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Abstract—Gaussian Processes (GPs) are state-of-the-art tools
for regression. Inference of GP hyperparameters is typically
done by maximizing the marginal log-likelihood (ML). If the
data truly follows the GP model, using the ML approach
is optimal and computationally efficient. Unfortunately very
often this is not case and suboptimal results are obtained
in terms of prediction error. Alternative procedures such as
cross-validation (CV) schemes are often employed instead, but
they usually incur in high computational costs. We propose
a probabilistic version of CV (PCV) based on two different
model pieces in order to reduce the dependence on a specific
model choice. PCV presents the benefits from both approaches,
and allows us to find the solution for either the maximum a
posteriori (MAP) or the Minimum Mean Square Error (MMSE)
estimators. Experiments in controlled situations reveal that the
PCV solution outperforms ML for both estimators, and that
PCV-MMSE results outperforms other traditional approaches.

Keywords: Probabilistic Cross Validation, Marginal Likelihood,
MAP estimator, MMSE estimator, Gaussian Processes.

I. INTRODUCTION

“If someone puts a gun on my head and asks me to do model
selection, I choose cross-validation.”

Chih-Jen Lin and Olivier Chapelle

Gaussian processes (GPs) are Bayesian state-of-the-art tools
for discriminative machine learning, i.e., regression [1], [2],
classification [3] and dimensionality reduction [4]. GPs were
first proposed in statistics by Tony O’Hagan [5] and they
are well-known to the geostatistics community as kriging.
However they did not become widely applied tools in machine
learning until the early XXI century due to their high computa-
tional complexity [6]. In the last years, GPs have become one
of the standard tools to approach regression from empirical
data [6], and have received attention of many applied fields.

Essentially, a GP is a stochastic process whose marginals
are distributed as a multivariate Gaussian density. If the
observed data are truly generated by a GP, the use of the
marginal likelihood (ML) induced by the GP model (a.k.a.,
Bayesian evidence) is the best procedure for inferring the
hyperparameters. However, this perfect match between the
data and the assumed model rarely occurs in practical appli-
cations. For this reason, despite the mathematically elegance
of using the ML approach, other alternative procedures are
often employed with similar success and adoption. Examples
include random sampling [7], the Nelder-Mead method (aka
downhill simplex) [8], Bayesian optimization [9]–[11], and
many flavours of derivative-free optimization approaches such

as stochastic local search, simulated annealing or evolutionary
computation [12], [13].

Stepping backwards, perhaps the simplest approaches to
hyperparameter selection are standard cross-validation (CV)
grid-search procedures. Instead of taking care of the statistical
description of the data and the hyperparameters, CV directly
looks for the hyperparameters that minimize an arbitrary cost
function of interest, e.g. the squared loss. The CV procedure
needs to evaluate the cost for each possible combination of
hyperparameter values and choose the set that minimizes the
error in an out-of-sample validation test. Even though the CV
optimization is independent from the previously assumed sta-
tistical model, it involves exhaustive evaluation of multiple sets
of hyperparameters leading to high computational burden. CV
is thus only applicable for a small number of hyperparameters.

In this work, first we introduce a Probabilistic Cross Val-
idation (PCV) based on two different model stages in order
to reduce the dependence on one specific choice of regression
model. It also allows tuning a large number of hyperparam-
eters by means of gradient-descent techniques and/or Monte
Carlo methods [9], [12], [13]. The approach avoids exhaustive
grid-search as in the standard CV approach. Other heuristic
strategies are available, such as random search approaches [7].
However, they are more computationally demanding than the
use of Monte Carlo methods [14]–[16], which search in a
portion of the space according to the posterior distribution
of the hyper-parameters given the observed data.

In PCV, it is possible to define both the Maximum a Posteri-
ori (MAP) and Minimum Mean Square Error (MMSE) estima-
tors in a similar way to ML. If a uniform prior density over
the hyperparameters is considered, the PCV-MAP approach
coincides with the solution of the classical CV procedure. We
compare PCV and ML approaches by numerical simulations in
controlled settings of Signal-to-Noise Ratio (SNR) and dataset
cardinality. We also test MAP and MMSE estimators with both
approaches. It does not escape our notice that other alternative
estimators from robust statistics are available, such as the
median estimator, L-estimators and M -estimators [17]. We
leave these comparisons for future work though, and focus
on the standard MAP and MMSE only.

The remainder of the paper is structured as follows. The
needed background related to the GP regression model is given
in Section II. The use of the marginal likelihood for tuning the
hyperparameters is given in Section III. The PCV approach is
presented in Section IV. Section V is devoted to the numerical
simulations. Some conclusions are provided in Section VI.



II. GAUSSIAN PROCESS (GP) REGRESSION

GPs have been found wide adoption mainly for regression
and function approximation. Let us consider a set of N pairs of
observations or measurements D = {xi, yi}Ni=1, perturbed by
an additive independent noise. More specifically, we assume
the following observation model,

yi = f(xi) + ei, (1)

where ei ∼ N (0, σ2), f(x) is an unknown latent function and
x ∈ Rd. In a GP approach [6], we assume that the vector
[f(x1), . . . , f(xN )]> ∼ N (0,K) where Ki,j := k(xi,xj) is
a N × N covariance matrix and the kernel function k(x,x′)
is, for instance,

k(xi,xj) = exp
(
−‖xi − xj‖2

2λ2

)
. (2)

Moreover, a GP prior over the latent function f(x) ∼
GP(0, k(x,x′)) means that each vector of values of f evalu-
ated at different x’s is Gaussian distributed with zero mean and
covariance matrix obtained by k(x,x′). The hyper-parameters
of the GP model are θ = [λ, σ] where λ determines the length-
scale of the kernel function and σ is the standard deviation of
the additive Gaussian noise in the observation model in Eq. (1).
The goal is to learn the latent function f(x) given the received
data points X = [x1, . . . ,xN ] and y = [y1, . . . , yN ]>. Given
the previous assumptions, considering a generic test location
x∗, the posterior density of the random variable f(x∗) is
Gaussian, p(f(x∗)|y,X,θ) ∼ N

(
µGP(x∗), σ2

GP(x∗)
)
, where

µGP(x∗) = f̂(x∗|y,X,θ)

= k>∗ (K + σ2IN )−1y,

and σ2
GP(x∗) = k(x∗,x∗) − k>∗ (K + σ2IN )−1k∗, k∗ =

[k(x∗,x1), . . . , k(x∗,xN )]> is a N × 1 vector.

III. LEARNING BY MARGINAL LIKELIHOOD (ML)

In this section, we describe two possible procedures for tun-
ing the hyperparameters θ considering the marginal likelihood
obtained by the assumed GP model. Given the assumptions
described in the previous section, we have the following
marginal likelihood

pML(y|X,θ) ∝ exp (V (y|X,θ)) , (3)

where

V (y|X,θ) = −y>(K + σ2IN )−1y − log
[
det(K + σ2IN )

]
.

For simplicity, we consider using proper or improper (when-
ever possible) a uniform prior density p(θ) defined for θ ∈ Θ,
and thus the posterior density of the hyperparameters becomes

pML(θ|X,y) ∝ pML(y|X,θ)p(θ), (4)
∝ pML(y|X,θ)I(θ), (5)

where I(θ) = 1 if θ ∈ Θ, i.e., where the uniform prior is
defined, and I(θ) = 0 otherwise, if θ /∈ Θ. In this case, the

most used approaches are the Maximum a Posteriori (MAP)
estimator, defined as

θ̂MAP = arg max pML(θ|X,y), (6)

or alternatively, we can compute (approximately, in general)
the Minimum Mean Square Error (MMSE) estimator,

θ̂MMSE =
∫
Θ

θpML(θ|X,y)dθ. (7)

Another classical approach in general machine learning meth-
ods is the Cross-Validation (CV) approach, which does not
take into account the marginal likelihood. In the next section,
we introduce a probabilistic version of the CV procedure to
allow the definition of both MAP and MMSE estimators, in
the same fashion as we have described above.

IV. PROBABILISTIC CROSS-VALIDATION (PCV)

We introduce a probabilistic version of the classical CV
approach (denoted as PCV), which employs a first regression
model to find an approximation f̂(x) (e.g., a GP regressor)
and then consider the measurement equation y = f̂(x) + e
where e ∼ N (0, σ2) as observation model, in order to
tune the hyper-parameters. Note that PCV is different to the
procedure described in [6, Chapter 5] where the marginal
likelihood induced by the GP model is again used within a
CV context. We expect that PCV is more robust with respect
to a mismatch with the true data distribution and the chosen
model. PCV can be easily applied for tuning a larger number
of hyperparameters by means of gradient-descent techniques
and/or Monte Carlo methods [11]–[13], [18], [19].

The underlying idea of the proposed method is to define
the prediction error as a probabilistic function. Thus, we
split the data in n disjoint subsets X(n) as in the classical
CV, and define the error for a particular subset as a prob-
abilistic cross-validation distribution pCV of the predictions
given the data of the remaining datasets and parameters,
pCV(y(n)|y(n−1),X(n−1), θ). By doing so we can cast this
distribution inside the GP framework and optimize the error
using any optimization technique.

For instance, consider the case where we split the dataset
D in two disjoint subsets such as that N = N1 + N2,
D = D(1) ∪ D(2), with D(1) = {x(1)

i , y
(1)
i }

N1
i=1 and D(2) =

{x(2)
i , y

(2)
i }

N2
i=1. We also denote as X(k) = [x(k)

1 , . . . ,x(k)
N1

]
and y(k) = [y(k)

1 , . . . , y
(k)
N2

] for k = 1, 2. The two-fold PCV
technique is formed by the following steps:
Step 1. Given the first subset D(1), obtain an approximation
f̂(x|y(1),X(1),θ) using any regression procedure. In the rest
of this work, we consider a GP model for a fair comparison
with the ML procedure.
Step 2. Considering the following log-likelihood function

log[pCV(y(2)|y(1),X(1),θ)] =

−

∑N2
i=1

(
y
(2)
i − f̂(x(2)

i |y(1),X(1),θ)
)2

2σ2
− 1

2
log(C2σ

2)

(8)



where C2 = N2(2π)N2 , find an estimator θ̂(1) of the hyper-
parameters θ assuming the observation model

y
(2)
i = f̂(x(2)

i |y
(1),X(1),θ) + εi, (9)

where εi ∼ N (0, σ2).
Step 3. Repeat the procedure above switching D(1) with D(2)

to obtain θ̂(2) and return θ̂ = 1
2 (θ̂(1) + θ̂(2)).

The previous procedure can be extended considering K ≥ 2
disjoint subsets D(k) = {x(k)

i , y
(k)
i }

Nk
i=1, N =

∑K
k=1Nk, such

that
D = D(1) ∪ D(2) ∪ · · · ∪ D(K),

and denoting again X(k) = [x(k)
1 , . . . ,x(k)

N ] and y(k) =
[y(k)

1 , . . . , y
(k)
Nk

] with k = 1, . . . ,K. Moreover, we define as

{x(¬k),y(¬k)} =
K⋃

i=1;i6=k

D(i),

all the data points that do not belong to D(k). At the k-th
iteration, the log-likelihood function is

log[pCV(y(¬k)|y(k),X(k),θ)] = log[pCV(y(¬k)|D(k),θ)] =

−

∑N
i=1

(
y
(¬k)
i − f̂(x(¬k)

i |y(k),X(k),θ)
)2

2σ2
− log(C−kσ

2),

where C−k = (N − Nk)(2π)N−Nk . At each iteration, one
estimator θ̂(k) is obtained and, after K iterations, the final
estimator is given by

θ̂ =
1
K

K∑
k=1

θ̂(k). (10)

As for the marginal likelihood procedure, in PCV we have
different possibilities for obtaining the estimators θ̂(k). Con-
sidering a prior p(θ) and building the corresponding posterior
density, the MAP estimator is

θ̂
(k)
MAP = arg max pCV(θ|D(k),y(¬k)), (11)

and the MMSE estimator is defined as

θ̂
(k)
MMSE =

∫
Θ

θpCV(θ|D(k),y(¬k))dθ. (12)

Considering a uniform prior p(θ), the MAP estimator in Eq.
(11) coincides with the standard CV solution. In the following
section, we compare the performance PCV and ML procedures
and the MAP and MMSE estimators.
Remark. Considering a uniform prior p(θ) over the hyper-
parameter, the MAP estimator in Eq. (11) coincides with the
solution of the standard CV solution.

A. Further observations

Like in the ML approach, the probabilistic version of CV
allows the possibility of computing several other estimators.
For instance, one could be interested in using the median
θ̂MED of the posterior pCV (or pML). This estimator θ̂MED is
generally more robust with respect to the presence of outliers
in the dataset [17], [20]. However, surprisingly this alternative

is employed rarely in literature. Other possibilities often used
in robust statistics could be applied, for instance, the so-
called L-estimators or M -estimators [17]. In this preliminary
research, we focus on the MAP and MMSE estimators and we
leave further comparisons with other estimators as future work.
We believe that these alternatives can have a positive impact
in terms of the efficiency and robustness of the regression
methods, especially when applied to structured data robust
losses make a difference.

V. EXPERIMENTAL RESULTS

Let us consider we observe Dall = {xi, yi}2N
i=1 generated by

the following model

yi = sin(ωxi) + εi, (13)

with ω = 0.2π, εi ∼ N (0, σ2). The system’s outputs yi are
not a noisy version of a GP realization. However, note that a
sinusoidal function sin(ωx) can still be easily approximated
by a GP model with kernel in Eq. (2). We compare the ML and
PCV procedures computing both MAP and MMSE estimators,
and averaging the results over 500 independent runs. The
MAP estimators are obtained by stochastic optimization by
a simulated annealing (SA) procedure [12], [13] and the
MMSE are obtained by the use of Metropolis-Hastings (MH)
method [13]–[15]. For the sake of a fair comparison, the same
computational methods and with the same parameters are used
for the ML or PCV approaches.
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Figure 1. Euclidean distance D( bf, f) as function of the Signal-to-Noise Ratio
(SNR), in a log-log plot (setting N = 50).

At each run of this experiment, the 2N pairs of data are
generated according to the model and draw xi ∼ U([0, 20]).
Then, we permute randomly the pair of data in Dall and
divide in two disjoint subsets of N pairs of data each one,
Dtraning and Dtest, i.e., we have Dall = Dtraining ∪ Dtest. The
first subset Dtraining is used for obtaining an estimation of the
hyper-parameters θ and the second one Dtest is employed to
compute the Mean Square Error (MSE) in prediction obtained
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Figure 2. MSE in prediction considering Dtest as function of the Signal-to-
Noise Ratio (SNR), in a log-log plot (setting N = 50).
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Figure 3. Euclidean distance D( bf, f) as function of the number of the data
points N , in a log-log plot (setting σ = 0.05).

with different methods. For the PCV procedure, the first
subset Dtraining is randomly split into K = 2 disjoint subsets
Dtraining = D(1)

training ∪D
(2)
training, and proceeds as described in the

previous section. At each run, we compute the MSE in the test
phase considering Dtest and also the Euclidean (L2) distance
D(f̂ , f) between the approximated regression function f̂(x)
given an estimator θ̂ obtained with the different techniques,
and f(x) = sin(ωx) with x ∈ [0, 20], i.e., we approximate the
integral below

D(f̂ , f) =
∫ 20

0

(f̂(x)− f(x))2dx.

We repeat the procedure above for different values of noise
standard deviation σ (with N = 50) and different number of
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Figure 4. MSE in prediction considering Dtest as function of the number of
the data points N , in a log-log plot (setting σ = 0.05).

data N (with σ = 0.05). In Figures 1-2, we show the D(f̂ , f)
and MSE as function of the Signal-to-Noise Ratio (SNR). In
Figures 3-4, we show the results as function of the number
of data points N . Observing the results, we can see that the
performance are close for low SNR values and becomes more
similar as N grows. The PCV approach is preferable for high
SNR values. Furthermore, MMSE estimators are preferable for
high SNR values whereas MAP estimators seem to have some
small benefits for low SNR values. In general, the PCV-MAP
approach outperforms the ML-MAP approach in all cases.
PCV-MMSE seems to suffer small SNR values and small
amount of data.

VI. CONCLUSIONS

We have presented a robust probabilistic cross-validation
approach based on splitting the model definition in two
different parts. It allows to find a set of parameters that
minimizes directly the prediction error. We compared it with
procedures involving ML in order to tune the hyperparameters
of a GP regression model. In our experiments, we observed
that PCV is preferable with more favourable SNR values.
Our study suggests that ML-MMSE estimators should be
preferred to ML-MAP estimators. With small SNR values,
MAP estimators present some minimal benefits. As future
work, we plan to compare other kind of estimators such as the
robust alternatives called L and M -estimators. They can have
a positive impact in terms of the robustness of the regression
methods.
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