, land, and atmospheric 
sciences, from accurately estimating oceanic chlorophyll 

figUre 9. An example of RTM emulation with GPs. The PROSAIL 
soil-leaf-canopy RTM is emulated spectrally. (a) The complete 
model (full lines) and the emulated reflectance (dashed lines) for 
ten random input parameter sets. (b) The mean, median, 5–95%, 
and 25–75% interquartile ranges for the residuals of the full 
model minus the emulator. This example assumes a sun zenith 
angle of 30c, a view zenith angle of 0c, and a relative azimuth 
of 0c, and the validation is done with a set of 1,000 uniformly 
independent samples.
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content and pigments to vegetation properties (such as LAI, 
chlorophyll content, or fluorescence) from multi- and hy-
perspectral sensors, as well as estimating atmospheric pa-
rameters (such as temperature, moisture, and ozone) from 
infrared sounders.

This article has taken a step forward by introducing 
and illustrating two relevant uses of GP technology: 1) by 
studying the important issue of passing from regression to 
causation from empirical data, and 2) by considering the 
approximating physically based RTMs with GPs. Both ap-
proaches, yet in their infancy, are promising ways to de-
velop flexible statistical models that discover and incorpo-
rate physical knowledge about the problem. More exciting 
developments are envisioned in the intersection of physics 
and machine intelligence.
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