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ABSTRACT

In this paper, we introduce a non-linear and multidimensional
generalization of the Structural SIMilarity index (SSIM)
for quality assessment of hyperspectral images. We exploit
well-known properties of functional analysis and estimate
means, variances, and correlation in proper reproducing
kernel Hilbert spaces (rtkHs). The so-called Kernel SSIM
(KSSIM) is shown to generalize the conventional SSIM and
the recently introduced Q4 and Q,, metrics for remote sens-
ing applications, and naturally works with multidimensional
images. For the experimentation, we built a database of dif-
ferent distortions commonly encountered in remote sensing
images. KSSIM shows an improved agreement with classi-
fication results compared to standard similarity metrics, and
high consistency for different noise sources and levels.

Index Terms— Image quality assessment, SSIM, metric,
kernel methods.

1. INTRODUCTION

Assessing similarity of an image to a known reference is an
active research field [1]. Many applications, such as denois-
ing, coding or multiresolution fusion, need objective mea-
sures to evaluate image quality [2]. In general, the standard
root-mean-square-error (RMSE) is not appropriate [3], and
perceptually meaningful distortion metrics, such as the Struc-
tural SIMilarity Index (SSIM) [4] or Visual Information Fi-
delity (VIF) [5], have become new standards.

The previous measures, however, are designed to fulfill
perceptual criteria of similarity and are only applicable to one
band (grayscale) images. For color images or video evalua-
tion, SSIM or VIF are applied in each channel and the results
are averaged. This, however, does not consider the correlation
between channels and frames, respectively, and ad hoc proce-
dures have been introduced in the literature. When confronted
with multi- and hyperspectral images, a common choice is the
relative dimensionless global error in synthesis (ERGAS) [6],
which is a normalized version of RMSE designed to calculate
the spectral distortion. The Q4 score presented in [7] extends
SSIM to the 4-bands case typically encountered in quality as-
sessment of pansharpened multispectral images. In all cases,
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however, the metrics are not general enough to deal with im-
ages of arbitrarily large dimension and nonlinear changes and
distortions.

Kernel methods provide a solid theoretical framework to
estimate multidimensional data similarities [8]. However,
few attention has been payed in the literature to assess image
quality with kernels. The Hilbert-Schmidt Independence Cri-
terion (HSIC) is a kernel estimate of statistical dependence
between multidimensional random variables, which was ex-
ploited in [9] to assess the quality of multiresolution image
fusion products. Good results were in general obtained, but
the measure was too sensitive to parameter tuning and coping
with different distortions simultaneously was difficult. In
this paper, we present a kernel version of the familiar SSIM
for assessing hyperspectral image quality. The Kernel SSIM
(KSSIM) is shown to generalize the conventional SSIM and
the Q4 [7] and Q,, [10] metrics recently introduced for remote
sensing applications.

2. STRUCTURAL SIMILARITY IN REPRODUCING
KERNEL HILBERT SPACES

The SSIM between two N-sample random variables, x and
y, takes into account three different terms, that stand for [u-
minance, contrast and structure: SSIM := [(x,y)® c(x,y)”
s(x,y)". Computing these terms essentially boils down to
estimate the (local) sample means (fix, fty), variances (02,
orf,) and correlation (0xy) terms. A common strategy sets
a=p=vy=1,so0:
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where ¢; = 0.01D, co = 0.03D, and D stands for the dy-
namic range of the signal. SSIM is typically computed lo-
cally following a sliding-window approach. Hereafter, we
omit patch indices for the sake of clarity.

2.1. Kernel SSIM (KSSIM)

Kernelization of SSIM requires the estimation of the means,
variances and correlation in reproducing kernel Hilbert
spaces. This will permit the KSSIM to work with higher-
order statistical dependencies and to deal with hyperspectral
images of any dimension.



Let us first define two feature mappings to correspond-
ing Hilbert spaces ¢ : x; — ¢(x;) € Hand ¢ : y; —
¥ (y;) € F, and the three following reproducing kernel func-
tions k(xi,x;) = o(x:) " d(x;), Uyi, ¥5) = ¥(yi) " (y;),
and m(x;,y;) = ¢(x;)"¢¥(y;). Note that the last kernel
m(-,-) exists only for mappings to spaces of the same di-
mensionality. We then define the KSSIM as a function of the
means ({3, (4r), variances (072_[, 03_—) and correlation oy F in
the corresponding Hilbert spaces:
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The means of finite samples in feature space are defined
trivially as gy = % Zfil o(x;) and pr = % Zfil U(yi)-
Hence the associated scalar products of the means are given
by ps i = 7z Tr(KL), prpur = 7z Tr(LI), and iy pr =
?Tr(MI). 1Similarly, the Variances1 are given bly 03 =
~+Tr(K) — 52 Tr(KI) and 0% = +Tr(L) — 5z Tr(LI).
The correlation is finally given by oy 7 = +Tr(M) —
+=Tr(MI). The operation Tr(-) computes the trace and I is a
unit matrix, i.e. a (N X N) matrix of ones. Therefore, all the
quantities involved in KSSIM can be estimated without even
knowing explicitly the mappings, but just their dot products
computed implicitly with kernel functions. In kernel terms,
the KSSIM simply reduces to:
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where K, M and L are the kernel matrices obtained using the
corresponding kernel functions k, m and .

2.2. Properties of KSSIM
We next show some properties of the introduced KSSIM.
Property 1 Kernel SSIM generalizes SSIM and Q,, in rkHs.

Proof Note that SSIM is obtained as a particular case of
KSSIM if we use linear kernel functions, k(x;,X;) = x;r X;,
Wyi,y;) = ¥iyj W(xi,y;) = %Xy, and set Cy = e,
Cy = c9 and C3 = c3. Kernel matrices then become
K=XX",L =YY",and M = XY, whose traces
are equal to those of the corresponding (cross-)covariances
in input space. Then, one trivially obtains (1). The same
proof holds for showing the KSSIM generalizes Q,,, but now
computing the kernels with d-band images.

Property 2 KSSIM is bounded.

Proof The Mercer’s theorem states that for any continuous
symmetric kernel function k£ with positive integral opera-
tor, one can expand k(x, z) in a uniformly convergent series,
k:()océ z) = Zf; ¢i(x)¢;(z) and, as a consequence, the series
>ooo ll#i|* is convergent. Therefore the KSSIM is bounded.

The values of an RBF kernel K for example are upper
bounded to 1, so the maximum value of Tr(K) is N, and
the maximum value of Tr(KI) is N2. Setting C; < 1, i =
1,...,3 the maximum value of KSSIM is 1.

Property 3 KSSIM has a unique maximum

Proof The function KSSIM(x,y) = 1 iff x = y. This can
be trivially shown by considering that the kernel functions are
symmetric positive definite measures and kernel m only exists
if ¢ and 1) actually map to the same rkHs.

Property 4 KSSIM is invariant under isometries for shift-
invariant kernels.

Proof When shift-invariant kernels are used, such as the
Gaussian or Laplacian kernels, M (x,y) = M(x —y), the
function KSSIM(x,y) is invariant. If V is an orthogonal
or unitary matrix, then M(Vx,Vy) = M(V(x —y)) =
M'(x —y), where M’ is a p.d. kernel. For example, the
RBF kernel M (Vx,Vy) = exp(—||Vx — Vyl|?/(20?))
= M'(x — y), where kernel M’ is an RBF kernel with
o' = a/|[V].

3. EXPERIMENTAL RESULTS

This section is devoted to the analysis of the capabilities of
KSSIM in the evaluation of hyperspectral images under dif-
ferent distortion sources and levels.

3.1. Implementation

Note that the proposed method involves three different ker-
nels (K, L and M) whose parameter must be tuned. In our
experiments we used the Radial Basis Function (RBF) kernel,
k(zi,2;) = exp (—||z; — 2;|*/20?), 0 € RT because of its
robustness and stability. We used the same o for the three ker-
nels. Kernel parameters are adjusted to maximize an objec-
tive or subjective criterion of image quality. This constitutes
a difficult unsupervised learning problem unless a database of
opinion scores is available, which is not the case for hyper-
spectral images. In our experiments, we will tune the o in an
indirect way: maximizing the correlation of KSSIM with the
classification accuracy of support vector machines (SVM) in
images distorted with different noise sources and amounts.

The calculation of KSSIM is very easy as it only involves
matrix multiplications (cf. Eq. (3)). However, as for any
kernel method, a clear computational problem is observed:
KSSIM deals with larger matrices than in the conventional
SSIM which need to be computed many times (one per pixel
in the image). We here propose a simple subsampling strat-
egy. Now the question is how many patches are needed to
achieve a consistent estimate. This will obviously depend on
the image resolution, number of bands, and noise source and
amount.

Figure 1 shows the alignment between KSSIM and the
accuracy of classification results of Sec. 3.2 for different o
values and subsampling rates. It is clear that performance is
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Fig. 1. Agreement between KSSIM and the classification accuracy
as a function of ¢ parameter in the RBF kernels used using different
subsampling rates.

not greatly affected by strong subsampling, and that shows a
smooth variation with the sigma value. Therefore, for com-
putational convenience, we will evaluate KSSIM for 1 out of
121 pixels.

3.2. KSSIM assessment in hyperspectral images

A fundamental problem in presenting a multidimensional
quality measure has to do with the lack of databases of hyper-
spectral images with associated quality scores. To circumvent
this problem, we generated such a database with common
distortions in hyperspectral images: we used 4 MERIS mul-
tispectral images and included 6 types of distortions with 5
different amounts. All scenes correspond to MERIS full spa-
tial resolution (FR) images with a pixel size of 260 m across
track and 290 m along track and an image size of 321 x 489
pixels in scenes over Spain, Finland and France.

We included the following distortions: 1) flickering pix-
els, 2) lost pixels distortion, 3) optical image aberration, 4)
vertical striping, 5) additive white Gaussian noise (AWGN)
and 6) spatial-spectral distortion produced by image compres-
sion. Distortions 1)-5) are related to the acquisition process,
while distortion 6) is related to the transmission noise which
was here modeled as a simple PCA truncation error. Hence,
we generated a database of 4 x 5 x 6 = 120 synthetically
distorted MERIS images. See Fig. 2 for illustrative zoomed
patches with the considered distortions, along with the orig-
inal image and a classification (cloud) mask used for evalua-
tion.

We evaluated the performance of the proposed metric
and other common measures in the literature in the generated
database of distorted hyperspectral images. Essentially, we
measure the alignment of the different metrics with the classi-
fication accuracy (estimated with the Cohen’s kappa statistic)
of a support vector machine (SVM) with an RBF kernel
trained for cloud classification in every scene. The cloud
masking ground truth for classification has been obtained
from [11]. Using classification as an indirect measure of im-
age quality has been extensively used in the literature [10,12].
We used 30 images to select the parameter ¢ in the KSSIM

Original Cloud mask Flickering Lost pix.

Opt. aberration Vertical Strip. AWGN PCA coding

Fig. 2. Examples of the hyperspectral images in the database. Just
one band is shown for illustration proposes.

kernels, and tuned the SVM parameters (C, o) through cross-
validation on a trained set formed by 500 randomly picked
pixels.

Figure 3 shows the scatter plots and the Pearson’s cor-
relation coefficient of different approaches: proposed KSSIM
(both with RBF and linear kernel), Q4 [7], averaged SSIM [4],
and ERGAS [7]. Several conclusions can be obtained. First,
it is observed that the KSSIM outperforms the rest of the met-
rics. Second, very poor results are obtained with Q4, which
uses only four bands and is clearly not enough to tackle distor-
tions introduced in all channels. Third, ERGAS also reveals a
skewed scatter plot, mainly in non-Gaussian noise sources as
expected. Finally, KSSIM with a linear kernel performs simi-
lar to the averaged SSIM (in overall Pearson correlation). Fi-
nally, note that, even though KSSIM was optimized to treat all
kinds of distortions simultaneously, results are also consistent
throughout different levels and types of distortions. Table 1
shows the correlation coefficient for each distortion where a
consistent gain is obtained by KSSIM except for the case of
Gaussian noise. The sensitivity of KSSIM to particular noise
sources will be studied in the future.

Table 1. Pearson’s correlation per distortion.

Distortion [SSIM KSSIM
Flickering 0.75  0.84
Lost pixels 0.80  0.86

Opt. aberration | 0.05  0.11
Vertical striping | 0.73  0.80

AWGN 095 0.89
PCA comp. 0.47 0.81
Total [ 0.79  0.84

3.3. Robustness to noise in high dimensionality images

KSSIM can handle multidimensional datasets in a natural
way as it only involves stacking the features before com-
puting the kernels. We use KSSIM to assess the similarity
between the classical 220-bands AVIRIS image taken over
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Fig. 3. Scatter plots of SVM Kappa statistic versus different model predictions.

Indiana’s Indian Pine and its corrupted version by adding dif-
ferent amounts of Gaussian noise. Figure 4 shows the results
obtained by the standard SSIM (applied band-by-band and
then averaged) and the KSSIM (just one multidimensional
computation is needed), along with their corresponding dis-
tortion maps for the range of 0 to 20 dB. The KSSIM values
image match the qualitative visual inspection, while the aver-
aged SSIM saturates for low-noise regimes.
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Fig. 4. Example of similarity assessment between a hyperspectral
image and its noisy versions. Band 10 (@478.57 nm) is plotted for
illustration purposes. From top row to bottom rows: noisy version,
SSIM and KSSIM similarity maps (between O -black- and 1 -white)
and values for the whole image under different amounts of Gaussian
noise.

4. CONCLUSIONS

This paper presented a kernel-based generalization of the fa-
miliar SSIM in order to estimate similarity between multidi-
mensional images. The method has very good theoretical and
practical properties. We illustrated the performance in hyper-
spectral images and in synthetic products. Ongoing work is
related to enlarge the hyperspectral image database for im-
proved evaluation, and the quality assessment of pansharp-
ened products and video sequences.
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