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ABSTRACT

The transform in image coding aims to remove redundancy among

data coefficients so that they can be independently coded, and to

capture most of the image information in few coefficients. While the

second goal ensures that discarding coefficients will not lead to large

errors, the first goal ensures that simple (point-wise) coding schemes

can be applied to the retained coefficients with optimal results. Prin-

cipal Component Analysis (PCA) provides the best independence

and data compaction for Gaussian sources. Yet, non-linear general-

izations of PCA may provide better performance for more realistic

non-Gaussian sources. Principal Polynomial Analysis (PPA) gener-

alizes PCA by removing the non-linear relations among components

using regression, and was analytically proved to perform better than

PCA in dimensionality reduction. We explore here the suitability

of reversible PPA for lossless compression of hyperspectral images.

We found that reversible PPA performs worse than PCA due to the

high impact of the rounding operation errors and to the amount of

side information. We then propose two generalizations: Backwards

PPA, where polynomial estimations are performed in reverse order,

and Double-Sided PPA, where more than a single dimension is used

in the predictions. Both yield better coding performance than canon-

ical PPA and are comparable to PCA.

Index Terms— Principal Component Analysis, Principal Poly-

nomial Analysis, hyperspectral image coding, decorrelation, entropy

1. INTRODUCTION

In the last years, a number of techniques have been proposed to ex-

ploit spectral and spatial redundancy to encode hyperspectral im-

ages. The popular approaches usually combine a 1-D spectral trans-

form followed by a 2-D spatial transform. The spectral decorrelation

for multicomponent images has proven to be crucial for compression

due to the large amount of inter-component correlation/redundancy,

with PCA/KLT [1] transform and its extensions [2] being widely ap-

plied due to its high coding efficiency and matrix invertibility.

Recently, several non-linear generalizations of PCA have been

proposed [3–5]. These generalizations go beyond linearity and ex-

ploit both linear and non-linear correlation between data. Also, their

kernel versions [6] have become a powerful tool to extract non-linear

features. However, the reconstruction problem has so far restrained

their application in compression schemes [7]. Invertibility of the

transform is requested for lossless compression, as it leads to perfect

reconstruction and provides better understanding of the transform.
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For lossless coding applications, it is therefore necessary to consider

non-linear generalizations of PCA that still satisfy: (1) invertibil-

ity to achieve perfect reconstruction, and (2) variance minimization

along the considered directions to yield competitive coding perfor-

mance.

In this paper, we analyze the lossless coding efficiency of an in-

vertible non-linear generalization of PCA, the Principal Polynomial

Analysis (PPA) [8, 9], originally proposed for dimensionality reduc-

tion. PPA is a deflationary algorithm based on drawing a sequence

of Principal Curves that address one dimension at a time [10]. These

Principal Curves are analytic and each step in the sequence consists

of two basic operations. The first operation is based on PCA, i.e., it

is a projection onto the orthogonal direction that maximizes the vari-

ance. The second operation estimates and removes the conditional

mean of the data in the orthogonal subspace. The estimation is car-

ried out by using a polynomial regression. This provides a better

estimation of the conditional mean than the straight line, given the

eventual non-linear relation between features.

As opposed to lossy compression, direct application of PPA to

lossless compression may be hampered by the impact of the side in-

formation and the necessary lifting scheme applied in each step for

integer mapping. In this paper, we specifically analyze these issues:

how to handle PPA side information required for the reconstruction,

how to reduce the impact of integer mapping error and how to ex-

ploit the energy compaction property. Two generalizations of PPA

are proposed. The first one, Backwards PPA, works as the original

algorithm but in reverse order, i.e., starting from the last components

of a PCA, so that the Principal Component, highly responsible for

the bitrate budget, is better handled. The second one, Double-Sided

PPA, can be seen as a further generalization, a sequential algorithm

that simultaneously considers the first and last components of a PCA,

uses more dimensions in the prediction, proceeds inwards, and per-

forms less iterations to alleviate the integer mapping penalization.

The paper is organized as follows. Section 2 reviews the ele-

ments of PPA transform. Section 3 addresses fundamental issues for

the use of PPA in coding: its inverse, the side information, and the

proposed generalizations for lossless coding. Section 4 illustrates the

application of PPA to hyperspectral images and draws the integer

reversible implementation. In section 5 we show the experimental

settings and results. Finally, section 6 concludes.

2. PRINCIPAL POLYNOMIAL ANALYSIS

Let X0 ∈ R
d×n be the input data matrix, where rows represent com-

ponents/dimensions and columns different realizations (or samples).

Note that PCA can be seen as a deflationary method (or a sequence of

d−1 elementary transforms Rp) that maps X0 to a response domain

R ⊆ R
d×n . Each elementary transform describes a single curvilin-



ear dimension of the input by computing one single component of

the response:
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In each step p of the sequence, two basic operations are applied:

αp = e
⊤
p Xp−1 (1)

X
PCA
p = E

⊤
p Xp−1 (2)

where (1) is the projection of the data coming from the previous

step, Xp−1, onto the unit norm vector ep ∈ R
d−p×1 that maximizes

the variance of the projected data and (2) is the projection onto the

orthonormal subspace Ep ∈ R
(d−p+1)×(d−p).

PPA follows the same deflationary scheme but it improves the

second operation by predicting and removing the conditional mean

m̂p:

αp = e
⊤
p Xp−1 (3)

X
PPA
p = E

⊤
p Xp−1 − m̂p (4)

The conditional mean is estimated by using polynomial regres-

sion to fit the non-linear relationship between the first component

αp and the remaining components Xp of the projected data coming

from the first operation (PCA). In matrix notation, the model can be

written as m̂p = WpVp:
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where Vp is the Vandermonde matrix of order γ and Wp is the

matrix of polynomial coefficients. The least squares solution for

the coefficients is Wp = E
⊤
p Xp−1V

†
p, where V

†
p stands for the

pseudo-inverse of Vp.

3. SIDE INFORMATION AND CODING-ORIENTED

GENERALIZATIONS

3.1. Inverse and side information

The PPA transform is invertible, thus leading to perfect reconstruc-

tion. The inverse transform is, like the forward transform, also a

sequence of two elementary inverse operations. The original data

X0 is obtained by applying the following transform recursively on

the given transformed data:

Xp−1 =



ep|Ep









αp

Xp +WpVp



 , p = d− 1, . . . , 1

In practice, the polynomial coefficients, Wp, and the vector ep are

necessary side information since they are required at each step of the

inversion. On the contrary, there is no need to store Vp and Ep. On

the one hand, Vp is generated from the data. On the other hand,

any method to compute an orthogonal complement from ep is fine

to obtain Ep since the reconstruction error does not depend on the

selected basis [8, 9].

According to this, the number of elements in the side informa-

tion corresponding to each elementary transform Rp is: (γ + 1) ×

(d − p) (from the Wp’s) plus d−p (from the ep’s). Taking into ac-

count that the size of side information for PCA is d2+d
2

, PPA side

information is 2d2−d−1 when using order 2 for the polynomial re-

gression.

3.2. Backwards and Double-sided generalizations of PPA

When using dimensionality reduction techniques, the compo-

nents/coefficients that retain most of the signal energy may have

a wide dynamic range. Each PPA step is designed to reduce the dy-

namic range of the residual signal (prediction error after nonlinear

regression). The particular choice of which dimensions are visited

in the deflationary scheme will determine the resulting dynamic

ranges. While the canonical formulation of PPA follows the largest-

variance-first criterion (as in PCA), this particular choice may not

be appropriate for signal coding.

In order to obtain coefficients with smaller dynamic range, here

we propose two variations of the canonical PPA: Backwards PPA

and Double-Sided PPA.

In Backwards PPA, the ep vector at each step is the one that

minimizes the variance of the projected data. This implies retaining

the lowest dynamic range projections to reduce the variance of the

highest dynamic range ones. The sequence of the Backwards PPA is

as follows:
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The side information for the Backwards generalization is essentially

the same as in the canonical PPA.

The Double-Sided variation of PPA uses more than one compo-

nent in each prediction. At each step it uses the largest variance com-

ponent as in the canonical PPA plus k components from the lowest

dynamic range end. This scheme reduces both complexity and side

information, since the number of steps needed is N=⌊ d
k+1

⌋ instead

of N=(d− 1). The sequence of the Double-Sided PPA is:
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The side information for the Double-Sided generalization is (γ(k +

1)+1)
∑N

i=0(d− i(k + 1)) due to W
′
ps, and k(

∑N−1
i=0 (d− i(k+

1)) because of (e′
ps), where N = ⌊ d

k+1
⌋ is the number of steps.

4. PPA FOR HYPERSPECTRAL IMAGE CODING

Hyperspectral imaging leads to 3D spectral-spatial arrays. Even

though the d-dimensional input to PPA may come from arbitrary

arrangements of the hyperspectral arrays, here we will illustrate the

use of this transform in a spectral-first pipeline (Fig. 1). Current

coding standards include PCA in the spectral stage [1, 2]. In our

experiments we will stick to this standard scheme and will replace

PCA by PPA.



4.1. Reversible integer PPA transform

For lossless compression, it is mandatory to consider reversible im-

plementations of the redundancy reduction transforms that produce

integer outputs as close as possible to the real coefficients. Hao and

Shi [11] proposed a reversible integer KLT that maps integers to in-

tegers based on a PLUS factorization of the transform matrix A.

PLUS is a product of unit Triangular Elementary Reversible Ma-

trices (TERMs), where P is a permutation matrix, L and S are lower

TERMs and U is upper TERM. This factorization is possible, if and

only if, |det(A)| = 1 [12].

Galli and Salzo [13] improved this factorization by proposing

a quasi-complete pivoting. This improvement minimizes the ele-

ments’ magnitudes of the matrices L and U, therefore, it reduces

the error between the integer implementation and the original trans-

form, which could affect the energy compaction capability.

Going back to the PPA transform and given that it is based

on two main operations (PCA projection and conditional mean re-

moval), we propose an integer reversible PPA transform for lossless

compression based on two integer reversible operations:

1. Integer reversible PCA/KLT (RPCA/RKLT) based on PLUS

factorization using quasi-complete pivoting.

2. Removal of the quantized conditional mean:

Xp = Xp−1 −Q(m̂p)

The needed conditional mean quantization is performed through a

simple rounding operation, Q(·), although any other quantization

operation could be applied.

5. EXPERIMENTAL SETTINGS AND RESULTS

In this section, we evaluate the proposed reversible integer trans-

forms (PPA, Backwards PPA and Double-Sided PPA) on a set of

5 radiance AVIRIS images: Yellowstone scene 0, Cuprite scene

1, Jasper Ridge scene 2, Moffet Field scene 1 and Low Altitude

scene 1, available at http://aviris.jpl.nasa.gov/data/index.html. All

the images were cropped to 512×512 spatial resolution and 224

components and have a bit-depth of 16 bits per pixel per component

(bpppc).

To account for reproducibility, basic Matlab source code for PPA

is available online [14], and the proposed generalizations can be

found at [15]. The coding system pipeline is shown in Fig. 1 and

explains the compression process, where the proposed transforms

based on PPA are applied in the spectral domain followed by a DWT

2-D transform 5/3 (5 levels) in the spatial domain and finally a loss-

less compression using the standard JPEG2000 with the KAKADU

software v6.0.

Tables 1–5 provide the lossless coding performance for the pro-

posed transforms as well as for PCA. We report the needed bitrate

to encode the images and the size of the requested side information

(SI), also measured in bpppc. For Double-Sided PPA with k=80,

the full matrix (epEp) has been used as side information, while for

k < 80 only the unit norm vector ep was used. Coefficients for

Fig. 1: Coding pipeline: 1D transform in the wavelength domain

followed by JPEG2000 standard.

the side information have used a precision of 32 bits and have been

compressed with LZMA. Order 2 has been used for the polynomial

regression.

Table 1: Lossless coding results for Yellowstone scene 00 (bpppc).

Method Image SI Wp’s SI ep’s Total

PCA 3.99 0 0.025 4.02

PPA 5.01 0.038 0.012 5.06

Backwards 4.66 0.037 0.012 4.71

D-Sided k = 1 4.57 0.032 0.006 4.61

D-Sided k = 7 4.33 0.026 0.001 4.42

D-Sided k = 80 3.97 0.017 0.036 4.02

Table 2: Lossless coding results for Cuprite scene 01 (bpppc).

Method Image SI Wp’s SI ep’s Total

PCA 4.99 0 0.025 5.02

PPA 5.61 0.038 0.012 5.66

Backwards 5.17 0.03 0.012 5.22

D-Sided k = 1 5.19 0.032 0.006 5.23

D-Sided k = 7 5.09 0.026 0.001 5.12

D-Sided k = 80 4.93 0.017 0.035 4.98

Table 3: Lossless coding results for Jasper Ridge scene 02 (bpppc).

Method Image SI Wp’s SI ep’s Total

PCA 4.99 0 0.025 5.02

PPA 5.61 0.038 0.012 5.66

Backwards 5.17 0.037 0.012 5.22

D-Sided k = 1 5.19 0.032 0.006 5.23

D-Sided k = 7 5.11 0.028 0.003 5.14

D-Sided k = 80 4.91 0.017 0.035 4.96

Table 4: Lossless coding results for Moffet Field scene 01 (bpppc).

Method Image SI Wp’s SI ep’s Total

PCA 5.01 0 0.025 5.03

PPA 5.72 0.038 0.012 5.77

Backwards 5.27 0.038 0.012 5.77

D-Sided k = 1 5.36 0.031 0.006 5.32

D-Sided k = 7 5.25 0.029 0.001 5.28

D-Sided k = 80 5.01 0.017 0.036 5.07

Table 5: Lossless coding results for Low Altitude scene 01 (bpppc).

Method (bpppc) Image SI Wp’s SI ep’s Total

PCA 5.33 0 0.025 5.35

PPA 5.91 0.038 0.012 5.96

Backwards 5.47 0.037 0.012 5.52

D-Sidedk=1 5.58 0.031 0.006 5.62

D-Sidedk=7 5.51 0.029 0.001 5.54

D-Sidedk=80 5.31 0.017 0.035 5.36

The reported results indicate that a reversible implementation

of PPA does not yield better coding performance than PCA, with a

bitrate penalization of at most 0.7 bpppc. This suggests that the se-

quential rounding error due to the integer mapping on the one hand,



and the conditional mean quantization on the other hand penalize the

compression performance. In addition, PPA asks for a larger side in-

formation than PCA. Our two PPA-based alternatives are aimed at

alleviating these issues.

On the one hand, note that the Backwards PPA is subject to the

same rounding process and conditional mean quantization as PPA,

and it has the same complexity and side information too; however,

it is usually able to improve the results of PPA by about 0.4 bpppc,

since in this case the first principal component also has its condi-

tional mean subtracted, decreasing its dynamic range and benefiting

the final performance. On the other hand, the Double-Sided PPA

outperforms both canonical PPA and Backwards PPA, especially for

higher values of parameter k (the number of components from the

right-most end that are transformed together with the first compo-

nent in each iteration). First, the impact of rounding is reduced due

to the lower number of iterations. Besides, the predictive power is

higher since it uses more than one component (k+1), giving rise to a

better estimation of the conditional mean. In addition, the computa-

tional complexity and side information are smaller in Double-Sided

PPA (cf. Section 3.2). According to the reported results, the coding

performance of Double-Sided PPA with k = 80 is comparable to

that of PCA.

6. CONCLUSIONS

Lossless compression of hyperspectral images is largely benefited

from a 1D spectral transform, which is traditionally performed

through a wavelet or a PCA transform, the latter yielding increased

performance. PPA is a non-linear generalization of PCA originally

proposed in the framework of dimensionality reduction. Here we

investigated the suitability of PPA for spectral redundancy reduction

in hyperspectral image compression. Coding performance of inte-

ger reversible PPA is worse than that of PCA due to the rounding

operations error and to the increased size of the side information.

For a better adaptation of PPA to the signal at hand, we proposed

two generalizations. Backwards PPA reverses the order in which the

transform is applied, proceeding from the lower dynamic range hand

to the higher dynamic range components. Double-Sided PPA ex-

tends canonical PPA by using several components in the regressions

and performing less iterations than canonical PPA, thus reducing the

penalization of the rounding error. Double-Sided PPA improves PPA

performance and reaches PCA performance for lossless compres-

sion. These proposals improved the results, and could eventually

be used in other nonlinear invertible schemes in the future, not

necessarily based on PPA.

Several questions are now open for further research. From a the-

oretical point of view, it is worth analyzing Double-Sided PPA gen-

eralization and investigate whether there is any bound on the number

of iterations that still provide some gain. Also, the regression used in

PPA to remove the non-linear relations among components has been

herein carried out with a simple second-order polynomial regression;

other approaches can be devised to improve the estimation and, ad-

ditionally, to decrease the size of the side information they entail.

One such approach could be to apply dedicated polynomial regres-

sion in tiles or clustered data, while other sparse regression schemes

could be explored. It does not escape our notice that PPA could be

beneficial compared to PCA in lossy schemes, given that PPA bet-

ter captures and preserves the relevant image features, and the good

results observed previously in dimensionality reduction problems.
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