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ABSTRACT
In this paper we present a combined strategy for the retrieval
of atmospheric profiles from infrared sounders. The approach
considers the spatial information and a noise-dependent di-
mensionality reduction approach. The extracted features are
fed into a canonical linear regression. We compare Princi-
pal Component Analysis (PCA) and Minimum Noise Fraction
(MNF) for dimensionality reduction, and study the compact-
ness and information content of the extracted features. As-
sessment of the results is done on a big dataset covering many
spatial and temporal situations. PCA is widely used for these
purposes but our analysis shows that one can gain significant
improvements of the error rates when using MNF instead. In
our analysis we also investigate the relationship between error
rate improvements when including more spectral and spatial
components in the regression model, aiming to uncover the
trade-off between model complexity and error rates.

Index Terms— Infrared Atmospheric Sounding Interfer-
ometer (IASI), Minimum Noise Fractions, Principal Compo-
nent Analysis (PCA), Statistical retrieval.

1. INTRODUCTION

“Perfection is achieved not when there is nothing more to
add, but when there is nothing more to take away.”

— Antoine de Saint-Exupry: Terre des hommes.

Temperature and water vapour atmospheric profiles are essen-
tial meteorological parameters for weather forecasting and at-
mospheric chemistry studies. Observations from high spectral
resolution infrared sounding instruments on board of satellites
provide for retrieval of such profiles. However, it is not trivial
to retrieve the full information content from radiation mea-
surements; accordingly, improved retrieval algorithms are de-
sirable to achieve optimal performance for existing and future
infrared sounding instrumentation.

EUMETSAT, NOAAA, NASA and other agencies are
continuously developing product processing facilities to ob-
tain L2 atmospheric profile products from infrared hyperspec-
tral radiance instruments, such as IASI. One of the retrieval
techniques commonly used in L2 processing is based on lin-
ear regression, which is a valuable and very computationally
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efficient method. It consists of performing a canonical least
squares linear regression on top of the data projected onto
the first principal components or Empirical Orthogonal Func-
tions (EOF) –known in statistics as PCA– of the measured
brightness temperature spectra (or radiances) and the atmo-
spheric state parameters. To further improve the results of
this scheme for retrieval, nonlinear statistical retrieval meth-
ods, as well as nonlinear pre-processing methods [1], can
be applied as an efficient alternative to more costly optimal
estimation (OE) schemes. These methods have proven to
be valid in retrieval of temperature, dew point temperature
(humidity), and ozone atmospheric profiles when the original
data are used [2, 3]. However, they are costly to train and do
not consider spatial correlation between radiances neither the
noise information.

Recently, in [4], a high improvement on the performance
of retrieval methods was reported when applying standard
compression algorithms to the images. Although this result
may appear counter-intuitive since compression implies re-
duction on the amount of information in the images, a certain
level of compression is actually useful because: 1) compres-
sion removes information but also noise, and it could be use-
ful to remove the components with low signal-to-noise ratio.;
and 2) spatial compression introduces in a simple way infor-
mation about the neighboring pixels. The use of Minimum
Noise Fractions (MNF) employed here is a simpler and more
mathematically elegant way to take advantage of both prop-
erties simultaneously. MNF is specifically designed to sort
components according to the signal-to-noise ratio (SNR) [5].
The way we apply MNF here also enforces the inclusion of
spatial information as noise is estimated by the residuals of
fitting a quadratic surface locally. In this work we compare
the effect of using PCA or MNF when retrieving temperature
profiles using IASI data. We will show that MNF is better
suited for this task. Moreover since PCA and MNF are both
linear and unsupervised transformations, using MNF do not
introduce any modification in the data processing pipeline.

The remainder of the work is organized as follows. Sec-
tion §2 describes the data set collected and the pre-processing
for dimensionality reduction and spatial filtering. Section §3
reviews the two decomposition methods used in the work.
Section §4 gives empirical evidence of performance of the
proposed scheme for spatial, noise-aware retrieval of atmo-
spheric parameters. We conclude in §5 with some remarks
and outline for the further work.



2. DATA DESCRIPTION

The Infrared Atmospheric Sounding Interferometer (IASI)
data are point measurements of approximately 25 km diam-
eter with 8461 spectral components, ranging in the infrared
emission spectra from 645 to 2760 cm−1 with 0.25 cm−1

resolution. The dataset collected for this paper consists of 4
consecutive orbits from august 2013 of which the first three
are used for training the regression model and the last is used
for testing.

In our problem we follow the same scheme proposed in
[4]. First we remove certain bands from the spectrum that
do not contains useful information for retrieval reducing the
data to 4699 spectral components. Although the longitudinal
distance between acquisition points increases towards equator
we can reshape each orbit into a rectangular grid of 1530×60
elements. By doing so, data can be treated as an image, taking
advantage of spatial relations. The dimensionality reduction
transformations are calculated on the training set and applied
to both the training and testing datasets.

3. DECOMPOSITION METHODS

In our analysis we consider two orthogonal transformations,
PCA [6] and MNF [5]. Notationally, given an observation
data matrix X ∈ Rn×d with n pixels of d dimensions, we aim
to find a transformation to a lower dimensional representation,
d′ < d, such that the projected data preserves most of the
‘information’ of the input. Solutions offered by both PCA and
MNF are found by solving an eigenvalue problem but where
the PCA finds a solution with eigenvectors in the columns
of W ∈ Rd×d′

in direction of maximum variance, the MNF
looks for the eigenvectors that minimize the noise fraction, or
equivalently maximizes the signal-to-noise ratio [7, 8]:

PCA : W∗ = argmax
W

{
Tr

(
W>X>XW

W>W

)}

MNF : W∗ = argmax
W

{
Tr

(
W>X>XW

W>X>NXNW

)}
,

(1)

where X is our data matrix with each row representing a sam-
ple of a infrared spectrum and with columns corresponding to
the number of spectral components. XN is the correspond-
ing noise estimation of each sample in X. The resulting set
of vectors from the PCA decomposition are orthogonal as op-
posed to the MNF solution which obtains orthogonality with
respect to the noise covariance.

If the noise covariance matrix is known, it can be used in
the MNF estimation. Often it is not the case and it has to be
estimated from data. Common ways to do noise estimation in
image analysis include local mean subtraction, or taking the
residuals from a plane or paraboloid fit on every pixel position
in the image. We follow the latter approach for our analysis
with a 3 × 3 paraboloid residual kernel implemented as a fil-
tering operation [9].
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Fig. 1. Cummulated normalized eigenvalues.
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Fig. 2. Multi-information between the input and output com-
ponents for PCA and MNF. Ten realizations have been made
for each method while including different amount of spectral
components. Lines denote the mean trend of the results.

The cumulative and normalized eigenvalues for both
methods are shown in Fig. 1. For PCA they represent the
percentage of explained total variance and it is seen that 99%
explained variance is obtained within the first 5 components.
For the MNF, eigenvalues represent the signal fraction for
each component [5] and less than 80% signal fraction is ob-
tained from the first 5 components. Although this could be
seen as an disadvantage one has to take into account that
PCA might keep the noise information too. Therefore how
the eigenvalues relates to the information necessary to pre-
dict the temperature profiles Y ∈ Ro is less straight forward
to estimate. We analyze in Fig. 2 this relation by using the
concept of multiinformation [10] (also known as total corre-
lation). We show the amount of multiinformation, i.e. shared
information, between the projected inputs Xp = XW and
the outputs Y using different amount of input components for
each decomposition method. These values have been com-
puted using RBIG method ([11]). We have followed similar
procedure as in [12] where the amount of information con-
tained by spatial and spectral components was analyzed for
several sensor configurations. In this case, we are analyzing
only the spectral information, yet including the variable to
predict Y (temperature profiles). Fig. 2 shows the multiinfor-
mation results for PCA and MNF. Although it also includes
the redundant information of the inputs, this measure can be



seen as an approximation of the information of the output
that we can be obtained from the input. Note that even that
MNF is not specifically designed to maximize this informa-
tion, the multiinformation is bigger for MNF when using the
same number of input components than for PCA. We will see
in the experiments section how this behavior gives raise to
improved retrieval performance.

As suggested in [4], to improve the retrieval performance
it is important to remove noise from the data and to include
spatial information. Fig. 3 illustrates the ability of MNF to do
so. We show half orbit of data from the test set projected onto
each of the 50 first components from the PCA (top row) and
MNF (bottom row) decomposition. It is clear from this figure
that MNF obtains smoother are less noisy projections than
PCA. For instance component 38 from the PCA projection
seem to contain less structure than the three following projec-
tions. This indicates that some noise components in the data
have higher variance than other signal components. This be-
haviour repeats above the first 50 PCA components, whereas
the MNF projections represents spatially smooth information
in early components and gradually increase to finer details for
higher components.

4. EXPERIMENTAL RESULTS

The goal of our experiments is two-fold, first to compare the
effect of using PCA or MNF in the retrievals, and furthermore
to uncover the trade-off between prediction performance and
the number of spectral components included for each method.
Dimensionality reduction is important to limit the computa-
tional load but choosing the appropriate number of compo-
nents to keep is less straightforward. A lower computational
load can be traded for larger amounts of training data so over-
fitting is prevented. Alternatively the lower number of data di-
mensions can enable the use of computationally heavier non-
linear models such as Kernel Ridge Regression, which has
been shown to improve performance for retrieval in infrared
sounder data [4].

As well as the influence of spectral sampling in temper-
ature profile modelling we include experiments for different
sizes of pixel neighborhood sampling as studies suggest this
can be beneficial [12]. This means that we model the tem-
perature profile of one sample in the IASI data from the sam-
ple plus a neighborhood of samples around it. For quadratic
neighborhoods the increase of size will also lead to quadratic
increase in computational load and it is therefore relevant to
limit it.

In Fig. 4 the results from our experiments are shown. It
is seen that the RMSE improvements converges after approx-
imately 125 spectral components. The results also show that
there is a significant improvement including neighborhood
pixels in the modelling of temperature profiles, but that the
improvement decreases going towards larger neighborhood
sizes. Figure 5 shows the resulting RMSE over the temper-
ature profile for using 175 spectral components in the Lin-
ear regression model. Our analysis suggests to use between
125 − 175 spectral components from a MNF decomposition
and a pixel neighborhood sampling size of 3×3 or 5×5 when
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Fig. 4. Mean of RMSE on temperature profiles for different
decomposition methods and spatial sample sizes, when in-
cluding an increasing amount of spectral components. The Y-
axis is the mean of the root-mean-square-error on prediction
with o = 90 i.e. predition of 90 altitudes in the atmosphere
given by their pressure level.

performing Linear Regression on this type of data.
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Fig. 5. RMSE on temperature profiles for 90 different alti-
tudes shown by the air pressure (y-axis). In this experiment
175 spectral components was used to fit the Linear Regression
model for 3 different neighborhood sampling size on PCA
and MNF transformation. Measurements on clouds yields
typically higher error rates for lower altitudes. Note that in
this experiment nothing has been done to filter away mea-
surements dominated by clouds.

5. CONCLUSIONS

This paper showed that using MNF is a simple and mathemat-
ically elegant way of removing the noise in the signal and at
the same time taking into account spatial information. These
two properties have been suggested previously as an impor-
tant point when dealing with this particular data [4]. Both
effects can be observed in Fig. 3, the selected features by the
MNF are less noisy and spatially softer than the ones found
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Fig. 3. Each strip is half an orbit projected onto the different components (PCA top, MNF bottom).

by PCA. We want to stress the fact that substituting PCA by
MNF would not change the processing pipeline. PCA and
MNF are both linear transformations so only the values of
the projecting vectors should be changed. Moreover, unlike
other solutions as PLS [13], PCA and MNF are unsupervised
methods, i.e. are not fitted for predicting an specific variable.
Therefore, although we here show the results for a particular
variable (i.e. temperature), it is expected that the improve-
ment would be consistent for the retrieval of other variables.
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