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Abstract

Independent component and canonical correlation analysis are two general-purpose statistical methods with wide
applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic
structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis
explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods
generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical
method which combines the desirable properties of independent component and canonical correlation analysis: It finds
independent components in each data set which, across the two data sets, are related to each other via linear or higher-
order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data
sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it
provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters
with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics
was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural
response to colored patterns should change when the illumination changes. We predict shifts in the responses which are
comparable to the shifts reported for chromatic contrast habituation.
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Introduction

In this paper, we propose a new method to analyze several data

sets jointly and use it to relate properties of chromatic natural

images to properties of the primary visual cortex: We show that

the new method provides a parsimonious statistical explanation of

both spatio-chromatic processing and its adaptation to changes in

illumination.

Statistical modeling of natural images under fixed, or uncon-

trolled, illumination reveals that ‘‘Gabor-like’’ features (oriented,

local, bandpass features) are basic building blocks of natural

images. These features are robustly obtained if statistical methods

are used that take higher than second-order statistical information

into account, for instance sparse coding [1], independent

component analysis (ICA) and its extensions [2], k-means or

restricted Boltzmann machines [3], or maximal causes analysis

[4,5]. If the database of natural images contains chromatic images,

features are obtained which are in addition color-opponent, that is

blue-yellow, red-green, and white-black [6–10]. Color opponency

is consistently obtained from tristimulus or hyperspectral images,

using both second-order or higher-order approaches [11,12].

When using ICA, the spatio-chromatic tuning of the learned

features was found to be similar to cells in the primary visual

cortex (V1) [13]. Depending on the exact assumptions made, some

methods yield features which fit experimental data better than

others [5,14,15].

However, the statistical methods in [1–14] are not concerned

with changing lighting conditions. The same object in daylight

radiates a physically different stimulus than indoors under

yellowish light. We conducted a simple motivating experiment

on how ICA representations are affected by a change in

illumination. Figure 1 shows that ICA filters which are optimal

for daylight produced less sparse outputs for the same images

under yellowish light. This shows that an efficient representation

for one illuminant is not necessarily efficient for another one: To

maintain efficiency, adaptation of the filters is needed [16].

Statistical modeling of tristimulus pixel values of images under

different illuminations provides an explanation of chromatic

adaptation for spatially flat stimuli [17]. The cited work explains

adaptation in terms of mean and covariance shifts of the

tristimulus pixel values. It combines an extension of measurements

performed earlier [18] with a decorrelation-oriented explanation

of adaptation [19].

However, the statistical methods in [17,19] are not concerned

with the spatial domain, and model second-order chromatic

structure (mean and covariance) only. Even after inclusion of
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spatial information, modeling second-order structure does not

yield biologically plausible representations, see Chapter 15 of [2].

Thus, the aforementioned statistical methods account for the

different aspects of neural processing in V1 with which they are

primary concerned, but neither of these approaches generalizes

well to explain both aspects at the same time. We aim here at

explaining both spatio-chromatic processing and adaptation using

a single statistical method.

In this paper, we present a novel statistical method to jointly

analyze multiple data sets (a preliminary version was presented

before at a conference [20] and applied on video and magneto-

encephalography data). The method is a generalization of

canonical correlation analysis (CCA) that is sensitive to higher-

order statistical structure: It finds independent components in each

data set which, across the two data sets, are related to each other

via linear or higher-order correlations. The new method is as

widely applicable as CCA. We call it higher-order canonical

correlation analysis (HOCCA). HOCCA is applied to a recently

established database of natural images which were captured under

two different lighting conditions, namely illumination CIE A,

yellowish light, and illumination CIE D65, daylight [21]. Figure 2

depicts example images from the database. We show that the new

statistical method allows to link both spatio-chromatic processing

and adaptation in V1 to properties of natural images.

Results

Matlab code and data to reproduce the results are available at

the homepage of the first author.

Higher-order canonical correlation analysis
First, we introduce HOCCA, our new statistical method to

analyze multiple data sets jointly. We present HOCCA in line with

the other parts of the paper: We consider the analysis of two data

sets of natural images under different illumination. HOCCA is

applicable to other kinds of data as well, and also to more than two

data sets. More details on HOCCA can be found in Materials and

Methods and Text S1.

Purpose of HOCCA. Given two data sets, the purpose of

HOCCA is to efficiently represent the data as a superposition of

meaningful features which are related to each other.

We denote the random vector corresponding to the first data set

by xA[Rn, in this paper natural images under illumination CIE A;

the random vector corresponding to the second data set is denoted

by xD[Rn, here natural images under illumination CIE D65. We

assume that the means have been removed. We also assume that

preprocessing consists of individual whitening and, possibly,

dimension reduction, both by principal component analysis (see

Text S2). We denote the preprocessed data by zA[Rm and zD[Rm,

with mƒn.

With these basic assumptions, the purpose of HOCCA is to

represent zA and zD as superpositions of features qA
k and qD

k ,

zA~
Xm

k~1

qA
k sA

k ~QAsA, zD~
Xm

k~1

qD
k sD

k ~QDsD, ð1Þ

such that, firstly, the canonical coordinates sA[Rm and sD[Rm

represent the data efficiently and that, secondly, their k-th

elements sA
k and sD

k are related to each other. We use the terms

‘‘efficient’’ and ‘‘related’’ here rather loosely. The m|m matrices

QA and QD are orthonormal and contain the features as column

vectors. Figure 3 summarizes the representation of the data xA

and xD in terms of the canonical coordinates sA and sD,

respectively.

Related features exist naturally for the data considered in this

paper since the images taken under the different illuminants depict

the same physical objects. The statistical dependencies between zA

Figure 1. Efficient representations are illumination-dependent. We took ICA filters optimized to illumination CIE D65, daylight, and
computed their outputs when the input images are taken under the same illuminant and under illumination CIE A, yellowish light. Each set of images
was whitened with optimally adapted whitening filters. We computed histograms for all filter outputs and for both conditions. (a) For a single,
randomly chosen filter, we show the log probability density functions (scaled histogram in the log domain) for daylight (blue solid) and yellowish
light (red dashed). For yellowish light, the filter output takes more often intermediate values and less often very small ones; the output is less sparse.
(b) For each filter, we took the ratio between the histogram obtained for yellowish and daylight illumination. This ratio allows us to read out a loss of
efficiency as illumination changes: Since the ratio is smaller than one at zero and for large outputs, the response is less sparse under yellowish light
than under daylight. The plot shows the median (solid curve) and the 0.1 and 0.9 quantiles (dashed curves) of the ratios of all filters.
doi:10.1371/journal.pone.0086481.g001

Higher-Order Canonical Correlation Analysis
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and zD are due the similar reflectance properties of the objects

contained in the data sets.

In Text S1 we deal with the more general case where zA and zD

can have different dimensionalities. That is, zA is assumed to have

dimension mA and zD dimension mD. The purpose of HOCCA

stays the same. Since we assume that only one sA
k is related to one

sD
k , there can only be m~min(mA,mD) coupled canonical

coordinates. The remaining canonical coordinates are ‘‘free’’

and can be used to maximize representation efficiency.

Key properties of HOCCA. In order to find a both efficient

and related representation of the data, we constructed HOCCA so

that higher-order statistical dependencies both within and across

the data sets are taken into account. The construction of HOCCA

is based on a probabilistic generative model of the data which is

explained in Materials and Methods. In brief, the model couples

two ICA models, one for zA and one for zD, together by assuming

that the independent components have statistical dependencies

across the two data sets.

HOCCA has the following two key properties:

1. (Efficiency of representation) Sparsity of the estimated

canonical coordinates SqA
k ,zAT and SqD

k ,zDT is taken into

account when the features qA
k and qD

k are learned.

2. (Relation between data sets) The canonical coordinates can

have linear or higher-order (variance) correlations across the

data sets.

In addition to the coupled features qA
k and qD

k , HOCCA yields

estimates for the correlation coefficients rk between the canonical

coordinates sA
k and sD

k . HOCCA also estimates the degree of

sparsity nk (non-Gaussianity) of the canonical coordinates. Values

close to two indicate strong non-Gaussianity while large values

indicate an almost Gaussian distribution.

The above properties are in stark contrast to canonical

correlation analysis (CCA). CCA represents the data using related

features as in (1), but sparsity of the canonical coordinates is not a

criterion, and CCA is sensitive to linear correlations between the

two data sets only, see Text S2 or Chapter 3 of [22]. CCA has

been extended in many ways. While extensions exist which are

sensitive to higher-order correlations across the two data sets (for

example kernel CCA, see the Discussion section), we are not aware

Figure 2. Examples of chromatic images from which we extracted the two data sets used in this paper. The data are image patches xA

and xD of size 15|15 pixels. Left: scenes under CIE D65 illumination from where xD was obtained. Right: the same scenes under CIE A illumination
from where xA was obtained. Each pair of patches was extracted at the same randomly chosen position.
doi:10.1371/journal.pone.0086481.g002

Figure 3. Representing data in terms of coupled canonical coordinates. In this paper, random vectors xA and xD denote natural images

under illumination CIE A (yellowish light) and under illumination CIE D65 (daylight), respectively. The whitening matrices VA and VD are determined
from their covariance matrices. The symbol { denotes a (pseudo)inverse. See Text S2, Section S2.1, for formulae of these matrices. The purpose of

HOCCA is to find the orthogonal matrices QA and QD such that, firstly, xA and xD are efficiently represented via the canonical coordinates sA and sD,
respectively, and that, secondly, the elements sA

k and sD
k of the vectors sA and sD are in a pairwise manner related to each other. We call each row of

the compound matrix (QA)TVA a filter or a sensor, and each column of (VA){QA , and of QA alone, a feature or optimal stimulus. The same naming
convention is used for the quantities related to D65 illumination.
doi:10.1371/journal.pone.0086481.g003
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of an extension which combines sensitivity to nonlinear correla-

tions with efficiency of representation.

Performing HOCCA. HOCCA is performed by solving an

optimization problem. The features qA
k and qD

k , the correlation

coefficients rk between the canonical coordinates, and the non-

Gaussianity indices nk are obtained by maximizing the objective f ,

f (qA
1 , . . . ,qD

m ,r1, . . . ,rm,n1, . . . ,nm)~
Xm

k~1

ÊE log G(yTk Lkyk; nk,rk)
� �

, ð2Þ

under the constraint that the features of each data set are

orthogonal and of unit norm, SqA
i ,qA

j T~SqD
i ,qD

j T~0 if i=j and

one if i~j. The objective function is based on the log-likelihood of

the probabilistic model underlying HOCCA, see Materials and

Methods and Text S1. The symbol ÊE denotes the sample average

over the whitened data. The vector yk~(SqA
k ,zAT, SqD

k ,zDT)T

contains the two inner products between the feature vectors and

the whitened data zA and zD. The matrix Lk is the precision

matrix of the two random variables sA
k and sD

k which have unit

variance and correlation coefficient rk[({1 1),

Lk~
1 rk

rk 1

� �{1

~
1

1{r2
k

1 {rk

{rk 1

� �
: ð3Þ

The parametrized function G(u; nk,rk) is

G(u; nk,rk)~
C

nkz2

2

� �
p(nk{2)C

nk
2

� 	 1ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

k

q 1z
u

nk{2

� �{
(nkz2)

2
, ð4Þ

which is valid for u§0 and nkw2.

The objective function f is a sum of m terms where each term

only depends on a specific pair of features qA
k and qD

k . This allows

for an optimization scheme where the m terms are subsequently

optimized, under the constraint that the new features qA
k and qD

k

have unit norm and are orthogonal to the previous ones:

SqA
k ,qA

i T~SqD
k ,qD

i T~0, ivk. In the simulations in this paper,

we used such a sequential optimization.

We show in Text S1 that the objective function f stays valid in

the more general setting where the dimensionality of zA and zD

may differ. Maximizing f yields the m~min(mA,mD) coupled

features qA
k [RmA

and qD
k [RmD

, as well as the corresponding nk and

rk.

HOCCA as a nonlinear generalization of CCA. We show

here that HOCCA is a nonlinear generalization of CCA: For large

values of nk, the features which maximize the objective f in (2) are

those which are obtained with CCA.

The objective in (1) considered as a function of the features is

f (qA
1 , . . . ,qD

m)~const{

Xm

k~1

ÊE
nkz2

2
log 1z

1

nk{2
yT

k Lkyk

� �� �
:

ð5Þ

For large nk the term 1=(nk{2)yTk Lkyk is small so that we can use

the first-order Taylor expansion log(1zx)~xzO(x2). Taking

further into account that the data is white and that the features

have unit norm, we show in Text S1, Section S1.3, that

f (qA
1 , . . . ,qD

m)&constz
Xm

k~1

1

1{r2
k

rkqDT
k K̂KDAqA

k

� �
, ð6Þ

where K̂KDA is the sample cross-correlation matrix between zD and

zA. Since 1{r2
k is positive, the objective in (6) is maximized when

DqDT
k K̂KDAqA

k D is maximized for all k under the orthonormality

constraint for the features of each data set. We need the absolute

value since rk can be positive or negative. This set of optimization

problems is the one solved by CCA, up to a possible difference in

the signs, see Text S2, Section S2.3. CCA maximizes qDT
k K̂KDAqA

k

so that for negative rk, one of the features obtained with the

maximization of f has switched signs compared to the one

obtained with CCA.

Illustration of HOCCA. We illustrate here properties of

HOCCA and provide some intuition by means of a simple

example. We assume that zA is two dimensional and zD only one

dimensional. The example thus demonstrates the applicability of

HOCCA to data sets of different dimensionalities. Since the

features are orthogonal, qA
1 is of the form (cos(a) sin(a))T, for a

certain angle a, and qA
2 is the vector orthogonal to qA

1 . Feature qD
1

is the scalar one (the sign is arbitrary). In this simple example,

m~1 and the sum in (2) collapses to a single term.

We generated data according to the probabilistic model

underlying HOCCA (see Materials and Methods and Text 1)

with a~2,r~0:5, and n~2:5. For illustration purposes, the

sample size was chosen to be rather large, we used 50000 samples.

A scatter plot of zA is shown in Figure 4(a). Two features qA
1 are

overlaid on the plot. Feature i was learned by HOCCA. Feature ii

is an arbitrary alternative feature. Figure 4(b) shows scatter plots of

the canonical coordinates, SqA
1 ,zAT against SqD

1 ,zDT~zD, and

Figure 4(c) shows the distributions of SqA
1 ,zAT for the features in

Figure 3(a). Feature i corresponds better to the goals of HOCCA

than feature ii since it yields a canonical coordinate which is

sparser and more strongly statistically dependent on SqD
1 ,zDT. The

learned correlation coefficient was r~0:497. Feature ii gave a

correlation coefficient of 0:37.

Computing derivatives shows that log G(u; n,r) is monotonically

decreasing and strictly convex in u. Figure 4(d) shows log G(u; n,r)
for different values of n and for r fixed to 0.5. According to the

definition of G in Equation (4), r affects log G(u; n,r) only through

the additive offset {1=2 log(1{r2) which is increasing as r tends

to +1. The offset is the mutual information between two Gaussian

random variables with correlation coefficient r (see Materials and

Methods). It provides a mechanism which allows HOCCA to find

correlated features.

The argument of log G is the quadratic form yTLy where y
depends on a and L on r. The elements of y are the estimated

canonical coordinates, and L is an estimate of their inverse

covariance matrix. The quadratic form yTLy corresponds thus to

the squared norm of the estimated canonical coordinates after

decorrelation (it is the squared Mahalanobis distance of y from the

origin). Since log G(u; n,r) is convex, maximizing f for a fixed

value of n consists in finding features for which the norm of the

decorrelated y is sparse, see Chapter 6 of [2]. The sum of two

squared values is large or close to zero if each of the two

decorrelated canonical coordinates are large or close to zero at the

same time. This provides a mechanisms which allows HOCCA to

find sparse canonical coordinates with possible variance correla-

tions.

Higher-Order Canonical Correlation Analysis
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Figure 4(e) shows the distribution of yTLy for the two features

depicted in Figure 4(a). From a comparison with Figure 4(c), it can

be seen that the feature which produces sparser canonical

coordinates is also the feature which produces inputs to log G
which are more often close to zero, in line with our reasoning

above. The figure also shows the distribution of yTLy for the

learned feature when the data is Gaussian (with a~2 and r~0:5
as for the non-Gaussian data above). It can be seen that the inputs

to log G(u; n,r) are less often close to zero for that data. The

different curves of log G(u; n,r) in Figure 4(d) suggest that, for the

Gaussian data, the objective f will be larger for n~10 than for

n~2:1.

In HOCCA, the parameter n is learned from the data by

maximizing f . Figure 4(f) shows the HOCCA objective f as a

function of n, with r and a fixed to their true values. We see that

for the generated non-Gaussian data, n&2:5 is maximizing f (red

solid curve, left axis). The same figure also shows f for the

Gaussian data (green dashed curve, right axis), where f increases

as n increases. In our numerical optimization, we obtained a value

of n~59, which was the value where our stopping criterion was

satisfied. In this regime of n, the approximation from the previous

section becomes valid, and the features which maximize f are

given by the CCA-features.

Validating HOCCA on artificial data. We used artificially

generated data to validate HOCCA and to compare it with CCA.

We generated data according to (1), with variable levels of

correlation and sparsity of the canonical coordinates sA and sD,

and for randomly generated mixing matrices QA
true and QD

true of

dimension m~10. We constructed fifty random estimation

problems and used 10000 samples to solve them (see Materials

and Methods for details). In order to recover the mixing matrices,

and thus the features which form their columns, we optimized the

objective f in (2) for HOCCA. For CCA, we solved the singular

value problem (S2–7) in Text S2.

We analyzed the results using three measures of performance

(see Materials and Methods for details). First, we analyzed how

well the mixing matrices (features) are recovered. Figure 5(a) shows

that HOCCA led to a better recovery of the mixing matrices. The

pointwise comparison in the third panel in the figure shows that

HOCCA performed better for each of the fifty random estimation

problems.

Second, we analyzed the efficiency of the representation, both

from a sparsity and from a related information theoretical point of

view. Figure 5(b) shows that the canonical coordinates recovered

by HOCCA were mostly sparser than those recovered by CCA –

thanks to the active sparsification inherent in HOCCA (the

Figure 4. Illustrating HOCCA with a simple example where zA[R2 and zD[R. In (a), we show two features qA
1 overlaid on the scatter plot.

Feature i was learned by HOCCA. Feature ii is an arbitrary alternative feature. Feature i corresponds better to the goals of HOCCA than feature ii since
it yields a canonical coordinate (projection) SqA

1 ,zAT which is more strongly statistically dependent on SqD
1 ,zDT~zD (subfigure b) and also sparser

(subfigure c). (d) The nonlinearity log G(u; n,r) for different values of n with r fixed to 0.5. Changing r does only lead to an additive offset, it does not
change the shape of the nonlinearity. (e) The distribution of the input to log G, yT

V
y, is shown for the two features in (a). We also show the

distribution for the feature learned for Gaussian data. In this case, the inputs to the nonlinearity log G(u; n,r) are less often close to zero. (f) The
HOCCA objective f as a function of n for both non-Gaussian and Gaussian data. For the non-Gaussian data, maximizing f identifies the correct value
of n. For the Gaussian data, f is increasing as n increases (this holds also beyond the range of n shown here). For large n the nonlinearity in (d) is less
peaked at zero, which corresponds well to the less peaked distribution for Gaussian data in (e).
doi:10.1371/journal.pone.0086481.g004

Higher-Order Canonical Correlation Analysis
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average in the point-wise comparison is larger than zero (one-sided

t-test, p-value ~10{11)). In line with this result, Figure 5(c) shows

that HOCCA led to a stronger multi-information reduction than

CCA. The third panel shows that HOCCA led to a more efficient

representation for each of the fifty random estimation problems.

Third, we analyzed how well the coupling (correspondence)

between the two data sets was identified. For that purpose, we

measured the mutual information between the coupled pairs of

sources. Figure 6(a) shows that HOCCA recovered in most cases

almost all of the mutual information. In some rare cases, however,

it failed. In preliminary work, we found that the objective has local

optima [20]. The observed failures are presumably due to the fact

that the optimization scheme did not find the global maximum.

For CCA, such failures were more rare. The mode of the CCA

distribution, on the other hand, is smaller than for HOCCA

indicating that the general level of recovery was also smaller. In

some cases, CCA recovered more mutual information per source-

pair than what was actually available. Because the total amount of

mutual information between all source-pairs is preserved, this

means that CCA over-allocated mutual information for some

sources while, consequently, having to allocate less to other

sources.

In Figure 6(b), we investigate how much mutual information per

estimation problem was recovered. While Figure 6(a) dealt with a

comparison per source-pair, this figure is a comparison which

takes all the source-pairs per estimation problem into account. The

boxplot in the figure shows the difference between the fraction of

total mutual information which HOCCA recovered per estimation

problem and the fraction which CCA recovered. The distribution

is skewed towards positive values which indicates that HOCCA

recovered more often more mutual information between the

corresponding sources than CCA.

The results reported above validate the theoretical properties of

HOCCA: We found that HOCCA led to a more efficient

representation of the two data sets than CCA, as measured by

sparsity or gain in independence, and that the recovery of the

correspondence between the two data sets was also better, as

measured by mutual information.

From natural images to spatio-chromatic adaptation
Next, we apply HOCCA to chromatic natural images that were

acquired under two different illumination conditions, daylight and

yellowish light. We analyze the learned coupled representations,

show that they account for known experimental results and make a

theory-driven prediction. Two properties of the learned represen-

tations are of particular interest: First, the representation of the

two data sets individually, that is, the spatio-chromatic processing

for a given illuminant. Second, the coupling (correspondence)

between the representations across the two data sets, that is, the

adaptation to changes in the illumination. We also compare the

representations learned by HOCCA with those from other

statistical methods, namely ICA, CCA, and whitening by principal

component analysis, see Materials and Methods for details and

Tables 1 and 2 for an overview.

Figure 5. Validating HOCCA on artificial data: Feature identification and representation efficiency. The error of an estimated mixing
matrix was measured by the Amari indexR defined in (14). Sparsity of an estimated canonical coordinate was measured using the index S defined in
(15). Multi-information reduction was measured by comparing the marginal entropies of the (whitened) data and the estimated canonical

coordinates. We show the results for the estimation of 50 random QA
true and QD

true of dimension m~10: The boxplots in (a) and (c) contain 100 data
points each, while the boxplots in (b) show the distribution of all 1000 estimated canonical coordinates. The first and second panel in each subfigure
show the distribution of the performance indices for CCA and HOCCA, respectively. The third panel shows the distribution of the difference of the
indices. HOCCA recovered the features more accurately, and led to representations with sparser and more independent canonical coordinates than
CCA.
doi:10.1371/journal.pone.0086481.g005
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Statistical approach to spatio-chromatic

adaptation. Applying HOCCA, or one of the alternative

methods considered, to the two sets of images produces two sets

of coupled filters (sensors), each one adapted to one of the two

lighting conditions. The filter outputs yield an internal represen-

tation of the images in terms of canonical coordinates, see Figure 3.

There is a one-to-one correspondence between the canonical

coordinates of each condition, and the corresponding coordinates

are statistically dependent. The same one-to-one correspondence

applies to the filters and features. The learned correspondence

provides a model for spatio-chromatic adaptation: As the

illumination changes, the filters should optimally change into

their counterparts. The two corresponding filters may be

considered to be instances of the same (hypothetical) physical

sensor when adapted to the two different illuminants. The internal

representation of an image can be adapted to changing lighting

conditions by moving from one set of canonical coordinates to the

other one.

Statistical properties of the learned

representations. We analyzed the learned representations of

natural images statistically using the same measure as for the

artificial data. We used multi-information reduction and sparsity

to assess the individual representation of each data set; to assess the

coupling we used mutual information between the coupled

canonical coordinates.

Figure 7(a) shows the amount by which multi-information was

reduced by ICA, CCA, and HOCCA after whitening and

dimensionality reduction. This means that we compared the

reduction achieved by the different methods relative to the

reduction achieved by whitening. The figure shows that ICA and

HOCCA yielded similar results in multi-information reduction,

with ICA being slightly better than HOCCA. Both methods led to

a larger reduction than CCA. For CCA, we obtained negative

values of multi-information reduction which means that it actually

increased the statistical dependencies (redundancy) among the

canonical coordinates.

Figure 7(b) shows the sparsity of the canonical coordinates.

HOCCA led to a sparser representation than CCA or whitening,

and to a slightly less sparse representation than ICA. With another

measure of sparsity, robust kurtosis KR2 due to J.J.A. Moors [23],

Figure 6. Validating HOCCA on artificial data: Identification of the coupling. (a) We computed the mutual information (MI) between the
source-pairs for both the true and the estimated sources, and took their ratio. The distribution of the ratio is bimodal for HOCCA: While the recovery
was very accurate in most cases, in some rare cases, the recovered sources were not dependent (local optima). For CCA, the distribution is unimodal:
A large amount of the MI was recovered, but the recovered amount was usually smaller than for HOCCA. (b) The boxplot shows the difference
between the fraction of total MI that HOCCA can recover per estimation problem and the fraction which CCA can recover. On average, HOCCA
recovered more MI between the corresponding sources than CCA. Results for 50 random estimation problems are shown.
doi:10.1371/journal.pone.0086481.g006

Table 1. Overview of the methods used to determine the matrices QA and QD in Figure 3.

Method Statistics used to determine QA and QD

HOCCA (1) Sparsity of sA
k and sD

k

(2) Correlation and variance dependencies between sA
k and sD

k

CCA Correlation between sA
k and sD

k

ICA Sparsity of sA
k and sD

k (correspondence determined by postprocessing)

Whitening by PCA QA and QD are both the identity matrix (correspondence determined by postprocessing)

The variables sA
k and sD

k denote the canonical coordinates (feature outputs) of the representations. Higher-order canonical correlation analysis (HOCCA) generalizes
canonical correlation analysis (CCA) in terms of the detected dependencies between the canonical coordinates. Moreover, it makes the canonical coordinates sparse
which results in an efficient representation of the data. Independent component analysis (ICA) is maximizing the representation efficiency of the individual data sets
without taking possible correspondences into account. Whitening by principal component analysis (PCA) is the first processing step in all methods. CCA and HOCCA
yield coupled representations. For ICA and whitening, the correspondence between the filter outputs must be determined as part of a postprocessing step. We used
mutual information maximization for the matching, see Materials and Methods for details.
doi:10.1371/journal.pone.0086481.t001
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we obtained similar results but HOCCA had higher values than

ICA (results not shown). The two measures of efficiency shown in

Figure 7 are consistent with each other: HOCCA resulted in a

similarly efficient representation as ICA, and in a more efficient

one than CCA, or whitening.

Figure 8(a) shows the mutual information between the coupled

canonical coordinates. The correspondence learned by CCA and

HOCCA resulted in coupled canonical coordinates which are

more related to each other than the coupled coordinates obtained

via ICA or whitening, as measured by mutual information. This

suggests that learning the coupling and the features jointly leads to

a stronger coupling than first learning the features and then

selecting corresponding pairs by greedily maximizing mutual

information.

Figure 8(b) shows a scatter plot of the learned correlation

coefficient rk and shape parameter nk of HOCCA. According to

the probabilistic model underlying HOCCA, the mutual informa-

tion between the coupled canonical coordinates (sA
k ,sD

k ) is a

function of these parameters, see (13) in Materials and Methods

and Figure 9. As the referenced equation and figure show, the two

parameters contribute to the mutual information separately. The

color of the markers in the figure indicates the value which the

mutual information takes for each (rk,nk). This measurement of

mutual information is based on the statistical model underlying

HOCCA while in Figure 8(a), mutual information is measured in a

nonparametric way. We found that the parametric and nonpara-

metric measurements are consistent with each other (detailed

analysis not shown). More importantly, most shape parameters nk

are between 2 and 2.5. With Figure 9, the shape parameters

contribute around 0:4 bits to the mutual information, which

corresponds to a correlation coefficient of about 0.65 for Gaussian

variables. The values of nk imply, first, that canonical coordinates

for which rk is close to zero are not statistically independent, and

second, that their marginal distribution has heavier tails than a

Gaussian. This is in line with the sparsity results shown in

Figure 7(b).

Taken together, Figures 7 and 8 illustrate that HOCCA

combines the desirable efficiency property of ICA with the

desirable correspondence property of CCA.

The features of the learned representations. Figures 10

and 11 show the first 152 pairs of features which were learned with

the different methods. For each pair, the upper feature is for CIE

D65 illumination while the lower feature is for illumination CIE A.

The feature-pairs are sorted by mutual information between the

corresponding canonical coordinates: More related feature-pairs

come first. The values of mutual information displayed in the

Table 2. Overview of our comparison of the learned coupled representations of natural images.

Criterion of comparison Target property Results

Independence and sparsity of the canonical coordinates Figure 7

Mutual information between corresponding coordinates Figure 8

Biological plausibility of the features Figures 10, 11

Similarity of the coupled features Figures 10, 11, Table 3

Psychophysics of corresponding colors Figures 12, 13, Table 3

Noise-distortion curves + Figure 14

The representations learned by HOCCA, CCA, ICA, and whitening were compared from both statistical and biological points of view using multiple criteria. Two
properties of the learned representations are of particular interest The individual representations of the two data sets, which is related to spatio-chromatic
processing for a given illumination condition. The coupling (correspondence) between the two representations, which is related to adaptation to changes in the
illumination. The different criteria measure different aspects of these two properties.
doi:10.1371/journal.pone.0086481.t002

Figure 7. Analyzing the efficiency of the learned representations of natural images using independence and sparsity. (a)
Independence was measured using reduction in multi-information (in bits per dimension, relative to whitened and dimensionality reduced data). The
boxplot shows the distribution of the reduction for 100 pairs of bootstrapped data sets of size 150000. For reference, the multi-information reduction
per dimension obtained by whitening without dimensionality reduction was 6.05 bits/dimension. Since dimensionality reduction introduces some
information loss, the total reduction with regard to the pixel domain is not the sum of 6.05 bits/dimension plus the reductions reported in the figure.
(b) Sparsity was measured using S in (15). A Gaussian has a value of S~0:2. The boxplot shows the distribution of the sparsity of the 236 filters
learned from natural images under illumination CIE A and CIE D65. The reported sparsity is the average value obtained for the above 100
bootstrapped data sets. The results for the CIE A and CIE D65 data are shown in the same boxplot. The figure suggest that HOCCA resulted in a
similarly efficient representation as ICA, and in a more efficient one than CCA, or whitening.
doi:10.1371/journal.pone.0086481.g007
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figures indicate the range for the filters in each row. We first

analyze the features per data set. Then, we analyze the coupling

between the features.

Regarding the features per data set, we use the finding that

neurons in V1 are dominantly tuned to spatially localized oriented

Gabor-like features with achromatic, red-green and yellow-blue

chromatic content as plausibility baseline [24–26]. For all

methods, the features learned from images under illumination

CIE A have oscillations around a yellowish mean, which is

reasonable given the yellowish illumination. For the images under

illumination CIE D65, the learned features have achromatic

averages. Whitening yielded spatially extended gratings of

different orientation, frequency and opponent chromatic content,

similar to a discrete cosine transform. CCA yielded some low-

frequency features, the remaining features show non-localized

high frequency oscillations, and have a quite undefined spatial

structure. ICA and HOCCA yielded localized Gabor-like features

of different orientation, frequency and opponent chromatic

content.

Visual inspection of the features shows that for whitening and

CCA, the achromatic and the chromatic oscillations in the high

frequency features do often not match spatially. They have

different fundamental frequencies. For ICA and HOCCA,

however, there is no such mismatch between achromatic and

chromatic parts. Further, the ICA and HOCCA filters seem

chromatically less saturated than the whitening and CCA filters.

This means that in order to elicit a comparable response, ICA and

HOCCA filters would require a stronger amplitude for chromatic

than for achromatic gratings.

Regarding the coupling, the sorting according to mutual

information shows that for ICA, HOCCA and CCA, low-

frequency features are more related than high-frequency ones.

Further, for non-zero frequencies, the achromatic features are

more related than the chromatic ones.

We analyzed the similarity of the corresponding features, using

the mean squared error as distance measure. Direct application of

this distance would, however, be strongly biased by the chromatic

shift due to the different illuminations. Therefore, Von-Kries color

compensation [27] was applied to the features of illumination CIE

A before computing the mean squared error. The resulting spatio-

chromatic distances for the different learning methods are shown

in Table 3 (first row). HOCCA yielded feature-pairs which are

more similar to each other than the other methods. The same

result was also obtained using other color compensations than

Von-Kries before computation of the distance, such as CIELab

[27].

Reproducing psychophysics of corresponding

colors. We further investigated the learned coupling by

assessing the ability of the different representations to reproduce

psychophysical data on color corresponding pairs (color constan-

cy). In the color psychophysics literature, physically different

stimuli are referred to as corresponding if they give rise to the same

perceived color when viewed under different conditions [28–30].

Corresponding colors illustrate the (purely) chromatic adaptation

ability of the human visual system and form a standard benchmark

for chromatic adaptation models, see, for example, [21].

We show in Figure 12 the experimentally corresponding colors

[30]. Figure 13, left column, shows the same corresponding colors

in the CIE xy chromaticity diagram. Each point in the lower and

upper diagram denotes one color in Figure 12(a) for illumination A

Figure 8. Analyzing the coupling of the learned representations of natural images using mutual information. (a) The nonparametric
mutual information (MI) measurement was performed as for the artificial data, using CIE A and CIE D65 data sets of size 150000. (b) The parametric
measurement was performed using (13), see Materials and Methods. The correspondence learned by CCA and HOCCA resulted in coupled canonical
coordinates which are more related to each other than the coupled coordinates obtained via ICA or whitening.
doi:10.1371/journal.pone.0086481.g008

Figure 9. Mutual information for a bivariate student’s t-
distribution. The correlation coefficient r[({1 1) and the shape
parameter nw2 contribute separately to the mutual information, see
(13). The contribution of r is symmetric around zero and shown in blue
for r§0 (solid curve), the contribution of n is shown in red (dashed
curve). The mutual information of the bivariate student’s t-distribution
is given by the sum of the two contributions. The contribution of n
reflects the higher-order statistical dependencies between the two
random variables.
doi:10.1371/journal.pone.0086481.g009
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and in Figure 12(b) for illumination D65, respectively. In this

(standard) visualization, the correspondence between the colors is

not made explicit. Qualitative comparisons of different chromatic

adaptation models are based on the arrangement of the points in

the diagram [21].

Figure 13, right column, shows (linear) predictions of the color-

corresponding pairs from the learned representations of the data,

performed as described in Materials and Methods. The top row

shows the predictions for illumination D65 obtained from the

sample colors under illumination A, the bottom row shows the

predictions for illumination A obtained from the samples under

illumination D65.

A qualitative comparison of these predictions with the

experimental data in the left column shows that HOCCA and

CCA led to a better performance than whitening or ICA-based

correspondence methods: For whitening, the arrangement of the

points is rather different from the experimental data. For ICA, the

predictions are often over-saturated such that many of the

predicted colors fall outside the chromaticity diagram, which

Figure 10. Features learned by whitening and ICA from natural images. After learning, the features from the two data sets were matched so
that the mutual information between the corresponding canonical coordinates is maximized, see Materials and Methods for details. In each row, the
upper feature is for CIE D65 illumination while the lower feature is the corresponding one for illumination CIE A. Only the first 152 feature-pairs are
shown. The feature-pairs are sorted by mutual information between the canonical coordinates. The numbers on the right indicate the range of the
mutual information (in bits) for the feature-pairs in each row. ICA features are biologically plausible while whitening features are not.
doi:10.1371/journal.pone.0086481.g010
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means that they are physically unrealistic. For HOCCA and CCA,

however, this was much more rarely the case.

A quantitative comparison was performed by computing the

root mean squared error between the predicted and the

experimental colors in the XYZ color-space. The results are given

in Table 3 (second row). Averaging over all color-points, we found

that HOCCA gave the best results, followed by CCA. In more

detail, we assessed for each color how well the different methods

are doing relative to HOCCA. A positive relative difference

indicates that the alternative method has a larger root mean

squared error. On average, the relative difference was found to be

significantly larger than zero for all alternative methods.

Adaptation with neural noise constraints. In the previous

sections, we used different criteria to analyze the learned

representations per data set and the coupling across the data sets.

The criteria used assessed the two aspects of the learned

representations separately. Here, we consider both aspects at the

same time.

The learned filters map the images xA and xD into a canonical

domain where they are represented by the coordinates sA and sD.

This transformation was considered to be free of noise. Real

systems, however, are intrinsically noisy and the noise-level may

depend on the signal. A measure of noisiness is the Fano factor F
which is the variance of the noise divided by its mean, see Chapter

1 of [31]. In alert Macaque monkeys, the Fano factor in V1 was

found to be less than one for optimal stimuli (with an average value

of 0.33), and around one for stimuli close to the visual threshold

[32].

We investigated how the different representations perform in an

adaptation task in the presence of neural noise: We compared the

different methods in their ability to predict the representation of an

image under illumination CIE D65 from its representation under

CIE A. The mean squared prediction error is derived in Materials

and Methods and Text S3. It equals

E DDsD{ŝsDDD2
� 	

zF
X

k

D%kDE DsA
k D

� 	
, ð7Þ

where E denotes expectation, and where ŝsD is the prediction when

there is no neural noise. The first term is the squared noise-free

prediction error. The second term is a weighted sum of sparsity

penalties E DsA
k D

� 	
. The weighting depends on the Fano factor

(noise-level) F and the correlation coefficients %k between the

canonical coordinates sA
k and sD

k . For HOCCA, %k~rk. If sA
k is

sparse, the sparsity penalty is small. For F close to zero, the noise-

free prediction error dominates but as F increases, sparsity

becomes relevant. For a small overall prediction error, the

representations should be sparse and have a good correspondence

(coupling).

Figure 14 shows the root mean squared error (RMSE) of the

prediction for the different methods as F varies (noise-distortion

curves). For Fv0:1, CCA gives the smallest error, which is

reasonable because it minimizes the noise-free prediction error.

For larger F , the importance of sparsity becomes visible. In a

sparse representation, the introduced neural noise is lower on

average. HOCCA has the smallest error from F&0:1 to F&1:5
because it combines sparsity with good coupling. ICA is better

than CCA for Fw0:7, where the sparsity penalty starts to offset

the noise-free prediction error. For Fw1:5, ICA yields the smallest

error among all methods since its representation is the sparsest

one. However, this regime of F does not seem realistic for neurons

in V1 [32]. Since the difference between CCA and HOCCA is

rather small for Fv0:1, we conclude that HOCCA compares

favorably to the other methods in the relevant regime of F : It

combines good prediction accuracy with robustness to noise.

HOCCA in comparison to the alternative methods. We

analyzed the learned representations of HOCCA, ICA, CCA, and

whitening from both statistical and biological points of view using

multiple criteria, see Table 1 for an overview. The different points

of view yielded the same picture: While ICA performed well with

regard to the individual representations (assessed by independence,

sparsity, and plausibility of features), and CCA well with regard to

correspondence (assessed by mutual information, similarity of

features, and color psychophysics), HOCCA performed well in

both aspects. The noise-distortion curves exemplified this favor-

able performance of HOCCA.

Predicting response-adaptation for spatio-chromatic

inputs. The previous sections showed that HOCCA provides

a single (unified) statistical framework to study both efficient

representations and adaptation. In this section, we use HOCCA to

make a testable prediction about the response of human spatio-

chromatic sensors (neurons) to colored patterns under change of

illumination.

HOCCA produced pairs of filters optimized for illumination

CIE A and D65. Considering the two corresponding filters to be

instances of the same (hypothetical) physical sensor when adapted

to two different illuminants, we can investigate how adaptation

changes the response to the same stimulus.

For the prediction, we used six representative HOCCA filter-

pairs, three pairs with chromatic content in the red-green (RG)

direction (feature-pairs 109, 134 and 152 with red frames in

Figure 11) and three in the yellow-blue (YB) direction (feature-

pairs 18, 67 and 78 with blue frames in Figure 11). With this

choice, we consider filters of different spatial frequency and

orientation for each chromatic content.

For each sensor considered, we determined its optimal stimulus

under illumination D65 and changed its chromatic contrast and its

color content through rotations in the RG-YB plane, as done in

[24] and [33], see Materials and Methods. Figures 15 and 16 show

the obtained stimuli for the RG and YB filters, respectively. We

used these stimuli both for the sensors adapted to illumination D65

and for the sensors adapted to illumination A. This allowed us to

make a prediction of what should happen to the response to the

same colored pattern when a (biological) sensor is adapted to

illumination A instead of D65. To the best of our knowledge, there

are no such measurements in the experimental literature.

Figure 17 shows the average response of the considered RG and

YB filters to the spatio-chromatic stimuli in Figures 15 and 16.

Table 3. Quantification of the results in Figures 10 to 13.

Whitening CCA ICA HOCCA

Similarity of coupled
features (RMSE)

18.764.2 17.563.6 17.764.6 15.764.4

Corresponding colors
(relative RMSE)

0.2960.91 0.04660.13 0.1860.60 –

The numbers indicate the (relative) root mean squared error (RMSE, average +
std). First row: Spatio-chromatic similarity between the coupled features in
Figures 10 and 11 after Von-Kries color compensation. On average, HOCCA
yielded a smaller RMSE than the other methods (two-sample t-test, largest p-

value v9:10{7). Second row: Prediction error for the color-corresponding pairs
in Figures 12 and 13. The RMSE of the different methods is computed relative to
the error of HOCCA. A positive relative difference indicates that the alternative
method has a larger error than HOCCA. On average, the relative difference is
positive for all alternative methods, and significantly larger than zero (one-sided
t-test, largest p-value was 0:0030).
doi:10.1371/journal.pone.0086481.t003
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Solid curves show the response of the sensor adapted to

illumination D65, dashed curves the response when adapted to

illumination A. HOCCA predicts sinusoidal oscillations as a

function of the rotation angle of the chromatic modulation in the

RG-YB plane. By definition of the stimuli used, the maximal

responses are obtained for D65 illumination. The linear behavior

implies linear reduction of the oscillation as the chromatic contrast

decreases to zero. The response curves have an offset. This is due

to the presence of an achromatic modulation in the stimuli, the

filters learned by HOCCA are not purely chromatic. Interestingly,

the solid and dashed curves do not have their optimum at the same

angle. The optimal stimulus of a sensor adapted to illumination

D65 is no longer optimal when the sensor is adapted to

illumination A: We predict a shift in the responses as adaptation

to the new illumination occurs.

Discussion

We reported two sets of results in this paper. First, we proposed

a new statistical method, called higher-order canonical correlation

analysis (HOCCA), to jointly analyze multiple data sets. HOCCA

combines desirable properties of canonical correlation analysis

Figure 11. Features learned by CCA and HOCCA from natural images. Only the first 152 feature-pairs are shown. The numbers on the right
indicate the range of the mutual information (in bits) for the features in each row. The feature-pairs are arranged as in Figure 10. HOCCA features are
biologically plausible while CCA features are not. The pairs of HOCCA features marked with red and blue frames are used to make a prediction about
response-adaptation for spatio-chromatic inputs.
doi:10.1371/journal.pone.0086481.g011

Higher-Order Canonical Correlation Analysis

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e86481



(CCA) and independent component analysis (ICA). HOCCA seeks

independent and sparse sources inside each data set which have

linear or variance correlations across the data sets. HOCCA is as

widely applicable as CCA. Moreover, it generalizes CCA because

it is not only sensitive to linear correlations but also to higher-order

dependencies. We validated HOCCA on artificial data and proved

that CCA emerges as a special case.

Second, we showed that HOCCA provides a single (unified)

statistical framework to study visual processing under fixed lighting

conditions and adaptation to new ones. Results on chromatic

natural images demonstrated the benefits of jointly maximizing

efficiency of representation and coupling across the data sets, as

opposed to first maximizing efficiency and then finding a suitable

coupling, or focusing on coupling only. We found that HOCCA

features are consistent with the spatio-chromatic tuning properties

of neurons in the primary visual cortex and that HOCCA

reproduces corresponding colors psychophysics reasonably well.

HOCCA provided us with a specific, experimentally testable

prediction on how the response to colored patterns should change

when the illumination changes.

Relation to other statistical methods
We showed that HOCCA provides a generalization of CCA.

CCA has been extended in many ways. Kernel CCA is a nonlinear

extension of CCA that is sensitive to nonlinear dependencies

across the data sets, see Section 3.2 of [34] and [35,36]. One

difference to our work is that kernel CCA does not yield an

efficient representation of the data in terms of sparse canonical

coordinates. Sparsity was incorporated in CCA [37,38] but this

was done on the level of the features and not on the level of the

canonical coordinates as we do here.

CCA was also combined with ICA [39]. In that work, however,

ICA serves more as a preprocessing step, and after the ICA

rotation, the independent components are subject to a further

Figure 13. Using the learned representations to reproduce corresponding-colors psychophysics. Left: Experimentally corresponding
colors of Figure 12 in the CIE xy diagram. Right, top row: Predictions of the corresponding colors under illumination D65 from samples under
illumination A. Right, bottom row: Predictions of the corresponding colors under illumination A from samples under illumination D65.
doi:10.1371/journal.pone.0086481.g013

Figure 12. Corresponding-colors psychophysics. For humans, the color of a patch in (a), when seen under CIE A illumination, appears to be the
same as the color of the patch in (b) at the same location on the grid, when seen under CIE D65 illumination. Two colors which give rise to the same
perception under two different viewing conditions are said to be corresponding. The experimental findings visualized in the figure are due to [30].
doi:10.1371/journal.pone.0086481.g012
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rotation to maximize the nonlinear correlation across the data sets.

In our context, such a rotation would, however, be suboptimal

since rotating sparse independent components decreases their

sparsity. In very recent work [40], the authors reversed the order

of analysis (first analysis across the data sets, then finding

independent sources within each data set). In our context, such

an approach would, however, also be suboptimal since it does not

seem to yield coupled canonical coordinates but only coupled

subspaces.

In ICA, there is an ambiguity in the ordering of the column

vectors of the mixing matrix. The joint estimation of QA and QD

in HOCCA reduces this ambiguity because the ordering in both

matrices must be the same: Due to the correspondence between

canonical coordinates across the data sets, the ordering for one

matrix cannot be changed without changing the ordering of the

other in the same way.

In our simulations on natural images, we used a postprocessing

stage after ICA where the mixing matrices QA and QD are re-

ordered to obtain a correspondence. For natural image data,

HOCCA was found to yield better results than this simple strategy.

For other data, however, in particular if the individual data sets

follow ICA models exactly, simple postprocessing of individual

ICA results may work very well.

Coupled representations learned from natural images
We applied HOCCA to two sets of images acquired with

different illuminants, namely daylight-like CIE D65 and yellowish

CIE A. HOCCA produced two sets of coupled filters, each one

adapted to one of the illuminants. We compared HOCCA with

three other statistical methods: Whitening by principal component

analysis, ICA, and CCA. For HOCCA and CCA, the filters are

learned together with their correspondence. For whitening and

ICA, however, the filters are learned separately for each data set.

We sought a correspondence after learning of the filters by finding

pairs which had maximal mutual information.

Regarding the representations per data set, the mutual

information reduction achieved by ICA and HOCCA is consistent

with previously reported reductions for ICA in achromatic images

[41,42]. The filters learned by whitening and ICA are in line with

previously reported results [13,43,44]. Further, our finding that

ICA and HOCCA filters are less sensitive to chromatic than to

achromatic gratings is consistent with sensitivity results in human

vision [45].

Regarding correspondence, we found that, as HOCCA, CCA

yielded a large amount of mutual information between the

corresponding canonical coordinates even though CCA is only

sensitive to linear correlations. The reason for this is two-fold:

First, linear correlations contribute strongly to mutual information,

see Figure 9, and CCA finds canonical coordinates which are

maximally correlated. Second, even though CCA is only sensitive

to linear correlations, this does not mean that the canonical

coordinated obtained by CCA are Gaussian. In fact, Figure 7

shows that the marginals of the canonical coordinates of CCA are

sparser than Gaussian random variables. This non-Gaussianity

also contributes to mutual information.

Corresponding colors have been inferred from properties of

natural images before [21]. The approach in the cited paper differs

from the one in this paper in two main aspects: First, spatial

information was not taken into account. Only the properties of the

tristimulus pixel values were modeled. Second, the prediction of

the corresponding colors was nonlinear. Compared to the linear

methods used in this paper, nonlinear prediction is better suited to

keep colors inside the chromatic diagram. Perceptually, this means

that the nonlinear method avoids over-saturation of the predicted

colors. Inspection of the predicted points in the chromatic diagram

shows that the hues of the prediction, however, correspond better

to the experimental data for HOCCA than for the nonlinear

method.

In the joint learning of the features and the correspondence

between them, HOCCA (and CCA) had access to the same images

under two different illuminations. That is, the input data came

labeled in terms of the illuminant (we used the superscripts A and D

for the labeling). Furthermore, the objective function optimized in

HOCCA consists of a sample average over several such

observations. The visual system, however, is exposed to only one

scene under one illumination at a time. While a sample average

can be computed in an online fashion, assuming that the visual

system has access to labeled input data is more problematic.

However, information about the labels is often implicitly available

and the labels can be inferred from it. For the inference of the

labels, it is enough that the brain ‘‘knows’’ that an object under

either of the two illuminations is the same (kind of) object. Such

information about the identity of an object could be provided by

top-down processes. For instance, when leaving a house with a red

apple in the hand, the brain ‘‘knows’’ that the apple was not

switched out but that the same object is in the hand both inside

and outside, even though the radiance sensed by the eyes is

different. This means that HOCCA should not be considered a

mechanistic model of visual processing and adaptation; its neural

implementation is left unspecified. Instead, HOCCA should be

considered a normative theory based on statistical principles. It

tells us what we can expect if efficiency and correspondence are

optimized jointly, in case the same images under two different

illuminations were available.

Adaptation to changes in illumination is related to illuminant

compensation or color constancy. To compensate for the

illuminant, additional measurements can be used, like measure-

Figure 14. Noise-distortion curves. We compared the different
methods in their ability to predict the representation of an image in
daylight (CIE D65) from an image under yellowish light (CIE A) in the
presence of neural noise. The curves show the root mean squared error
(RMSE) of the predicted representation as the Fano factor (neural noise
level) F varies. The Fano factor in V1 is typically less than one, on
average around F~0:33 [32]. Representations which are sparse are less
affected by the noise, representations which have a good correspon-
dence give a low error for zero noise. HOCCA compares favorably to the
other methods in the relevant regime of F because it combines sparsity
with good correspondence.
doi:10.1371/journal.pone.0086481.g014
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ments from a white object in the surround [27,46,47], or

measurements from a wide ensemble of neighboring surfaces

[48–51]. Another approach consists in mapping illuminant-

dependent images to a domain which is illuminant independent

[17–19,21,52]. The mappings can be seen as transforms which,

like HOCCA, take into account the different statistical properties

of the images in the different acquisition conditions.

HOCCA allowed us to make a testable prediction about the

response to spatio-chromatic stimuli when adapted to CIE D65 or

CIE A illumination. The prediction can be thought to correspond

to the best-case scenario where labeled data has shaped the

Figure 15. Stimuli used to predict the response-adaptation of RG sensors. Each 4-row panel corresponds to the stimuli used for one sensor.
For each sensor, the stimuli were obtained by rotating and scaling the chromatic part of the optimal stimulus (the top left image in each panel). The
color content changes in constant steps from left to right, and the scaling factor varies linearly from top to bottom, see Materials and Methods for
details. The top row in each panel shows the chromatic diagrams for the first row of images.
doi:10.1371/journal.pone.0086481.g015
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properties of the neurons. Next, we discuss the relation of our

prediction to the experiments performed in [24] and [33]. In [24],

responses to patterns with chromatic modulation in rotated

directions of the red-green (RG), yellow-blue (YB) plane using a

fixed white adaptation point similar to D65 were measured. The

responses were found to oscillate sinusoidally as the stimulus

rotated in the RG-YB plane. In [33], similar measurements were

used to investigate the effect of habituation to high chromatic

contrast stimuli modulated in certain directions of the color space.

Again, a D65-like white average was used. In the control situation

of zero contrast habituation stimuli, sinusoidal responses as in the

aforementioned results were obtained. For non-zero habituation,

these oscillations were found to shift and scale depending on the

presence of linear or non-linear interactions between the basic

RG-YB sensors.

Adaptation to illumination CIE D65 or CIE A is not exactly

habituation to high chromatic contrast stimuli. Moreover, the

linear nature of our filtering (computation of the canonical

Figure 16. Stimuli used to predict the response-adaptation of YB sensors. The stimuli were generated as those in Figure 15.
doi:10.1371/journal.pone.0086481.g016
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coordinates) cannot reproduce effects from eventual non-linear

interactions. Therefore, our adaptation predictions cannot

straightforwardly be compared to the habituation results reported

in [33]. Nevertheless, we can notice interesting connections: First,

both in our setup and in the aforementioned experimental work,

smooth oscillations of the responses are obtained when the

chromatic content of the optimal stimuli is changed, see Figure 16.

Second, the offset of the curves is also similar to the reported

experimental behavior. Third, the shifts in the responses which we

predict as adaptation to the changed illumination occurs, are

qualitatively similar to the shifts reported for contrast habituation.

Materials and Methods

Probabilistic generative model of HOCCA
We construct here HOCCA such that it takes higher-order

statistical dependencies both within and across the data sets into

account, in contrast to CCA. This allows us to find a both related

Figure 17. A testable prediction about response-adaptation for spatio-chromatic inputs. The figures show the average response of RG
sensors and YB sensors when stimulated with the stimuli in Figures 15 and 16, respectively. Solid lines display responses of sensors adapted to CIE
D65 illumination while dashed lines indicate adaptation to illumination CIE A. The constant curves in (a) and (b) are obtained for b~0. The optimal
stimulus of a sensor adapted to illumination D65 is no longer optimal when the sensor is adapted to illumination A. We predict a shift in the response
as adaptation to the new illumination occurs.
doi:10.1371/journal.pone.0086481.g017
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and efficient representation of the data. The new method is based

on a probabilistic generative model which we outline next. In Text

S1, the model is generalized to the case where there are more than

two data sets, each possibly of different dimensionality.

In order to find an efficient representation for each of the two

data sets, we assume that each of the two vectors of canonical

coordinates sA and sD in (1) consists of statistically independent

sparse random variables. The independence assumption concerns

the elements within each vector only. In order to find features that

are related across the data sets, we assume that the k-th random

variable of sA and the k-th random variable of sD are statistically

dependent.

The independence assumption for the canonical coordinates

within a data set makes the whitened data zA and zD in (1) follow

an ICA model with mixing matrices QA and QD. In this context,

we call the canonical coordinates also sources.

Let sk~(sA
k sD

k )T denote the column vector which contains the

k-th canonical coordinate (source) from both data sets. With the

above independence assumptions, the joint probability density

function (pdf) of all the sources s~(sA; sD) factorizes into m
factors,

ps(s)~ P
m

k~1
psk

(sk), ð8Þ

where psk
denotes the pdf of sk. With the ICA models in (0) and

the orthogonality of the mixing matrices, the joint pdf pz of the

random variables zA and zD is

pz(zA,zD)~ P
m

k~1
psk

(SqA
k ,zAT,SqD

k ,zDT), ð9Þ

where Sa,bT denotes the inner product between the two vectors a
and b. If psk

was known, pz would be properly defined. We then

could maximize the (rescaled) log-likelihood ‘,

‘~ÊE
Xm

k~1

log psk
(SqA

k ,zAT,SqD
k ,zDT)

( )
, ð10Þ

to estimate the features qA
k and qD

k , k~1 . . . m. In the above

equation, ÊE denotes the sample average over the joint observations

of the whitened data sets zA and zD.

While psk
is generally unknown, we define it now such that we

are capturing two possible types of dependencies between the data

sets: linear correlation and variance dependencies. Linear corre-

lation is presumably the simplest form of statistical dependency,

and coupling in variance is the next simplest one. Variables which

are linearly uncorrelated but correlated in variance tend to have

high or low energies (squared values) at the same time. Modeling

such dependencies proved useful when modeling the statistical

dependencies within a given data set of natural images, see

Chapter 10 of [2].

Sources sk with linear and variance dependencies can be

generated via

sk~sk ~ssA
k ~ssD

k

� 	T
, ð11Þ

where ~ssA
k and ~ssD

k are two zero mean Gaussian random variables

with correlation coefficient rk, and skw0 is the variance variable

responsible for the scaling. We prove in Text S1, Section S1.1, that

the distribution psk
has the form

psk
(sk)~Gk(sTk Lksk), ð12Þ

where Gk(u),u§0 is a monotonically decreasing, strictly convex

function which depends on the prior for sk and the correlation

coefficient rk. It is further shown that the same also holds for

log Gk(u). Direct calculations, or the derivation in the supporting

text, show that the correlation coefficient between sA
k and sD

k is

given by rk. The matrix Lk is the precision matrix (inverse

covariance matrix) of sk. Since the sources in ICA are commonly

assumed to have variance one, Lk is given by (3).

While different choices are possible for Gk, an interesting family

of functions is obtained by assuming that s2
k follows an inverse

Gamma distribution. As shown in Text S1, Section S1.2, the

functions Gk are then given by G(u; nk,rk) in (4). The resulting pdf

psk
is bivariate student’s t. The HOCCA objective function in (2)

follows from (10) with this choice for Gk.

The family fG(u; nk,rk)gnk ,rk
is interesting since the shape

parameter nk controls the extent of higher-order statistical

dependencies between sA
k and sD

k while the correlation coefficient

rk captures their linear correlation. This can best be seen by

considering the mutual information between sA
k and sD

k . Mutual

information measures the amount of information about sA
k that

one can obtain from sD
k , and vice versa [53], see (S1–34) in Text

S1, Section S1.2, for the formal definition. For the bivariate

student’s t distribution psk
, the mutual information MI consists of

two parts [54],

MI(nk,rk)~V(nk){
1

2
log 1{r2

k

� 	
: ð13Þ

The analytical expression for the first part, V(nk), is given in (S1–

36) in Text S1. The function V(nk) decreases to zero as nk

increases. The second part depends only on rk and corresponds to

the mutual information between two Gaussian random variables

with correlation coefficient rk. Hence, for large nk when V
becomes small, the correlation coefficient rk captures already most

of the dependency between sA
k and sD

k . If rk goes to zero and nk is

large, sA
k and sD

k become statistically independent. If nk is small, on

the other hand, there are higher-order statistical dependencies.

Figure 8 shows the non-Gaussian part V and the Gaussian part as

a function of nk and rk, respectively. The figure shows that a value

of nk close to two contributes to the mutual information like a

correlation coefficient rk of about 0.65, nk&3 corresponds to

rk&0:55. Furthermore, the shape parameter nk affects the non-

Gaussianity (sparsity) of the marginal distributions of sA
k and sD

k :

The marginal distributions are univariate student’s t distributions

with the same shape parameters nk as psk
[55]. As nk decreases,

the distributions become more heavy-tailed and peaked around

zero, that is, the random variables are more sparse.

Simulations on artificial data
We used artificial data to validate HOCCA. We give here

details for the data generation and the performance measures used

in the assessment and in the comparison with CCA.

The data was generated according to (1). The dimensionality

was m~10 and the mixing matrices QA
true and QD

true were

randomly generated by independently drawing the elements of the

matrices from a standard normal distribution, followed by

orthonormalization of each matrix. The correlation coefficients

rtrue
k between sA

k and sD
k were drawn from an uniform distribution
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on (21 20.1�|½0.1 1), and the parameters ntrue
k from an uniform

distribution on ½2:1 3�. The true canonical coordinates were thus

sparse and linearly correlated. We avoided sampling correlation

coefficients close to zero since CCA is sensitive to linear

correlation only.

We analyzed the estimation results of HOCCA and CCA using

three measures of performance. The first measure assesses how

well the mixing matrices (features) were recovered, the second the

efficiency of the learned representation, and the third how well the

coupling (correspondence) between the two data sets was

identified. We assessed the efficiency of the representation from

a sparsity and a related information theoretical point of view. Note

that the first two measures are insensitive to the coupling between

the data sets.

In order to quantify the accuracy of the estimated matrices QA

and QD, we used the Amari index R [56],

R(P)~
Xm

i~1

Xm

j~1

Dpij D
maxk DpikD

{1

 !
z
Xm

j~1

Xm

i~1

Dpij D
maxk Dpkj D

{1

 !
,ð14Þ

applied to P~(QA)TQA
true and P~(QD)TQD

true. The entry in row

i and column j of the matrix P is denoted by pij . The index is zero

if P is a permutation matrix. For 10 dimensional random matrices

formed by independent standard normal random variables, the

index takes typically values around 0:37+0:06 (average 6 two

standard deviations).

In order to quantify the sparsity of the recovered canonical

coordinates SqA
k ,zAT and SqD

k ,zDT, we used the index [57]

S(sk)~

ffiffiffiffi
T
pffiffiffiffi
T
p

{1

� �
ÊE(Dsk D)ffiffiffiffiffiffiffiffiffiffiffi

ÊE(s2
k)

q , ð15Þ

applied to sk~SqA
k ,zAT and sk~SqD

k ,zDT, after removal of their

mean. As before, ÊE denotes the sample average and we took

T~100000 data points to compute it. The index S is non-

decreasing with increasing sparsity; it takes zero as minimal and

one as maximal value. A Gaussian has a value of S~0:2.

In order to measure the efficiency of the learned representation

from an information theoretical point of view, we computed by

which extent the mutual information between the recovered

coordinates was smaller than the mutual information between the

original (white) data. This difference in mutual information is

called multi-information reduction. We can here compute it by

comparing the entropies of the marginal pdfs of the (white) data

and the recovered canonical coordinates [41]. In our context,

multi-information reduction is related to sparsity maximization

since sparse variables have a smaller entropy than Gaussian

variables of the same variance. We computed the multi-

information reduction using 100000 data points.

In order to assess how well the coupling between the two data

sets was identified, we computed the mutual information between

the inferred corresponding sources SqA
k ,zAT,SqD

k ,zDT
� 	

, and

compared it to the mutual information of the ‘‘true’’ correspond-

ing sources (sA
k ,sD

k ). We measured mutual information using the

maximum likelihood estimator with Miller-Maddow correction

[58]. For computation of the mutual information, we used five

million data points, and 1000 bins for the joint histogram after

uniformization of the marginals.

Natural image data and preprocessing
The data used for the learning consists of pairs of images (image

patches) that we extracted from a set of 50 larger natural images

acquired under CIE D65, daylight, and under CIE A, yellowish

light. Figure 2 shows pairs of example images from the database.

The database is publicly available at http://isp.uv.es/data_color.

htm and a detailed description was given before [21]. The images

of the database are given in standard CIE XYZ tristimulus values.

This makes it an appropriate data set to reproduce classical

psychophysical results since they were obtained with these

standard illuminants.

We used 1:5:105 corresponding image patches of size 15|15
pixels which we extracted from the pairs of larger images at the

same randomly chosen position. After removal of the mean, the

patches from images taken under illumination D65 give xD, and

the patches from images under illumination A are xA. Each pair of

images (xA,xD) shows the same extract of the larger visual scene

under two different illuminants. The dimension of xA and xD is

n~3:15:15~675.

We then performed whitening and reduced the dimensionality

of each individual data set by principal component analysis (PCA).

Dimension reduction is worthwhile if there are strong correlations

in the data, that is, if the data is essentially located in a subspace of

lower dimensionality than n. Reducing the dimension of xA and

xD can then reduce the average prediction error when trying to

linearly predict xD from xA, or vice versa (see Text S2, Section

S2.2). In order to objectively decide about the amount of

dimension reduction, we used the fraction of variance accounted

for by the prediction (coefficient of determination R2) when image

patches under D65 illumination are linearly predicted from PCA

truncated patches under illumination A. Figure 18 shows the

coefficient of determination as a function of the retained

dimension m of the data. According to the behavior in Figure 18

we decided to reduce the dimension of xA and xD from n~675 to

m~236. Retaining 236 dimensions removes only 1:5:10{3% and

2:3:10{3% of the variance of xA and xD, respectively.

Learning representations of natural images
We used HOCCA to learn the coupled representation by

maximizing the objective f in (2). Other statistical methods can

also be used to learn coupled representations, that is, the matrices

QA and QD in Figure 3. We compared HOCCA to three

alternative methods: canonical correlation analysis (CCA), a

method based on whitening by principal component analysis,

and a method based on independent component analysis (ICA).

Table 1 provides an overview of the methods used.

CCA is briefly reviewed in Text S2. HOCCA and CCA

naturally lead to coupled canonical representations. Whitening

and ICA, however, are specific to each data set itself. After initial

whitening or ICA, separately performed on each data set, we thus

matched the learned filters across the data sets by greedily

choosing pairs of components which had maximal mutual

information. In this way, we obtained a coupled representation

that can be used in the comparison with HOCCA.

Comparing HOCCA with the whitening-based approach is

interesting since whitening is the first step in all methods.

Comparing HOCCA with CCA and the ICA-based approach is

interesting since these methods can be considered to represent

limiting cases of HOCCA: ICA features are obtained by

maximizing the efficiency (sparsity) of the representation of each

data set individually, without concern for a possible correspon-

dence between them. CCA features are obtained by maximization
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of correspondence (measured by linear correlation), without

concern for the efficiency (sparsity) of the individual representa-

tions. HOCCA, on the other hand, is jointly maximizing the

efficiency of the individual representations and the correspondence

between them.

Analyzing the learned representations of natural images
The representations were statistically analyzed by assessing their

efficiency and the coupling between the corresponding canonical

coordinates (feature outputs) sA
k and sD

k . Efficiency was measured

using multi-information reduction and sparsity, coupling was

measured using mutual information. These measurements were

performed as in the analysis of the results on artificial data.

For the visualization of the learned features, the features were

first scaled to have unit norm and then contrast-normalized by

applying a global scaling factor to the deviation from the average.

The scaling was chosen so that the feature colors are reproducible

in conventional displays: Too small scaling factors lead to

chromatically uniform features while too large factors give rise

to non-reproducible imaginary colors, that is, to negative

luminance or to colors outside the reproducible gamut.

We reproduced corresponding-colors based on the learned

representations as follows: Given a spatially uniform patch of a

certain color under illumination CIE A, we identified it with xA in

Figure 2 and represented it using the canonical coordinates sA.

Then, we predicted the k-th canonical coordinates sD
k from sA

k ,

and transformed back to the original pixel-representation, that is,

to xD, which yielded the corresponding color under illumination

CIE D65. Given colors under illumination D65, the procedure

was reversed. The prediction of sD
k from sA

k (and vice versa) was

constrained to be linear, even though nonlinear prediction would

be possible too. In more detail, since the canonical coordinates

have zero mean and unit variance, the prediction of sD
k is

ŝsD
k ~%ksA

k , where %k is the correlation coefficient between sD
k and

sA
k .

For the noise-distortion curves, the setup of the corresponding-

colors was modified in two aspects: First, we used image data with

spatial structure. Second, the internal representation by means of

the canonical coordinates was subject to noise. The noisy version

of ŝsD
k is denoted by ~ssD

k ,

~ssD
k ~ŝsD

k zs(̂ssD
k )nk: ð16Þ

The random variables nk are independent from each other and

from the canonical coordinates, and have zero mean and unit

variance. For a fixed image xA, the noisy response ~ssD
k fluctuates

around the mean ŝsD
k with a variance s2. The variance was

assumed to be signal dependent,

s2(̂ssD
k )~F D̂ssD

k D, ð17Þ

where F is the Fano factor (index of dispersion) of the noisy

response. We measured to which extent the noisy inferred

representation deviates from the noise-free representation of the

same image under illumination D65. That is, we measured how

much ~ssD
k deviates from sD

k . We used the root mean squared error

(RMSE), RMSE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EDDsD{~ssDDD2

p
as error metric. The analytical

expression for the squared error reported in (7) is derived in Text

S3.

For the stimuli used in the prediction, we changed the

chromatic contrast and color content as follows: In a achromatic

red-green yellow-blue representation, the color c[R3 of each pixel

can be seen as an achromatic and a chromatic departure from the

average �cc: c~�cczdazdc. The average can further be divided into

an achromatic (�cca) and chromatic part (�ccc). The stimuli were

obtained through rotations of dc, via a 3|3 rotation matrix Ra,

and by scaling the resulting chromatic part:

c0(a,b)~(�ccazda)zb(Radcz�ccc). The color content was rotated

in constant steps, and the scaling factor b was varied linearly from

one to zero.
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