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ABSTRACT

Principal Component Analysis (PCA) has been widely used
for manifold description and dimensionality reduction. Per-
formance of PCA is however hampered when data exhibits
nonlinear feature relations. In this work, we propose a new
framework for manifold learning based on the use of a se-
quence of Principal Polynomials that capture the eventually
nonlinear nature of the data. The proposed Principal Poly-
nomial Analysis (PPA) is shown to generalize PCA. Unlike
recently proposed nonlinear methods (e.g. spectral/kernel
methods and projection pursuit techniques, neural networks),
PPA features are easily interpretable and the method leads to
a fully invertible transform, which is a desirable property to
evaluate performance in dimensionality reduction. Successful
performance of the proposed PPA is illustrated in dimension-
ality reduction, in compact representation of non-Gaussian
image textures, and multispectral image classification.

Index Terms— Principal Polynomial Analysis, Manifold
Learning, Dimensionality Reduction, Classification, Coding.

1. INTRODUCTION

Principal Component Analysis (PCA) can be considered an
optimal method for dimensionality reduction in mean square
error (MSE) sense only if the conditional mean in each PCA
component is constant along the considered dimension. We
will refer to this as the conditional mean independence as-
sumption. Figure 1 illustrates this situation.

Unfortunately, this symmetry requirement does not ap-
ply in general, as many datasets live in non-Gaussian and/or
curved manifolds. For those data manifolds lacking the re-
quired symmetry, nonlinear modifications of PCA would be
more appropriate: the residual nonlinear dependence after
PCA should be removed.

In recent years, a wide number of nonlinear dimension-
ality reduction methods has been presented (see [1] for a
comprehensive review). Despite the advantages of nonlinear
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methods, such as local [2, 3], spectral [4, 5] and projec-
tion pursuit methods [6, 7], classical PCA is still the most
used dimensionality reduction technique in real applications.
The main reasons for this are that PCA is easily applica-
ble, directly interpretable, and its performance can be simply
evaluated. The above properties, which explain the success
of PCA, are not always present in the new dimensionality
reduction algorithms due to their complex formulations or
strong assumptions. Sophisticated methods lack feature in-
terpretability and simple performance evaluation since these
are intimately related to the invertibility of the learned trans-
formation. For the interpretation of the results, inverting the
solution back to the original domain is always a good option
since one usually understands the input physical units, while
analyzing the results in the transformed domain is more com-
plicated. Regarding evaluation, invertible transforms allow
simple assessment of the reconstruction errors, while indirect
evaluation techniques are needed if the method is not invert-
ible [8]. Here, we present an extension of PCA that (1) shares
the above appealing properties of PCA, and (2) generalizes
PCA by including the ability to obtain nonlinear features,
thus overcoming some of its limitations.

Extension of PCA by generalizing principal components
from straight lines to curves is not new. Related work includes
approaches based on (1) non-analytical principal curves [9–
12], (2) fitting analytic curves [13–15], and (3) implicit meth-
ods based on neural networks and autoencoders [16–18].

The proposed approach has the advantage of providing
a computationally convenient alternative to the approaches
based on Principal Curves and fitting analytical curves, while
preserving the appealing property of making the nonlinear
features explicit. This is also the main advantage over neu-
ral network approaches, whose extracted nonlinear features
are not explicit in the formulation.

Here, we define principal polynomials as a nonlinear gen-
eralization of principal components to overcome the condi-
tional mean independence restriction of PCA, and to provide
a computationally convenient alternative to the previous ap-
proaches. Principal polynomials deform the straight principal
components by minimizing the regression error in the corre-
sponding orthogonal subspaces. This way to put the problem
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Fig. 1. The conditional mean independence restriction. White
axes represent the principal directions identified by PCA in
both datasets. PCA is a good solution in the left diagram
since the dataset has the required symmetry: the conditional
mean in ν2 (zero for centered data) is independent of ν1. On
the contrary, in the right diagram, the conditional mean in ν2
(white circles) is not constant along ν1, so projecting onto ν1
along its orthogonal direction gives rise to large reconstruc-
tion errors.

is convenient since it reduces to the straightforward compu-
tation of a pseudinverse. We propose to use a projection on
a sequence of these polynomials to set a new nonlinear data
representation: the Principal Polynomial Analysis (PPA). By
removing the conditional mean independence restriction, the
proposed PPA can be successfully applied to a wider set of
probability density functions (PDFs) than linear PCA. More-
over, the analytical nature of PPA allows one to explicitly
show that PPA generalizes PCA performance.

The paper is organized as follows. Section 2 formalizes
the direct and inverse PPA transforms, and analytically proves
that PPA generalizes PCA and outperforms it in dimension-
ality reduction. In Section 3, we present results of dimen-
sionality reduction performance on different databases: an il-
lustrative synthetic 3D example, standard databases, a non-
Gaussian image texture reconstruction task and, finally, in a
challenging multispectral image segmentation problem. Sec-
tion 4 concludes the paper.

2. PRINCIPAL POLYNOMIAL ANALYSIS (PPA)

This section introduces Principal Polynomial Analysis (PPA)
and demonstrates that PPA generalizes PCA thus achieving
better data representations.

2.1. Principal Component Analysis (PCA)

PCA can be seen as a sequential algorithm that obtains an
ordered series of directions maximizing the variance of the
projected data. In the p-th step of the sequence, the data still
to be analyzed are represented by two components: (a) the
projection on the maximum variance direction, and (b) the re-
maining residual in the subspace orthogonal to the p-th prin-

cipal component. In the (p+1)-th step the same procedure is
applied again on the (reduced dimensionality) data still to be
described, i.e. the residuals.

Given a d-dimensional centered random variable x0 ∈
Rd×1, the p-th Principal Component is the direction repre-
sented by the unit norm vector, νp, given by,

νp = argmax
ν
{E[(ν>xp−1)2]}, (1)

where ν ∈ R(d−p+1)×1 is the set of possible unit norm vec-
tors and xp−1 is the projected variable in the subspace orthog-
onal to νp−1 (the previous Principal Component). Let V p⊥ be
a matrix whose rows contain d− p orthonormal vectors, also
orthogonal to νp. According to this, xp = V p⊥ · xp−1, is the
series of data projected in the subspace orthogonal to the vec-
tors νp (the residual still to be explained at p-th step).

Since any vector xp−1 may be written as a linear combi-
nation of νp and the vectors in the projection matrix V p⊥, max-
imizing the variance of ν>xp−1 is equivalent to minimizing
the energy in the subspace spanned by V p⊥, i.e.,

V p⊥ = argmin
V p
{E[‖V p · xp−1‖22]}, (2)

where V p is the set of possible projection matrices fulfilling
V p · V p> = I . In the p-th step, the data to be explained are
approximated as:

x̂PCA
p−1 = (ν>p xp−1)νp = αpνp (3)

Therefore, the dimensionality reduction error is the expected
value of the norm of the distortions εPCA

p = xp−1 − x̂PCA
p−1

that live in the subspace orthogonal to νp:

E[‖εPCA
p ‖22] = E[‖V p⊥ · xp−1‖

2
2] (4)

PCA is the optimal linear solution in MSE terms since (2)
implies minimizing the dimensionality reduction error in (4).

2.2. Principal Polynomial Analysis (PPA)

For centered data sets fulfilling the conditional mean inde-
pendence requirement, the conditional mean at every point in
the νp direction is zero, i.e., the p-th principal direction goes
through the aligned means in the subspace spanned by V p⊥,
giving rise to a small truncation error (Fig. 1, left). However,
in general, the conditional mean mp = E[V p⊥ · xp−1|αp] 6= 0
(see Fig. 1, right). In this case, it is better to project xp−1 onto
a curve that goes through these conditional means mp.

In order to do so, PPA modifies the PCA approximation
in (3) by using the estimation of the conditional mean:

x̂PPA
p−1 = (ν>p xp−1)νp + m̂p (5)

Therefore, the distortions due to the truncation are εPPA
p =

V p⊥ · xp−1 − m̂p, and the truncation error is:

E[‖εPPA
p ‖22] = E[‖V p⊥ · xp−1 − m̂p‖22] (6)



The basic idea in (5) is that once we have selected the princi-
pal component, the expected value on the other dimensions is
corrected by an estimation of the mean m̂p. This estimation
is made by using the projection of the data on the selected
principal component.

In our case, m̂p is estimated as a combination of func-
tions of the projected data on the selected principal compo-
nent, ν>p xp−1. Here, we use a polynomial of degree γ, i.e.
given n samples, matrix M̂p containing the m̂p vectors is

M̂p = βp V>nγ , (7)

where Vnγ contains the n Vandermonde vectors of ν>p xp−1.
The polynomial coefficients, βp, are estimated by canonical
linear regression. Equivalently, the vector βp is the one that
minimizes the prediction error,

βp = argmin
β
{E[‖V p⊥ · xp−1 − m̂p(β)‖22]}. (8)

2.2.1. PPA generalizes PCA

Given the formulation above, PPA generalizes PCA due to
the freedom introduced by m̂p(β). Basically, the principal
components are replaced by eventually curved γ-order poly-
nomials, thus removing the conditional mean independence
restriction. Such flexibility implies that the truncation error in
PPA, Eq. (6), is always lower or equal to the corresponding er-
ror in PCA, Eq. (4). The latter occurs in two particular cases:
(1) in data fulfilling the conditional mean independence re-
striction, the actual conditional mean and hence the estima-
tion m̂p will be zero, so Eq. (6) reduces to Eq. (4); and (2)
when using first-order polynomials, the fitted curve at the p-th
step coincides with the p-th principal component so the esti-
mated means are all equal to zero. In both cases, PPA reduces
to linear PCA. The order of the polynomial may lead to either
oversmoothed or overfitted solutions. The impact of different
orders in the solution will not be treated in this paper.

2.2.2. PPA is invertible

PPA applies these two steps sequentially: (i) compute the first
Principal Component of the data still to be explained, and (ii)
deform that straight line by forcing that the corresponding
polynomial goes through the conditional mean, by project-
ing in the orthogonal subspace and removing the conditional
mean:

αp = ν>p xp−1

xp = V p⊥ · xp−1 − m̂p(βp) (9)

where p = 1, . . . , d−1, and αd = xd−1. The inverse consists
of undoing the above equations, p = d− 1, . . . , 1:

xp−1 =

νp V p⊥
>

 ·
 αp

xp + m̂p

 (10)

3. EXPERIMENTAL RESULTS

This section presents four experiments: (1) the analysis of
an illustrative curved manifold; (2) dimensionality reduction
of databases of different dimensionality; (3) reconstruction of
non-Gaussian textures; (4) multispectral image classification.
The proposed PPA has only one parameter to be tuned: we
set the polynomial order γ = 3 in all examples to keep an
intuitive regularized solution.

3.1. Experiment 1: toy 3-dimensional curved manifold

Figure 2 illustrates the effect of using PPA and PCA on a syn-
thetic dataset that does not follow the conditional mean inde-
pendence assumption. The considered data set also includes
two nonlinearly separable classes. Note that for different val-
ues of the first principal component, the conditional mean in
the orthogonal subspace is not constant.

Original PCA PPA

Fig. 2. Illustrative 3D synthetic binary example original data
(left), and transformed data onto the PCA and PPA bases
(middle and right). The dashed (solid) line in the input space
corresponds to the first feature of PCA (PPA).

Table 1 shows that, as expected, the reconstruction error is
smaller in PPA than in PCA when reducing the dimensional-
ity (error). Additionally, PPA gives rise to a more compact en-
ergy distribution among coefficients (variance), which is con-
sistent with improved reconstruction errors. More interest-
ingly, PPA leads to an unfolded data representation where co-
efficients are more independent than in the PCA domain. We
measured the remaining redundancy by estimating the mutual
information among all the features with the method proposed
in [7]: while in PCA mutual information is 3.32 bits, in PPA
is 0.17 bits. Finally, given the fact that few PPA components
capture a bigger fraction of the variance, and that PPA unfolds
the original clusters (cf. Figure 2), one may think that the new
representation is suitable for simple classification strategies.
The accuracy results obtained by Linear Discriminant Analy-
sis (LDA) confirm this intuition: two PPA features are enough
to outperform the best PCA result that uses all the features.



Table 1. Reconstruction error rate (with respect to the first
principal component MSE), variance, and canonical LDA
classification accuracy estimated with the Cohen’s κ statis-
tic using different number of features extracted with PCA and
PPA (in parenthesis).

Features

1 2 3
Error 100 (30) 31.54 (12.31) -
Variance 0.35 (0.35) 0.08 (0.02) 0.010 (0.005)
κ 0 (0) 0.12 (0.99) 0 (0.99)

3.2. Experiment 2: dimensionality reduction

Here we compare PCA and PPA in terms of the reconstruc-
tion error after truncation to a number of n ≤ d features
for three standard databases: 1) MNIST handwrtitting dig-
its database [19], from which we extracted 1000 images
randomly from the 625-dimensional database; 2) Iris [20]
dataset, containing 50 samples of 4 different attributes mea-
sured on flowers; and 3) Wine [21], consisting of 178 samples
of wines, each one described with 12 different attributes. All
of them are available in [22]. The MSE reduction (with re-
gard to the MSE in the first principal component) are shown
in Table 2. In all cases, using PPA leads to a consistent de-
crease of the reconstruction error with regard to PCA for the
same truncation dimension.

Table 2. MSE rate for different dimension truncation on the
MNIST, IRIS and Wine datasets (top to bottom).

Dim 1 4 7 10 13 16 19 22 25 28
PCA 100 76.1 61.9 51.8 44.6 38.8 34.2 30.3 26.9 24.2
PPA 95.8 69.3 56.1 47.5 41.2 36.0 31.5 28.1 25.0 22.3

Dim 1 2 3
PCA 100 29.6 6.9
PPA 57.8 24.7 5.8

Dim 1 2 3 4 5 6 7 8 9 10
PCA 100 43.4 15.8 8.0 3.6 2.0 1.2 0.7 0.3 0.1
PPA 92.7 38.5 14.2 7.1 3.1 1.6 1.0 0.6 0.3 0.1

3.3. Experiment 3: image texture reconstruction

In this experiment, we consider text images to deal with
strongly non-Gaussian spatial patterns. Figure 3 (left panel)
shows the manifolds corresponding to the class of images
shown in Fig. 4. Neighboring pixels were arranged in 5-
dimensional vectors. The non-Gaussian nature of the mani-
fold comes from the fact that most pixels in these images are

either black or white, giving rise to clusters at the edges of an
hypercube in the input (pixel) domain.

The lattices in Fig. 3 are defined by uniformly sampling
the plane given by the first two features in PCA and PPA. The
distribution of these lattices in the pixel domain (using the
corresponding inverse, cf. Fig. 3[left]) represents how closely
the features follow the actual data distribution. Moreover, the
data variance not captured by each lattice suggests how big
the reconstruction error will be if only these dimensions are
preserved. The lattices also illustrate the distortions in the
event of vector quantization. It is apparent that PPA is a more
appropriate representation than PCA for these non-Gaussian
patterns. This is consistent with the improved variance com-
paction in the PPA case (right panel). Estimates of mutual
information also give rise to the same conclusion: 5.54 bits in
PCA and 4.79 bits in PPA. As a result, the amplitude of the
related data is smaller in the PPA domain (compare the pat-
tern above and below the lattices in Figs. 3 middle and right).
Figure 4 shows the reconstructed textures: beyond the ob-
served decrease in MSE for all dimensions, the reconstructed
textures are smoother.

3.4. Experiment 4: multispectral image classification

In this experiment, we focus on the segmentation of remotely-
sensed multispectral images. Nowadays, sensors mounted on
satellite or airborne platforms may acquire the reflected en-
ergy by the Earth with high spatial detail and in several wave-
lengths or spectral channels. This allows the detection and
classification of the pixels in the scene. The obtained clas-
sification maps are then used for management, policy mak-
ing and monitoring. In multispectral imagery, the pixels are
multidimensional (RGB and near-infrared bands), and thus
compacting the information with PCA is a common proce-
dure [23].

We here use a multispectral 4-band (visible and infrared)
Zürich image (Fig. 5, top left). Five classes of interest have
been labeled by human photointerpretation (27669 pixels in
Fig. 5, top right). For analysis, the 4-dimensional spectral
signatures corresponding to these pixels have been randomly
split into two sets: 600 pixels for training and 1400 for test.
Classification of each pixel is done using LDA after trans-
forming the spectra with PCA, LLE [4], and the proposed
PPA. Ten realizations with varying training sets have been
done, to assess the generalization capabilities of the classifier
trained on the transformed data.

PPA outperforms the rest of the methods for any number
of features not only in variance compaction (Fig. 5, bottom
right), but also in classification accuracy (Fig. 5, bottom left).
Variance and mutual information measures are not meaning-
ful in the LLE case since it yields non-invertible trasnforms.
The slight improvement of PPA in variance terms with re-
gard to PCA is due to the fact that, in this real dataset, the
conditional mean dependence is not as big as in the synthetic



Original domain PCA PPA Variance

1 2 3 4 5

103

104

Feature

V
ar

ia
nc

e

PCA
PPA

Fig. 3. Text images in the pixel, the PCA and the PPA representations. Left panel shows the image samples (in cyan) in
the pixel domain (left), in the PCA domain (middle) and in the PPA domain (right). Illustrative lattices (in blue and red) are
transformed from PCA and PPA domains back to the pixel domain. Right panel shows the variance of the features in the
considered representations.
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Fig. 4. Reconstructed text images after dimensionality reduc-
tion with PCA (top) and PPA (bottom). From left to right the
number of features increases from 1 to 4 (bold superscripts).

example of Section 2. Similar results are also obtained in
mutual information estimates: while PCA achieves 2.68 bits,
PPA gives 2.66 bits.

4. CONCLUSIONS

PCA linear features are optimal for dimensionality reduction
only when data display a very particular symmetry. The pro-
posed PPA is a nonlinear generalization of PCA that relaxes
the required symmetry. We analytically proved that PPA out-
performs PCA in truncation error and in energy compaction.
Results on different data sets illustrate the ability of PPA on
redundancy reduction. Moreover, examples on multispectral
image classification and non-Gaussian image texture coding
showed the usefulness of PPA.

As most recently proposed techniques, it allows to de-
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Fig. 5. Multispectral results. Composite RGB image (top
left). Ground truth classification map (top right). Cohen’s κ
statistic (bottom left). Variance of the features in the trans-
formed domains (bottom right).

scribe nonlinear data, but it also offers all the appealing prop-
erties that made linear PCA successful: the proposed trans-
form is invertible, it allows easily to compute out of sample
prediction without recurring to approximated methods and
also returns a hierarchically layered prediction. The proce-
dure does not depend on the target dimension: similarly to
PCA, the dimensionality of the reduced feature set can be de-
cided a-posteriori, for example using the variance of extracted
features. Future work is tied to the analysis of the robustness
of the method, and the comparison to other manifold learning
methods.
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