NONLINEAR STATISTICAL RETRIEVAL OF SURFACE EMISSIVITY FROM IASI DATA
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ABSTRACT

Emissivity is one of the most important parameters to improve
the determination of the troposphere properties (thermody-
namic properties, aerosols and trace gases concentration)
and it is essential to estimate the radiative budget. With
the second generation of infrared sounders, we can estimate
emissivity spectra at high spectral resolution, which gives
us a global view and long-term monitoring of continental
surfaces. Statistically, this is an ill-posed retrieval problem,
with as many output variables as inputs. We here propose
nonlinear multi-output statistical regression based on kernel
methods to estimate spectral emissivity given the radiances.
Kernel methods can cope with high-dimensional input-output
spaces efficiently. We give empirical evidence of models
performance on Infrared Atmospheric Sounding Interferom-
eter (IASI) simulated data. Kernel regression model largely
improves previous least squares linear regression model quan-
titatively, with an average reduction of 25% in mean-square
error.

1. INTRODUCTION

Ultraspectral resolution infrared (IR) radiances obtained from
nadir observations provide information about the atmosphere,
surface, aerosols, and clouds. Surface spectral emissivity
(SSE) from current and future operational satellites can and
will reveal critical information about the Earth’s ecosystem
and land-surface-type properties, with implications on the
long-term monitoring of the Earth’s environment and global
climate change [1]]. In this study, we deal with the statistical
retrieval of SSE from IR data. The inversion scheme has
been applied to the Infrared Atmospheric Sounding Interfer-
ometer (IASI) synthetic data. The IASI instrument poses a
major dimensionality challenge to statistical retrieval algo-
rithms due to its dense spectrum sampling that induces a high
dimensional feature problem. IASI spectra consist of 8461
spectral channels, between 3.62 and 15.5 pm, with a spectral
resolution of 0.5 cm™! after apodization [2] 3]]. Its spatial
resolution is 25 km at nadir with an Instantaneous Field of
View (IFOV) size of 12 km at an altitude of 819 km. On
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top of this, we aim to retrieve an also high dimensional state
vector; the surface spectral emissivity [[1]. This huge data
dimensionality typically requires simple and computationally
efficient processing techniques.

The remainder of this paper is organized as follows. Sec-
tion [2| reviews the main characteristics of the employed non-
linear regression method, describes the training strategy, and
discuss on the selection of free parameters. Section [3| shows
the experimental results, and section E] concludes.

2. NONLINEAR STATISTICAL RETRIEVAL

In this work, we aim to compare the power of nonlinear
regression versus linear regression (LR) for emissivity re-
trievals. We concentrate on the field of kernel methods, which
deal with the concept of regularization and capacity control
naturally. An introduction to kernel methods in remote sens-
ing data analysis is available in [4]. Specifically, we will
focus on the kernel implementation of the standard (regular-
ized) least squares linear regression. The method is known as
kernel ridge regression (KRR) or least squares support vector
machine [5]. Kernel regression gives rise to non-parametric
and nonlinear decision functions: the nonlinearity is obtained
implicitly through the use kernels, which are controlled by
the so-called kernel hyperparameters, while the regulariza-
tion is tunned via a conditioning constant (which is related
to the noise variance). In this section, we first review the
standard formulation of the KRR method departing from the
LR model. Then, we discuss on the alternatives to deal with
(very large) multi-output regression problems as in our case
of emissivity estimation. Finally, we study the sensitivity of
the hyperparameters and discuss on for tuning them.

2.1. Kernel Ridge Regression

We are given n pairs of x; € RP (spectra) and y; € RM
(emissivity), where ¢ = 1,...,n indicates the index of the
n training samples (or field of views in our context, FOVs).
In matrix notation, the input data (radiances) are collec-
tively expressed as X € R™*P, and the outputs (emis-
sivitites) are given by Y € R™*M_ The canonical linear
model assumes Y = XW, and typically one estimates the
weights/coefficients W by least squares minimization under
the assumption of an additive i.7.d. noise model, Y = Y+N



with Gaussian noise N ~ AN/(0,02I) of zero mean and
standard deviation o,.

The Kernel Ridge Regression (KRR) is a nonlinear ver-
sion of the previous linear regression model based on the use
of kernels [6, 5]. Now, we want to fit a linear model in an al-
ternative Hilbert space, H, of very high dimensionality (possi-
bly infinite) D4, where samples have been mapped to through
a mapping ¢ : x; € RP — ¢(x;) € RP*. The prediction
model is thus given by Y = ®W,, where the bias term was
intentionally dropped as it can be easily fitted.

The problem is solved by minimizing the regularized
squared loss function

L=]Y — @Wy[* + AWy,

One proceeds as in standard least squares regression: first
takes derivatives w.r.t. Wy and equates it to zero, which
gives the (primal) solution Wy = (&' & + \I)~'®'Y,
where ® is the matrix of mapped samples whose size is now
n X Dy,. Then, by applying the Representer’s theorenﬂ the
dual solution

a= (P2 +A\I)7'Y = (K + )Y,

where we replaced the inner product matrix with a similarity
matrix between samples, known as the kernel matrix, K. This
training matrix is squared, symmetric and positive definite,
and it contains all the similarities between training samples,
[K];; = K(x;,%;). The problem is now solvable and closed-
form, since we only need to compute the inverse of the (regu-
larized) matrix kernel K of size n x n. By applying the same
trick to new incoming test samples, X, it is easy to show that
one can do retrievals in testing without the explicit mapping
to Hilbert spaces, just resorting to similarities between train-
ing and test samples, i.e.: Y* =® W = <I>*'1>Ta = K.,aq,
where the matrix K, contains the similarities between all test
and training samples.

2.2. Large input and output regression problems

In the emissivity estimation problem we have huge both input
and output dimensional data, which makes the direct appli-
cation of the previous methods unaffordable. Remember that
the IASI instrument provides radiances (and hence emissivi-
ties) in D = M = 8461 spectral channels [3]]. In this case, we
follow the strategy in [1] by which the models are applied to
the top principal component scores of both X and Y, that is
X, =XV, and Y, =YV, [1], where p and g are the num-
ber of component scores selected for X and Y respectively.
This strategy is very effective, and it is motivated by the high
spectral correlation of both radiances and emissivities. It is
also computationally very efficient because only one model is
used for the estimation of the emissivities, instead of using M
models or alternatively the top g scores.

I The representer’s theorem states that one can express the solution matrix
‘W, defined in A as a linear combination of mapped samples in that space,
Wy =oT

H = .
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Fig. 1. Error surface (RMSE) for different combinations of
the KRR hyperparameters (o, A).

2.3. KRR selection parameters

In our experiments we use the squared exponential kernel,
also known as Radial Basis Function (RBF) kernel: K(x;,x;)
= exp(-||x; — x;[|?/(20?)). With this kernel, only two free
parameters have to be tuned in KRR, the regularization pa-
rameter A, and the kernel parameter o, which were selected
via standard cross—validationﬂ Essentially, a training set was
split into training and validation input-output pairs; the for-
mer was used to adjust the dual weights o, and the latter to
evaluate its performance for each particular choice of (A, o).
After the best pair (A, o) was found, a final set of coefficients
o were used to generate predictions on an independent (un-
seen) test set. Figure [T| shows the error surface as a function
of the KRR parameters. We analyzed a grid of several combi-
nations of the parameters. We observed a clear minimum for
a particular combination of the parameters A and o.

3. EXPERIMENTAL RESULTS

This section shows the experimental results when using LR
and KRR to predict emissivities using IASI data.

3.1. Experimental setup

In this work, we follow the same scheme presented in [1] to
evaluate the use of non-linear retrieval models for retrieving
emissivities using radiances. For this task, we employ IASI
simulated data together with the corresponding emissivities.
We reduce the dimensionality of the input data (radiances)
and the output data (emissivities) by using Principal Com-
ponents Analysis (PCA) [7]. Following [1] we reduce the

2We have used the KRR implementation included in the simpleR toolbox:
http://www.uv.es/gcamps/software.html


http://www.uv.es/gcamps/software.html

radiances dimensionality to p = 200 components, and the
emissivity dimensionality to ¢ = 11 components.

3.2. Model comparison

We evaluate two different models: Tikhonov regularized lin-
ear regression (LR), and Kernel Ridge Regression (KRR),
which has been previously used in atmospheric parameter re-
trieval [4}[8] [0 [TOL[11]], see sec.2.1]for details. The two meth-
ods are trained using 20000 samples and a cross-validation
scheme where half of the data are used to obtain different sets
of regression coefficients for each combination of parameters.
The other half of the training data is used to test all sets of
obtained coefficients, and to select the one that obtains the
smallest error. The data to test the models in the 3.3 section is
different from the data employed for training. Figure[I|shows
the error surface when using different parameters with KRR,
see sec. 2.3 for details.

3.3. Emmissivity retrieval

Here we test the trained model on the test data, 47475 sam-
ples. Figure[2[(a) shows the error of each regression model for
estimating the value of the dimensions corresponding to the
principal components of the emissivities. KRR clearly ob-
tains less error than LR. This difference is more noticeable in
the first principal components. Since KRR is better for pre-
dicting these values, the error has to be also smaller when
reconstructing the emissivities using the KRR predictions.

Figures 2[b) and [2(c) show the bias error and the root
mean square error (RMSE) for the reconstructed (inverted)
emissivitieﬂ As in Fig. a), KRR errors are smaller than for
LR, for both bias and RMSE.

Although differences in the performance between LR and
KRR are clear, we also show in figure Ekd) the relative results
between KRR method and LR in percentage. This figure is
helpful to analyze the difference in performance for each par-
ticular wave number.

3.4. Final remarks

Two main conclusions can be derived from the experiments.
First, the cross-validation strategy yielded a clear optimum
point in the error surface to select the best hyperparame-
ters of the KRR algorithm (see Fig. . And second, KRR
clearly outperforms LR both in bias and RMSE. Actually,
KRR achieves for some wavenumbers 50% less error than
LR, and an average reduction of 25% in mean-square error. It
is noticeable that most of the gain is obtained for the first PCs
(the ones with higher eigenvalues).

3Note that PCA learns a projection matrix V. € RX9 which is or-
thogonal, VTV = 1, so the inverse transformation is just its transpose,
Y*I = V7. Hence, since we predicted PCA-projected emissivities,
Y = EV, we can derive the estimated emissivities simply as E=YV™T.

4. CONCLUSIONS

In this paper we presented a kernel-based regression algo-
rithm for the statistical retrieval of emissivities from IASI
data. Given the high input and output data dimensionality,
we applied KRR in dual PCA/EOF subspaces. The proposed
methodology largely improved the accuracy results over pre-
vious methodologies based on LR.

Future work will be addressed in two directions. On the
one hand, we aim to improve the regression scheme with
alternatives to PCA [12} [13]] for dimensionality reduction,
and to KRR for computational efficiency [14] and uncertainty
characterization [15]. On the other hand, the generality of
the scheme allows its application to data coming from other
sensors, such as the upcoming Meteosat Third Generation
infrared sounder (MTG-IRS).
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Fig. 2. Regression results. The regression models tested are regularized linear regression (LR) and Kernel Ridge Regression
(KRR). a) RMSE of each method to predict the emissivities principal components. b) Bias of each method predicting the
emissivities for each. ¢) RMSE of each method predicting the emissivities for each wave number. d) % RMSE of each method

(a) RMSE
3
. ===| R
Le
10 s ===KRR
9,
“
8 %
.
7r %
.
% 6 B
E 5?~ ‘I
LN Y
.
4r ‘\ “
AR ¥
3r ““‘
A\
2 ‘:\ O:“‘:
\“o:o ’0:--‘:: .
1 ‘ i ; .,7"'“115‘;-;
2 4 6 8 10
#PC emissivity
(¢) RMSE
===|R .0".“ LIS
. WA,y
0.03{===KRR| 4 8 M
3¥
P
0.02 ,"
1 ]
[]
n, # ‘
W 00 D P
g H f: :' .o"“ ""'
® 0.01 P ! AR
o T
td .
0.0 & 'Ii.(o‘l: -':'
. .
Ai? .7‘ M
0.00 :’,'I u.:g;s" “: o
i
4 . . . .
1000 1500 2000 2500

Wavenumber (cﬁJf)

divided by the RMSE of the LR method.

[11] J. Garcia Sobrino, Serra-Sagrista, V. Laparra, X. Calbet,

[12]

[13]

(14]

and G. Camps-Valls,
trieval largely benefits from spatial-spectral image compres-
sion,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 1, no. 1, pp. 1-1, 2016.

“Statistical atmospheric parameter re-

J. Arenas-Garcia, K.B. Petersen, G. Camps-Valls, and L.K.
Hansen, “Kernel multivariate analysis framework for super-
vised subspace learning: A tutorial on linear and kernel multi-
variate methods,” IEEE Signal Processing Magazine, vol. 30,
no. 4, pp. 16-29, 2013.

V. Laparra, J. Malo, and G. Camps-Valls, “Dimensionality re-
duction via regression in hyperspectral imagery,” IEEE Jour-
nal of Selected Topics in Signal Processing, vol. 9, no. 6, pp.
1026-1036, Sept 2015.

V. Laparra, D.M. Gonzalez, D. Tuia, and G. Camps-Valls,
“Large-scale random features kernel regression,” in IEEE In-

bias

% RMSE

(b) Bias

x 10
M ===|R
!':‘v\,."“ o N ,'".\‘.“ -==KRR
_05 ‘n\" "‘\.:\,n’n“::. W 1
S PV . N
: “ :O‘ " “;‘ YA
-y . RV wa f
() Y PR
-1 Vo ‘
v .
‘l " L}
-1.5 I :
' A .
L A
| ] [
ol E =’ ‘.:"' Ve, » '
. l-l : - ."' L3 :\“ ‘.
LY i op M
25 ¥ v
L L L '..L' L
1000 1500 2000 2500
Wavenumber (cﬁjr)
(d) [%] Relative RMSE
100k === msmsmsmsmam = smEmEmEmsEsmEsEEEa
90y, Pord
ql ';o.‘. Ve
:n' : :
80 ¢, [} v
. L] ) ]
", . 4 ===|R
. . :
o : : -=-KRR
5 : Sty
60 oo 5
5 H AN ad
Yo R
- L] .
50 '“q:: LW
40 ‘ : : :
1000 1500 2000 2500

[15]

ternational Geoscience and Remote Sensing Symposium 2015
(IGARSS 2015), 26-31 July, 2015, Milan, Italy, 2015, pp. 1-4.

G. Camps-Valls, J. Verrelst, J. Mufioz-Mari, V. Laparra,
F. Mateo-Jiménez, and J. Gémez-Dans, “A survey on gaus-
sian processes for earth-observation data analysis: A compre-
hensive investigation,” IEEE Geoscience and Remote Sensing

Wavenumber (cFrJr)

Magazine, vol. 4, no. 2, pp. 58-78, June 2016.



	 Introduction
	 nonlinear statistical retrieval
	 Kernel Ridge Regression
	 Large input and output regression problems
	 KRR selection parameters

	 Experimental Results
	 Experimental setup
	 Model comparison
	 Emmissivity retrieval
	 Final remarks

	 Conclusions
	 References

