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Abstract. Here, the standard V1 cortex model optimized to reproduce
image distortion psychophysics is shown to have nice statistical proper-
ties, e.g. approximate factorization of the PDF of natural images. These
results confirm the efficient encoding hypothesis that aims to explain the
organization of biological sensors by information theory arguments.

1 Introduction

Barlow (Barlow, 1961) suggested that functional properties of biological vision
sensors should be matched to the signal statistics faced by these sensors. The
standard approach to confirm the plausibility of such hypothesis goes from image
statistics to perception: e.g. predicting the shape of the linear receptive fields (Ol-
shausen and Field, 1996) and the non-linear behavior in V1 (Schwartz and Si-
moncelli, 2001; Malo and Gutiérrez, 2006), by using image statistics, efficient
encoding arguments and no physiological or psychophysical information. Nowa-
days, there is a productive debate in Computational Neuroscience about the
generality of the original efficient encoding hypothesis, or the strict applicability
of redundancy reduction arguments (Barlow, 2001; Simoncelli, 2003).

In this work we show that an alternative confirmation of the matching be-
tween biological vision systems and image statistics may be obtained by following
the opposite direction: i.e. from perception to image statistics. Here we show that
psychophysically fitted divisive normalization has appealing statistical properties
(e.g. approximate factorization of the PDF of natural images and redundancy
reduction) when no statistical information is used in the model.

The structure of the paper is as follows. In section 2 we review the the stan-
dard non-linear model of the V1 visual cortex and propose a new (indirect)
method to set its parameters. Section 3 analytically shows how the proposed
model may factorize a plausible PDF for natural images. Section 4 empirically
shows how the proposed model achieves component independence and redun-
dancy reduction. Finally, section 5 draws the conclusions of the work.

2 V1 visual cortex model

The image representation considered here is based on the standard psychophys-
ical and physiological model that describes the early visual processing up to
the V1 cortex (Mullen, 1985; Malo, 1997; Heeger, 1992; Watson and Solomon,
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1997). In this model, the input image, x = (x1, · · · , xn), is first analyzed by a set
of wavelet-like linear sensors, Tij , that provide a scale and orientation decom-
position of the image (Watson and Solomon, 1997). The linear sensors have a
frequency dependent linear gain according to the Contrast Sensitivity Function
(CSF), Si, (Mullen, 1985; Malo, 1997). The weighted response of these sensors is
non-linearly transformed according to the Divisive Normalization gain control,
R (Heeger, 1992; Watson and Solomon, 1997):

x T−→ w S−→ w′ R−→ r (1)

In this scheme, the rows of the matrix T contain the receptive fields of V1
neurons, here modeled by an orthogonal 4-scales QMF wavelet transform1. S is
a diagonal matrix containing the linear gains to model the CSF. Finally, R is
the Divisive Normalization response:

R(w′)i = ri = sign(w′i)
|Si · wi|γ

βγ
i +

∑n
k=1 Hik|Sk · wk|γ (2)

where H is a kernel matrix that controls how the responses of neighboring linear
sensors, k, affect the non-linear response of sensor i. Here we use the Gaussian in-
teraction kernel proposed by Watson and Solomon (Watson and Solomon, 1997),
which has been successfully used in block-frequency domains (Malo et al., 2006;
Gutiérrez et al., 2006; Camps et al., 2008). In the wavelet domain the width
of the interaction kernel for spatial, orientation and scale neighbors has to be
found. The resulting kernel is normalized to ensure that

∑
k Hik = 1. In our

implementation of the model we set the profile of the regularizing constants βi

according to the standard deviation of each subband of the wavelet coefficients
of natural images in the selected wavelet representation. This initial guess is
consistent with the interpretation of the values βi as priors of the amplitude of
the coefficients (Schwartz and Simoncelli, 2001). This profile (computed from
100 images of a calibrated image data base2 is further multiplied by a constant
to be fitted to the psychophysical data.

The above V1 image representation induces a subjective image distortion
metric. Given an input image, x, and its distorted version, x′ = x + ∆x, the
model provides two response vectors, r, and r′ = r+∆r. The perceived distortion
has been proposed to be the Euclidean norm of the difference vector (Teo and
Heeger, 1994), but non-quadratic pooling norms have also been reported (Watson
and Solomon, 1997; Watson and Malo, 2002).

The color version of the V1 response model involves the same kind of spa-
tial transforms described above applied on the image channels in an opponent
color space (Martinez-Uriegas, 1997). According to the well known differences in
frequency sensitivity in the opponent channels (Mullen, 1985), we will allow for
different matrices S in each channel. We will assume the same behavior for the
other spatial transforms since the non-linear behavior of the chromatic channels
is similar to the achromatic non-linearities (Martinez-Uriegas, 1997).

The natural way to set the parameters of the model is by fitting threshold
psychophysics or physiological recordings (Heeger, 1992; Watson and Solomon,
1997). This low-level approach is not straightforward because the experimental
1 http://www.cns.nyu.edu/ lcv/software.php
2 http://tabby.vision.mcgill.ca
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literature is often interested in a subset of the parameters, and a variety of exper-
imental settings is used. As a result, it is not easy to unify the wide range of data
into a common computational framework. Alternative (theoretical) approaches
involve using image statistics and the efficient encoding hypothesis (Olshausen
and Field, 1996; Schwartz and Simoncelli, 2001; Malo and Gutiérrez, 2006), but
that is not the right thing to do since we want to include no statistical informa-
tion in the model.

Instead, in this work we used an empirical but indirect approach: we set
the parameters of the model to reproduce experimental (but higher-level) vi-
sual results such as image quality assessment as in (Watson and Malo, 2002).
In particular, we optimized the Divisive Normalization metric to maximize the
correlation with the subjective ratings of a subset of the LIVE Quality Assess-
ment Database3. The range of the parameter space was set according to an
initial guess obtained from threshold psychophysics (Mullen, 1985; Watson and
Solomon, 1997; Malo, 1997) and previous use of similar models in image pro-
cessing applications (Malo et al., 2006; Gutiérrez et al., 2006; Camps et al.,
2008).

Figure 1 shows the optimal values for the linear gains S, the regularization
constants βγ and the interaction kernel H. The particular structure of the inter-
action kernel comes from the particular arrangement of wavelet coefficients used
in the transform. The optimal value for the excitation and inhibition exponent
was γ = 1.7. The optimal values for the spatial and frequency summation expo-
nents were qs = 3.5 and qf = 2, where the summation is made first over space
and then over the frequency dimensions.

3 PDF factorization through V1 Divisive Normalization

In this section we assume a plausible joint PDF model for natural images in
the wavelet domain and we show that this PDF is approximately factorized
by a divisive normalization transform, given that some conditions apply. The
analytical results shown here predict quite characteristic marginal PDFs in the
transformed domain. In section 4 we will empirically check the predictions made
here by applying the model proposed above to a set of natural images.

3 http://live.ece.utexas.edu/research/quality/
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Fig. 1. Linear gains S (left), regularization constants βγ (center), and kernel H (right).
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3.1 Image model

It is widely known that natural images display a quite characteristic behavior in
the wavelet domain: on the one hand, they show heavy-tailed marginal PDFs,
Pw′i(w

′
i) (see Fig. 2), and, on the other hand, the variance of one particular

coefficient is related to the variance of the neighbors. This quite evident by
looking at the so called bow-tie plot: the conditional probability of a coefficient
given the values of some of its neighbors, P (w′i|w′j), normalized by the maximum
of the function for each value of w′j (see Fig. 2). These facts have been used to
propose leptokurtotic functions to model the marginal PDFs (Hyvärinen, 1999)
and models of the conditional PDFs in which the variance of one coefficient
depends on the variance of the neighbors (Schwartz and Simoncelli, 2001).

Inspired on these conditional models, we propose the following joint PDF (for
the N-dimensional vectors w′), in which, each element of the diagonal covariance,
Σii, depends on the neighbors:

Pw′(w′) = N (0, Σ(w′)) =
1

(2π)N/2|Σ(w′)|1/2
e−

1
2 w′T ·Σ(w′)−1·w′ (3)

where,
Σii(w′) = (βγ

i +
∑

j

Hij · |w′j |γ)
2
γ (4)

Note that this joint PDF is not Gaussian because the variance of each coeffi-
cient depends on the neighbors according to the kernel in eq. 4. Therefore, the
coefficients of the wavelet transform are not independent since the joint PDF,
Pw′(w′), cannot be factorized by its marginal PDFs, Pw′i(w

′
i).

A 2D toy example using using the above joint PDF illustrates its suitability
to capture the reported marginal and conditional behavior of wavelet coefficients:
see the predictions shown in Fig. 2).

3.2 V1 normalized components are approximately independent

Here we compute the PDF of the natural images in the divisive normalized
representation assuming (1) the above image model, and (2) the match between
the denominator of the normalization and the covariance of the image model.
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Fig. 2. Left: empirical behavior of wavelet coefficients of natural images (marginal PDF
and conditional PDF). Right: simulated behavior according to the proposed model. In
this toy experiment we considered two coefficients of the second scale of w′ (computed
for 8000 images). We used Si = 0.14, βi = 0.4, Hii = 0.7 and Hij = 0.3 and γ = 1.7,
according to the psychophysically fitted model.
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We will use the fact that given the PDF of a random variable, w′, and some
transform, r = R(w′), the PDF of the transformed variable can be computed
by (Stark and Woods, 1994),

Pr(r) = Pw′(R−1(r)) · |∇rR−1|
Considering that the divisive normalization (in vector notation) is just: r =
sign(w′) Σ(w′)−

γ
2 · |w′|γ , where | · |γ is an element-by-element exponentiation,

the inverse, R−1, can be obtained from one of these (equivalent) expressions
(Malo et al., 2006):

|w′|γ = (I −D|r|H)−1 ·Dβγ · |r| (5)

w′ = sign(r)Σ(w′)
1
2 · |r| 1γ (6)

where Dv are diagonal matrices with the vector v in the diagonal. Plugging w′

into the image model and using |w′|γ to compute the Jacobian of the inverse,
we have,

Pw′(R−1(r)) =
1

(2π)N/2 |Σ(w′)|1/2
e−

1
2 (r1/γ)T ·I·(r1/γ)

|∇rR−1| = det
(

1
γ

Σ(w)1/2 ·D
|r|

1
γ
−1 ·

(
I + Dβ−1 ·H · (I −D|r|H)−1 ·Dβ−1 ·D|r|︸ ︷︷ ︸

))

Assuming that the matrix in the brace is negligible4:

|∇rR−1| ∼ det(Σ(w′))1/2
N∏

i=1

1
γ

r
1
γ−1

i (7)

it follows that the joint PDF of the normalized signal is just the product of N
functions that depend solely on ri:

Pr(r) =
N∏

i=1

1
γ(2π)1/2

r
1
γ−1

i e−
r
2/γ
i
2 =

N∏

i=1

Pri(ri) (8)

i.e., we have factorized the joint PDF into its marginal PDFs.
Even though factorization of the PDF does not depend on γ, it determines

the shape of the marginal PDFs (see Fig. 3). However, note that different values
of γ would imply a better (or worse) match between the denominator of the
normalization and the covariance of the image model.

4 Results

This section assesses the component independence performance of the psychophys-
ically fitted V1 image representation (i.e. the validity of Eq. 3) by (1) Mutual
4 This approximation was validated by (1) computing the average value of the matrix

on a set of 8000 normalized images (results not shown here), and by (2) the agreement
between predictions and empirical behavior shown in Section 4.
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Fig. 3. Family of marginal PDFs of the normalized coefficients ri as a function of γ.

Information (MI) measures, and (2) by analyzing the conditional probabilities
of the transformed coefficients. To do so, 8000 image patches, x, of size 72× 72
were considered and transformed to the linear wavelet domain, w, and to the
non-linear V1 representation, r. For the sake of illustration, the results for two
values of the exponent γ are used in the divisive normalization: the psychophys-
ically optimal value γ = 1.7, and γ = 0.5 due to the (predicted) characteristic
shape of the marginal PDFs in that case (see Fig. 3).

4.1 Mutual Information measures

Table 1 shows the MI results (in bits) for pairs of coefficients in w and r. 120000
pairs of coefficients were used in each estimation. Two kinds of MI estimators
were used: (1) direct computation of MI, which involves 2D histogram estimation
(Cover and Tomas, 1991), and (2) estimation of MI by PCA-based Gaussianiza-
tion (GPCA) (Laparra et al., 2009), which only involves univariate histogram
estimations.

These results show that the wavelet representation removes about 92% of the
redundancy in the spatial domain, and divisive normalization further reduces
about 69% of the remaining redundancy. This suggests that one of the goals of
the psychophysical V1 image representation is redundancy reduction.

w r(0.5) r(1.7)

Intraband (scale = 2) 0.29 (0.27) 0.17 (0.17) 0.16 (0.15)
Intraband (scale = 3) 0.24 (0.22) 0.08 (0.09) 0.09 (0.09)

Inter-scale, scales = (1,2) 0.17 (0.17) 0.10 (0.11) 0.08 (0.08)
Inter-scale, scales = (2,3) 0.17 (0.15) 0.04 (0.04) 0.04 (0.04)
Inter-scale, scales = (3,4) 0.09 (0.07) 0.01 (0.01) 0.01 (0.01)

Inter-orientation (H-V), scale = 2 0.10 (0.08) 0.01 (0.01) 0.01 (0.01)
Inter-orientation (H-V), scale = 3 0.08 (0.06) 0.01 (0.01) 0.01 (0.01)
Inter-orientation (H-D), scale = 2 0.16 (0.15) 0.04 (0.04) 0.03 (0.03)
Inter-orientation (H-D), scale = 3 0.15 (0.14) 0.01 (0.01) 0.02 (0.02)

Table 1. MI measures in bits. GPCA MI estimations are shown in parenthesis. Just
for reference, the MI among luminance values in the spatial domain is 2.12 (2.14) bits.
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4.2 Marginal and conditional PDFs

Figure 4 shows the predicted and the experimental marginal PDFs in the normal-
ized domain and the experimental conditional PDFs. The resemblance among
theory and experiments confirms the theoretical results in section 3. Note also
that the PDF of one coefficient given the neighbor is more independent of the
neighbor value than in the wavelet domain (Fig. 2). This is particularly true in
the case of using the optimal value γ = 1.7, thus indicating the match of the
physchophysically optimal vision model and image statistics. Note also that the
agreement between the marginal PDFs and the theoretical prediction is better
for the optimal exponent.

5 Conclusions

Here we showed that the standard V1 cortex model optimized to reproduce im-
age quality psychophysics increases the independence of the image coefficients
obtained by linear ICA (wavelet-like) filters. Theoretical results (confirmed by
experiments) show that the V1 model approximately factorizes a plausible joint
PDF in the wavelet domain: bow-tie dependencies are almost removed and re-
dundancy is substantially reduced.

The results presented here confirm the efficient encoding hypothesis in a novel
direction: from perception to image statistics.

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

r1.7

p(r1.7)

p(
r1.

7 )

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

r(1.7)

p(r
i
1.7)

p(
r i1.

7 )

r1.7
i

r1.
7

j

p(r1.7
j

|r1.7
i

)

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.002

0.004

0.006

0.008

0.01

0.012

r
i
0.5

p(r
i
0.5)

p(
r i0.

5 )

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.002

0.004

0.006

0.008

0.01

0.012

r(0.5)

p(r
i
0.5)

p(
r i0.

5 )

  r0.5
i

  r
0.

5
j

p(  r0.5
j

|  r0.5
i

)

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 4. Experimental marginal PDF (left), theoretical prediction (center), and bow-
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