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Abstract—This letter introduces a simple method for includ-
ing invariances in support-vector-machine (SVM) remote sensing
image classification. We design explicit invariant SVMs to deal
with the particular characteristics of remote sensing images. The
problem of including data invariances can be viewed as a problem
of encoding prior knowledge, which translates into incorporating
informative support vectors (SVs) that better describe the classifi-
cation problem. The proposed method essentially generates new
(synthetic) SVs from the obtained by training a standard SVM
with the available labeled samples. Then, original and transformed
SVs are used for training the virtual SVM introduced in this letter.
We first incorporate invariances to rotations and reflections of
image patches for improving contextual classification. Then, we
include an invariance to object scale in patch-based classification.
Finally, we focus on the challenging problem of including illumi-
nation invariances to deal with shadows in the images. Very good
results are obtained when few labeled samples are available for
classification. The obtained classifiers reveal enhanced sparsity
and robustness. Interestingly, the methodology can be applied to
any maximum-margin method, thus constituting a new research
opportunity.

Index Terms—Image classification, invariance, support vector
machine (SVM).

I. INTRODUCTION

THE support vector machine (SVM) classifier has been
successfully used in remote sensing image classification

during the last decade [1], [2]. The method has been widely
exploited for contextual image classification [3], multitemporal
classification and change detection [4], or spectral mixing anal-
ysis [5], [6]. Nowadays, the SVM is a standard tool for remote
sensing data processing and image classification. In addition,
during the last years, the basic SVM formulation has been
modified to deal with unlabeled pixels in the images [7], [8]
interacting with an expert user [9], and to combine different
sources of information efficiently [3], [4], to name just a few.

All the previous developments can be seen as blind ap-
proaches to the general problem of including prior knowledge
in the classifier. In semisupervised learning approaches, for
instance, unlabeled samples may help in better defining the data
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support, which is typically poorly sampled in remote sensing
applications. In the case of active learning, interaction with
a user is the most naive form of incorporation knowledge as
manual labeling corrects the posterior probability provided by
a limited classifier. Finally, relying on the classical smoothness
assumption of natural images, it is reasonable to regularize
the solution by including contextual, multisource, multiangular,
or multitemporal information. In this context, including prior
knowledge is related to encoding invariances in the classifier
and also to including a proper regularization scheme. Note that
most of the aforementioned approaches concentrate on modi-
fying the kernel function in SVMs, which essentially translates
into enforcing smoothness via a particular regularizer (or prior
function).

Classifiers should be robust to changes in the data rep-
resentation. The property of such mathematical functions is
called “invariance,” and the algorithm is referred to as being
“invariant,” i.e., its decision function should be unaltered under
transformations of data objects. The problem of encoding in-
variances in remote sensing and image processing applications
is ubiquitous. An algorithm for biophysical retrieval estimation
should be resistant (invariant) to illumination changes and to
canopy spectral invariants. Similarly, a classifier should be
invariant to rotations of patches, to changes in illumination and
shadows, or to the spatial scale of the objects to be detected.
The question raised here is how to include any kind of prior
invariant behavior into a large margin classifier.

Different ways of incorporating invariances in an SVM were
originally presented in [10]–[12]. Recently, other methods have
been presented: Walder and Lovell [13] proposed a penalization
of the variance of the decision function across similar class
memberships, whereas in [14], the classifier is forced to be
invariant to permutations of subelements within each sample.
The work in [11] considers two main solutions to the invariance
problem: designing particular kernel functions that encode local
invariance under transformations or generating artificial exam-
ples from the selected support vectors (SVs) and training an
SVM with them. The latter method is informally named virtual
SVM (VSVM) and, because of its simplicity and effectiveness,
is the one studied in this letter in the context of remote sensing
image classification. Nevertheless, we will see that, by properly
encoding the notion of data invariance, the method implicitly
implements the ideas in [13] and [14].

The remainder of this letter is organized as follows.
Section II briefly reviews the standard formulation of SVM and
the proposed VSVM as a way to deal with the invariance prob-
lem. Section III shows experimental results on three problems:
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encoding invariances to rotations and reflections of image
patches for contextual classification, to the different scales of
objects in the land cover detection, and to illumination changes
to deal with shadows in the images. Section IV concludes the
latter with some remarks and future work.

II. INVARIANCES IN SVM

The SVM is one of the most successful examples of kernel
methods, being a linear classifier that implements maximum
margin separation between classes in a high dimensional space.
Given a labeled training data set {(xi, yi)}ni=1, where xi ∈ R

d

and yi ∈ {−1,+1}, and given a nonlinear mapping Φ(·), the
SVM classifier solves

min
w,ξi,b

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
(1)

constrained to

yi (〈Φ(xi),w〉+ b) ≥ 1− ξi ∀i = 1, . . . , n (2)

ξi ≥ 0 ∀i = 1, . . . , n (3)

where w and b define a maximum margin linear classifier in
the feature space, and ξi are positive slack variables that are
enabled to deal with permitted errors. An appropriate choice
of nonlinear mapping Φ(·) guarantees that the transformed
samples are more likely to be linearly separable in the feature
space. Parameter C controls the complexity (regularization) of
the model, and it must be selected by the user. The primary
problem of (1) is to solve using its dual-problem counter-
part [15], and the decision function for any test vector x∗
is given by

f(x∗) = sgn

(
n∑

i=1

yiαiK(xi,x∗) + b

)
(4)

where αi are Lagrange multipliers found by optimization, and
they have the useful property of being nonzero for the samples
lying on the margin, which are called the SVs [15]. It is
important to note here that the classifier is solely defined by
the SVs and the corresponding weights. In the labeling (or
classification) phase, one compares the new incoming example
to all SVs in the solution.

The VSVM implements invariances in a very simple and
intuitive way. The method basically consists of three steps.

1) Train the standard SVM with the available training data,
and find the corresponding SVs.

2) Perturb the features of the found SVs to which the solu-
tion should be invariant. This procedure generates a set of
virtual SVs (VSVs).

3) Train a new SVM with both SVs and VSVs.
The method is intuitively illustrated in Fig. 1. The VSVM is

general enough to encode any prior knowledge about the invari-
ance of the classifier to specific features. The method was orig-
inally applied for handwritten digit recognition applications,
in which the classifier should be invariant to rotation of the
digits [10], [11]. Nevertheless, as we will see in the following,

Fig. 1. VSVM in a binary toy example. The prior knowledge that we want to
encode is that the classification function should be invariant to transformations
of the horizontal feature. The first step of the algorithm gives a wrong prediction
to the green test sample because it does not fulfill the invariance assumption
since the sample should belong to the blue class. The second step generates a
set of VSVs from the two found before. Intuitively, the idea is to construct a
more meaningful hyperplane by forcing the presence of SVs in those regions
to which the classifier should be invariant. By training an SVM again with both
SVs and VSVs, a correct hyperplane is obtained in the third step.

encoding more challenging invariances may be harder in remote
sensing image analysis.

III. EXPERIMENTAL RESULTS

This section presents experimental evidence of the perfor-
mance of the VSVM in three challenging remote sensing image
classification problems that need the incorporation of different
kinds of invariance.

A. Experimental Setup

In all the experiments, we compare the standard SVM and
the VSVM, both using the standard radial basis function kernel
with length scale σ. A tenfold cross-validation procedure was
run to find the optimal SVM parameters σ ∈ [10−2, . . . , 102],
C ∈ [1, . . . , 103]. In all cases, the one-versus-one multiclass
scheme implemented in LibSVM [16] was used.1 We report
different figures of merit: overall accuracy (OA, in percentage),
the estimated Cohen’s kappa statistic κ, and the rate of SVs
used after training both SVM and VSVM.2 We train the models
with different numbers of labeled examples per class, and show
results in an independent test set. In particular, we compare
the mean and standard deviation of a total of random training
sample selections, and test for statistical significance of the
differences between models. Depending on the invariance to be
encoded, specific parameters are varied and discussed in the
following. In addition, note that, in multiclass scenarios, the
VSVs should be generated for the class that mainly encodes
the invariance only. The Matlab source code is available at
http://isp.uv.es/soft.htm for those interested readers.

B. Experiment 1: Invariance to Rotations

In the first experiment, we used a QuickBird image of a
residential neighborhood of Zürich, Switzerland. The image
was acquired in August 2002. Its size is 329 × 347 pixels and
has a spatial resolution of 2.4 m. A total of 40 762 pixels were

1Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
2Note that comparing the total number of SVs would constitute an unfair

measure because the VSVM will always use by definition more training
samples, i.e., SVs plus VSVs.

http://isp.uv.es/soft.htm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IZQUIERDO-VERDIGUIER et al.: ENCODING INVARIANCES IN REMOTE SENSING IMAGE CLASSIFICATION 3

Fig. 2. Example for encoding invariance to rotation. The leftmost patches
(shaded) are illustrative SVs of the nine different classes obtained in the first
classification round by the SVM in the QuickBird image. From these SVs, we
generate the three rightmost patches (called VSVs) by rotations and reflections.

Fig. 3. (Left) Kappa statistic κ and (right) SV rate (in percentage) as a
function of the number of training samples and window size w.

labeled by photointerpretation and were assigned to nine differ-
ent land-use classes, such as soil, buildings, parkings, meadows,
vegetation, roads, etc. Fig. 3 shows an RGB composite and the
ground truth (GT) available.

To enhance the performance of classifiers in some particular
classes, morphological top-hat features3 were computed for
the four bands and stacked to the multispectral bands before
training the models. We performed patch-based classification:
The image is divided into disjoint squared windows (patches)
of size w, and each block is converted into a vector containing
as features the pixels in the window. These vectors are used for
classification, and its corresponding label is that of the center
pixel in the patch. This is a very effective method to impose
spatial smoothness in the classifier, and it is a procedure widely
used in computer vision applications. Different patch sizes
were considered, i.e., w ∈ {3, 5, 7, 9}. In this setting, the VSVs
were generated by essentially rotating and reflecting the patches
corresponding to the SVs, as shown in Fig. 2. We assume that
the classifier should be invariant to the rotation or reflection of a
patch, provided that the patch size contains enough information
about the class characteristics.

Fig. 3 shows the performance of the methods as a function
of the used number of training samples and window size.
Accuracy results show that, in general, the VSVM performs
better than the SVM for all window sizes, but the gain is slightly
higher with larger window sizes. As window size increases,

3We used, as structural elements, squares and disks of sizes 5, 7, and 9, thus
yielding a total of 24 spatial features.

Fig. 4. (Top) True-color composite (RGB) and GT used in experiment 1 of
patch-based classification. (Bottom) Classification maps of the experiments
using a standard SVM and VSVM with 500 training samples selected spatially
disjoint. Best results are shown in parentheses in the form of (OA (in percent-
age), κ).

pixels from different classes are included as features for the
classifiers (and also used for generating VSVs), which can
eventually lead to decreased performance. Similar trends for
different window sizes are observed for the standard SVM, but
the curves of the proposed VSVM cross each other as more
samples are included, thus suggesting an optimal window size
for encoding this type of invariance in this image. Another
interesting observation is that the rate of SVs obtained with
the VSVM is roughly constant for all training data set sizes,
suggesting that the introduced virtual vectors are rich. However,
the standard SVM in general leads to sparser models (remember
that SVM uses a lower overall number of training vectors
by definition). This turns to be even more noticeable with an
increasing number of training samples.

Fig. 4 shows the accuracy results and classification maps
obtained with the SVM and the VSVM for the specific case of
using a total of 500 training patches and w = 5. Both classifiers
show high classification scores, and the maps, in general, detect
all major structures of the image. An improved numerical
performance is obtained with the proposed VSVM (about +7%
both in OA and κ). These results demonstrate the capabilities
of the method to include invariances in the classifier but also
show that properly encoding the invariance is of paramount
importance.

C. Experiment 2: Invariance to Object Scales

In this experiment, we introduce invariance to object scale
in SVM. This means that the same object with different sizes
should be univocally classified. This illustrative example sim-
ply focuses on the binary problem of classifying image patches
as “tree” or “bare soil.” We used orthoimages of the Comunitat
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Fig. 5. Generation of VSVs by upscaling and downscaling five regular SVs
(each one in the central shaded column).

Fig. 6. Classification results for invariance to object scale for the (blue)
standard SVM and (red) the VSVM as a function of the number of training
samples. Error bars indicate confidence intervals at 95% over the average
accuracy computed for 50% realizations.

Valenciana autonomous region (Spain) provided by the Instituto
Cartográfico Valenciano. The images were acquired in 2007
using an airborne Vexcel UltraCam camera. The images have
0.5-m spatial resolution and four spectral bands (RGB and
NIR). We generated a tree database with different classes
(oranges, almond trees, olive trees, etc.) as well as uncultivated
(bare soil) areas. Image patches of 13 × 13 pixels were used for
classification.

The resizing operation was done by bicubic interpolation.
Note that the VSVs must have the same dimensions as the
original samples. In order to generate VSVs, we resized an SV
(image) and then selected the central 13 × 13 pixels. When
the output size is smaller than the original one (decreasing the
object size), we increase first the size of the original image by
using a mirror padding. A careful padding is needed to create
realistic VSVs. It is also important to note that encoding the
invariance can be done in this case for a particular feature
(e.g., the image intensity) that alleviates the computational cost
involved in the process. Fig. 5 shows examples of different SVs
that give rise to generated VSVs.

Fig. 6 shows the results for different numbers of training
samples for a fixed test set of 1000 different samples. We
performed 50 realizations for each number of training samples.

TABLE I
NUMBER OF SVS, VSVS GENERATED, AND THE VSV FINALLY USED IN

THE MODEL AS A FUNCTION OF THE NUMBER OF TRAINING SAMPLES

The scale limits was set to 50% and 120%, which are realistic
values for trees. The amount of VSVs generated for each SV
is different in each realization and has been tuned by cross-
validation inside the training set. Results show that using the
VSVs clearly improves the performance of the SVM. The
average improvement with VSVMs is more noticeable with
a low number of training samples, which suggests that the
procedure helps in describing the class distributions properly.
The average gain achieved is around +5% for all situations, and
statistical significant differences between methods are observed
(note that error bars showing confidence intervals at 95% do not
generally overlap).

Table I shows the number of SVs and VSVs for each number
of training samples. Reported results are the mean of the 50
realizations. Note how, although VSVM obtains better classifi-
cation performance, the solution is less sparse.

D. Experiment 3: Invariance to Shadows

The third experiment deals with the segmentation of hyper-
spectral images. We used data acquired by an airborne ROSIS-
03 optical sensor of the city of Pavia (Italy). The image consists
of 102 spectral bands of size 1400 × 512 pixels with spectral
coverage ranging from 0.43 to 0.86 μm. Spatial resolution of
the scene is 1.3 m. Five classes of interest (buildings, roads,
water, vegetation and shadows) have been considered, and a
labeled data set of 206 009 pixels has been extracted by visual
inspection. As in the previous examples, we performed patch-
based classification. For this purpose, we only used 50 training
patches of size w = 5. This example deals with a different, but
rather common, problem in remote sensing images, i.e., the
presence of shadows.

The study of the presence of shadows and how to remove
them before image processing (e.g., biophysical parameter
estimation or classification) has been long studied [17]. It is
well known that the radiance ratio shadow/sunlit increases as
the sunlight gets weaker, thus depending on the hour of the day;
and the ratio is dependent on the wavelength, due to the direct
and diffuse light proportions. The intensity of the shadows
is also influenced by the spatial neighborhood. In [18], an
exponential behavior of the ratio shadow/sunlit as a function of
the wavelength was observed in the visible range of Quickbird.
With these observations in mind, we encoded invariance to
shadows by generating VSVs from exponentially modulated
versions of the SVs, i.e., xvsv(λ) = xsv(λ) exp(−γλ), where
γ is a parameter that controls the impact of the spectral decay
of the shadow/sunlit ratio as a function of the wavelength λ.
We should note that only those SVs belonging to the class
“shadow” were used to generate VSVs, resembling the invariant
SVM in [14].
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Fig. 7. True-color composite (RGB) used in the third experiment of patch-
based classification and shadow invariance. Classification maps of the ex-
periments using standard SVM and VSVM with 50 training pixels. Results
are shown in parentheses in the form of (mean± standard deviation of κ in
20 realizations).

Numerical results and classification maps are reported in
Fig. 7. Again, the VSVM leads to more accurate results than the
standard SVM in this experiment. Essentially, we observe about
+5% gain in κ and OA (not shown), and slightly more stable
results for different realizations, even with a reduced number of
examples. Looking at the classification maps in Fig. 7, it is how-
ever observed that encoding shadow invariance reports some
improvements, particularly noticeable on the bridge and a more
homogeneous classification on flat areas (see crossroads in the
center of the image). The obtained numerical and visual results
confirm the benefits of the invariance encoding in general.
Nevertheless, we should note here that a statistical comparison
between the solutions with a McNemar’s test [19] did not show
significant differences (|z| < 1.96). The marginal homogeneity
assessed by McNemar’s test (and many other statistical tests)
assume independence between the pairs, which might not nec-
essarily hold in this particular case: The SVs used in SVM are
also included in the VSVM. We also used Wilcoxon’s rank
sum tests to assessed statistical differences, and results were
similar to those obtained with the McNemar’s test. Moreover,
encoding shadow invariance in such a simple way may report
some undesired effects in other classes, particularly on the class
“vegetation” in this case. This effect and ways to impose cross
invariances in SVMs will be studied in the future.

IV. CONCLUSION

We introduced a simple method to include data invariances
in SVM remote sensing image classification. We illustrated the
performance in relevant remote sensing problems: Invariance
to rotations and reflections of image patches for contextual
classification, object scale invariances, and including prior
knowledge on the way shadows affect the acquired images.
Good classification accuracy was obtained in general when few
labeled samples were available for training the models. The
obtained classifiers revealed in some cases enhanced sparsity
and robustness properties. In the near future, we will study the
impact of mislabeled samples on the VSVM. Other invariances,
from translation to illumination and canopy spectral invari-
ances, and other kernel methods, from regression to clustering
methods, could be explored in the future. In all cases, the inclu-

sion of physical-based models may lead to improved invariant
classifiers. We consider that the promising results obtained here
open a new and interesting research line.

ACKNOWLEDGMENT

The authors would like to thank Prof. P. Gamba from
the University of Pavia, Italy for kindly providing both the
ROSIS data, and Dr. D. Tuia from the Ecole Polytechnique
Fédérale de Lausanne, Swizerland, for kindly providing the
Brutisellen data.

REFERENCES

[1] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspec-
tral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 6, pp. 1351–1362, Jun. 2005.

[2] G. Camps-Valls and L. Bruzzone, Kernel Methods for Remote Sensing
Data Analysis. Hoboken, NJ: Wiley, 2009.

[3] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Marí, J. Vila-Francés, and
J. Calpe-Maravilla, “Composite kernels for hyperspectral image classi-
fication,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97,
Jan. 2006.

[4] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Marí, J. Luis Rojo-Álvarez,
and M. Martínez-Ramón, “Kernel-based framework for multi-temporal
and multi-source remote sensing data classification and change detec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822–1835,
Jun. 2008.

[5] M. Brown, H. G. Lewis, and S. R. Gunn, “Linear spectral mixture models
and support vector machines for remote sensing,” IEEE Trans. Geosci.
Remote Sens., vol. 38, no. 5, pp. 2346–2360, Sep. 2000.

[6] L. Wang and X. Jia, “Integration of soft and hard classifications using
extended support vector machines,” IEEE Geosci. Remote Sens. Lett.,
vol. 6, no. 3, pp. 543–547, Jul. 2009.

[7] L. Bruzzone, M. Chi, and M. Marconcini, “A novel transductive SVM
for semisupervised classification of remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 44, no. 11, pp. 3363–3373, Nov. 2006.

[8] L. Gómez-Chova, G. Camps-Valls, L. Bruzzone, and J. Calpe-Maravilla,
“Mean map kernel methods for semisupervised cloud classification,”
IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 207–220,
Jan. 2010.

[9] D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Muñoz-Marí, “A survey
of active learning algorithms for supervised remote sensing image classi-
fications,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606–617,
Jun. 2011.

[10] B. Schölkopf, C. Burges, and V. Vapnik, “Incorporating invariances in
support vector learning machines,” in Proc. ICANN, vol. 1112, Lecture
Notes in Computer Science, 1996, pp. 47–52.

[11] D. DeCoste and B. Schölkopf, “Training invariant support vector ma-
chines,” Mach. Learn., vol. 46, no. 1–3, pp. 161–190, 2002.

[12] O. Chapelle and B. Schölkopf, “Incorporating invariances in nonlinear
support vector machines,” in NIPS. Cambridge, MA: MIT Press, 2002,
pp. 609–616.

[13] C. J. Walder and B. C. Lovell, “Homogenized virtual support vector
machines,” in Proc. DICTA, Dec. 2005, pp. 57–63.

[14] P. K. Shivaswamy and T. Jebara, “Permutation invariant SVMs,” in Proc.
23rd ICML, 2006, pp. 817–824.

[15] B. Schölkopf and A. Smola, Learning With Kernels—Support Vector
Machines, Regularization, Optimization and Beyond. Cambridge, MA:
MIT Press, 2002.

[16] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27, Apr. 2011.

[17] G. D. Finlayson, S. D. Hordley, C. Lu, and M. S. Drew, “On the removal of
shadows from images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,
no. 1, pp. 59–68, Jan. 2006.

[18] F. Yamazaki, W. Liu, and M. Takasaki, “Characteristics of shadow and
removal of its effects for remote sensing imagery,” in Proc. IEEE Geosci.
Remote Sens. Symp., Jul. 2009, vol. 4, pp. IV-426–IV-429.

[19] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153–157, Jun. 1947.


