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Abstract

Density destructors are differentiable and invert-
ible transforms that map multivariate PDFs of ar-
bitrary structure (low entropy) into non-structured
PDFs (maximum entropy). Multivariate Gaussian-
ization and multivariate equalization are specific
examples of this family, which break down the
complexity of the original PDF through a set of
elementary transforms that progressively remove
the structure of the data.

We demonstrate how this property of density de-
structive flows is connected to classical informa-
tion theory, and how density destructors can be
used to get more accurate estimates of informa-
tion theoretic quantities. Experiments with total
correlation and mutual information in multivari-
ate sets illustrate the ability of density destructors
compared to competing methods. These results
suggest that information theoretic measures may
be an alternative optimization criteria when learn-
ing density destructive flows.

1. Introduction

Estimating the probability density function (PDF) plays a
central role in many machine learning problems like regres-
sion, classification, or data representation. However, the
problem of PDF estimation is notoriously difficult when
considering moderate and high dimensional data. In the
deep learning community three families of methods are
responsible for the majority of the progress in PDF estima-
tion: Variational AutoEncoders (VAEs) (Kingma & Welling,
2014), Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) and Invertible Flows (IFs) (Rezende &
Mohamed, 2015). Each family tackles the PDF estimation
from a slightly different algorithmic perspective, but they
share many conceptual properties. They look for two main
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components: the first looks for a function Gy(-) that maps
samples from a known latent space Z to the observed space
X. The second component aims to find a function Dy(-)
that maps data from our observed space X to some latent
space Z. Both individual components can be seen, and will
be hereafter referred to, as density generators and density
destructors (Inouye & Ravikumar, 2018). The generative
transformation can be written as:

z 2% % (1)

where z comes from our latent space distribution P, 6 are
the parameters of the generative transformation G, and X
is the approximated data that follows the distribution Py.
This component is found in all the frameworks mentioned
above: the generator in GANS, the decoder portion of VAE:s,
and the invertible function f(-) in IFs. Obtaining this com-
ponent is difficult as the hypothesis space for Gy is large
as we do not know the actual PDF of the data, Px. Thus it
is difficult to create appropriate cost functions and clever
learning schemes are required to obtain G; i.e. the adversar-
ial formulation in GANSs, the encoder-decoder relationship
in VAEs, or imposing the invertibility of f in IFs.

Alternatively, one could look at the problem in the reverse
order as a destructive transformation:

x 2% 3 )

where x comes from the true data distribution Py, 0 are
the parameters of the destructive transformation D, and
z follows the approximated base density P,. This term
does not exist in the classical GAN formulation but several
new versions have tried to overcome it (Chen et al., 2016;
Makhzani et al., 2016; Zhu et al., 2017). In VAEs, this
destructor is a non-invertible function (the encoder) where
we need to pair it with the decoder G for learning. In
IFs several methods attempt to learn an invertible function f
through inference, mapping the data from X’ to a latent space
Z, (Dinh et al., 2017; Laparra et al., 2011; Ballé et al., 2016).
Given an invertible transform, D, the relation between our
data distribution Px and the P, can be calculated through
the standard change of variables used in most IFs (Rezende
& Mohamed, 2015):

Px(x) = Pa(2) |[VxD(x)| 3)
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where z = D(x), P, is the base distribution, and |V(+)] is
the determinant of the Jacobian of our density destructor D.

The destructive perspective gives us some advantages, as we
can define a latent distribution P, with nice enough prop-
erties that we can measure how well we approach it. For
example, assuming the base density is uniform, P, ~ U,
the change-of-variables formula (Eq. 3) just results in the
calculation of the exact likelihood of the data because P, (2)
is equal to one (Inouye & Ravikumar, 2018). Alternatively,
we can assume that the base PDF is Gaussian and use stan-
dard non-Gaussianity measures to assess the distance to
the goal (Laparra et al., 2011; Ballé et al., 2016). In other
cases, sensible cost functions such as the Kullback-Leibler
Divergence (Dkr) could be used to measure the similarity
between the approximated P; and the true P, we choose.

2. Proposal

The literature on Invertible Flows (Rezende & Mohamed,
2015; Inouye & Ravikumar, 2018) does not link these trans-
forms with classical information theory. In this work we
establish this connection by using two properties of den-
sity destructive flows: 1) destructors effectively reduce
the data structure so that the output may have trivial en-
tropy/redundancy, and 2) destructors are smooth routes to
the target PDF, so their Jacobian can always be computed,
which allows us to obtain information measures that ulti-
mately depend on V4D. Quantifying data structure and the
relations between features is at the core of machine learning.
Information theoretic magnitudes describe data complex-
ity with few or no assumptions (Timme & Lapish, 2018).
Unfortunately, computation of these magnitudes from their
definition is not straightforward because they involve mul-
tivariate PDF estimation. In this work we show how key
quantities that describe redundancy, as the Total Correla-
tion, 7', (Watanabe, 1960; Studeny & Vejnarova, 1998),
and the Mutual Information, I (Cover & Thomas, 2006),
naturally appear in the the density destructor framework.
Moreover, we will show how, under some conditions, they
can be reduced to (easier) univariate operations. Finally, the
experiments demonstrate that information theoretic magni-
tudes may be effective learning criteria for destructive flows,
and that estimates of redundancy are obtained via density
destructors.

3. Information Theory in Density Destructors

In deep learning, redundancy measures are relevant since
they have been linked to the information bottleneck prin-
ciple (Tishby & Zaslavsky, 2015) whereby artificial net-
works can be classified according to the mutual information
between layers. Redundancy reduction is also a relevant
self-organization principle in natural neural networks (Bar-

low, 2001; Malo & Laparra, 2010), and it is also key in
unsupervised learning (Hyvérinen et al., 2001). However,
these measures are notoriously difficult to compute in high
dimensional data.

Fortunately, the ability of density destructors to remove
structure makes them appropriate to measure redundancy, as
well as to derive convergence rates to the base distribution
P in information terms.

3.1. Loss Function in density destructors

The loss function should measure how close the data is to
the latent space, z, and follows the base distribution P,.
In the latent space we have an advantage because we can
choose the target distribution, and typically we choose a
distribution such that we have an analytic expression (e.g.
Uniform or Gaussian). A usual criterion is to minimize the
Dk, divergence between the distribution of the transformed
data 75Z and our target P, such that:

J(2) = Diw (73

P.) )

If the target distribution is separable (just a product of
marginals), as usually assumed in destructive flows, we
can decompose the above expression as:

J(z)= T(2) + Jm(2) (5)
—~— ——
Total Corr. ~ Marginal KLDs

using the Pythagorean theorem for Dg; (Cardoso, 2003).
While the marginal KLDs can be easily reduced by a simple
equalization function, in general, the Total Correlation term,
T, is difficult to compute from its definition since it involves
integration of unknown multivariate 75z. However, in order
to use the divergence as an optimization criterion, we do not
need to compute the value itself; we just have to minimize
it; equivalently, we can enforce the difference of 7" to be
maximum before and after the destructor transformation,
which is easy to compute as (Studeny & Vejnarovd, 1998):
D

AT(x,2) = ) (H(24) — H(x4)) — Ep, [log |[VxD(x)|]

d=1

(6)
The first term of the equation is easy to compute since it
only involves operations on univariate distributions. The
second term is the expected value of the logarithm of the
determinant of the Jacobian of the transformation. In the
density destructors framework, this transformation is en-
forced to be smooth and differentiable. Therefore we can
compute the second term by evaluating the Jacobian over
the training data using automatic differentiation tools.

3.2. Estimating information theoretic measures

In this section, we show how to compute the information
theoretic measures 7" and I (mutual information) follow-
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ing the loss function of density destructors. Similar pro-
cedures could be used to compute other useful informa-
tion quantities, such as Dgy,, entropy, and negentropy (non-
gaussianity).

Total Correlation. 7' is the information shared among the
dimensions of a multidimensional random variable (Watan-
abe, 1960; Studeny & Vejnarova, 1998). We are going to
show how by applying a density destructor over x we can
compute 7'(x) easily as the difference of T' between the
input and the output, AT (x,%). Assuming the density de-
structor model has reached convergence, the 7" in the latent
space can be computed easily since we know the distri-
bution. Therefore the T' of the original data will be the
difference in 7" in X" plus the T in the latent space Z, i.e.
T(x) = AT(x,2z)+T(z). If the chosen distribution for the
latent space is uniform or the Gaussian (as it is customary)
then the 7" in the latent space is zero, T'(z) = 0. Thus, T of
the original data is simply T'(x) = AT'(x, z), which could
be computed using Eq. 6. However, note that the expecta-
tion over the data set in Eq. 6 may require many samples
and is time consuming.

This inconvenience is solved by the specific density de-
structor based on Gaussianization proposed in (Laparra
et al., 2011). In that case the original PDF is decon-
structed through a series of L layers implementing a series
of marginal Gaussianization transforms and rotations. Note
that both operations in each layer are easy to compute (just
a set of univariate sigmoids followed by any orthogonal
matrix), and they are straightforward to derive and invert.
In (Laparra et al., 2011) we show the convergence of this
procedure to the Gaussian target, but more importantly for
the current discussion on 7', the redundancy of the input is
just the sum of the AT in each layer:

L

L
T(x) = Z AT(x") = T (x™H) (7)

i=1

which, as opposed to eq. 6, does not involve any averaging
over the whole dataset, and only requires straightforward
univariate operations.

Mutual Information. I is the amount of information
shared by two datasets x and y (Cover & Thomas, 2006).
In the density destructor framework, where 1" is easy to
compute (in general through eq. 6, or in Gaussianization
through the simpler eq. 7), I can be computed using three
density destructors as:

I(x,y) = T([Dx(x), Dy (y)])- ®)

where we apply an independent density destructor to each
dataset, and then we compute the 7' for the concatenated
variable [Dy (x), Dy (y)] through an extra destructor.

This procedure is possible because I does not change un-
der invertible transformations (as the density destructors)
applied separately to each dataset (Cover & Thomas, 2006).
Therefore, I(x,y) = I(Dx(x),Dy(y)). Since we re-
moved 7" within each individual dataset by applying individ-
ual density destructors, the only redundant information that
remains in the concatenated vectors is the one shared by both
datasets, then I(Dx(x),Dy(y)) = T([Dx(x),Dy(y)]).
See appendix for more elaborate proof.

4. Experiments

For all of our experiments , we assume that the latent space
is a Gaussian and our algorithm of choice is the Rotation-
Based Iterative Gaussianization (RBIG) ! (Laparra et al.,
2011), which finds a sequence of two steps transformations:
univariate Gaussianization procedures coupled with a ro-
tation (e.g. independent components analysis, principal
components analysis -PCA- or even random rotations). The
two operations (marginal gaussianization and rotation) con-
stitute one layer. We chose PCA for the rotation step in the
experiments. We use 7" as an optimization criterion to train
the model, and the stopping criterion proposed in (Laparra
et al., 2011). Experiments show that this destructive flow
estimates 71" and I effectively compared to other competing
algorithms that can be found in the ITE-Toolbox (Szabd,
2014).

4.1. Toy Example: Concentric Circles

We emulated the concentric circles toy example found in
(Inouye & Ravikumar, 2018), where a multitude of different
density destructors that assume a uniform base distribution
were used, i.e. a canonical density destructor. The full pro-
cess can be broken into two parts: 1) minimize the total
correlation assuming a Gaussian distribution using RBIG
2) followed by a histogram CDF transformation to project
the data into unit hypercube space. The results shown in
fig. 1 demonstrate that RBIG is a worthy candidate, and
achieves similar results to those in (Inouye & Ravikumar,
2018), both in terms of approximating the data distribution
X (fig: 1 (a-b)) and of generating samples from the true base
distribution z (fig: 1 (d-e)). We also show the quality of
the data inversion in the approximated base density Z (fig: 1
(b-¢)). Figure 1(f) shows the AT as the cumulative sum be-
tween each layer. Results clearly show that we have reached
convergence after removing all redundant information.

'Please go to the RBIG algorithm homepage for a working
implementation along with demonstrations of the IT measures:
http://isp.uv.es/rbig.html
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Figure 1. Density estimation of concentric circles using RBIG: (a)
original data distribution X, (b) approximated base distribution
as a unit cube, (c) the inverse of the destructor x = Dy L(3), (d)
samples generated from a uniform distribution Z, (e) the inverse
transformation of z to X, and (f) the Cumulative sum of AT over
the layers (or number of iterations).

4.2. Total Correlation and Mutual Information

We used the RBIG destructive flow to measure the 7" and
found within data drawn from multivariate t-Student distri-
butions. Our redundancy estimates are compared with the
values found using the k-Nearest Neighbor (kNN) (Goria
et al., 2005), the maximum likelihood expectation with the
analytical value of the exponential family (expF) (Nielsen
& Nock, 2010), and the von Mises Expansion (vVME) (Kan-
dasamy et al., 2015) in the implementations given in the
ITE-Toolbox (Szabd, 2014). A comparison in Fig. 2 and
Fig. 3 are done in terms of distance to the analytical values
for 7" and I in the t-Student (Guerrero-Cusumano, 1998).
Any algorithms omitted from the plots resulted in negative
values for the respective IT measures. Results for the RBIG
destructive flow (in purple) are always the best or close
to the best, showing that it is a robust method to compute
multivariate information theoretic measures.

5. Conclusion

We connected the density destructors framework introduced
in (Inouye & Ravikumar, 2018) with classical information
theory. This connection allows the use of Total Correlation
as learning criterion for destructive flows and to compute
non-trivial information theoretic quantities via density de-
structors. We chose a particular density destructive flow
for multivariate Gaussianization and reported empirical evi-
dence of performance in simulated examples.
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Figure 2. Estimation of 7" for data drawn from d-dimensional t-
Student PDFs with different values of v = 3,5 and different
number of dimensions d = 3,10, 50 respectively. The mean
and standard deviation of the results are given for five trials with
samples ranging from 500 to 50,000. Legend: Analytical (red),
RBIG (purple), expF (orange), and vME (green).
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Figure 3. Estimation of I for data drawn from d-dimensional t-
Student PDFs with different values of v = 3,5 and different
number of dimensions d = 3,10, 50 respectively. The mean
and standard deviation of the results are given for five trials with
samples ranging from 500 to 50,000. Legend: Analytical (red),
RBIG (purple), expF (orange), and vME (green).
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6. Appendix: Mutual Information from
density destructors

Recall the definitions for I and T as:

I(x,y) = H(x)+H(y)— H([x,y])

D
T(x) = Y H(xq)— H(x)
d=1
If we apply two separate density destructor transforms on
x € RP= and y € RP=_ we achieve the new datasets
x and y respectively, where ZdDil H(xy4) = H(%) and
ZdD:“’l H(y,) = H(y) . We can rewrite the mutual infor-
mation in terms of the transformed versions like so:

D, D,
I%,y) = Y H(X)+ Y H(y,) - H(%,79])
d=1 d=1

For convenience lets assume that we stack X and y into a
single vector v = [X, ¥], then we can combine the summa-
tions for the marginals into a single term that runs through
all the dimensions of v:

D.+D,
I(%y) = Y H(Va)-H()
d=1
And then applying the definition of total correlation:

Ixy) = T)=T(x73]),
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leading to eq. 8.

So we see that the mutual information for two destructed
variables is the same as the total correlation of the two de-
structed variables stacked into a single vector. The mutual
information is invariant under smooth, invertible transfor-
mations, as is the case for any density destructors applied
to x and y. The role of these initial destructors is remov-
ing redundant information between the different variables
within each dataset. Once we did that, the remaining re-
dundancy (in the stacked vector, which will be computed
by the third destructor) is the information shared by the
original variables. If this third destructor is chosen to be
the Rotation-Based Iterative Gaussianization (Laparra et al.,
2011), we have an easy way, eq.7, to calculate the mutual
information between two multivariate variables of arbitrary
dimension.



