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Abstract—A novel wavelet-based scheme to increase coefficient
independence in hyperspectral images is introduced for lossless
coding. The proposed regression wavelet analysis (RWA) uses
multivariate regression to exploit the relationships among wavelet-
transformed components. It builds on our previous nonlinear
schemes that estimate each coefficient from neighbor coefficients.
Specifically, RWA performs a pyramidal estimation in the wavelet
domain, thus reducing the statistical relations in the residu-
als and the energy of the representation compared to existing
wavelet-based schemes. We propose three regression models to
address the issues concerning estimation accuracy, component
scalability, and computational complexity. Other suitable regres-
sion models could be devised for other goals. RWA is invertible, it
allows a reversible integer implementation, and it does not expand
the dynamic range. Experimental results over a wide range of
sensors, such as AVIRIS, Hyperion, and Infrared Atmospheric
Sounding Interferometer, suggest that RWA outperforms not only
principal component analysis and wavelets but also the best and
most recent coding standard in remote sensing, CCSDS-123.

Index Terms—Redundancy in hyperspectral images, remote
sensing data compression, transform coding via regression,
wavelet-based transform coding.

I. INTRODUCTION

R EMOTE-sensing data have become enormously impor-
tant for a myriad of applications addressed to the

Earth’s observation. Recent sensors can cover large geograph-
ical areas, producing images of unprecedented spectral and
spatial resolution. For instance, the Infrared Atmospheric
Sounding Interferometer (IASI) instrument onboard the MetOp
satellite captures 8359 spectral channels with a 60◦ field of
view, about 1530 lines per orbit, and 14 orbits per day at an
acquisition bit depth of 16 bits per pixel (bpp) close to 20 GB
daily. Hence, the need for efficient coding techniques for
remote-sensing data becomes more and more imperative to
improve the capabilities of storage and transmission.
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Most efficient coding techniques for remote-sensing data are
based on a redundancy reduction transform that exploits the
relations in the spectral and spatial dimensions. The problem of
appropriate signal representation for transform coding is equiv-
alent to the feature extraction problem in statistical learning [4].
Some hyperspectral coding techniques apply a discrete wavelet
transform (DWT) in all three dimensions (two spatial and one
spectral) [5], [6]. Other techniques apply a 2-D DWT spatially
while using a different transform in the spectral dimension
[7]–[10]. The transform in the spectral dimension is considered
crucial in coding hyperspectral images due to its significant im-
pact on the coding performance [11]. Generally, transforms that
provide better exploitation of correlation, resulting in better en-
ergy compaction, are the ones that yield larger coding gain [12].

In particular, principal component analysis (PCA), also
known as the Karhunen–Loève transform, is the optimal decor-
relating transform for Gaussian sources [13]–[15]. It is widely
applied to multicomponent images because of its excellent
performance as a spectral decorrelator. However, PCA is a
data-dependent transform, entailing the need to compute it for
each individual image before its application. Additionally, its
computational complexity is substantial due to the covariance
matrix calculation, the extraction of eigenvectors, and the ma-
trix factorization/integer mapping (when integer implementa-
tion is needed for lossless coding [16]). Also, the PCA is not a
component-scalable transform, i.e., the recovery of any single
image component depends on every transformed component.
In scenarios where the input data consist of a small number of
spectral components, such as multispectral images, PCA and
its integer implementation can be acceptable. Nevertheless, in
scenarios where the input data have a significant size in the
spectral dimension, such as IASI images, PCA and its integer
implementation are not feasible.

In light of this fact, a number of approaches have been
proposed to reduce the computational complexity of PCA while
trying to minimize the degradation in coding performance. One
approach is based on subsampling the data set and estimating
the covariance matrix using a reduced subset of coefficients
spatially and/or spectrally [7], [11], [17]. In this way, the com-
plexity of computing the covariance matrix can be alleviated.
However, other complexity sources, such as the eigenvector
extraction, the matrix multiplication, and the integer mapping
for lossless coding, remain. A second approach suggests divide-
and-conquer strategies to approximate the PCA while provid-
ing reduced computational complexity and some amount of
component scalability. These strategies are based mainly on
clustered PCA [18], [19] or on multiple pairwise PCA [20]. In
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most cases, the lossless coding performance of these strategies
falls somewhat below that of the full-complexity PCA, yet a
third approach consists in learning the transform on a set of
images of one particular sensor in order to obtain an efficient
transform that can be applied to new images from the same
sensor [21]–[24].

Beyond computational issues, a major conceptual limitation
of PCA is related to its focus on producing decorrelated (rather
than independent) components. In particular, PCA focuses on
the covariance matrix (second-order relations) and neglects
higher order moments, which may be relevant in non-Gaussian
signals. Remote sensing hyperspectral images have been shown
to be non-Gaussian both in the spatial and spectral dimen-
sions [25]–[27]. Since the efficiency of transform coding is
attached to the degree of statistical independence achieved [28],
approaches focused on decorrelation may lead to inefficient
representations due to higher order statistical relations still
being present after decorrelation.

The (theoretical) consideration of higher order moments in
independent component analysis (ICA) [29], and the (experi-
mental) fact that ICA filters are qualitatively similar to wavelet
functions in hyperspectral imagery [25] may be the fundamen-
tal reasons for the widespread use of wavelets in transform
coding of hyperspectral images [5], [6], [30].

Another limitation of classical PCA (and also classical ICA)
is its linear nature. Linear PCA and linear ICA (and their fixed-
basis approximations, DCT and wavelets) do not completely
achieve statistical independence in hyperspectral images. Sim-
ilar to the case of photographic images [31]–[35], residual
dependence has been reported for hyperspectral imagery in
these representations [26], [27]. Thus, despite the simplicity
and efficiency that linearity provides, in principle, nonlinear
methods could provide performance improvements by better
exploiting the dependence present in the data.

The aforementioned discussion suggests the pursuit of non-
linear generalizations of PCA, ICA, and their fixed-basis ver-
sions, DCT and wavelets, respectively. In [1] and [3], the
following families of nonlinear generalizations of feature ex-
traction transforms were reviewed: (i) kernel and spectral
techniques such as kernel-PCA, kernel-ICA, or local linear
embedding [36]–[38]; (ii) neural networks and autoencoders
[39]–[42]; and (iii) techniques based on curvilinear features
[1], [3], [13], [34], [43]–[45]. In the adaptation of these feature
extraction ideas to image coding, there are two major consider-
ations of importance: First, the transform must be invertible,
and second, the computational complexity and the memory
consumption should be reasonable. These requirements elim-
inate a large number of candidate approaches. For example,
many nonlinear generalizations of ICA are not invertible (for
instance, [34], [43], and [46]). With this in mind, the most
promising approaches seem to lie within the invertible tech-
niques of families (ii) and (iii).

In [2], we explored lossless hyperspectral image coding using
curvilinear techniques (family iii) based on principal polyno-
mial analysis (PPA) [1]. PPA exploits regression to remove
nonlinear dependence that remains after linear feature extrac-
tion (e.g., after classical PCA). In [1], it was shown that PPA
achieves higher energy compaction and statistical independence

than PCA. However, in practical hyperspectral coding, the
appropriate handling of side information and the sequential
error introduced by the integer mapping dramatically penalize
the coding gain. Additionally, the computational complexity
and memory requirements of these nonlinear transforms are
even larger than those of the original PCA, which is already
demanding [13].

As a result, rather than using sophisticated nonlinear data-
dependent feature extraction, we focus on theoretically sub-
optimal but simpler traditional transforms (such as the DWT)
while adopting predictive techniques [47], [48] to exploit any
remaining posttransform statistical dependence. This idea has
been applied to encode residual errors in the spatial domain
after exploiting smoothness [49] in photographic images. In
works more closely related to that proposed here, predictive
schemes have been employed in the wavelet domain based on
the known relations of image coefficients [32], [50].

Building upon this, this paper introduces the regression
wavelet analysis (RWA). This transform can be seen as a pre-
dictive scheme to reduce redundancy after wavelet analysis has
been performed in the spectral dimension of hyperspectral im-
ages. RWA shares the principal properties of the DWT such as
component scalability and low complexity while yielding excel-
lent performance for lossless coding. Specifically, RWA yields
superior performance to that of the best comparable spectral
decorrelation techniques such as PCA. Significantly, RWA also
overperforms the most recent and most competitive prediction-
based hyperspectral coding technique, CCSDS-123 [51].

This paper is organized as follows. Section II describes and
formalizes the proposed RWA scheme and the selection of
the regression model. Section III investigates several relevant
features of RWA, including its redundancy reduction ability and
computational complexity. In Section IV, we assess the coding
performance achieved by RWA for images corresponding to a
wide range of remote sensing scenarios. Finally, Section V puts
forward our conclusions.

II. RWA

To establish the necessary notation, this section begins with
a review of the DWT. The discussion then proceeds to an
analytical description of the RWA and the corresponding re-
gression model. The section concludes by suggesting a fast
implementation for RWA.

A. DWT

The DWT provides a multiresolution decomposition of sig-
nals into approximation V and details W. In what follows, we
consider the 1-D DWT in the component (spectral) direction of
a multicomponent image. The DWT can be computed with a
pyramidal algorithm based on convolution [52]. The algorithm
is illustrated in Fig. 1. We begin by considering a general for-
mulation for the DWT that maps real numbers to real numbers.
We later consider transforms that map integers to integers.

Suppose that an original multicomponent image V0 has z =
2d components with each component having m spatial samples.
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Fig. 1. DWT decomposition with J levels.

Then, we write V0 ∈ R
m×z and

V0 =
[
V0(1), . . . ,V0(z)

]
, V0(i) = V0

i ∈ R
m×1.

Then, the wavelet representation of V0 with J levels for 1 ≤
J ≤ log2(z) is given by

DWT(V0, J) =
(
VJ , (Wj)

1≤j≤J
)

(1)

where the one-level DWT decomposition of each Vj−1 is
given by

DWT(Vj−1 , 1) = (Vj ,Wj) (2)

with

Vj(n) =
∑
k

h(2n− k)Vj−1(k) (3)

Wj(n) =
∑
k

g(2n− k)Vj−1(k). (4)

In these expressions, h(n) and g(n) are the impulse responses
of low-pass and high-pass analysis filters H and G, respec-
tively. At each scale or level j, the signal Vj−1 ∈ R

m×(z·2−j+1)

is decomposed into the approximation signal Vj ∈ R
m×(z·2−j)

and the detail signal Wj ∈ R
m×(z·2−j) at half resolution each.

The approximation signal Vj usually contains most of the
information of the previous signal Vj−1, whereas the detail
signal Wj contains the information difference between Vj−1

and Vj . The decomposition is usually repeated in cascade
form on the approximation signal Vj as shown in Fig. 1, and
the maximum number of iterations that can be performed is
d = log2(z).

To reconstruct the original data, the DWT components are
passed through low- and high-pass synthesis filters to obtain

Vj−1(n) =DWT−1
(
(Vj ,Wj), 1

)
=

∑
k

h̃(n− 2k)Vj(k) +
∑
k

g̃(n− 2k)Wj(k).

(5)

If the original signal V0 has z = 2d components, then the
representations Vj and Wj have z · 2−j components each and
the DWT representation (VJ , (Wj)1≤j≤J ) has the same total
number of components as the original signal V0. With proper
boundary handling procedures, the number of components z
need not be a power of two. In this case, z · 2−j is rounded up

Fig. 2. RWA decomposition with J levels.

or down so that the total number of components at each level is
always the same.

Rather than the convolution implementation described ear-
lier, the DWT decomposition can be performed using a lifting
scheme [53], [54]. This implementation facilitates the inclusion
of rounding steps to obtain invertible transforms that map inte-
gers to integers. Such transforms are often called “reversible.”
In the wavelet literature, it has been demonstrated that the DWT
approximately decorrelates some stochastic and nonstochastic
processes [55]. This means that any two distinct within-scale
or between-scale coefficients are approximately decorrelated,
with the correlation decaying as the separation between scales
increases.

B. RWA

The proposed RWA scheme generalizes the DWT by apply-
ing regression to tackle the redundancy that still remains in the
DWT domain. At each scale j, each detail componentWj(i) =
Wj

i ∈ R
m×1 is predicted from the information contained in

the approximation components Vj ∈ R
m×(z·2−j) within the

same scale j. This prediction Ŵj
i = fi(V

j) is then removed
to obtain

Rj = Wj − Ŵj . (6)

A regression model fi(Vj) is used to estimate the condi-
tional mean of each Wj

i ∈ R
m×1 (dependent variable) from

some or all the approximation components Vj ∈ R
m×(z·2−j)

(independent variables). Later in this paper, we will propose
three different models that address the issues concerning esti-
mation accuracy, computational complexity, and spectral scal-
ability. Note that the prediction functions f might be linear
or nonlinear, and they might use a small or a large set of
neighbor coefficients. These possibilities for prediction through
regression lead to a range of particular implementations of
RWA.

As illustrated in Fig. 2, the resulting RWA affects only the
detail components at each level of the transform. The approxi-
mation components are unchanged from those of the DWT.

Following the notation of (2) and (1), the one-level RWA and
the J-level RWA become:

RWA(Vj−1, 1) = (Vj ,Rj) (7)

RWA(V0, J) =
(
VJ , (Rj)

1≤j≤J
)

(8)

respectively.
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The RWA transform is easily inverted. At each scale j, the
estimate Ŵj is computed from Vj . The approximation at level
j − 1 is then obtained by computing

Wj =Rj + Ŵj (9)

Vj−1 =DWT−1
(
(Vj ,Wj), 1

)
. (10)

By repeating in cascade for j = J, J − 1, . . . , 1, the re-
construction V0 is achieved from its RWA representation
(VJ , (Rj)

1≤j≤J
).

C. Regression Model

To find the estimate Ŵj of the detail components Wj

based on the approximation components Vj , three different
estimation models are discussed in this section. The first model,
called the maximum model, is the most general. It employs all of
the approximation components from Vj in the computation of
the prediction of each detail componentWj

i . The second model
is called the restricted model. For a given detail component to
be predicted, this model determines a subset of components
from Vj to include in the prediction in order to preserve the
component scalability of the original DWT. The third and final
model is called the exogenous model. This model has a low
computational cost and is similar to the exogenous model pro-
posed for the PCA [56] or for the orthogonal optimal spectral
transform [21], [22].

1) Maximum Model: The maximum model involves all k =
z · 2−j components of the approximation Vj ∈ Rm×(z·2−j) in
order to estimate each detail component Wj

i ∈ R
m×1, i ∈ I =

{1, . . . , k = z · 2−j}. The form of each estimator is given by

Ŵj
i = βj

i,0 + βj
i,1V

j
1 + · · ·+ βj

i,kV
j
k, Vj

i∈Rm×1. (11)

Since all components of the approximation are included,
this form provides the most general linear estimator possible
in this formulation. In this model, the estimator parameters
(regression coefficients) βj are found for each individual image
using the least squares method [57] that minimizes the sum of
squares of the distances between the original components and
the estimated ones

min :
∥∥∥Wj

i − Ŵj
i

∥∥∥
2
.

2) Restricted Model: The restricted model employs only a
small number of approximation components, with the goal of
preserving as much as possible the component scalability of
the original DWT. In other words, the number of transformed
components that need to be accessed to reconstruct an image
component should be as small as possible. In the DWT context,
the number of needed transformed components depends on the
width of the synthesis filters. As an example, consider the Haar
DWT. For this simple transform, only two transformed compo-
nents from level j are required to reconstruct one approximation
component at level j − 1, one approximation component, and
one detail component. More generally, for a given DWT, a
number |Ip| of approximation componentsVj

i∈Ip and a number
|Iq| of detail components Wj

i∈Iq from level j are required to

reconstruct an approximation component Vj−1
r at level j − 1.

We denote this by(
Vj

i∈Ip ,W
j
i∈Iq

)
Reconst.−−−−→ Vj−1

r .

From the opposite point of view, a given single detail com-
ponent Wj

i is involved in the reconstruction of t components at
level j − 1. Let us then associate Wj

i with these t components
(Vj−1

r1 , . . . ,Vj−1
rt ), and for each single component Vj−1

ri , we
associate it with the set of the approximation components
(Vj

i∈Iri ) needed for its reconstruction

Wj
i

Reconst.−−−−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Vj−1

r1

}
Reconst.←−−−− Vj

i∈Ir1
...

...

Vj−1
rt

}
Reconst.←−−−− Vj

i∈Irt .

For the Haar filter, this association is simple

Wj
i

Reconst.−−−−→

⎧⎨⎩Vj−1
2i−1

}
Reconst.←−−−− Vj

i

Vj−1
2i

}
Reconst.←−−−− Vj

i .

Now, if, in the regression model, to predict Wj
i , we

involve the approximation components Vj
i∈I, where I =

∪(Ir1, . . . , Irt) is the union of these t sets of indices of ap-
proximation components in the scale j, then this model will
largely preserve the scalability of the original DWT. Note that
the intersection ∩(Ir1, . . . , Irt) could be empty, depending on
the wavelet filter used. It is beyond the scope of this paper
to discuss the model that exactly preserves the component
scalability for any arbitrary filter. Nevertheless, we propose a
model that perfectly preserves the scalability for the Haar filter,
with I = {i}. It is given by

Ŵj
i = fi

[
Vj

i

]
.

In this paper, we propose the following model for Haar,
involving Vj

i and its second- and third-order terms:

Ŵj
i = βj

i,0 + βj
i,1V

j
i + βj

i,2

(
Vj

i

)2

+ βj
i,3

(
Vj

i

)3

. (12)

The restricted model preserves the component scalability
requirement of the original DWT by involving a restricted num-
ber of components in the prediction model. An added benefit
due to the restricted number of components is a reduction of
computational complexity. Higher order terms of (Vj

i )
n

can
be added to improve the predictive power. Additional improve-
ments may be had by adding more components Vj

k 	=i, at the
cost of a decrease in scalability and an increase in complexity
and side information corresponding to the additional regression
coefficients.

3) Exogenous Model: The maximum model employs a large
number of components in each estimator, and accurate estima-
tion is expected. However, this large model can result in large
computational cost when computing the least squares solution
for each image. This method may also result in excessive side
information needed to be transmitted in order to inform the de-
coder of the model parameters. Since each hyperspectral image
from the same sensor may have similar statistical relationships
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TABLE I
SIZE OF THE SIDE INFORMATION. z IS THE NUMBER OF COMPONENTS,

AND l IS THE NUMBER OF WAVELET DECOMPOSITION LEVELS

among its components, the exogenous model computes the

regression coefficients β
j

over a set of training images and
then uses these coefficients for all new images that come from
the same sensor. As a consequence, the computational cost of
RWA is reduced considerably to roughly the same as that of the
DWT. Additionally, no side information needs to be stored for
each individual image. The model is given by

Ŵj
i =fi[V

j ]=β
j
i,0+β

j
i,1V

j
1+· · ·+β

j
i,kV

j
k, Vj

i ∈ R
m×1.

4) Side information: Table I reports the side information for
the three proposed models of RWA in comparison with the side
information required for PCA, consisting of the z2 transform
coefficients and the z means used to center the data prior to
transformation. At each level j, the prediction of each com-
ponent Wj

i requires 1 + z · 2−j regression coefficients (βj
i,.)

when using the maximum model [see (11)] and four coefficients
when using the restricted model [see (12)].

These three regression models are suggested to be used
for different—possibly overlapping—situations. The maximum
model is suggested in most of the cases since it is expected to
give the most accurate estimation, although the regression coef-
ficients β are needed as side information. For situations where
the computation cost or the size of the side information matters,
the exogenous model is suggested. Finally, the restricted model
is suggested for those cases where the computational cost
matters or the spectral component scalability is required.

D. Fast RWA

The ordinary least squares method estimates the regression
coefficients with a complexity cost ofO(mk2) [58], [59], where
k is the number of components used to form the prediction and
m is the number of spatial samples. In the maximum model, k =
z · 2−j at level j, where z is the number of spectral components
in the original image. The restricted model uses less input
components to the predictors, leading to a reduced complexity
O(mk′2) (k′ < k), depending on the wavelet filter. For exam-
ple, for the Haar DWT, k′ = 3 [see (12)]. However, assuming
that m � z, the number of spatial samples m will dominate
the complexity. The fast RWA proposed here addresses this
problem by randomly selecting a subset of m′ = ρ ·m samples
(m′ � m). The least squares optimization is then carried out
only on this small data set to obtain the regression coefficients.
For images with a large spatial dimension (m � z), the sub-
sampling employed in the fast RWA has minimal impact on the

results. However, for images with a small spatial dimension, the
exogenous model may be a better choice, particularly when side
information is considered.

III. RELEVANT PROPERTIES OF RWA

On the one hand, the redundancy reduction ability of RWA
for remote sensing imagery is a major advantage from the
fundamental point of view. On the other hand, from the applied
perspective, component scalability and the possibility of effi-
cient integer representations are also major advantages of RWA.

A. Reduction of Correlation and MI

Hyperspectral images usually exhibit significant redundancy
along the spectral dimension. The spectral transform aims at
exploiting this redundancy among components, so that they can
be coded independently. In this section, we analyze the effect
of the transform on mutual information (MI) and correlation.
MI is not limited to linear relations between variables (as is the
case with correlation), but it also takes into account eventual
nonlinear relations [60]. As a result, MI is a more general
description of statistical relations than correlation. MI includes
correlation and non-Gaussianity [61]. Therefore, changes in MI
may come either from better decorrelation or from removing
higher order statistical relations.

Here, we measure the correlation and MI between the coeffi-
cients for the three more representative transformations in this
paper: wavelets (Haar with eight decomposition levels), PCA,
and the proposed RWA (maximum model using the Haar filter).
We have taken the Haar and PCA transformations because they
provide extreme cases of previous work from the literature. In
particular, the Haar transform has low complexity and provides
fine grain scalability but has modest compression performance.
On the other hand, the PCA provides superior compression
performance at the cost of high complexity and no scalability.

The following analysis employed the hyperspectral image
“Hawaii” (314 368 spatial samples and 224 spectral compo-
nents). The matrices depicted as images in Fig. 3 represent
the statistical relations between the coefficients of transformed
versions of the image. The left column of matrices represents
correlation, while the right column of matrices represents MI.
Each row of matrices corresponds to one (transformed) image
representation. For a given matrix, the element Mkl represents
the quantity of interest (correlation or MI) between the k-th and
l-th components.

The degree to which these matrices appear to be diagonal
has been used to describe the suitability of a domain for scalar
(coefficientwise) coding [33], [62], [63]. Specifically, better
representations for transform coding are those with small off-
diagonal values. To quantify this property, the average value
of the off-diagonal coefficients is depicted in the figure. The
nondiagonal nature of the matrices in the top row shows that the
original spectral domain is highly unsuitable for scalar coding.
Subsequent rows indicate that significant improvements can be
obtained via the application of transforms.

To compare the residual correlation that exists after the
application of the three transforms, we turn our attention to
the left-hand side of the figure. As can be seen there, the DWT
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Fig. 3. (Left column) Correlation and (right column) MI matrices for the
coefficients of an illustrative hyperspectral image, “Hawaii” with 224 spectral
bands. Each row of the figure corresponds to a different representation domain.
The blue-to-red color map indicates low-to-high dependence values. Average
values are computed using the magnitude of the off-diagonal elements. MI is
given in bits. Matrices in each column are normalized in the same way for fair
comparison. For the purpose of visualizing the small off-diagonal values, their
fourth roots are displayed.

provides significant decorrelation. However, strong correlations
still exist among and between the components of certain sub-
bands in the transform domain. PCA achieves significantly

TABLE II
COMPONENT SCALABILITY FOR DIFFERENT TRANSFORMS. THE NUMBER

OF REQUIRED TRANSFORM COMPONENTS TO RECONSTRUCT ONE

SINGLE ORIGINAL COMPONENT. z IS THE NUMBER OF COMPONENTS,
AND l IS THE NUMBER OF TRANSFORM LEVELS

better decorrelation than the DWT. By definition, it is designed
to diagonalize the covariance matrix. However, in practical
applications, total decorrelation is hard to achieve due to
implementation constraints (e.g., reversible integer-to-integer
implementation) and the difference between the sample and the
actual covariance matrices. Thus, some residual correlation is
still present. It can be seen that, after applying RWA (maximum
model), almost full decorrelation is reached in the transform
domain, as evidenced by the improved diagonal appearance
and the smaller off-diagonal average. This illustrates the clear
advantage of RWA over the usual Haar DWT and even a
small advantage over PCA. Similar comments can be made
for MI, as reported in bits, in the right side of the figure.
These observations serve to explain why RWA obtains superior
compression results compared to the usual DWT as well as
comparable performance to that of PCA. These statements are
verified in the compression results presented hereinafter.

Note that MI can be expressed as a sum of a correlation-
dependent index, a global negentropy, and a marginal negen-
tropy [61]. Reducing the correlation implies reducing the MI in
most cases. However, given the invariance of global negentropy
to linear transforms, once the correlation has been removed
(through PCA) and the marginal negentropy (or sparsity) has
been maximized (through ICA), the global negentropy can only
be reduced through nonlinear means. The results in Fig. 3,
obtained using linear regression, suggest that the prediction
in RWA increases the sparsity of the representation. More so-
phisticated (nonlinear) regression techniques could be included
in the RWA framework [functions fi in (6)] to reduce the
global negentropy at the cost of training, complexity, and side
information.

B. Reversible Integer RWA and Dynamic Range

For lossless coding, it is required that the redundancy reduc-
tion transform maps integer coefficients to integer coefficients.
For wavelets, the integer versions can be achieved by applying
the lifting scheme [64], [65]. For instance, integer versions of
the Haar filter are computed and reversed as follows:

Forward :

{
Wj

i = Vj−1
2i −Vj−1

2i−1

Vj
i = Vj−1

2i−1 +
⌊
1
2W

j
i

⌋ (13)

Reverse :

{
Vj−1

2i−1 = Vj
i −

⌊
1
2W

j
i

⌋
Vj−1

2i = Wj
i +Vj−1

2i−1.
(14)
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TABLE III
COMPUTATIONAL COMPLEXITY IN FLOPS FOR RWA. z IS THE NUMBER OF SPECTRAL COMPONENTS,m IS THE NUMBER OF SAMPLES PER

COMPONENT, AND l IS THE NUMBER OF WAVELET DECOMPOSITION LEVELS. ki IS THE NUMBER OF

DETAIL COMPONENTS EMPLOYED IN THE PREDICTION AT LEVEL i

Given that, we propose a reversible integer version of RWA

based on an integer DWT decomposition (V
j
,W

j
) and a quan-

tized estimation removal R
j
=W

j−Q(Ŵj). The scalar quan-
tization is here performed through a simple rounding operation.
The reversible integer RWA representation is then given by

RWA(V0, J) =

(
V

J
,
(
R

j
)1≤j≤J

)
.

In general, RWA can be based on any wavelet transform.
Nevertheless, as this paper focuses on lossless coding, and for
faster implementation, we focus exclusively on RWA based on
the integer Haar transform [see (13)]. This transform, aside
from its simplicity, provides another advantage, which consists
of largely preserving the dynamic range of the original domain.
Note that, with the integer Haar filter, the dynamic range can be
expanded by only 1 b in the detail signal. In some applications,
large dynamic range expansion can lead to serious problems,
particularly for existing devices or systems that support only a
limited bit depth [66].

C. Component Scalability and Computational Cost

Table II reports the scalability of several spectral transforms
in terms of the number of transformed components required
to reconstruct a single original component. For the restricted
model, the dependence for RWA is the same as that for the
wavelet transform (Haar in this case).

The computational cost of RWA is dominated by the es-
timation of regression coefficients β = (VᵀV)−1VᵀW and
the generation of the predictions Ŵ = βV. In the case of the
exogenous model, the estimation of β is performed offline and
does not contribute to the complexity of encoding. The compu-
tational cost of RWA is at its highest when using the maximum
model. However, the cost of other efficient transforms such
as PCA is still significantly higher. Furthermore, the integer
implementation of the lossless PCA is usually performed by
a factorization of the transform matrix [67], [68]. The resulting
implementation is typically not computationally efficient and
does not offer a high degree of parallelization due to the
recursiveness of the associated reconstruction process.

Table III details the computational cost of RWA in floating-
point operations (FLOPs), and Fig. 4 compares the com-
putational cost of different transforms applied to a typical
uncalibrated image from the AVIRIS sensor.

IV. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
RWA applied to the lossless coding of hyperspectral images.

Fig. 4. Cost comparison in FLOPs for different transforms applied to the
uncalibrated Yellowstone image with 224 spectral components and a spatial res-
olution of 512× 680. The values reported for PCA and DWT 5/3 are from [18].

Comparisons are provided with the most prominent methods in
the state of the art.

A. Data Set and Coding Pipeline

Experimental evaluations were conducted using a set of im-
ages from three different sensors: AVIRIS [69], Hyperion [70],
and IASI [71]. Table IV provides detailed information about
these images. As described in the table, the AVIRIS images
include five uncalibrated and five calibrated images correspond-
ing to five scenes in Yellowstone. These images have a bit depth
of 16 bits per pixel per component (bpppc). Also included are
two uncalibrated AVIRIS images (Maine and Hawaii), each
having a bit depth of 12 bpppc. All of the AVIRIS images
have 224 spectral components and 512 lines. The widths of
these images vary between 614 and 680. The Hyperion sensor
produces images with 242 spectral components, each having a
bit depth of 12 bpppc and a width of 256. The number of lines
varies from image to image. The IASI is composed of a Fourier
transform spectrometer and an integrated imaging subsystem.
IASI Level 0 images have 8359 spectral components, each
having 1528 lines of width 60. Level 1 IASI images are of size
8461× 1530× 60.

The proposed coding system pipeline is shown in Fig. 5. A
1-D transform is applied in the spectral dimension followed by
the 2-D JPEG2000 compression of each resulting transformed
component. To this end, the Kakadu software implementation
of JPEG2000 is employed with five levels of reversible 2-D
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TABLE IV
DATA SET INFORMATION FOR AVIRIS, HYPERION, AND IASI SENSORS.

z IS THE NUMBER OF SPECTRAL COMPONENTS, y IS THE HEIGHT,
AND x IS THE WIDTH

Fig. 5. Proposed coding pipeline: One-dimensional spectral transform fol-
lowed by JPEG2000 standard, which includes a 2-D spatial DWT followed by
bit-plane coding.

DWT 5/3. When a wavelet-based transform (including the
proposed RWA) is employed in the spectral dimension, the
maximum possible number of levels (log2(z)�) is employed.
For comparison with RWA, experimental results are provided
for four other reversible spectral transforms, including the Haar
and 5/3 wavelet transforms as well as PCA and pairwise or-
thogonal transform (POT) (a low-complexity approximation of
PCA [20]). Also, for the purpose of comparison, experimental
results are reported for the state-of-the-art predictive methods
M-CALIC [72] and CCSDS-123 [51]. Rather than performing
predictions in the transform domain as in the case of RWA,
these methods perform prediction in the original (pixel) domain
and are of particular interest since both are deemed appropriate
for onboard hyperspectral image coding [73].

As noted in the aforementioned paragraph, five levels of
spatial DWT are applied as part of the 2-D JPEG2000 coding
process applied to the transformed components. This was found
to yield good performance for all images and all transformed
techniques with a small number of notable exceptions. For the
for AVIRIS and IASI images, the PCA and RWA (maximum
model) spectral transforms were found to be so efficient that
no spatial DWT was necessary. In fact, in these cases, the
application of the spatial DWT resulted in slightly inferior
performance as compared to omitting the spatial DWT. For this
reason, 0 levels of spatial DWT were performed as part of the
2-D JPEG2000 compression process in these cases.

Hyperion and IASI images are tall and narrow. That is,
they have a large number of lines compared to columns. For
this reason, experiments were performed on versions of these
images that were spatially rotated 90◦ prior to compression.
In the following section, results are reported for the rotation
(0◦ or 90◦) that provided the best performance, algorithm by
algorithm. Specifically, for the uncalibrated Hyperion images,
the 90◦ rotation was used for all algorithms except M-CALIC.
For the calibrated Hyperion images, the 90◦ rotation was used
for all algorithms except M-CALIC and CCSDS-123. For the
IASI images, the 90◦ rotation was only used for the POT-based
algorithm. In most cases, the differences between rotating and
not rotating are minor. On the other hand, for CCSDS-123 and
the POT-based algorithm, the differences can be significant. The
POT is a line-based transform that produces side information
for each line of the input image. Hence, the rotation results in
a small number of lines giving rise to a reduced amount of side
information.

For reproducibility of results, the basic Matlab source code
for our implementations of the PCA, Haar, DWT 5/3, and RWA
spectral transforms is available online at [74].

B. Results

Table V provides the lossless coding results for all systems
under test in terms of the bit rate, in bpppc. All necessary side
information is included in the results reported in the table. The
compression efficiency of each algorithm can be appreciated by
observing the degree to which its resulting bit rate falls below
the bit depth of the original image (e.g., 12 or 16 bpppc).

It can be observed that, overall, the proposed RWA outper-
forms the state-of-the-art methods included in the comparison.
RWA, in one of its modalities, is the best in three out of the
six data subsets (three sensors, calibrated and uncalibrated).
When it is not the best, it yields results within 0.1 bpppc of
the best technique. The worst such cases occur for Hyperion
uncalibrated images that tend to have streaking artifacts due
to the nature of the pushbroom sensors [70]. More detailed
observations are now provided for each specific sensor.

For both uncalibrated and calibrated (radiance) AVIRIS im-
ages, on average, RWA (maximum model) outperforms PCA
and POT by more than 0.1 and 0.5 bpppc, respectively.
RWA also outperforms the predictive methods M-CALIC and
CCSDS-123 by more than 0.2 bpppc. When compared with the
HAAR and DWT 5/3 wavelet spectral transforms, the coding
gain of RWA is larger than 1.2 and 0.9 bpppc, respectively.

For uncalibrated Hyperion images, the coding performances
of Haar, DWT 5/3, PCA, and RWA (maximum model) are
very similar. CCSDS-123 provides the best results, followed by
POT and RWA (restricted model), which benefits from the 2-D
spatial transform more than PCA or RWA (maximum model).
In this case, RWA (restricted model) provides improvement
over the (usual) wavelet spectral transforms by about 0.2 bpppc
with a low computational cost. For calibrated Hyperion images,
RWA (maximum model) achieves a coding performance similar
to that of M-CALIC and outperforms POT and PCA by around
0.4 bpppc. It outperforms CCSDS-123 by 0.3 bpppc and im-
proves over the wavelet transforms by more than 0.7 bpppc.
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TABLE V
LOSSLESS BIT RATE FOR HAAR, DWT 5/3, POT, PCA, AND RWA SPECTRAL TRANSFORMS WITH JPEG2000, AND M-CALIC AND

CCSDS-123 CODING TECHNIQUES IN TERMS OF BPPPC. THE LOWER THE BIT RATE, THE BETTER THE PERFORMANCE

For IASI images, which have more than 8000 components,
lossless PCA encounters two serious problems. First is a huge
increment in computational cost, which results in an implau-
sible execution time. Second is a huge increase in the required
side information. For instance, the PCA matrix for IASI Level 1
images has a size of 8461 × 8461, while the spatial dimension
is only 1530 × 60, implying a side information of 2.4 bpppc.
For this reason, results for PCA applied to IASI images are only
reported for a couple of examples. On the other hand, RWA
(maximum model) does not suffer from extreme complexity, but
side information plays a nonnegligible role. This problem can
be solved by using RWA (exogenous model). As noted in the

table, the results for this method were obtained using only one
training image per sensor to learn the regression coefficients.
For IASI Level 0 images, the RWA exogenous model outper-
forms POT, M-CALIC, and CCSDS-123 by about 0.4 bpppc.
It is superior to the Haar and 5/3 wavelet transforms by about
0.5 bpppc. For IASI Level 1 images, the RWA exogenous model
achieves competitive coding results compared to CCSDS-123
while outperforming PCA, POT, and wavelets by more than
0.5 bpppc and M-CALIC by about 0.2 bpppc.

With regard to the results for calibrated versus uncalibrated
images, we note that, for the AVIRIS sensor, the calibrated im-
ages yield better performance, while for Hyperion and IASI, we
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find the opposite situation, where uncalibrated images achieve
better performance. Similar results were observed in [20] for
AVIRIS and Hyperion.

It is worth pointing out that fast RWA is a straightforward
approach to reduce the cost of computing the regression co-
efficients. For the AVIRIS and Hyperion sensors, only 1% of
the pixels were used for this computation while achieving a
performance almost identical to that obtained when using 100%
of the pixels. For the IASI sensor, 10% of the pixels had to be
used in order to approximately maintain the same performance
due to the low degree of freedom (m− z − 1). It is also worth
highlighting the fact that the RWA exogenous model eliminates
the need for side information as well as the cost of computing
the regression coefficients online.

V. CONCLUSION

Remote sensing is becoming increasingly widespread and
finds application in a growing number of fields. At the same
time, the size of transmitted remote-sensing data has increased
and is foreseen to continue increasing, which begs for efficient
ways to improve its storage and dissemination. Data com-
pression plays a key role in this regard. In particular, lossless
data compression has seen numerous recent advances, spanning
prediction-based to transform-based techniques. In this regard,
much work has focused on the spectral dimension of hyper-
spectral images. PCA usually provides the best performance
among transform-based techniques but entails some drawbacks.
Several approaches have been proposed to partially tackle these
drawbacks while yielding competitive coding performance.

In this paper, we introduce a novel spectral redundancy
reduction transform that builds upon the low-complexity Haar
wavelet transform and exploits the remaining redundancy
among wavelet-transformed components through regression
analysis. The suggested RWA is capable of estimating, via
regression, the detail components from the approximation com-
ponents resulting from the wavelet transform. RWA allows for
an integer-to-integer implementation and perfect reconstruction
and, thus, for lossless compression.

The regression model can be devised to account for finer
estimation accuracy, for finer spectral component scalability, or
for lower computational complexity, which give rise to the max-
imum model, the restricted model, and the exogenous model,
respectively. The first model involves all the approximation
components in the regression, the second model involves only
the approximation components as required to maintain the same
component scalability as the baseline Haar wavelet transform,
and the third model computes the regression coefficients based
on training data from the appropriate hyperspectral sensor and
employs the learned coefficients to all the other images in the
same sensor. However, another variant is a fast RWA implemen-
tation, which performs a fast prediction using the least squares
methods based only on spatially subsampled data, reducing the
time to compute the regression coefficients.

Extensive experimental results for the lossless compression
of images from three different popular and widely used hyper-
spectral sensors have been carried out. Specifically, both cali-
brated and uncalibrated images have been employed from the

airborne AVIRIS sensor as well as the satellite-based Hyperion
and IASI sensors. The resulting coding performance suggests
that RWA yields, overall, the best achievement as compared
to other spectral transforms such as Haar, DWT 5/3, PCA,
or its low-complexity approximation POT. RWA also provides
superior performance compared to other prominent prediction-
based coding techniques such as M-CALIC and the current
CCSDS-123 standard.

To summarize, RWA provides a tradeoff between computa-
tional complexity and coding performance that makes it an ap-
pealing approach for remote sensing lossless data compression.
It offers additional desirable features such as limited dynamic
range increase and superior component scalability.
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