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Abstract—The Infrared Atmospheric Sounding Interferometer
(IASI) is flying on board of the Metop satellite series, which
are part of the EUMETSAT Polar System (EPS). Products
obtained from IASI data represent a significant improvement in
the accuracy and quality of the measurements used for meteoro-
logical models. Notably, IASI collects rich spectral information to
derive temperature and moisture profiles –among other relevant
trace gases–, essential for atmospheric forecasts and for the
understanding of weather. Here, we investigate the impact of
near-lossless and lossy compression on IASI L1C data when
statistical retrieval algorithms are later applied assuming an
ideal situation, i.e., the acquisition conditions are exactly the
same for both train and test. We search for those compression
ratios that yield a positive impact on the accuracy of the
statistical retrievals. The compression techniques help reduce
certain amount of noise on the original data, while, at the
same time, incorporate in an indirect way spatial-spectral feature
relations. We observed that compressing images (at relatively low
bit-rates) improves results in predicting temperature and dew
point temperature, and we advocate that a certain compression
level prior to model inversion is beneficial, because, it adds
spatial-spectral regularization to pixel-wise statistical retrieval
algorithms without increasing the computational complexity. This
research can benefit the development of current and upcoming
retrieval chains in infrared sounding and hyperspectral sensors.

Index Terms—Infrared Atmospheric Sounding Interferometer
(IASI), Statistical retrieval, Kernel Methods, Lossy Compression,
Near-Lossless Compression, JPEG 2000, M-CALIC, Spectral
Transforms.

I. INTRODUCTION

Temperature and water vapour atmospheric profiles are
essential meteorological parameters for weather forecasting
and atmospheric chemistry studies. Observations from high
spectral resolution infrared sounding instruments on board of
satellites provide unprecedented accuracy and vertical resolu-
tion of temperature and water vapour profiles. However, it is
not trivial to retrieve the full information content from radia-
tion measurements; accordingly, improved retrieval algorithms
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are desirable to achieve optimal performance for existing and
future infrared sounding instrumentation.

A. Atmopsheric parameter retrieval with IASI

The use of Metop data in Numerical Weather prediction
(NWP) accounts for 40% of the impact of all space based
observations in NWP forecasts. The Infrared Atmospheric
Sounding Interferometer (IASI) sensor is implemented on the
Metop satellite series. Products obtained from IASI data are
a significant improvement in the quality of the measurements
used for meteorological models. In particular, IASI collects
rich spectral information to derive temperature and moisture
profiles, which are essential to the understanding of weather
and to derive atmospheric forecasts. The sensor provides
infrared spectra with high resolution between 645 cm−1 and
2760 cm−1, from which temperature and humidity profiles
with high vertical resolution and accuracy are derived. Addi-
tionally, it is used for the determination of trace gases such
as ozone, nitrous oxide, carbon dioxide and methane, as well
as land and sea surface temperature and emissivity and cloud
properties [1], [2].

EUMETSAT, NOAAA, NASA and other operational agen-
cies are continuously developing product processing facilities
to obtain L2 atmospheric profile products from infrared hy-
perspectral radiance instruments, such as IASI. One of the
retrieval techniques commonly used in L2 processing is based
on linear regression, which is a valuable and very computa-
tionally efficient method. It consists of performing a canonical
least squares linear regression on top of the data projected
onto the first principal components or Empirical Orthogo-
nal Functions (EOF) of the measured brightness temperature
spectra (or radiances) and the atmospheric state parameters.
To further improve the results of this scheme for retrieval,
nonlinear statistical retrieval methods can be applied as an
efficient alternative to more costly optimal estimation (OE)
schemes. These methods have proven to be valid in retrieval
of temperature, dew point temperature (humidity), and ozone
atmospheric profiles when the original data are used [3].

B. Impact of hyperspectral image compression

Given the orbit time of Metop satellites (101 minutes),
the large spectral resolution (8461 components) and spatial
resolution (60×1530 samples) of IASI L1C products, and that
there are 2 active Metop satellites (A and B), about 41,3 GB of
IASI L1C data are produced daily. This large volume of remote
sensing data asks for efficient compression systems for both
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storage and transmission. Remote sensing data compression
is a mature field attracting interest of space administrations,
public bodies and private companies. Lossless, near-lossless
and lossy coding techniques are already in use in on-going
satellite missions and have been adopted in several current
standards. However, the impact of the (near-lossless and lossy)
compression on the radiances can compromise the quality of
posterior products, such as classification and detection maps,
or bio-geo-physical parameter estimates as in the case of this
work.

1) Impact on image classification: Effects of lossy data
compression have been analyzed mostly in the scope of
classification applications. Mercier et al. [4] proposed a vector
quantization for joint classification and compression of hy-
perspectral data. This approach proved very competitive for
compressing images, achieving compression ratios of approx-
imately 70:1 and classification performance was not markedly
reduced. Analogous results were achieved in [5]–[7], where
high compression ratios yielded high classification accuracy.

Especially interesting is the observation that this behavior
is more apparent when a spatial-spectral wavelet transform
is applied. Penna et al. [8] reported a stimulating consider-
ation: classification performance was not closely linked to
the distortion levels introduced in the image, meaning that,
in general, the best classification accuracy was not achieved
after applying the coding algorithms/settings that yielded the
best rate-distortion performance.

Du and Fowler [9] proposed a scheme based on principal
component analysis (PCA) deployed in JPEG 2000 to pro-
vide spectral decorrelation. The proposed scheme produced
competitive data-analysis performance, in terms of information
preservation in an anomaly-detection task. Blanes et al. [10]
conducted a study on compression of hyperspectral images
through 3D-JPEG 2000, where supervised and unsupervised
classification of the recovered images were evaluated. The
results reflect that classification accuracy is still reliable after
the compression stage. Similar results were achieved in [11],
where the proposed lossy and near-lossless compression algo-
rithm for hyperspectral images yielded good results for hard
classification, spectral unmixing, and anomaly detection.

2) Impact on image unmixing: The impact of lossy com-
pression in linear spectral unmixing and nonlinear hyper-
spectral image classification using support vector machines
(SVMs) was investigated in [12]. The experimental results
suggest that for some compression techniques, a higher com-
pression ratio may produce more accuracy in classification
results. Some authors have reported that lossy compression
can preserve the needed information to estimate endmember
fractional abundances in linear spectral unmixing even at low
bit-rates [13], [14]. Particularly interesting is the observation
reported in [15], [16], where it is noted that the joint use
of spectral and spatial information in some stages of the
linear spectral unmixing chain can produce smaller image
reconstruction errors.

3) Impact on bio-geo-physical parameter retrieval: It is
worth noting that, to the authors’ knowledge, there are no
works analyzing the impact of spatial-spectral data compres-
sion on bio-geo-physical parameter retrieval. We reported

preliminary results in [17], which are further extended here
with more data and in-depth analysis. Experimental results
revealed an interesting issue: the performance of statistical
retrieval methods substantially improved after near-lossless
compression. This observation leads us to define the main goal
of this research.

C. Goal and main findings
This paper is concerned with the performance of different

(near-lossless and lossy) compression techniques and different
(linear and non-linear) statistical retrieval algorithm on IASI
L1C data. We will touch upon M-CALIC [18] coding tech-
nique and upon JPEG 2000 standard [19], [20]. In this latter
case, two spectral transforms will be employed to better exploit
the high spectral redundancy inherent to IASI data, namely,
Pairwise Orthogonal Transform (POT) [21], [22] and Discrete
Wavelet Transform (DWT), which have proved to achieve
good data decorrelation in multi-, hyper-, and ultraspectral im-
ages. Then, two different statistical retrieval algorithms, Linear
Regression (LR) and Kernel Ridge Regression (KRR) [23],
will be evaluated in retrieval of temperature and dew point
temperature (humidity) profiles from the recovered decoded
images.

In short, the objective of this paper is to provide an outlook
of the effects of near-lossless and lossy compression of IASI
L1C data when statistical retrieval methods are employed
to retrieve physical information from the reconstructed im-
ages. An important conclusion of the work is that retrieval
methods may operate on data that do not have the same
quality precision as that originally provided by IASI L1C
products. Actually, though it may appear counter-intuitive at
first glance, a high compression ratio can improve the accuracy
in atmospheric parameter profiles estimation. This analysis
may have a deep impact in other infrared sounding instruments
and hyperspectral sensors, both currently flying (e.g., AIRS)
or upcoming (e.g., MTG-IRS). The observed effect has been
widely exploited in signal and image processing problems
(see e.g. [24]–[27]), and can be easily explained by noting
that compression performs a sort of signal denoising and
it generally constitutes an indirect way to include spatial-
spectral feature relations, which ultimately help to pixel-wise
retrieval algorithms. This turns to be an extremely simple, yet
effective way to improve retrieval results, and comes at the
price of including a compression step before retrievals whose
compression ratio needs to be properly adjusted.

D. Outline of the paper
The remainder of the paper is organized as follows. Sec-

tion II details the proposed approach, describing the different
compression paradigms and statistical retrieval methods. Sec-
tion III provides the experimental results. Section IV provides
some discussion about the reasons behind the observed phe-
nomena. Conclusions and further work are drawn in Section V.

II. METHODS

This section introduces the experimental setting and meth-
ods. The proposed sequential approach includes first a com-
pression stage and then a stastistical parameter retrieval. Fig. 1
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illustrates the adopted scheme. Two different compression
approaches will be considered. On the one hand, the maximum
absolute error per pixel introduced in the reconstructed image
shall be bounded using a near-lossless paradigm. On the other
hand, the overall bit-rate shall be controlled using a lossy ap-
proach. Similarly, two different statistical retrieval algorithms
will be studied: a standard least squares LR and a KRR
method, which have provided very good performance in recent
studies [3]. At a very early stage, a feature extraction/selection
process is conducted to discard some less useful components,
leading from the original 8461 spectral components on IASI
L1C products to 4699 spectral components [3].

Input
Image

Encoded File

CompressionCompression

Decoded File
RetrievalRetrieval

Feature ExtractionFeature Extraction

DecompressionDecompression

Fig. 1. Proposed sequential approach: after a feature extraction process,
compression is applied first, followed by statistical parameter retrieval.

A. Near-lossless and lossy compression techniques

Lossless compression techniques allow to completely recon-
struct all the original data in the reconstructed image after the
decoding process is performed. However, compression ratios
for lossless coding are limited, usually not going beyond 2:1.
Near-lossless and lossy compression remove some information
during the coding process, preventing the recovery of all
the original data, but allowing to improve the compression
ratios as the introduction of distortion becomes larger. These
approaches rely on the assumption that the quality of the data
after the coding process is still appropriate for the intended
specific use.

Two recognized coding techniques, M-CALIC for near-
lossless and JPEG 2000 for lossy compression, are discussed
in this section.

1) Near-Lossless Compression: M-CALIC [18] has been
selected for near-lossless compression since it provides a com-
petitive performance when spectral redundancy is high, which
is the case of IASI L1C products. M-CALIC is a lossless
and near-lossless compression technique based on context-
based adaptive lossless image coding (CALIC) [28]. CALIC
was designed as a proposal for the ISO standard for lossless
and near-lossless compression of 2D images, and although it
was not finally selected because of its higher computational
complexity as compared to LOCO-I [29] algorithm, CALIC
provides a higher coding performance.

M-CALIC uses a multi-component spectral predictor, along
with optimized model parameters and optimization thresholds.
The algorithm exploits correlation among components by em-
ploying the two previous components of the current one in the
prediction, which allows to capture most of the spectral cor-
relation. The intensity of the pixel to be encoded is estimated
based mostly on the intensity of co-located pixels in previous

components, i.e., pixels at the same spatial position but in
components with a lower index. In fact, it is the prediction
error that is encoded. For near-lossless compression, these
prediction errors are quantized, ensuring that all distortion
(peak absolute) errors fall below a given threshold. Fig. 2
illustrates the basic architecture of M-CALIC.

Input
Image

Encoded
FileArithmetic coderArithmetic coderPredictorPredictor

Fig. 2. M-CALIC basic architecture.

2) Lossy Compression: JPEG 2000 is an international
standard developed by the Joint Photographic Experts Group
(JPEG). It was intended as the successor of JPEG due to JPEG
limitations in many application areas as mobile communica-
tions, medical diagnostic imaging, enhanced Internet brows-
ing, digital cinema, and multimedia. JPEG 2000 provides a
wide range of features in a single compressed bit-stream for
a large amount of applications. Figure 3 illustrates the basic
architecture of JPEG 2000.
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Fig. 3. JPEG 2000 basic architecture.

Two spectral transforms, namely POT and DWT, are applied
along with JPEG 2000 to account for the large correlation
among the spectral components.

Pairwise Orthogonal Transform (POT) [21], [22] relies on
the implementation of a divide-and-conquer strategy to the
Karhunen-Loève Transform (KLT), where the composition
of smaller KLT transforms produces the resulting transform.
Each composition of KLT is computed from only two image
components. In a classic KLT, every component is decorrelated
with each other, irrespective of how much energy they share.
In its turn, POT implements a mechanism that decorrelates
portions with high shared energy while ignoring the other
portions. POT works in a multilevel mode, where a two-
component KLT transform is computed for every pair of
consecutive components at each level. This allows to accu-
mulate most of the image energy in the first components
since each composition is computed as a classic KLT. Most
of the signal energy is grouped in one of the two resulting
components allowing most of the image energy to flow across
the composition of transforms up to the last level.

The Discrete wavelet transform (DWT) can be seen as
successive levels of decomposition that allow to decorrelate
the processed data. Every time the transform is applied, the
signal is decomposed into two sets of coefficients, the low
frequencies (L) and the high frequencies (H) sets. The low
frequencies set is a representation of the input signal at a
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coarser resolution, while the high frequencies set represents
details.

B. Statistical parameter retrieval

We aim at studying the impact of image compression on the
retrieval of atmospheric profiles using standard and modern
statistical retrieval algorithms. In particular, we will pay at-
tention to the Kernel Ridge Regression (KRR) algorithm [23],
[30], which generalizes least squares linear regression (LR).
KRR has shown good performance in prediction of such
variables using IASI L1 data in previous works [3]. We
analyze the performance for both LR and KRR at different
compression ratios.

Let us now fix the notation and review the formulation of
KRR for regression. The KRR, also known as Least Squares
SVM (LS-SVM), is the kernel version of a regularized linear
regression (LR). Let xi ∈ RN (spectra) and yi ∈ RM

(state vectors), where i = 1, ..., n indicates the index of
the n training samples. We want to perform a linear least
squares regression in a Hilbert space,H, of very high (possibly
infinite) dimensionality DH, where samples have been mapped
through a mapping φ(xi). In matrix notation, the model is
given by Y = ΦW + b and, under the assumption of an
additive i.i.d. noise model, Ŷ = Y + E with Gaussian noise
E ∼ N (0, σ2

nI) of zero mean and standard deviation σn.
Then, as in the regularized linear regression setting, we want

to minimize the regularized squared loss function, Lp = ‖Y−
ΦW‖2 + λ‖W‖2 with respect to model weights W. In what
follows, we deliberately dropped the bias term. Therefore,
taking derivatives with respect to W and equating them to
zero, gives W = (Φ>Φ+λI)−1Φ>Y, where Φ is the matrix
of mapped samples, [φ(x1)

>,φ(x2)
>, ...,φ(xn)

>], whose
size is n×DH. Note that this problem is not solvable as the
inverse runs on matrix ΦΦ> which is of size DH×DH, and
Φ is in principle unknown. Here, we apply the Representer’s
theorem by which we can express the solution as a linear
combination of mapped samples, W = Φ>α, and then the
solution is expressed as a function of the dual weights α
(one per sample), α = (ΦΦ> + λI)−1Y. Note that now the
problem is solvable as we only need to compute the inverse
of the (regularized) Gram matrix K = ΦΦ> of size n × n.
Even though the mapping is unknown, one can replace this
inner product matrix with a similarity matrix between samples,
which is known as the kernel matrix, K.

We finally need to show that we never actually require
access to the mapped feature vectors, which could be of infinite
dimension. What we need in practice is the predicted value
for a new matrix of test examples, X∗. This is computed by
projecting it onto the solution W:

Ŷ∗ = Φ∗W = Φ∗Φ
>α = K∗α (1)

where the matrix K∗ contains the similarities between all
test and training samples, whose entries are K(xi,xj) =
φ(xi)φ(xj)

>. The important message here is of course that
we only need access to the kernel function K. Examples
of typical kernel functions are the linear K(xi,xj) = x>i xj ,
the polynomial K(xi,xj) = (x>i xj + 1)d, or the one used

in our implementation, the Gaussian Function (Radial Basis
Function, RBF) kernel K(xi,xj) = exp(-‖xi − xj‖2/(2σ2)).
Therefore, in KRR, two free parameters are tuned: the regu-
larization parameter λ and the kernel parameter σ. We used
a cross-validation strategy for their optimization. For the
interested reader, a MATLAB implementation of KRR and
other regression algorithms can be found at http://isp.uv.es/
soft_regression.html.

III. EXPERIMENTAL RESULTS

This section is devoted to report the experimental results.
First, we will describe the IASI L1C data used in the ex-
periments. Then, we will pay attention to the compression
results obtained by a near-lossless (M-CALIC) and a lossy
(JPEG 2000) coding technique, and finally we will evaluate
the impact of compression on linear (LR) and nonlinear (KRR)
retrieval of atmospheric parameters. Due to restrictions in
the space, we show results for only one image and one
biophysical variable in most of the experiments; please browse
http://isp.uv.es/coding_retrieval.html for more examples.

A. Data collection

To conduct the experiments, several IASI L1C images were
used. Table I provides characteristics for four images of this
dataset. All four images were obtained from IASI-B instrument
(implemented on MetOp-B satellite), are 16 bits per pixel per
component (bpppc), and are stored as signed integers.

B. Compression Results

All the considered IASI L1C images have gone through a
feature (component) selection process before carrying out the
compression stage. We selected a subset of spectral compo-
nents based on the minimization of measurement errors [3],
which discards components with negative radiance and high
levels of estimated noise by applying thresholds on the esti-
mated noise standard deviation per component.

For near-lossless compression, we used the M-
CALIC software [31]. The tested images have
been compressed using the default parameters
configuration. Eleven different peak absolute errors (PAE),
δ ∈ {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047}, are used
in our experiments. Table II shows the performance for
M-CALIC compressor on IASI L1C products. Of course, the
higher the peak absolute errors, the lower the bit-rate (or,
equivalently, the higher the compression ratio).

For lossy compression, we used the well-known JPEG 2000
standard along with two spectral transforms, DWT and POT.
We analyze three different compression schemes: a) only a
spatial transform (DWT); b) only a spectral transform (either
DWT or POT); c) both a spectral transform (either DWT
or POT) and a spatial transform (DWT). When applicable,
schemes are evaluated considering 5 and 10 levels of DWT
spectral transform, and 1, 3 and 5 levels of DWT spatial
transform. Seventeen target bit-rates are analyzed, uniformly
distributed from 0.001 to 2 bpppc. Kakadu software [32] was
used for JPEG 2000 experiments. The standard provides a
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TABLE I
EXAMPLES OF IASI L1C IMAGES USED IN THE EXPERIMENTS. TECHNICAL NAMES, IDENTIFIERS AND SIZES ARE PROVIDED.

Technical name Identifier Size (x× y × z)

IASI_xxx_1C_M01_20130817004753Z_20130817022952Z_N_O_20130817013849Z IASI_20130817004753Z 60×1530×8461
IASI_xxx_1C_M01_20130817041457Z_20130817055656Z_N_O_20130817050513Z IASI_20130817041457Z 60×1530×8461
IASI_xxx_1C_M01_20130817055657Z_20130817073856Z_N_O_20130817064707Z IASI_20130817055657Z 60×1530×8461
IASI_xxx_1C_M01_20130817073857Z_20130817092056Z_N_O_20130817082957Z IASI_20130817073857Z 60×1530×8461

TABLE II
M-CALIC COMPRESSION PERFORMANCE IN BIT-RATE (BR) (MEASURED IN BITS PER PIXEL PER COMPONENT, LOWER IS BETTER) AND SNR ENERGY

(MEASURED IN DB, HIGHER IS BETTER).

IASI L1C
δ = 1 δ = 3 δ = 7 δ = 15 δ = 31 δ = 63 δ = 127 δ = 255 δ = 511 δ = 1023 δ = 2047

BR SNR BR SNR BR SNR BR SNR BR SNR BR SNR BR SNR BR SNR BR SNR BR SNR BR SNR

IASI_20130817004753Z 5.07 75.02 3.89 67.24 2.88 60.59 2.01 54.38 1.31 48.37 0.78 42.68 0.41 37.36 0.22 31.74 0.13 25.70 0.09 19.63 0.07 13.75
IASI_20130817041457Z 5.07 75.49 3.88 67.71 2.87 61.06 2.00 54.85 1.30 48.84 0.77 43.16 0.40 37.83 0.21 32.18 0.13 26.11 0.08 20.05 0.07 14.12
IASI_20130817055657Z 5.05 76.14 3.86 68.36 2.85 61.71 1.98 55.50 1.29 49.49 0.76 43.81 0.39 38.48 0.21 32.82 0.12 26.73 0.08 20.62 0.07 14.73
IASI_20130817073857Z 5.08 75.75 3.89 67.97 2.88 61.31 2.01 55.10 1.31 49.09 0.78 43.40 0.40 38.07 0.21 32.44 0.13 26.42 0.08 20.34 0.07 14.35

Average 5.06 75.55 3.88 67.77 2.87 61.12 2.00 54.91 1.30 48.90 0.77 43.22 0.40 37.90 0.21 32.26 0.13 26.20 0.08 20.12 0.07 14.18

multi-component extension in its Part 2 [33], which has been
used to perform the DWT spectral transform. In order to
compute the POT spectral transform, the Pairwise Orthogonal
Transform software [34] was used.

Figure 4 shows the performance of the different lossy
compression schemes for product IASI_20130817055657Z.
The results for the other images are practically identical, and
hence not reported here for the sake of brevity. Actually, due to
space constraints, only the best configuration for each scheme
is plotted, i.e., scheme a): Spatial DWT 5 Levels; scheme
b): Spectral POT; scheme c) both Spectral POT + Spatial
DWT 5 Levels and Spectral DWT 10 Levels + Spatial DWT
5 Levels. To facilitate the performance comparison between
near-lossless and lossy compression, a curve reporting the
performance of M-CALIC is also plotted in Figure 4. For M-
CALIC, only compression results for PAEs between 15 and
2047 are plotted, because lower PAEs imply bit-rates larger
than those commonly employed for lossy compression.

One can see that, as expected, the best performance is
achieved when a spectral transform followed by a spatial
transform is applied. The performance comparison between
POT and DWT as spectral transforms is very similar, and
selecting one or the other may depend not only on the coding
performance, but also on complexity issues. Also as expected,
M-CALIC starts achieving competitive coding performance
only at medium to high bit-rates.

C. Retrieval Assessment

This section presents the results of estimating physical
variables (temperature and dew point temperature) using com-
pressed IASI L1C images. Results are reported for image
IASI_20130817055657Z for moisture prediction (related dew
point temperature). Once more, results for the other images
are practically identical, and hence not reported here for the
sake of brevity. Similarly, reciprocal performance is obtained
for temperature estimation; these results are not reported
either for the sake of conciseness. As supplementary material,
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Fig. 4. Rate-distortion performance for near-lossless and lossy compres-
sion. Results show SNR energy (in dB, higher is better) versus bit-rate (in
bpppc) for image IASI_20130817055657Z.

we encourage the reader to browse through http://isp.uv.es/
coding_retrieval.html, reporting detailed results for four IASI
L1C products, for both near-lossless and lossy compression,
and for both temperature and dew point temperature.

Since the acquisition conditions vary depending on several
factors and, globally, this affects the values of the radiances
from overpass to overpass, the statistical retrieval algorithms
(LR and KRR) were trained for each overpass. This is the
common practice by most of the community, including our
previous research [?], [3].

Extrapolating the ability of statistical methods between the
variation of acquisition conditions is an open problem, with
several on-going works trying to solve it from different points
of view [35]–[37]. In order to avoid the effect of this problem,
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we assume an ideal situation: the acquisition conditions are
exactly the same for both train and test (data points inside
the same image are used for training and testing). These two
datasets are disjoint, i.e., they do not share any data point.

In the experiments we follow a similar procedure as in [3].
We apply LR and KRR on IASI data hyperpixels to predict
temperature and humidity at different pressure levels, i.e., all
the spectral components at a particular spatial position are
considered for the regression. The experiments are conducted
on images compressed at different target bit-rates (different
compression ratios). For each image, coding scheme and
compression ratio we follow the same procedure. A set of
2,000 samples is used for training and a different set of 2,000
samples is used for testing. Note that the test samples are
not used in any moment in the training process and that test
samples are used only for the evaluation of the performance.
Samples are first drawn following a random distribution; then,
to allow a fair comparison, the position of the training samples
and the position of the test samples are kept constant for all
coding schemes. The procedure consists of two steps. First,
the dimensionality of the data is reduced to 260 components
by using the classical PCA/EOF transformation in the spectral
domain. Then, LR and KRR models are applied to predict the
temperature and the humidity profiles (i.e., the values at each
pressure level) at the spatial position corresponding to each
particular sample. LR and KRR are trained on input samples
of 260 dimensions to predict output samples of 137 dimensions
(one for each pressure level). We employ regularization and for
both methods. Also we train the parameters of both methods
using cross-validation for minimizing the average RMSE of
the predictions for all the pressure levels, one parameter for the
LR method (the regularization parameter) and two parameters
for the KRR method (the regularization parameter and the
kernel RBF sigma parameter). Everything that needs to be
trained (PCA and the regression parameters) is trained using
just the training set. Once everything is learned, the same
procedure is applied to the test data. To assess the performance
we compute in the test set the root mean squared error (RMSE)
between the predictions given by the regression models and
the ground truth values of temperature and humidity in each
pressure level.

1) Retrieval Assessment for Near-lossless Compressed Im-
ages: Figure 5 and 6 summarize the prediction results that can
be obtained using the selected near-lossless coding technique,
M-CALIC, and the investigated regression methods, LR and
KRR. Figure 5 shows the average root mean square error
(RMSE) across the whole atmospheric column as a function of
the compression ratio and the RMSE for each specific pressure
level, respectively. One can see that while small compression
ratios (left part of the plot) keep the results almost unchanged,
larger compression ratios benefit the retrieval performance.
Nevertheless, when the level of distortion inserted –due to
the excessive compression– is increased (right-most part of the
plot), the prediction results start to deteriorate. The effect is the
same for both LR and KRR, but with improved accuracy for
KRR. These results, although counter-intuitive, are consistent
with facts and results reported before in the literature. We refer
the reader to Section IV for a lengthy discussion providing

10
1

10
2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

compression ratio

m
ea

n 
R

M
S

E

 

 

LR, no compression
KRR, no compression
LR, M−CALIC
KRR, M−CALIC

Fig. 5. Estimation using LR or KRR for M-CALIC compression.
The horizontal axis represents the compression ratio, and the vertical axis
represents the mean RMSE (dew point temperature in K) over the different
pressure levels. The plot shows the results for M-CALIC compression when
using LR (dashed line) and KRR (solid line) for predicting moisture as
compared to retrieval results on original images.

explanations and examples for this behaviour.

Estimation RMSE profiles
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Fig. 6. Moisture RMSE (dew point temperature in K) profiles for
near-lossless compression. We chose the PAE with the best average RMSE.
For LR (dashed line) and KRR (solid line), the minimum averaged RMSE is
obtained at a compression ratio of 129:1. Results when using original images
are shown as well for comparison purposes.

Figure 6 reports the RMSE results for the different pressure
levels (measured in hectoPascals) achieved after a near-lossless
compression at compression ratio 129:1; again, we can observe
that compression benefits the retrieval estimation and that KRR
yields a higher performance than LR.

2) Retrieval Assessment for Lossy Compressed Images: As
Figure 6 in the case of near-lossless compression, Figure 7
reports the RMSE results for the whole range of pressure
levels. The conclusions above apply here too: introducing
compression benefits the retrieval estimation and KRR is
superior to LR.
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Fig. 7. Moisture RMSE (dew point temperature in K) profiles for
lossy compression. The selected configuration for multi-component JPEG
2000 lossy compression is POT as spectral transform and 5 levels of spatial
DWT. We chose the compression ratio with the best average RMSE. For LR,
the minimum averaged RMSE is obtained at a compression ratio of 3200:1.
For KRR, the minimum averaged RMSE is obtained at a compression ratio of
1600:1. Results when using original images are shown as well for comparison
purposes.

Next, Figure 8 summarizes the prediction results that can
be obtained using the selected lossy compression approach
(JPEG 2000 with several compression configurations) and LR
or KRR. The figure shows the average of the RMSE prediction
over the different pressure levels. Several relevant conclusions
can be extracted from this figure:

• KRR always yields better results than LR. It is clear from
the individual plots that, for the same configuration of
spatial and spectral compression methods, KRR always
produces less error than LR.

• Using compressed images produces better results than
using original images. This statement is derived by com-
paring the top-left plot (original images) with the other
plots in the Figure. Actually, this is confirmed within
a wide bit-rate range. Although it could seem counter-
intuitive at first glance (compressed images carry less
information than original ones), compression algorithms
capture and convey the important information, which
allows the prediction algorithms to focus on just this
spatial-spectral compact information, and thus they can
produce a better performance. Of course, when the bit-
rate is very small (i.e., a high compression is applied) the
remaining information is very small and the prediction
performance decreases regardless of the capacity of the
regression method (either LR or KRR). We argue that
the positive influence is an effect of the spatial-spectral
compression applied, which can be seen as an efficient
(yet indirect) way to include spatial-spectral relations in
the retrieval algorithm (cf. Section IV).

• Spatial transform is more important than spectral trans-
form. If we look at the plots within the same row, going
from left to right (from a lower to a larger number

of levels of spatial wavelet transform) the performance
of the retrieval algorithms increases. This effect is less
noticeable across columns, i.e., using different spectral
transforms or a different number of transform levels for
the same wavelet-based spectral transform does not have
significantly different effects on the retrieval performance.
Note that prediction is performed using single hyperpix-
els, therefore the prediction models are not using spatial
information directly, although they are indirectly using it
through the compressed data. Actually, spatial transform
fuse the spatial information in a way that the compressed
hyperpixels carry some information about the close-by
hyperpixels, while original hyperpixels only carry the
spectral information. As such, spatial transform helps to
introduce some spatial information in the prediction (cf.
Section IV).

• Using both spectral and spatial transform yields the
best retrieval performance for low bit-rates. Using a
extremely low bit-rate (0.005 bpppc) produces a very
good performance in retrieval accuracy, see, e.g., the
right-most plot in the second row (green triangles) and
in the last row (gray diamonds). These would be the best
configurations if the interest is to optimize performance
and compression ratio simultaneously.

Finally, Figure 9 compares the performance of the different
compression schemes considering the compression ratio that
yields the lower mean RMSE. Again, the conclusion is that
using both spectral and spatial transform yields the best
retrieval performance.

IV. DISCUSSION

In order to understand the observed positive effect of image
compression on the retrieval accuracy, we should first review
some well-known facts in signal and image processing. First, it
is well known that signal coding is a way of performing signal
filtering and denoising. This is a known fact reported else-
where [24]–[27]. The connections between denoising and com-
pression have been actually widely studied theoretically [38]
and experimentally in general and for wavelet transforms in
particular [26], [27], [39]. Therefore, it goes without saying
that when one performs lossy signal compression (coding) the
obtained signal is denoised.

An additional important observation, relevant to our discus-
sion, is the fact that using a filtered (denoised) signal typically
improves regression and function approximation results. The
presence of noise in the observations obviously hampers
estimation of the underlying signal. This is why very often
when performing regression, one aims at estimating the noise
(or its covariance) where the signal was buried. Such noise
estimate is then used to discount the uninformative noise
contributions in the observation, which definitely helps in
recovering the signal. There is a vast literature in both noise
(covariance) estimators and how one can embed these priors
in, for example, Generalized Least Squares (GLS) [40], which
has been extended for nonlinear regression under a Bayesian
framework in [41] and the kernel framework in [42], [43].
However, noise estimation is typically difficult, especially
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Fig. 8. Estimation using LR or KRR for different spatial and spectral configurations for lossy compression. In all the plots, the horizontal axis
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when signal-dependent noise (heteroscedasticity), structured
domains (as in time series or images), or outlying samples are
present. A much simpler and more practical approach is to just
filter out the observed signal before applying the regression
algorithm. Such filtering can be done with standard PCA
projection on the top eigenvectors (thus assuming that noise
is related to the higher frequency components), via wavelets
(thresholding coefficients in particular scales or orientations
whenever some knowledge about the signal is available), or via
iterative thresholding methods (that iteratively refine the signal
estimation). In conclusion, as mentioned before, compression
schemes constitute an alternative, indirect, simple way to filter
signals.

Actually, using wavelet-based and M-CALIC coding
schemes yields an extremely useful by-product: they rein-

force/encode spatial relations in the generate product. Coding
schemes such as the ones used in this work (wavelet-based
multi-component JPEG 2000 for lossy compression and M-
CALIC for near-lossless compression) typically reduce the
noise variance but also encode spatial smoothness in the com-
pressed image. Compression algorithms aim to concentrate
information in a reduced set of coefficients, which is done
through ‘decorrelation’ of the observation space (either spatial,
spectral or both), and very often assume stationarity (hence
smoothness) implicitly. This is obviously an indirect, simple
way to enforce local (spatial) relations between nearby pix-
els. Image compression therefore enforces pixel correlations
and smoothness in the image plane, that can be exploited
in pixel-wise regression algorithms to improve the spatial
homogeneity/consistency of the prediction maps too. Actually,
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it is widely acknowledged that model inversion and parameter
retrieval in remote sensing applications largely improve when
including spatial information, see [44], [45] and references
therein.

In recent years it is being accepted that using only the
spectral information (as done by pixel-wise algorithms) is not
optimal, and that it is important to find a trade off between
the spatial and the spectral information [46].

Finally, we should mention that these observations are not
new in signal and image processing. Several applications
benefit from a coding-first scheme. There is a wide evidence
that compressing the signal before any further processing is
beneficial. We have shown this effect previously for several
compression algorithms in hyperspectral image classifica-
tion [47], and it has been a common strategy in other appli-
cations such as genomics –in particular for Next Generation
Sequencing (NGS) [48], [49]–, seismic signal processing [50],
[51], bioengineering [52] and communications [53].

Therefore, we posit here that what we report is yet an-
other case of an effect previously noticed in signal and
image processing, and here transported to the field of bio-
geo-physical parameter estimation in atmospheric applications
using infrared sounding data.

V. CONCLUSIONS

This paper was concerned with how to include spatial-
spectral information for retrieving atmospheric profiles of
temperature and humidity using infrared sounders and statis-
tical regression. While many sophisticated approaches can be
deployed for this purpose (e.g., contextual and spatial-spectral
feature extraction or filtering at a postprocessing stage), they
typically involve hand-crafted features and engineering new
and complicated retrieval algorithms, non-automatic processes,
and tedious user intervention. Last but not least, such processes
raise important issues about parameter tuning and the little
control one has on the retrieval generalization capabilities.
Alternatively, we approached the problem in an indirect way
by compressing the hyperspectral cubes before performing

retrieval. Compression techniques are well-understood and the
impact on the quality of the radiances can be easily controlled
by prescribing a compression ratio. A wide range of spatial,
spectral and spatial-spectral image compression approaches
were evaluated and two linear and nonlinear regression al-
gorithms were compared. Results on more images and for
prediction of temperature can be found at http://isp.uv.es/
coding_retrieval.html.

Near-lossless compression was carried out through the M-
CALIC coding technique, while lossy compression was based
on multi-component JPEG2000 standard. Even though both
compression approaches introduce certain level of distortion
on the original data, they simultaneously incorporate the
spatial-spectral feature relations, so there is no need to de-
sign specific retrieval algorithms that fuse such information.
In our experiments, we searched for an acceptable level
of compression on IASI L1C products such that it has a
positive impact on the accuracy of the statistical retrievals,
i.e., an optimal trade-off between the positive effect of the
compression which introduces spatial relations and performs
a sort of denoising on the data, and the negative effect which
is that compression reduces the amount of information present
in the image. Our first conclusion is interesting enough, and
we think that the message can be of high interest to the
parameter retrieval community in general and to scientists
and organizations dealing with atmospheric retrieval models
in particular. We show that compression is a very easy, cheap,
and consistent way to perform denoising and to introduce
spatial-spectral image relations in the compressed product
which largely benefits the current (point-wise) retrieval. We
observed that high compression ratios yielded improved re-
sults in predicting dew point temperature (similar results
for temperature were obtained —see supplementary material,
http://isp.uv.es/coding_retrieval.html) in all the experiments
for moderate and high compression ratios. Of course when
the compression ratio is extremely large, this effect vanishes,
since the amount of information removed by the compression
is too large.
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Our second message we want to convey in this commu-
nication is that spatial transform revealed itself to be more
important than spectral transform. This observation is related
to the fact that the retrieval algorithms work in a pixel-wise
manner, and hence the spatial component is missing. This
is why the spectral-spatial image compression configuration
results in such big gains in spectrum-based retrieval. We
will explore in future works the trade-off between the gains
obtained when using a scheme based on spectral-spatial
compression plus spectral retrieval versus a more complete yet
challenging spectral-spatial compression plus spectral-spatial
retrieval. This second approach would require, however, re-
designing retrieval algorithms, which in most of the cases are
pixel-based.

As the main conclusion, we want to highlight that compres-
sion prior to model inversion is largely beneficial in retrieval
problems in general. The benefit is not only of practical use
but also computationally convenient and more accurate. It is
practical because following the presented methodology does
not change current operational approaches much: 1) current
retrieval schemes would be still valid since they would be fed
with efficiently compressed data before the retrieval instead of
the original data, and 2) there are moderate-to-big savings in
data storage and transmission because of the compression step.
The benefit is also in terms of prediction accuracy, as we have
observed consistent gains in all cases and images. We believe
that the proposed methodology may benefit the development
of current and upcoming infrared sounding and hyperspectral
sensors to advance in bio-geo-physical parameter estimation
schemes. It has not escaped our notice that the same procedure
can be actually applied to other algorithms for retrieval, such
as optimal estimation scheme or Bayesian approaches, and
to other problems dealing with high resolution data, such as
spectral unmixing. These issues are subject of further research
studies.
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