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ABSTRACT

Training machine learning algorithms for new satellites re-
quires collecting new data. This is a critical drawback for
most remote sensing applications and specially for cloud de-
tection. A sensible strategy to mitigate this problem is to
exploit available data from a similar sensor, which involves
transforming this data to resemble the new sensor data. How-
ever, even taking into account the technical characteristics of
both sensors to transform the images, statistical differences
between data distributions still remain. This results in a poor
performance of the methods trained on one sensor and ap-
plied to the new one. In this this work, we propose to use the
generative adversarial networks (GANs) framework to adapt
the data from the new satellite. In particular, we use Landsat-
8 images, with the corresponding ground truth, to perform
cloud detection in Proba-V. Results show that the GANs adap-
tation significantly improves the detection accuracy.

Index Terms— Generative Adversarial Networks, Con-
volutional Neural Networks, Domain Adaptation, Landsat-8,
Proba-V, Cloud Detection

1. INTRODUCTION

There are many Earth observation satellite missions with sim-
ilar but not identical sensor characteristics. These sensor dif-
ferences make that the distribution of the data acquired by
them changes from one sensor to another. Therefore, derived
remote sensing products from one sensor cannot be gener-
ally applicable to a different one. This is a long-standing
problem that in machine learning is called data shift [1] and
that hampers transfer learning between different satellite mis-
sions. This is particularly true in cloud detection applica-
tions since, in addition to the different sensor characteristics,
spatial resolutions, and acquisition times, one has to add the
extremely unpredictable cloud dynamics. Hence, neither the
datasets nor the associated cloud masks used as ground truth
can be transferred or reused from one satellite to another.

Statistical machine learning methods are even more af-
fected by this problem since they require to gather and label
new data for each new satellite mission in order to train mod-
els. This process is always time consuming and costly since
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Fig. 1. Close-in-time acquisitions from Landsat-8 and Proba-V.
Landsat-8 image is transformed and upscaled to resemble the op-
tical characteristics of Proba-V. First row: Bulgaria. Second row:
Vatnajökull glacier, Island.

the ground truth generation usually requires a manual cloud
masking of a representative number of images. A possible
solution is first transforming the data from another sensor to
resemble data coming from the new sensor, and then training
the machine learning method (e.g. a classifier) using these
transformed data. However, the performance of the classifier
usually decreases when applied to real data from the new
sensor. The problem is that, since the transformation is not
perfect, the distribution of the new sensor data differs from
the distribution of the transformed data.

In this work, we propose to adapt the data coming from the
new sensor before applying the classifier in order to match the
distribution of the transformed data. The proposal is based
on Generative Adversarial Networks (GANs) [2], which have
shown outstanding natural image generation capabilities. In
particular we take advantage of the wealth of publicly avail-
able Landsat datasets, with the corresponding ground truth for
cloud detection, to improve the cloud detection performance
in Proba-V images [3, 4]. First we transform Landsat-8 to re-
semble Prova-V and train a cloud detection classifier. Then
we use an extension of GANs to adapt the real Proba-V im-
ages to match the distribution of the transformed Landsat-8.
The adaptation is unsupervised and does not require paired
Landsat-8 and Proba-V images to learn the mapping, which
could not be obtained due to cloud movement.



2. METHODOLOGY

Let’s consider two independent datasets from different sen-
sors: for Landsat-8 we have images with the corresponding
ground truth cloud masks, {XL, yL}; and for Proba-V we
only have images without ground truth, XPV . We assume
XL and XPV have similar time and space acquisitions condi-
tions. First, we describe the employed methodology to trans-
form (upscale) Landsat-8 to resemble Prova-V, and the cloud
detection classifier. Then, we explain the proposed methodol-
ogy to adapt the real Prova-V data to be similar to the trans-
formed Landsat-8 before the classification step.

2.1. Transfer Learning from Landsat-8 to Proba-V

In a standard transfer learning approach from one sensor to
another, the first step is to transform Landsat-8 images to re-
semble Proba-V images. First, we select the spectral bands
from Landsat that overlap with Proba-V in terms of the spec-
tral response functions. Then, the 30m resolution of Landsat-
8 is upscaled to the 333m resolution of Proba-V. This upscal-
ing takes into account the optical characteristics of the Proba-
V sensor and the re-sampling of the 333m product described
in [5]. We transform also the ground truth labels yL at 30m
using bicubic interpolation to get a Landsat upscaled dataset:
{XLU , yLU}.

Following this approach, one can use the Landsat upscaled
dataset to train a cloud detection model that, in principle,
could be directly used on Proba-V images. We explored this
transfer learning approach in [4] to train a fully convolutional
neural network (CNN) classifier with a simplified U-Net [6]
architecture, which takes as input the 4-band Proba-V images
and produces a probability cloud mask.

However, after the proposed transformation, one can find
still statistical differences between the Landsat-8 upscaled
images and the Proba-V real data, which worsen the results
of the proposed transfer learning approach. Main data shift
sources are related to the different sensor spectral response
functions, saturation effects, radiometric calibration, modu-
lation transfer functions, or mixed pixels. For example, in
Fig. 1, one can see significant radiometric differences be-
tween the Landsat-8 upscaled and the Proba-V real images.
Proba-V contains many saturated pixels, specially in the blue
channel, which is a known issue. These problems suggest
that further domain adaptation can be carried out in order to
improve the transfer learning results.

2.2. Generative Adversarial Domain Adaptation

Original GANs formulation finds a synthetic data generator
by minimizing the Jensen-Shannon divergence between the
real and the generated data distribution. More recently, con-
ditional GANs [7] were proposed to generate samples from
a conditional distribution. One application is the Generative
Adversarial Domain Adaptation (GADA) [8–10] were condi-
tional GANs formulation was modified to solve domain adap-
tation problems. In this work, we propose a customized ver-

sion of input-level domain adaptation. Input-level domain
adaptation refers to adapting the input image so that its distri-
bution is similar to the input images of the originally trained
model. This approach has the advantage that is independent
of the remote sensing application, hence the developed trans-
formation is not restricted to cloud detection problems.

Following this approach, a generator G is trained to adapt
real Proba-V images to the upscaled Landsat-8 domain. At
the same time, a discriminator D is trained, as an adversary
of the generator, to distinguish adapted Proba-V images from
upscaled Landsat-8 ones. In order to ensure consistency be-
tween the input and the output of the generator (i.e. to avoid
that generated outputs do not have relation to the inputs) we
add a `1 penalty to the generator loss function L(G). For-
mally, in order to tune the weights of G and D, we minimize
iteratively for all the training samples the following losses:

L(D) =
∑
i

− log(D(Xi
LU ))− log(1−D(G(Xi

PV )))

L(G) =
∑
i

− log(D(G(Xi
PV ))) + λ‖G(Xi

PV )−Xi
PV ‖1

The generator G is a 5-layer fully convolutional neural net-
work. It consists of 2 blocks of 8 filters 3×3 separable convo-
lution, reLU activation, and batch normalization, 2 blocks of
8 filters 3×3 separable convolution with dilation rate 2, reLU
activation, batch normalization, and a layer of 1×1 convolu-
tion with 4 channels output. We used residual connections
between blocks and before the final layer.

The discriminator D is also a 5-layer convolutional neural
network (adapted from [7]). It consists of 4 blocks of 4×4
convolution, leakyReLU, and batch normalization. The num-
ber of filters starts in 8 for the first convolution an grows by a
factor two in every layer. The convolutions are applied with a
stride of 2, thus reducing by this factor the spatial size of the
input. Last layer is a 1×1 convolution with 1 output channel
and a sigmoid activation. Therefore, the output can be inter-
preted as the probability of an image to be fake, i.e. the proba-
bility to be a Proba-V image adapted by the generator instead
of an upscaled Landsat-8 one. Once G and D are trained, we
get rid of D and use the generator G to map Proba-V images
to the upscaled Landsat-8 domain. Then, we can apply the
CNN classifier, previously trained with the upscaled Landsat-
8 datasets, to estimate the cloud mask of Proba-V images.

It is worth to note that this approach has an important ben-
efit: it does not require simultaneous and collocated pairs of
Landsat-8,Xi

LU , and Proba-V,Xi
PV , images. Otherwise sim-

pler approaches could be used, such as a Canonical Correla-
tion Analysis or even directly learning a generic transforma-
tion from Xi

PV to Xi
LU . However, for cloud detection prob-

lems, this is not feasible since clouds presence and location
within an image highly vary even for small time differences.
For instance, in Fig. 1, location of clouds has changed signifi-
cantly in one hour. Moreover, having simultaneous collocated
datasets from different sensors is really difficult or in some
cases impossible.



3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup and Data

The Landsat-8 cloud detection validation study [11] released
the largest open-access manually labeled cloud mask archive
for Landsat mission. It consists of two datasets for Landsat-8:
the Biome dataset [12] which has 96 different acquisitions and
the SPARCS dataset [13], which was collected in [14], with
80 more acquisitions. In the transfer learning approach, in
order to develop the CNN using the upscaled Landsat-8 data,
we split the data in a train and a test datasets. Original Land-
sat patches with the ground truth cloud mask from Biome and
SPARCS datasets [12, 13] were upscaled from 390×390 to
32×32 size, following the transformation described in sec-
tion 2.1, to resemble Proba-V:

• Landsat-8 upscaled train dataset: 165,601 overlap-
ping 32×32 patches from 118 Landsat-8 products.

• Landsat-8 upscaled test dataset: 18,311 non overlap-
ping 32×32 patches from 57 Landsat-8 products differ-
ent than the ones in the Landsat-8 train dataset.

In addition, to validate the transfer learning approach in real
Proba-V data, we use a Proba-V test set with ground truth
cloud mask manually generated by the authors [3]:

• Proba-V test dataset: 368 non-overlapping 900×900
patches from 24 different products.

Finally, in order to train the GAN that adapts the Proba-V
images we used a pseudo-simultaneous dataset where patches
in the Landsat-8 upscaled train dataset are co-registered with
Proba-V patches acquired the same day of the year:

• Proba-V pseudo-simultaneous dataset: 108,156
overlapping 32×32 patches from 134 different Proba-V
Level-2A products.

It is worth noting that (i) we do not find collocated Proba-V
patches for all the Landsat upscaled patches, and (ii) we do
not need the ground truth cloud mask to train the GAN.

3.2. Experiment 1: Standard transfer learning

As a baseline, we show the results of the standard transfer
learning approach [4] using the Landsat-8 upscaled dataset to
train a cloud detection classifier based on a CNN (cf. sec-
tion 2.1) without using the proposed adaptation with GANs.
Table 1 shows the accuracy of this model for the Landsat up-
scaled datasets and for the Proba-V test dataset. We see that
the model behaves well without overfitting in the Landsat up-
scaled domain. However, on Proba-V real images the accu-
racy is significantly lower.

We developed an extra experiment to evaluate how much
Landsat upscaled images resemble real Prova-V images. A
CNN classifier is trained to distinguish between them reach-
ing an out-of-sample accuracy of 84.94%. These results sug-
gest that, even though we followed a standard procedure to

Table 1. Classification accuracy of the cloud detection model
trained using Landsat-8 upscaled data on the different sets.

Landsat-8 train Landsat-8 test Proba-V test
94.41% 94.46% 88.85%

0.0 0.2 0.4 0.6 0.8 1.0

Re
d

Landsat 8 Upscaled Proba-V Adapted Proba-V

Fig. 2. Distribution of radiance values in the Red spectral
channel for 10,000 patches from the Landsat-8 upscaled train
dataset (blue), the Proba-V adapted data (orange), and real
Proba-V data (green).

transform Landsat-8 images to resemble Proba-V, a data shift
still exists. Therefore, there is margin for additional data sta-
tistical adaptation to improve the transfer learning results.

3.3. Experiment 2: Domain adaptation with GANs

Here we apply the methodology proposed in Sec.2.2 and com-
pare with other approaches. First, we show that the generator
transformation G reached its two goals: (i) the distribution
of G(XPV ) is similar to the distribution of XLU , and (ii) the
original image information is preserved. After that we show
that the classification results improve.

Figure 2 shows histograms from the input spectral channel
distribution of 10,000 patches from the Landsat-8 upscaled
train dataset and from the corresponding Proba-V pseudo-
simultaneous dataset before and after domain adaptation. We
see that the histogram of Proba-V domain adapted images is
more similar to the Landsat upscaled ones. For instance, the
peak of saturated values in the original Proba-V data almost
disappears after domain adaptation.

The first row of Fig. 3 shows 9 patches, of 32 × 32 pixels,
randomly selected from the Landsat-8 upscaled train dataset
and from the Proba-V pseudo-simultaneous dataset before
and after adaptation. It is easy to see that the spatial informa-
tion of Proba-V images is preserved since the same patterns
can be identified in both figures. However the colors and
textures of adapted images are more similar to the Landsat-8
upscaled images. The second row of Fig. 3 shows predictions
of the CNN cloud detection model using the above images.
The snowy area in row 2 columns 1 is incorrectly identified as
clouds for the non adapted Proba-V images. However, after
domain adaptation, the model succeed in this difficult case.
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Fig. 3. First row: 32×32 patches from Proba-V pseudo-
simultaneous dataset before and after adaptation and Landsat-
8 upscaled patches. Second row: Cloud mask predictions.

Table 2. Cloud detection accuracy of different models on the
Proba-V test dataset

Cloud detection model Classification Accuracy
No adaptation 88.85%

Mean & std adaptation 86.97%
Adversarial domain adaptation 90.72%

Operational Proba-V cloud mask [15] 82.01%

Finally, Table 2 compares different approaches on the
Proba-V test set. We see that the proposed adversarial do-
main adaptation approach increases the accuracy almost two
points compared with the non adapted one. We can also see
that a simple domain adaptation, removing the mean and
normalizing the standard deviation, worsen the results; which
indicates that more advanced domain adaptation methods are
necessary. Results for the operational Proba-V cloud de-
tection algorithm (version V101 [15]) are also given. It is
worth noting that the CNN trained only with Landsat-8 data
provides better detection accuracy than the operational mask.

4. CONCLUSIONS

A domain adaptation approach based on generative adversar-
ial networks is presented to improve transfer learning from
Landsat to Proba-V in the challenging application of cloud
detection. Available labeled Landsat-8 datasets are spectrally
and spatially transformed to resemble Proba-V characteris-
tics, however, statistical differences remain that have to be
minimized before applying models trained with one sensor
data to the other. Results of the proposed adaptation are
tested on real Proba-V images and demonstrate that models
trained only with upscaled Landsat-8 images can provide a
significantly higher cloud detection accuracy. In addition, the
transformation used to adapt the Proba-V data is general and
could in principle be used in any remote sensing application
in which Proba-V could take advantage of Landsat-8 data.
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