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tractable?

the textbook way
(many well-known densities, maximum entropy …)

Parametric density model

Friedman, 1984
Chen & Gopinath, 2001
Lyu & Simoncelli, 2009

Laparra et al., 2010

“inferred” density:

Parametric transformation (Gaussianization)

Density estimation by Gaussianization

1-D: marginal density of linear filter responses
Logistic nonlinearity GDN nonlinearity GDN model fit

histogram estimate

2-D: joint density of linear filter responses

Variety of shapes of joint densities
in natural images
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Special cases/related models:

We introduce a transformation particularly suited to the
Gaussianization of natural image densities.
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figures: Cajal; Carandini & Heeger, 2012

Chen & Gopinath, 2001
Laparra et al., 2010

Previous work: iterated marginal Gaussianization
(g is a composition of linear transformations and marginal nonlinearities akin to ANNs)

Here, we take inspiration from biology for more efficient Gaussianization.
(g is a a linear transformation followed by a form of divisive normalization, a joint nonlinearity)

Generalized divisive normalization (GDN)
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We use a maximum likelihood approach to fit the parameters.
If each component of g is complete and invertible, the chain rule
simplifies the computation significantly.

Fitting the parameters

1 stage of joint GDN > many stages of marginal GDN
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marginal GDN joint GDN

63 dim. [nat] 64 dim. [bit/px]

GMM (200 comp.)

RIDE (1 layer)

EoMCGSM (128 comp.)

GDN (1 layer)

153.7 3.36

150.7 3.29

158.1 3.48

151.5 3.47

small image patches, variable preprocessing
need better datasets for comparison to other models!

from Theis & Bethge, 2015

Average likelihoods

training samples marginal samples joint samples

noisy marginal: PSNR 20.6, SSIM 0.68 GSM: PSNR 22.4, SSIM 0.75GDN: PSNR 22.6, SSIM 0.78

n-D: natural image densities

Sampling (16×16 pixels)

Denoising experiment
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mean squared error in Gaussianized space
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Perceptual properties of normalized representation

Do distances in Gaussianized representation
correspond to perceived differences of images?

figure: Hubel, 1995

data: TID 2008
SSIM: Wang et al., 2004

original increasing Euclidean distance in pixel representation

increasing Euclidean distance in Gaussianized representationoriginal

Summary
Gaussianization is a methodology for density
estimation and unsupervised learning of a
representation.

We introduce GDN, a joint nonlinearity applied
across subbands, inspired by nonlinearities of
biological neurons. It generalizes sigmoids used in
ANNs and is capable of Gaussianizing image data.

One stage of GDN is more efficient than many
stages of linear filters/marginal nonlinearities.

The representation accounts for human judgements
of image quality (more so than SSIM, the de facto
standard).

To Gaussianize marginal densities of linear filter responses to natural images, the transformation needs to take the shape of a sigmoidal.
Our parametric form provides a better fit than typical sigmoidal forms known from ANNs. It also fits better than parametric density models
such as the generalized Gaussian family (not shown).

We made a multi-scale version of the GDN model and
evaluated the Pearson correlation of distances in the
Gaussianized representation with perceptual judgements
of image distortions (provided in the TID 2008 database).
The correlation exceeds the correlation reported for SSIM,
the de facto standard in image quality assessment.

In two dimensions, it is not sufficient to
marginally Gaussianize each dimension
separately (left). The joint nonlinearity
approximates the Gaussian shape much
better (right). Our parametric form
handles all shown cases of joint
densities well, and hence it provides a
good density model (above).

We used the empirical Bayes solution of Miyasawa (1961), which expresses the least-squares
optimal solution directly as a function of the noisy data distribution.
For comparison, we show results for two denoising methods operating on orthogonal wavelets:
one assuming a marginal model (Figueiredo & Nowak, 2001) and the other assuming a Gaussian
scale mixture (GSM) model with elliptically symmetric densities (Portilla et al., 2003).

Since each component of the transformation is invertible by construction,
sampling from the model is simple.

marginal Gaussianization joint Gaussianization


