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We compare several models of visual representation in terms of their ability to predict human judgements
of visual distortion. Each model is defined by a differentiable mapping from image inputs to a response
vector, which is then corrupted by additive Gaussian noise. We use the Fisher Information matrix to
predict discrimination thresholds for the visibility of arbitrary distortions, up to an unknown scale factor.
We test this by generating, for each model, a pair of specific distortions corresponding to the largest and
smallest eigenvectors of the Fisher Information matrix, which represent the model-predicted most and least
noticeable changes to the image, respectively. We distort the image by adding multiples of each vector,
and measure detection thresholds for human subjects in a two-alternative forced-choice task. Results are
quantified using the difference, D, of the log vector length at threshold for the two extremal eigenvectors,
T (~vn) and T (~wn). Two random perturbation vectors would yield of value of approximately D = 0, and
larger values of D indicate that the sensitivity of the model is better aligned with that of humans. We
used this methodology to test three models: a simple model of LGN neurons that includes local luminance
and contrast normalization[1, 4], and two different 4-stage convolutional neural networks. Each model was
trained on a database of human perceptual judgments[5]. We found that, despite performing slightly better
in terms of cross-validated correlation with the database, both artificial neural networks performed much
worse than the LGN model on this test. We conclude that in this situation, where data are somewhat
scarce, cross validation is not powerful enough to expose failures of a particular model class. Our method
provides a more general form of cross-validation, based on the synthesis of model-optimized stimuli and
comparison with human judgments on these targeted stimuli, and ensures that the model generalizes
beyond curated data.

Model details

The first model, which we call “On-Off”, mimics computations carried out in the retina and LGN[4],
and is similar to that described in [1]. In brief, the model has two channels (On and Off), each with
the same architecture. The image is convolved with a difference of gaussians (DoG) filter, and divisively
normalized by a measure of the local pixel luminance. The outputs of this stage are then divisively
normalized by a measure of local contrast within each channel, and rectified with a “softplus” nonlinearity,
f(x) = ln(1 + ex). The outputs of the two channels are concatenated into a single response vector. Model
parameters – the variance of each gaussian in the DoG filter, as well as the filters used to compute local
luminance and contrast – are optimized to maximize the correlation of the euclidean distance between
model responses to distorted images and their corresponding original images, and human judgments of
the perceptual distance between these same image pairs, as reported in the TID 2008 database [5]. In
addition, we trained two 4-layer neural networks that shared the same overall architecture (each layer is
composed of convolution with multiple filters, followed by softplus rectification), but utilized different forms
of regularization. The first network includes batch normalization (BN), which normalizes the outputs of
each hidden layer by the global mean and variance of the outputs at that layer on each batch of training
data[2]. After training, these normalization parameters are fixed to the global mean and variance across
the training set. The second network utilizes a fixed form of local response normalization (LRN) based
on the weighted Euclidean norm of neighboring coefficients, computed with a fixed weight kernel[3]. We
trained the filters of both convolutional neural networks on the same objective function and data as above.

Synthesizing Eigen-distortions from the Fisher information matrix

The Fisher information (FI) matrix of a model, J(~xn), for even moderately sized images, is too large to be
stored in memory. Nevertheless, the FI can be applied to an image, and we can solve for the maximum and
minimum eigenvectors using the power iteration method. Starting with a noise vector ~v

(0)
n , we iteratively

apply the FI, and renormalize the resulting vector, until it converges to the largest eigenvector, ~vn. We then
perform a second iteration, subtracting the eigenvalue of the maximum eigenvector, λn on each iteration,
until convergence to the smallest eigenvector, ~wn:
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Results

On-Off BN LRN
R 0.83 0.86 0.86
D 8.57 3.68 2.19

Table 1: First Row: Cross-
validated Pearson correlation be-
tween model distance and hu-
man mean opinion scores for the
TID 2008 dataset[5]. Second
Row: Average log ratio of vector
lengths at threshold for the least
noticeable over the most notice-
able eigenvectors.

We measured perceptual thresholds for each eigen-distortion, T (~wn)
and T (~vn), for 6 images from the Kodak test set on 1 subject. Specifi-
cally, we used a two-alternative forced-choice task to estimate the am-
plitude of each of the eigenvectors ~vn and ~wn that, when added to
image ~xn, could be discriminated from the original image with 75%
accuracy. We compute D, our measure of how well each model’s eigen-
distortions align with human perception, from the average difference
of log thresholds across images (eq. (2)). Eigen-distortions from the
two best-performing models are shown in Figure 1. Results for both
traditional cross-validation and our eigen-distortion test are reported
in Table 1. We find that despite slightly outperforming the On-Off
model (as well as the state-of-the-art) when evaluated on a held out
test set from the TID 2008 database, both the BN and LRN networks

drastically underperform the On-Off model in predicting human sensitivity. Additionally, the two neu-
ral networks achieve equal correlation, while having different values of D, suggesting that even within a
model class, traditional cross-validation is not powerful enough to elucidate the failures of particular model
assumptions.

Figure 1:
Left: Least- and
most-noticeable
Eigen-distortions for
the On-Off model,
added to the original
image (top) and
alone (bottom).
Right: Least- and
most-noticeable
Eigen-distortions for
the BN network,
added to the original
image (top), and
alone (bottom).
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