
UNIVERSITAT DE VALÈNCIA
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1.8 Organización de la Tesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 From Neuroscience to Statistics 25
2.1 Statistical Properties of Divisive Normalization Model . . . . . . . . . . . . . 25

2.1.1 The Divisive Normalization V1 model . . . . . . . . . . . . . . . . . . 27



2.1.2 PDF factorization through V1 Divisive Normalization . . . . . . . . . 29
Image model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
V1 normalized components are approximately independent . . . . . 31

2.1.3 Statistical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Marginal and conditional PDFs . . . . . . . . . . . . . . . . . . . . . . 34
Mutual Information results . . . . . . . . . . . . . . . . . . . . . . . . 34
Measuring Mutual Information . . . . . . . . . . . . . . . . . . . . . . 40

2.1.4 Reproducing low-level and high-level psychophysics . . . . . . . . . 40
2.2 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 From Neuroscience to Applications 46
3.1 Divisive Normalization model as image quality metric . . . . . . . . . . . . 46

3.1.1 The Divisive Normalization model as metric . . . . . . . . . . . . . . 48
3.1.2 Setting model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Geometry of the Divisive Normalized domain . . . . . . . . . . . . . 51
3.1.4 Relations to other error visibility metrics . . . . . . . . . . . . . . . . . 53
3.1.5 Metric results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Accuracy of a metric: correlations and calibration functions . 55
Performance of the metrics . . . . . . . . . . . . . . . . . . . . 56

3.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 From Statistics to Neuroscience 68
4.1 Color vision mechanisms from Sequential Principal Curves Analysis . . . . 68

4.1.1 Facts on color PDFs and color mechanisms behavior . . . . . . . . . 71
Non-uniformities and shifts in color manifolds . . . . . . . . . . . . . 71
Nonlinear behavior of achromatic and opponent chromatic mecha-

nisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Adaptation and corresponding pairs . . . . . . . . . . . . . . . . . . . 74

4.1.2 Sensor design by learning nonlinear data representations . . . . . . . 76
Nonlinear sensory systems design: infomax and error minimization

principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Particular solutions for the response transform . . . . . . . . . . . . . 78
Our proposal for the response transform . . . . . . . . . . . . . . . . 79

4.1.3 Sequential Principal Curves Analysis (SPCA) with local metric . . . 80
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Unfolding along Principal Curves: the cumulants perspective . . . . 82
Direct transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Inverse transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Infomax and error minimization through SPCA . . . . . . . . . . . . 84



4.1.4 Simulation of color psychophysics using SPCA . . . . . . . . . . . . . 86
Database of calibrated natural color images . . . . . . . . . . . . . . . 86
Procedure for the simulation of color mechanisms behavior using

SPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Simulation of nonlinearities . . . . . . . . . . . . . . . . . 87
Simulation of adaptation . . . . . . . . . . . . . . . . . . . 89

4.1.5 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . 91
Parameters for drawing a principal curve . . . . . . . . . . . . . . . . 92
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Complex Independent Component Analysis of Images . . . . . . . . . . . . 99
4.2.1 Complex Independent Component Analysis and its limitations . . . 99

Simulations with natural images . . . . . . . . . . . . . . . . . . . . . 101
Checking model assumptions . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.2 Extension of complex ICA . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Ability of Linear Transforms in Removing Dependencies . . . . . . . . . . . 106

4.3.1 Measuring dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 106
Testing the entropy estimator . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Measuring dependencies on natural textures . . . . . . . . . . . . . . 107
Experiment 1: Adaptive linear transforms . . . . . . . . . . . . . . . . 108
Experiment 2: Fixed linear transforms . . . . . . . . . . . . . . . . . . 108

4.4 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 From Statistics to Applications 114
5.1 Denoising with Kernels Based on Image Relations . . . . . . . . . . . . . . . 114

5.1.1 Features of natural images in the Steerable Wavelet Domain . . . . . 117
Intraband versus interband signal relations in Orthogonal Wavelets 117
Natural images relations in Steerable Wavelets . . . . . . . . . . . . . 118
Signal relations are specific to the signal . . . . . . . . . . . . . . . . . 119
Intraband signal relations dominate over interscale or orientation . . 119
Intraband relations are strongly oriented . . . . . . . . . . . . . . . . 119

5.1.2 Restoring Wavelet relations with SVR . . . . . . . . . . . . . . . . . . 120
Capabilities of SVR for signal estimation . . . . . . . . . . . . . . . . 121

5.1.3 General constraints on SVR parameter space in image denoising . . 123
5.1.4 Procedure for automatic SVR selection . . . . . . . . . . . . . . . . . . 125

Summary of the proposed denoising method . . . . . . . . . . . . . . 126
5.1.5 Behavior of the proposed method . . . . . . . . . . . . . . . . . . . . 126

Impact of SVR parameters in image denoising . . . . . . . . . . . . . 127
Validation of the automatic procedure for SVR selection . . . . . . . 128



5.1.6 Denoising experiments and discussion . . . . . . . . . . . . . . . . . 129
Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Experiment 1. Additive Gaussian noise . . . . . . . . . . . . . . . . . 131
Experiment 2. Coding noise: JPEG and JPEG2000 . . . . . . . . . . . 132
Experiment 3. Acquisition noise: Vertical Striping and IRIS . . . . . . 134

5.1.7 Analysis of the residuals . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.2 Iterative Gaussianization Framework . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2.2 Rotation-based Iterative Gaussianization (RBIG) . . . . . . . . . . . . 147

Iterative Gaussianization based on arbitrary rotations . . . . . . . . . 147
Invertibility and differentiation . . . . . . . . . . . . . . . . . . . . . . 147
Convergence properties . . . . . . . . . . . . . . . . . . . . . . . . . . 149
On the rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.3 Relation to other methods . . . . . . . . . . . . . . . . . . . . . . . . . 152
Iterative Projection Pursuit Gaussianization . . . . . . . . . . . . . . . 152
Direct (single-iteration) Gaussianization algorithms . . . . . . . . . . 153
Relation to Support Vector Domain Description . . . . . . . . . . . . 155
Relation to Deep Neural Networks . . . . . . . . . . . . . . . . . . . . 155

5.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Method convergence and early-stopping . . . . . . . . . . . . . . . . 156
Multi-information estimation . . . . . . . . . . . . . . . . . . . . . . . 158
Data synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
One-class classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Image denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Conclusions 168

Conclusiones (Castellano) 170



Summary

This thesis summarizes different works developed in the framework of analyzing the re-
lation between image processing, statistics and neuroscience. These relations are analyzed
from the efficient coding hypothesis point of view (H. Barlow [1961] and Attneave [1954]).
This hypothesis suggests that the human visual system has been adapted during the ages
in order to process the visual information in an efficient way, i.e. taking advantage of the
statistical regularities of the visual world. Under this classical idea different works in dif-
ferent directions are developed.

One direction is analyzing the statistical properties of a revisited, extended and fitted
classical model of the human visual system. No statistical information is used in the
model. Results show that this model obtains a representation with good statistical proper-
ties, which is a new evidence in favor of the efficient coding hypothesis. From the statistical
point of view, different methods are proposed and optimized using natural images. The
models obtained using these statistical methods show similar behavior to the human vi-
sual system, both in the spatial and color dimensions, which are also new evidences of
the efficient coding hypothesis. Applications in image processing are an important part of
the Thesis. Statistical and neuroscience based methods are employed to develop a wide
set of image processing algorithms. Results of these methods in denoising, classification,
synthesis and quality assessment are comparable to some of the most successful current
methods.



2



Resumen

Esta Tesis resume diferentes trabajos realizados bajo el marco de el análisis de las rela-
ciones entre el procesado de imágenes, la estadı́stica y la neurociencia. Estas relaciones
son analizadas desde el punto de vista de la hipótesis de la codificación eficiente (H. Barlow
[1961] y Attneave [1954]). Dicha hipótesis sugiere que el sistema visual humano se ha ido
adaptando durante los años para poder procesar la información visual de forma eficiente,
es decir, para aprovechar las regularidades estadı́sticas del mundo visual. Con esta idea
de fondo se han realizado trabajos en diferentes direcciones.

Una dirección ha sido analizar las propiedades estadı́sticas del sistema visual humano.
Para ello se ha usado un modelo clásico el cual se ha revisado, extendido y ajustado.
Nótese que el modelo no hace uso de la estadı́stica en ningún momento. Los resultados
muestran que este modelo obtiene una representación con buenas propiedades estadı́sticas
para las imágenes naturales, lo cual es una nueva evidencia en favor de la hipótesis de la cod-
ificación eficiente. Desde el punto de vista estadı́stico, se han propuesto diferentes métodos
y se han optimizado utilizando datos de imágenes naturales. Estos modelos estadı́sticos
aprenden un comportamiento similar al del sistema visual humano, tanto en las dimen-
siones espaciales como en las dimensiones de color. Esto también supone una evidencia
en favor de la hipótesis de la codificación eficiente. Una parte importante de la Tesis es el
empleo de estos métodos, tanto los estadı́sticos como los basados en neurociencia, para
desarrollar distintas aplicaciones de procesado de imágenes. Por ejemplo, en aplicaciones
de restauración, clasificación, sı́ntesis y calidad de imagen se obtienen resultados similares
a algunos de los mejores métodos actuales.
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Chapter 1

Introduction

THIS Thesis is a compendium of works that, from different points of view, focuses on
studying the relation between statistics and perception in the Human Visual System

(HVS). This relation makes both statistics and perception a suitable criteria for developing
image processing applications. This idea is synthesized in Fig. 1.1.

This relation has constituted a fruitful field in order to understand how the brain is
designed,that is, to answer the fundamental question of “What is the goal of the brain?” The
brain mechanisms have been adapted during the ages in order to process natural data. Even
rejecting the plausible evolution hypothesis [Darwin, 1859] one should agree with the next
two facts. On the one hand, the brain has to work under some restrictions (size, energy,
time...), and on the other hand, it processes a huge amount of information efficiently. Both
things together suggest that the brain has evolved in order to be as optimal as possible.

Following this idea, H. Barlow [1961] and Attneave [1954] stated the so-called redun-
dancy reduction hypothesis, opening a new direction for understanding how the brain works.
This hypothesis interprets the optimality of the brain in statistical terms, by looking for a
representation where the redundant information is discarded. This hypothesis has been
modeled during the last decades and renamed as efficient coding hypothesis, see [H. B. Barlow,
2001] for a nice review. Personally, I prefer the second name because it does not make any
assumption about the procedure used by the brain (redundancy reduction) but stems for
the goal followed (optimal coding). Using the idea of representing efficiently the visual
data, this Thesis proposes and analyzes different models and tries to extract information
about the HVS behavior.

Understanding the HVS is a challenging task since it is the human perception mech-
anism that collects and processes most amount of data. Imagine that you are a regular
human that wakes up in the morning to go to work. One may accept that at the early few
seconds, the brain is only performing essential functions. The amount of raw information
collected by the visual system during the first minute is around 5308 terabytes. This rough
estimation comes from assuming 80 photoreceptors/deg within a field of view of 90o ×
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160o, 120 spectral data per photoreceptor (5 nm of resolution in the range of [400-700] nm),
100 images/sec (critical fusion rate about 50Hz), 8 bytes/sample and 2 eyes. Therefore,
the human visual system should be adapted to process this huge amount of information
in order to process the important information only. Note that, if the HVS was not optimized
in order to efficiently process the regularities of the environment, our brain would collapse
within seconds.

Of course, the main question to solve is What does important information mean? In order to
simplify this question, here we only focus in the early stages of the HVS. Therefore, images
will be seen as textures, and no qualitative structure will be taken into account. This point
of view will allow us to ignore the high level information like for instance familiar shapes
(that for sure is used).

In order to avoid processing unnecessary information, the brain should take into ac-
count the statistical regularities of images. Note that, any machine that collects and pro-
cesses data should be constrained in the same way. Taking into account regularities is
necessary because, only if one knows the position of all the particles in the universe and
all the laws governing the interactions between them, one would be able to interpret the
world as a deterministic system, like in Laplace Demon’s [Laplace, 1814]. Therefore, hu-
mans (and any other machine) should interpret the world statistically, taking into account
what is normal to happen, i.e. what are the probabilities of the possible events.

In this direction, information theory [Shannon, 1948] has been used in order to obtain
details about how the brain works. The relation between statistics and information is
straightforward. Intuitively, one can measure the amount of information of an event by
relating it with the inverse of the probability that this event occurs, i.e. the more probable
is an event the less information will give to us. Barlow proposed to use this mathematical
treatment of information as a tool to understand the brain.

Taking all the above things into account, one may think of designing an optimal system
from a statistical point of view, and then exploring its similarity with the brain. A fruitful
framework in computational neuroscience consists on trying to understand how the brain
works by analyzing natural data. Specifically, natural image statistics has been used as a
tool to understand how the HVS processes visual data. This direction goes from statistics
to neuroscience (Fig. 1.1).

Note that an important part of simulating the behavior of the HVS implies to understand
what are the restrictions that the HVS has to deal with, and moreover, understanding
how to implement them mathematically. This makes this issue directly dependent on
accounting for a previous knowledge about the behavior of the HVS.

Reverse engineering may help us to learn the behavior of a system by analyzing its
structure, function and operation. Therefore, taking the brain as case study may help us
to learn how to design optimal systems. We have seen that the brain is able to process
a huge amount of data. Of course, the capacity of collecting and storing data, and the
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Neuroscience Statistics

Applications

Figure 1.1: Road map of this Thesis.

computational capabilities of current computers is bigger than the human brain. However,
the ability of the brain to infer information from data is bigger than any intelligent system
designed by the humans so far. Therefore we can take advantage of having an inference
machine and use reverse engineering in order to learn how to design optimal systems. This
is represented by the arrow that goes from neuroscience to statistics (Fig. 1.1).

Both aspects, the neuroscience point of view and the statistical point of view have direct
consequences when implementing image processing applications. Whether if we want to
solve a task for which humans are prepared (e.g. object classification) or not (e.g. mea-
suring the amount of gamma radiation), having a probabilistic description of the possible
event will help us to select an optimal solution, arrow from statistics to applications in fig-
ure 1.1. Moreover, the HVS is a very good tool in order to assess the result of some image
processing algorithms, arrow from neuroscience to applications in figure 1.1. For instance,
the best way to evaluate the performance of denoising algorithms is by visual inspection.

1.1 Human Visual System as a reference

You do not really understand something unless you can explain it to your grandmother (and she
understands it). This quote (usually attributed to Albert Einstein) could be used in order to
test how much we know about how the brain works. Unfortunately, not everyone has a
grandmother to teach 1. Nowadays, we can change this quote by You do not really under-
stand something unless you can program it in Matlab (and without bugs). Therefore, we might
say that we understand how the HVS works when we have a successful computational

1Pilar Celda and Isabel Marı́n, in memoriam.
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model. This model should agree with the psychophysical and physiological knowledge.
If one would have the (insane) idea of using this knowledge to implement a computa-
tional model, one should face many problems. The main problem is that psychophysical
results make reference to the behavior of the whole system, i.e. humans can not feel when
a single neuron is active. Therefore, these results can be used only to implement a model
of the whole brain. Another problem is the huge amount of diverse measures, in differ-
ent experiments, with different kind of uncertainties. Even if all these things were solved,
one would always be able to find works stating opposite conclusions [Lehrer, 2010]. From
the physiological point of view, gathering measures is even more complicated, and even
much more acquire awake measures (which for studying the HVS would be a quite impor-
tant requirement). These problems (along with the current emphimpossibility of commu-
nication between engineers and psychophysicists/neuro-physiologists) makes the task of
implementing a perfect computational model of the HVS a ’to do work’ for the next gen-
erations.

Nevertheless, a number of people is working towards implementing computational
models of some specific tasks of the brain. Although these models have a lot of limitations,
they are still useful tools in order to check the current knowledge of the brain’s behavior.
Moreover, these models, to a greater or lesser extent, can be checked in efficiency terms
and can be also used to improve some engineering applications. Specifically, the HVS
models can be used in order to figure out facts about the statistics of natural images, and
more importantly, to understand the restrictions and the goals of the HVS.

Chapter 2 analyzes the statistical properties of a computational model of the early stages
of the HVS, which is physiologically inspired and psychophysically fitted. We will show
theoretically and quantitatively how this model obtains a representation of visual data
with good statistically properties.

1.2 Statistics as a tool to optimize a system

From the statistical point of view, designing a system as efficient as the HVS is a challeng-
ing task. When designing a system to infer information from data, decision theory shows
that two ingredients are needed: the probability density function (PDF) of the data and
the cost function associated to the possible events, i.e. Bayes risk [Bernardo & Smith, 1994].
In the attempts to explain statistically the HVS, the cost function is sometimes assumed to
be Euclidean or even ignored. Although looking only to the PDF can give us clues about
the behavior of the HVS, it is worth keeping in mind that the cost function is an important
part of the decision theory. Even neglecting the cost function issue, obtaining a plausible
statistical explanation of the visual system is a challenging task, since there are some open
issues:
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What is the goal of the Human Visual System?

Looking at the HVS as a statistically optimized system raises a lot of questions. The main
one is that it is not yet clear what is the criterion to optimize. Of course, one may think
of maximizing the amount of extracted information from the world, as a desirable goal.
Trends in this direction have tried to find a transformation that obtains a representation
of the data with independent components. Even though this is a desirable representation
for many reasons, it is not a mandatory one in reality. Moreover, sometimes, it is incom-
patible with representing the information with the minimum possible error (which could
be also a desirable situation). Therefore, although independence is a useful way to obtain
a probabilistic description of the data, maybe it is not the goal in the HVS. Anyway, the
HVS should employ some strategy to exploit the statistical regularities of the visual world,
which bring us directly to the next open issues.

What is “the visual world”?

When the idea is to extract information from some measurements, the quality and rep-
resentativity of the acquired data is as important as the method to infer information. In
image statistics, natural data are typically used, which is very often reduced to forest im-
ages 2. Using this kind of images assumes that the HVS has been adapted during many
years and only lately man made things are natural in our environment (e.g. first building
constructions date around 5000 years ago). However, the learning process in the HVS also
involves the first months of life, and one can argue that these months are essential in defin-
ing the final behavior of the HVS. Moreover, the adaptation capacity to each specific scene
should be taken into account. Therefore, we are going to take a loose definition, natural
data is what involves the surroundings of the HVS nowadays.

Other issue is related to what kind of information should contain the visual data prop-
erly to train the system. For instance: Is there any sense in using images with complicated
information (like an human body) in order to train an early-stage vision model? Is it going
to take advantage of the structure? Unrepresentative images will only bias the results of
the model and the expectation of the scientist.

Restrictions of the Human Visual System

There are a lot of restrictions when thinking in the brain as a system. The most obvious is
the size: a limited number of neurons are available. Knowing the exact amount of neurons
dedicated to each specific task in the brain would give us a very useful

2i.e. The van Hateren image database [Hateren & Schaaf, 1998] is the most used in natural image statistics
works
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information3. Another important restrictions are related to the capacity of a single neu-
ron of processing data, the amount of neural noise and the speed of the different neurons.
A lot of research has been done is this sense. However statistical methods rarely try to
include them.

Computational resources

The optimization of the vision system has been carried out during 2700 million years.
This gives an idea of its complexity4. Moreover, optimization of the HVS in specific hu-
man takes months, which implies a huge amount of data, approximately 1.500 million of
natural images with high resolution. In an idyllic case, the statistical methods applied to
extracting HVS features usually employ 60000 images5.

Statistical methods

Advances in computing machines have allowed us to start thinking in methods to ex-
tract statistical information from data that were unimaginable only few years ago, or even
using methods imagined years ago but with unbearable computational complexity. This
implies that, in the last years, many of statistical methods have been developed (and which
is better, some of them are useful). Almost all of the machine learning algorithms have
been applied in image processing problems. A number of them could be interpreted in or-
der to extract information of how the HVS should work. However, none of the statistical
methods applied to reproduce the behavior of the whole brain has been successful yet.

One special mention should be made about the called curse of dimensionality. It estab-
lishes that the amount of data necesary to estimating a PDF increases exponentially with
the data dimension. This problem makes that the data-driven statistical methods always
obtain partial and biased solutions.

In Chapter 4, three different works that involve extracting HVS features from image
data by using statistical methods are presented. In section 4.1 a method to design a sensor
system with tunable metric is proposed and used to explain statistically some abilities of
the color mechanisms. In section 4.2 a maximum likelihood method is used to obtain some
features of the V1 region of the brain. In section 4.3 the ability to explain the shape of the
linear filters using the independence assumption is evaluated over texture images.

3The proportion of neurons in the lateral geniculate nucleus and in V1 is around 1:1000 [H. B. Barlow,
2001], which suggests that the redundancy reduction hypothesis does not apply between these stages.

4This affirmation takes the evolution theory as a fact. However, from a creationist point of view, the HVS
is made in the image and likeness as a superior being, which is also unattainable from a computational point of
view.

5Most of the natural image databases contains less than 10000 images.
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1.3 Neuroscience and statistics for image processing

An indirect way to test HVS based models or statistical image models is by applying them
in image processing problems. Moreover, proposing useful image processing algorithms
could be an endless way to earn money for a scientist, or at least, it can be a way to bring
back to the society the inversion made in him/her. Both concepts analyzed here, perception
and statistics, can be used to inspire image processing algorithms.

On the one hand, a correct HVS model should be useful in man-oriented tasks. For
instance, they could help humans in some tasks, such as image evaluation or object recog-
nition. In section 3.1, the ability of the HVS model is employed by using it to evaluate the
quality of images.

On the other hand, image statistics is also important when designing image processing
algorithms. One only has to take a look at the formulation for the optimal design of the
main image processing tasks: quantization [Gersho & Gray, 1992], denoising [Portilla et al.,
2003], classification [R. Duda & Hart, 1973], information Theory [Cover & Tomas, 1991]
and synthesisBernardo & Smith [1994]. In all of them the PDF of the data is involved.

In fact, most of these tasks are based on the Bayes’risk rule. In section 5.2 we revise the
capability of the projection pursuit method to obtain a description of multidimensional
PDFs. A computationally convenient extension of projection pursuit Friedman & Tukey
[1974] is presented and evaluated in a variety of image processing problems. However, as
also stated above, obtaining a plausible estimation of the true PDF for explaining multidi-
mensional data is complicated. A lot of methods are based on using the statistical regular-
ities of data but without estimating a PDF explicitly. One of the most popular machines
are kernel methods. In section 5.1 we explore the capability of a kernel-based method,
the support vector regression, in taking advantage of statistical image information. This
capability is evaluated by using the model in image denoising.

1.4 Thesis organization

This Thesis is organized following the scheme in Fig. 1.1. The arrows coming out from
neuroscience are based in a formulation of a classical model of the HVS (until V1). The
model is revisited, expanded and psychophysically fitted. Section 2 correponds to the
arrow that arrives to statistics and involves the results obtained in [Malo & Laparra, 2010a].
The statistical properties of this model are analyzed: approximate PDF factorization and
substantial mutual information reduction. Note that no statistical information is used to
fit the V1 model, and hence these results are a complementary evidence in favor of the
efficient coding hypothesis. Another related work is Malo & Laparra [2010b].

Section 3 corresponds to the arrow that arrives to applications and involves the results
obtained in [Laparra, Marı́, & Malo, 2010]. In this work, the computational HVS model is
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applied as a quality image metric. Experiments on a number of databases including a wide
range of distortions show that this model is fairly competitive with newer approaches,
robust, and easy to interpret in linear terms.

The arrows coming out from statistics are basically learning methods applied to explain
aspects of the HVS or to develop image processing tools. Section 4 corresponds to the ar-
row that arrives to neuroscience and involves three works: [Laparra, Jiménez, et al., 2011a],
[Laparra, Gutman, et al., 2011] and [Laparra & Bethge, 2011].

The work [Laparra, Jiménez, et al., 2011a] is reported in section 4.1. In this section a
method to design a set of sensors with two main features is proposed: (i) the shape of the
sensors is able to be non-linear, and (ii) the metric of the sensors is tunable for different
criteria. This method is applied over natural colors obtaining similar behavior as the HVS
color mechanisms: the system is nonlinear and adaptive to changing environments. The
reported adaptation under D65 and A illuminations has been reproduced by gathering
a new database of colorimetrically calibrated images of natural objects under these illumi-
nants, thus overcoming the limitations of existing databases. Moreover, the obtained re-
sults suggest that color perception at this low abstraction level may be guided by an error
minimization strategy [D. MacLeod & Twer, 2003] rather than by the information maxi-
mization principle [Laughlin, 1983]. Another related works are [Laparra & Malo, 2008a,b;
Laparra, Tuia, et al., 2011].

The work [Laparra, Gutman, et al., 2011] is exposed in section 4.2. This section proposes
an extension of the complex Independent Components Analysis (ICA) method applied to
natural images. We show that linear complex-valued ICA learns complex cell proper-
ties from Fourier-transformed natural images, i.e. two Gabor-like filters with quadrature-
phase relationships. Conventional methods for complex-valued ICA assume that the phases
of the output signals follow uniform distributions. We relax this assumption by modeling
the phase information of the output sources in the complex-valued ICA estimation. The
resulting model of phases shows that the distributions are often far from uniform, and the
shapes of the Gabor filters are also changed.

The work [Laparra & Bethge, 2011] is exposed in section 4.3. It consists of measuring the
amount of mutual information reduced by using different linear representations. Results
stress the idea that the shape of the filters in V1 could not be probably dued to an inde-
pendence goal of this stage in the brain. Also, it can be seen that the ability on redundancy
reduction of the linear transforms is very image-dependent and therefore adaptation of
the filters in V1 to different environments is necessary for efficient coding.

The arrow that comes out from statistics and arrives to applications summarizes the
results published in [Laparra, Gutiérrez, et al., 2010] and [Laparra, Camps-Valls, & Malo,
2011]. The first work reveals the ability of kernel methods in including statistical infor-
mation. Specifically we use support vector regression (SVR) in the wavelet domain to
impose natural image features to noisy images. The specific signal relations are obtained
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from mutual information measures computed on a representative image database. Re-
sults under several noise levels and noise sources show that: (1) the proposed method
outperforms conventional wavelet methods that assume coefficient independence, and
(2) it performs similarly to state-of-the-art methods that do explicitly include these rela-
tions. Therefore, the proposed machine learning approach can be seen as a more flexi-
ble alternative to the explicit description of wavelet coefficient relations. Another related
works are [Armengot et al., 2010; Camps-Valls et al., 2011, 2010; Laparra et al., 2008]. The
second work presents a method to estimate multidimensional PDFs, based on projection
pursuit techniques. The general framework consists of the sequential application of a
univariate marginal Gaussianization transform followed by an orthonormal transform.
The proposed procedure looks for differentiable transforms to a known PDF so that the
unknown PDF can be estimated at any point of the original domain. It is shown that,
unlike in projection pursuit, the particular class of rotations used has no special quali-
tative relevance in this context, since looking for interestingness is not a critical issue for
PDF estimation. The differentiability, invertibility and convergence of the method are the-
oretically and experimentally studied. Also, the practical performance is illustrated in
a number of multidimensional problems such as image synthesis, classification, denois-
ing, and multi-information estimation. Another related works are [Laparra et al., 2009;
Laparra et al., 2009].

Chapter 6 summarizes the general conclusions and the lessons learned during this The-
sis.



Introducción (Castellano)

ESTA Tesis es un compendio de trabajos que, desde diferentes puntos de vista, se
centra en una idea: la relación entre estadı́stica y la percepción del Sistema Visual

Humano (de aquı́ en adelante SVH). Dicha relación convierte a ambos, estadı́stica y per-
cepción, en criterios útiles para el desarrollo de aplicaciones en procesado de imágenes.
La idea básica de la Tesis está sintetizada en la figura 1.2.

El estudio de esta relación ha sido un campo muy fructı́fero a la hora de entender cómo
está diseñado el cerebro, es decir, a la hora de responder a la pregunta: ¿Cómo funciona
el cerebro? Los mecanismos del cerebro han sido adaptados a lo largo de los años para
procesar datos naturales. Incluso si ignorásemos la más que plausible teorı́a de la evolución
[Darwin, 1859], los siguientes dos hechos son irrefutables. Por un lado, el cerebro debe
trabajar bajo muchas restricciones (tamaño, energı́a, tiempo...), mientras que por otro lado,
procesa una cantidad ingente de información de forma eficiente. Ambos hechos sugieren
que el cerebro debe haber evolucionado para ser lo más óptimo posible.

A partir de esta idea, H. Barlow [1961] y Attneave [1954] empezaron la llamada hipótesis
de la reducción de redundancia, abriendo una nueva dirección para entender cómo fun-
ciona el cerebro. Esta hipótesis interpreta la optimalidad del cerebro en términos es-
tadı́sticos, buscando una representación donde la información redundante es desechada.
Dicha hipótesis ha sido modelada a lo largo de los últimos años y renombrada cómo
hipótesis de la codificación eficiente, en [H. B. Barlow, 2001] se puede encontrar un buen re-
sumen sobre el tema. Personalmente, yo prefiero el segundo nombre puesto que no hace
ninguna asunción sobre el procedimiento empleado por el cerebro (reducción de redun-
dancias) sino que describe el fin buscado (codificación óptima). Empleando la idea de
representar eficientemente la información visual, esta Tesis propone y analiza diferentes
modelos, e intenta extraer información sobre cuál es el funcionamiento del SVH.

Entender cómo funciona el SVH es una tarea complicada puesto que es el sistema de
percepción humana que recoge y procesa mayor cantidad de información. Pongamos por
ejemplo que el lector es un simple humano que debe levantarse por la mañana e ir a tra-
bajar. Por supuesto, se puede asumir que a primera hora de la mañana el cerebro está
realizando sólo tareas esenciales. La cantidad estimada de información recogida por el
sistema visual durante el primer minuto de la mañana está alrededor de 5.308 Terabytes.
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Esta simple estimación asume 80 fotorreceptores/grado dentro de un campo de visión de
90o × 160o, 120 datos espectrales por fotorreceptor (5 nm de resolución en el rango de [400-
700] nm), 100 imágenes/seg (ratio crı́tico de fusión de 50 Hz), 8 bytes/muestra y 2 ojos.
Por tanto, el SVH debe estar adaptado para procesar esta gran cantidad de información
de forma que emplee sólo la información importante. Nótese que, si el SVH no estuviera
optimizado para procesar eficientemente las regularidades del entorno, nuestro cerebro se
colapsarı́a en segundos.

Por supuesto, la principal cuestión es ¿Qué información es importante? Para simplificar
esta cuestión, en esta Tesis nos centraremos en los primeros estadios del SVH. Por tanto,
las imágenes deberán ser vistas cómo texturas sin hacer caso a estructuras cuálitativas.
Este punto de vista nos permitirá ignorar información de alto nivel (la cuál es ciertamente
usada por nuestro sistema visual) cómo por ejemplo formas familiares.

Para evitar procesar información innecesaria, el cerebro debe tener en cuenta las regu-
laridades estadı́sticas. Nótese que, cuálquier máquina que recoja y procese datos debe estar
diseñada con el mismo criterio. Tener en cuenta las regularidades estadı́sticas es necesario
puesto que, sólo sabiendo la posición de todas las partı́culas del universo y todas las leyes
que gobiernan sus interacciones, serı́amos capaces de ver el mundo cómo un problema
determinista, cómo en el demonio de Laplace [Laplace, 1814]. Por tanto, los humanos
(y cuálquier otra máquina) debe interpretar el mundo de forma estadı́stica, teniendo en
cuenta qué es normal, es decir que probabilidades tienen los posibles eventos.

En este sentido, la teorı́a de la información [Shannon, 1948] ha sido usada para obtener
detalles de cómo funciona el cerebro. Estadı́stica e información están directamente rela-
cionadas. Intuitivamente, se puede medir la cantidad de información que proporciona
un evento relacionándola con la probabilidad inversa de que pase, es decir, cuanto más
probable es un evento menos información nos proporciona. Barlow propuso utilizar este
tratamiento matemático de la información cómo herramienta para entender el cerebro.

Teniendo en cuenta todo lo anterior, se podrı́a pensar en diseñar un sistema que proce-
sase información de forma óptima desde un punto de vista estadı́stico, y explorar sus
similitudes con el cerebro. Este es un campo fructı́fero en neurociencia computacional:
en él se intenta averiguar cómo funciona el cerebro analizando datos extraı́dos de la nat-
uraleza. Especı́ficamente, la estadı́stica de las imágenes naturales ha sido usada cómo her-
ramienta para entender cómo el SVH procesa la información visual. Esta es la dirección
que va de la estadı́stica a la neurociencia en la figura 1.2.

Nótese que una parte importante al tratar de simular el comportamiento del SVH im-
plica entender las restricciones que este tiene, y además, entender cómo implementar-
las matemáticamente. Para ello debemos tener un conocimiento previo sobre el compor-
tamiento del SVH.

La ingenierı́a inversa se basa en aprender el comportamiento de un sistema a través de
analizar su estructura, su funcionamiento y su forma de operar. Por tanto, si tomamos
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Neurociencia Estadística

Aplicaciones

Figure 1.2: Esquema básico de la Tesis.

el cerebro cómo ejemplo podemos aprender cómo diseñar sistemas óptimos. Hemos visto
que el cerebro es capaz de procesar una gran cantidad de información. Por supuesto, la ca-
pacidad de recoger y almacenar datos, y la capacidad de cálculo de los ordenadores hoy en
dı́a es mayor que la de un cerebro humano. Sin embargo, la habilidad que tiene el cerebro
para inferir información a partir de datos es mayor que la de cuálquier sistema inteligente
diseñado por el ser humano. Por tanto, podemos aprovechar que tenemos una máquina de
inferir información y usar la ingenierı́a inversa para poder aprender cómo diseñar sistemas
óptimos. Esta dirección es la flecha que va desde neurociencia a estadı́stica en la figura 1.2.

Ambos aspectos, la neurociencia y la estadı́stica, tienen consecuencias directas a la hora
de implementar aplicaciones de procesado de imágenes. Tanto si queremos resolver tar-
eas para las que los humanos están preparados (tipo reconocimiento de objetos) o no (tipo
medir la cantidad de radiación gamma), tener una descripción probabilı́stica de los posi-
bles eventos nos ayudarı́a a seleccionar la opción óptima, flecha que va desde estadı́stica a
aplicaciones en la figura 1.2. Además, el SVH es una muy buena herramienta para poder
mejorar los resultados de los algoritmos de procesado de imágenes, flecha que va desde
neurociencia a aplicaciones en la figura 1.2. Por ejemplo, la mejor manera de evaluar algorit-
mos de eliminación de ruido es mediante inspección ocular.

1.5 Sistema Visual Humano cómo referencia

No entiendes realmente algo hasta que eres capaz de explicárselo a tu abuela (y lo entiende). Esta
cita (habitualmente atribuida a Albert Einstein) podrı́a ser usada para testear cuánto sabe-
mos sobre el funcionamiento del cerebro. Desgraciadamente, no todo el mundo tiene una
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abuela a la que explicar algo 6. Hoy en dı́a podrı́amos cambiar esta frase por: No entiendes
algo hasta que eres capaz de programarlo en Matlab (y compila sin errores). Por tanto, podremos
decir que entendemos cómo funciona el SVH cuándo tengamos un modelo computacional
que reproduzca su funcionamiento. Dicho modelo deberı́a reproducir los comportamien-
tos observados tanto psicofı́sicos cómo fisiológicos.

Si uno tuviera la (insana) idea de usar el conocimiento actual para implementar un mod-
elo computacional, se encontrarı́a con muchos problemas. El principal serı́a que los resul-
tados psicofı́sicos hacen referencia al comportamiento de todo el sistema al mismo tiempo,
es decir, los humanos no podemos sentir cuándo una neurona está activa. Por tanto, estos
resultados pueden ser solamente usados para implementar un modelo completo del cere-
bro. Otro problema es la gran cantidad de medidas distintas, en diferentes experimentos, y
con diferentes tipos de errores. Incluso si resolviésemos estos problemas, serı́amos capaces
de encontrar estudios que concluyesen comportamientos distintos [Lehrer, 2010]. Desde el
punto de vista fisiológico, tomar medidas es incluso más complicado, y mucho más medi-
das con muestras 7 despiertas (lo cuál serı́a importante para estudiar el comportamiento del
SVH). Estos problemas (junto a la imposibilidad de comunicación entre ingenieros y psi-
cofı́sicos/fisiólogos) dejan para generaciones futuras la tarea de implementar un modelo
computacional perfecto del SVH.

Sin embargo, una gran cantidad de personas está trabajando hoy en dı́a en implementar
modelos computacionales que reproduzcan tareas especı́ficas del cerebro. Aunque estos
modelos tienen una gran cantidad de limitaciones, son herramientas útiles para evaluar
cuál es nuestro conocimiento actual del funcionamiento del cerebro. Además, estos mod-
elos, en mayor o menor medida, pueden ser analizados en términos de eficiencia y ser
utilizados para mejorar aplicaciones de ingenierı́a. Especı́ficamente, los modelos del SVH
pueden ser usados para encontrar nuevas caracterı́sticas estadı́sticas de las imágenes nat-
urales, y más importante, para entender las restricciones y la finalidad del SVH.

El capı́tulo 2 analiza las propiedades estadı́sticas de un modelo computacional de los
primeros estadios del SVH, el cuál está inspirado en datos psicofı́sicos y cuyos parámetros
son ajustados con datos fisiológicos. Se mostrará de forma teórica y de forma práctica
cómo este modelo obtiene una representación de los datos visuales con buenas carac-
terı́sticas estadı́sticas.

1.6 Estadı́stica cómo herramienta para optimizar un sistema

Desde un punto de vista estadı́stico, diseñar un sistema tan eficiente cómo el SVH es una
tarea compleja. La teorı́a de la decisión nos enseña que existen dos ingredientes básicos a
la hora de diseñar un sistema de inferencia: la función de densidad de probabilidad PDF

6En memoria de Pilar Celda e Isabel Marı́n.
7Muestra es un eufemismo para designar a los animales de laboratorio
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(por sus siglas en inglés) de los datos y la función de coste asociada a los posibles even-
tos. Estos son los elementos de la función de riesgo de Bayes [Bernardo & Smith, 1994].
Normalmente, los métodos usados para explicar el SVH de forma estadı́stica asumen una
función de coste Euclı́dea o incluso la ignoran. Aunque una estimación correcta de la PDF
de los datos visuales puede ofrecernos muchos detalles sobre cómo funciona el SVH, es
necesario recordar que la función de coste es una parte fundamental para realizar inferen-
cia. Incluso ignorando la función de coste, obtener una explicación estadı́stica plausible
del SVH es muy complicado, puesto que existen muchos problemas que resolver, cómo
revisamos a continuación.

¿Cuál es el objetivo del Sistema Visual Humano?

Ver el SVH cómo un sistema optimizado estadı́sticamente abre muchas cuestiones. La
principal es que no está claro qué debe optimizar. Por supuesto, maximizar la cantidad
de información extraı́da, podrı́a ser un objetivo deseable. Intentos en esta dirección pre-
tenden encontrar una transformación que obtenga una representación de los datos donde
los componentes de los datos transformados sean independientes entre si. Aunque esta
serı́a una representación deseable por muchas razones, no es un requisito imprescindible.
Además, en algunos casos, este tipo de representaciones no son compatibles con el hecho
de representar la información con el mı́nimo error de reconstrucción (la cuál es también
una situación deseable). Por tanto, aunque la independencia es una opción útil 8 para
obtener una descripción estadı́stica de los datos, es posible que no sea el objetivo del SVH.
De todos modos, el SVH debe emplear una estrategia para explotar las regularidades es-
tadı́sticas del mundo visual. Lo cuál nos lleva directamente a la siguiente cuestión.

¿Qué se pude entender por “mundo visual”?

Cuando se intenta extraer información de medidas, la calidad y representatividad de
los datos adquiridos es igual de importante que el método para inferir información. En
el estudio de la estadı́stica de imágenes normalmente se usan datos naturales, los cuáles
se reducen a imágenes de bosques 9. El uso de este tipo de imágenes asume que el SVH
se ha adaptado durante millones de años de los cuáles sólo últimamente existen cosas no
naturales, hechas por el hombre (por ejemplo las primeras edificaciones datan de hace 5000
años). Sin embargo, el proceso de aprendizaje del SVH se desarrolla durante los primeros
meses de vida, y se podrı́a argumentar que estos meses son esenciales a la hora de definir
el comportamiento final del SVH. Además, la capacidad de adaptación a cada situación
especı́fica también deberı́a ser tenida en cuenta. Por tanto, durante la Tesis tomaremos una
definición amplia de datos naturales: son los que nos envuelven hoy en dı́a.

8En este caso se hace referencia a independencia estadı́stica no espacial.
9La base de datos de imágenes naturales más usada es la de [Hateren & Schaaf, 1998].
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Otro problema relacionado es qué clase de información deben contener los datos vi-
suales utilizados para entrenar los sistemas. Es decir, ¿tiene algún sentido usar imágenes
con información complicada (por ejemplo formas humanas) para entrenar modelos de
las primeras etapas del SVH? ¿Va a utilizar el modelo dicha estructura? Imágenes no
representativas únicamente desviarán los resultados del modelos y las expectativas del
cientı́fico.

Restricciones del Sistema Visual Humano

Cuando se piensa en el cerebro cómo un sistema existe una gran cantidad de restric-
ciones. La más obvia es el tamaño, es decir el limitado número de neuronas. Saber la
cantidad exacta de neuronas dedicadas a cada tarea especı́fica serı́a una información muy
útil 10. Otras restricciones importantes son: la capacidad de procesado de una neurona, la
cantidad de ruido neuronal y la velocidad de las diferentes neuronas. Aunque se ha re-
alizado mucha investigación en este sentido, los métodos estadı́sticos rara vez introducen
estas restricciones.

Recursos computacionales

La optimización del sistema visual se ha realizado durante 2.700 millones de años. Lo
cuál da una idea de su complejidad 11. Además, la optimización especı́fica del SVH en
cada ser humano es realizada durante meses, lo cuál implica una gran cantidad de datos,
alrededor de 1.500 millones de imágenes de alta resolución. En el mejor de los casos,
los métodos estadı́sticos utilizados para extraer caracterı́sticas del SVH son optimizados
utilizando 60.000 imágenes de baja resolución cómo mucho12.

Métodos estad́ısticos

La capacidad de computación de las máquinas actuales nos ha permitido pensar en
métodos estadı́sticos de extracción de información inimaginables hace unos años, o in-
cluso usar métodos imaginados hace años pero con una complejidad computacional inabor-
dable hasta ahora. Esto implica que, en los últimos años, ha aparecido una gran variedad
de métodos estadı́sticos (y lo que es incluso mejor, algunos son útiles). Casi todos los al-
goritmos de máquinas de aprendizaje han sido aplicados en problemas de procesado de
imágenes. Muchos de ellos podrı́an ser interpretados para poder extraer información de

10La proporción de neuronas entre el núcleo geniculado lateral y la corteza visual primaria V1 es de 1:1000
[H. B. Barlow, 2001], lo cuál sugiere que la hipótesis de reducción de redundancia no se aplica a esta etapa.

11Esta afirmación implica la aceptación de la teorı́a de la evolución cómo un hecho. Sin embargo, desde un
punto de vista creacionista el SVH esta diseñado a imagen y semejanza de un ser superior, lo cuál es también
inabordable desde un punto de vista computacional.

12La mayorı́a de las bases de datos contienen menos de 10.000 imágenes de baja resolución.
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cómo deberı́a funcionar el SVH. Sin embargo, ninguno de los métodos estadı́sticos aplica-
dos hasta la fecha es capaz de reproducir completamente el funcionamiento del cerebro.

Dentro de los problemas de los métodos estadı́sticos merece una mención especial la
maldición de la dimensionalidad. Esta establece que la cantidad de datos necesarios para
estimar una PDF plausible incrementa exponencialmente con la dimensión. Este prob-
lema genera que los métodos estadı́sticos dependientes de los datos siempre obtienen una
solución sesgada y parcial.

En el capı́tulo 4, se presentan tres trabajos diferentes que implican extracción de carac-
terı́sticas del SVH usando métodos estadı́sticos. En la sección 4.1, se presenta un método
para diseñar estadı́sticamente un sistema de sensores con distintas funciones objetivo y
se entrena para extraer algunas caracterı́sticas de los mecanismos de color del SVH. En la
sección 4.2 se propone un método basado en máxima verosimilitud para obtener carac-
terı́sticas de el área visual primaria V1 del SVH. En la sección 4.3 se evalúa la habilidad de
los filtros lineales para conseguir una representación donde los componentes de texturas
naturales son independientes.

1.7 Neurociencia y estadı́stica para el procesado de imágenes

Un modo indirecto de testear los modelos tanto estadı́sticos cómo del SVH es aplicando
estos en problemas de procesado de imágenes. Además, proponer algoritmos útiles podrı́a
ser una fuente inagotable de ingresos para los cientı́ficos, o al menos, una manera de de-
volver a la sociedad la inversión hecha en él/ella. Los dos conceptos analizados aquı́, neu-
rociencia y estadı́stica, pueden ser usados para inspirar dichos algoritmos. Por un lado, un
modelo apropiado del SVH podrı́a ser útil en muchas tareas sustituyendo al ser humano,
por ejemplo para el reconocimiento atomático de objetos. En la sección 3.1 la habilidad
de un modelo del SVH es utilizada para evaluar la calidad de imágenes. Por otro lado,
una descripción la estadı́stica de las imágenes es importante en el diseño de de algoritmos
de procesado de imágenes. Esto salta a la vista al observar la formulación para el diseño
óptimo de algunas tareas de procesado de imagen: cuantización [Gersho & Gray, 1992],
limpieza de ruido [Portilla et al., 2003], clasificación [R. Duda & Hart, 1973], teorı́a de la
información [Cover & Tomas, 1991] y sı́ntesis [Bernardo & Smith, 1994]. En todas ellas es
necesaria una estimación de la PDF. De hecho, la mayorı́a de estas tareas están basadas en
la fórmula del riesgo de Bayes. En la sección 5.2 se utilizan dichas fórmulas a través de
la estimación de PDFs multidimensionales estimadas mediante un método de Projection
Pursuit. Concretamente, se presenta una extensión del método que lo hace computacional-
mente útil y se evalúa en diferentes problemas de procesado de imágenes. Sin embargo,
cómo se ha dicho antes, obtener una PDF que explique correctamente datos multidimen-
sionales es complicado. Muchos métodos están basados en el uso de las regularidades
estadı́sticas de los datos pero sin estimar implı́citamente la PDF, unos de los mas popu-
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lares son los métodos kernel. En la sección 5.1 se explora la capacidad de uno de estos
métodos, las Máquinas de Vectores Soporte para Regresión, para utilizar información es-
tadı́stica de las imágenes. Esta capacidad es evaluada usando el método en una aplicación
de limpieza de ruido.

1.8 Organización de la Tesis

La Tesis está organizada siguiendo el esquema de la figura 1.2. Las flechas que salen
de neurociencia están basadas en la formulación del modelo clásico del SVH (hasta V1). El
modelo se revisa, se expande y se ajusta psicofı́sicamente. La flecha que llega a estadı́stica se
desarrolla en el capı́tulo 2 y hace referencia a los resultados obtenidos en [Malo & Laparra,
2010a]. En este trabajo se analizan las propiedades estadı́sticas del modelo: factorización
aproximada de la PDF de las imágenes naturales y reducción sustancial de la información
mutua. Nótese que no se ha utilizado información estadı́stica en el modelo. Estos resulta-
dos son una evidencia complementaria a favor de la hipótesis de la codificación eficiente.

La parte relacionada con la flecha que llega a aplicaciones se expone en el capı́tulo 3, y
hace referencia a los resultados obtenidos en [Laparra, Marı́, & Malo, 2010]. En este tra-
bajo el modelo es aplicado en evaluación de calidad de imágenes. Experimentos sobre un
amplio número de bases de datos que incluyen un amplio rango de distorsiones muestran
que este modelo obtiene resultados similares a las últimas aproximaciones propuestas en
el campo, y es fácil de interpretar en términos lineales.

Las flechas que salen de estadı́stica hacen referencia básicamente a métodos de apren-
dizaje aplicados para, o bien explicar aspectos del SVH o para obtener herramientas de
procesado de imágenes. La flecha que llega a neurociencia se desarrolla en el capı́tulo 4
y hace referencia a tres trabajos: [Laparra, Jiménez, et al., 2011a], [Laparra, Gutman, et al.,
2011] y [Laparra & Bethge, 2011]. El primer trabajo, [Laparra, Jiménez, et al., 2011a], se
desarrolla en la sección 4.1 y propone un método de diseño de sistema de sensores con
dos caracterı́sticas principales: (i) la forma de los sensores puede ser no lineal, y (ii)
la métrica de los sensores pude ser seleccionada con distintos criterios. Este método
se aplica sobre colores de imágenes naturales obteniendo un sistema de sensores con
un comportamiento similar a los mecanismos de color del SVH: el sistema es no lineal
y adaptativo a los cambios en el entorno. La capacidad de adaptación se evalúa uti-
lizando una base de datos creada especialmente para el problema, donde de muestran
distintos tipos de objetos bajo los iluminantes D65 y A, y por tanto se evitan las limita-
ciones de las bases de datos existentes. Los resultados obtenidos sugieren que la per-
cepción de color en este nivel de abstracción está posiblemente determinada por una es-
trategia de minimización del error [D. MacLeod & Twer, 2003] en lugar de una estrate-
gia de maximización de la información [Laughlin, 1983]. Otros trabajos realizados en el
marco de la Tesis relacionados son [Laparra & Malo, 2008a,b; Laparra, Tuia, et al., 2011].
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El segundo trabajo, [Laparra, Gutman, et al., 2011], está expuesto en 4.2 y propone una
extensión del Análisis de Componentes Independientes ICA (por sus siglas en inglés)
Complejo aplicado a imágenes naturales. Se muestra que el ICA complejo lineal aprende
caracterı́sticas de las células complejas del área visual primaria V1, obteniendo filtros de
Gabor en cuadratura de fase. Los métodos convencionales que realizan un ICA complejo
asumen distribuciones de fase uniforme en la señal de salida. En este trabajo se suaviza
esta asunción modelando la distribución de fase de las salidas. El modelo resultante mues-
tra que las distribuciones son muchas veces no uniformes, y las formas de los filtros de
Gabor también cambian. El trabajo [Laparra & Bethge, 2011] se expone en 4.3. En él se
mide la cantidad de reducción de redundancia que se puede obtener mediante diferentes
transformaciones lineales. Los resultados subrayan la idea de que la forma de los filtros
en V1 es posible que no se deba a un objetivo de independencia en esta etapa del cerebro.
También se puede observar que la habilidad de las distintas transformaciones lineales de-
pende de las caracterı́sticas de las imágenes a tratar, y por tanto, la adaptación de estos
filtros a diferentes situaciones es necesaria para una codificación eficiente de los datos.

Los resultados referentes a la flecha que sale de estadı́stica y llega a aplicaciones se pre-
sentan en el capı́tulo 5. Estos resultados han sido publicados en [Laparra, Gutiérrez, et al.,
2010] y [Laparra, Camps-Valls, & Malo, 2011]. El primer trabajo muestra la habilidad de
los métodos kernel para incluir información estadı́stica. Especı́ficamente se realiza re-
gresión utilizando máquinas de vectores soporte en el dominio wavelet para imponer car-
acterı́sticas de imágenes naturales a imágenes ruidosas. Las relaciones son obtenidas de
medidas de información mutua realizadas sobre una base de datos de imágenes represen-
tativa. Los resultados muestran que: (1) el método propuesto mejora métodos conven-
cionales que asumen independencia entre coeficientes y (2) obtiene resultados similares
a métodos bien establecidos. Por tanto, la aproximación propuesta puede ser vista cómo
una alternativa más flexible a las que usan una descripción explı́cita de las relaciones de los
coeficientes wavelets. Otros trabajos realizados en el marco de la Tesis relacionados con
métodos kernel son [Armengot et al., 2010; Camps-Valls et al., 2011, 2010; Laparra et al.,
2008]. El segundo trabajo presenta un método para estimar PDFs multidimensionales,
basado en técnicas projection pursuit Friedman & Tukey [1974]. El marco general consiste
en la aplicación secuencial de transformaciones de Gausianización marginales, seguidas
de una transformación ortonormal. El procedimiento propuesto transforma los datos a
una distribución Gaussiana multidimensional, por tanto el valor de la PDF en el dominio
original puede ser estimado en cuálquier punto. Se muestra que, al contrario que en el pro-
jection pursuit básico, la clase particular de rotaciones usada no tiene un impacto relevante
sobre los resultados cuálitativos en el resultado, puesto que la búsqueda de proyecciones
interesantes no es crı́tica para la estimación de la PDF. La diferenciabilidad, invertibili-
dad y convergencia del método son analizadas teóricamente y experimentalmente. El uso
práctico del método se ilustra en diferentes problemas de procesado de imágenes: sı́ntesis,
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clasificación, limpieza de ruido y estimación de la información mutua. Otros trabajos rela-
cionados, realizados en el marco de la Tesis son [Laparra et al., 2009; Laparra et al., 2009].

El capı́tulo 6 resume las conclusiones generales aprendidas durante el proceso de la
realización de la Tesis.
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Chapter 2

From Neuroscience to Statistics

2.1 Statistical Properties of Divisive Normalization Model

Horace Barlow suggested that functional properties of biological vision sensors should be
matched to the signal statistics faced by these sensors [H. Barlow, 1961]. The conventional
approach to confirm the plausibility of such efficient coding hypothesis goes from image
statistics to perception.

Over the last decades a number of evidences in the above conventional direction have
been reported. First, the shape of the linear receptive fields in V1 was derived using
different network architectures and learning algorithms to optimize different statistical
criteria such as energy minimization, enforcing decorrelation of the outputs or maximiz-
ing the mutual information between input and output: for instance, in [Linsker, 1986;
T. Sanger, 1989; T. D. Sanger, 1990] low-pass filtered random noise was used as a rough
model for natural images to feed the networks, while [Foldiak, 1989] focused on informa-
tion transmission. Then, more attention was devoted to statistical independence beyond
decorrelation. When higher order moments are considered in natural images (using lin-
ear ICA), sets of localized and oriented edge detectors are found [Bell & Sejnowski, 1997;
Hateren & Schaaf, 1998; Olshausen & Field, 1996]. Another linear feature of perception
explained from the spectrum of natural images and maximization of signal to noise ra-
tio is the spatial frequency sensitivity [Van Hateren, 1992, 1993]. Van Hateren works also
explain a global non-linear dependence on the luminance in accordance with Weber’s law.

More recently, attention has shifted from the linear receptive fields and the luminance
non-linearity to the specific non-linearities of V1 cells, namely surround effects and con-
trast adaptation or gain control. In this case, parametric models using divisive normal-
ization [Schwartz & Simoncelli, 2001] or other specific non-linearities [Kayser et al., 2003]
have been fitted using image statistics and efficient coding arguments. Feedback and feed-
forward connections in hierarchical networks have been used to reproduce surround in-
hibition [Rao & Ballard, 1999]. Non-parametric approaches, such as non-linear ICA used
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in [Malo & Gutiérrez, 2006], exemplifies the image statistics to perception way of reasoning
since the right non-linearities directly emerge from the images using a not perceptually
inspired functional form.

However, despite the above evidences, nowadays there is a productive debate about
the generality of the efficient coding hypothesis, or the strict applicability of redundancy
reduction arguments [H. B. Barlow, 2001; E. Simoncelli, 2003]. In this debate, two comple-
mentary lines of research are possible:

• The conventional direction, from image statistics to perception, as described above.

• The reverse direction, i.e. from perception to image statistics. This approach starts from
the response of real neurons at different stages along the visual pathway, or equiva-
lently from the response of a psychophysical model. When such a perception system
is stimulated with natural images it is possible to obtain statistical measurements
about the transmitted signal at different processing stages. The eventually good sta-
tistical behavior of the perceptual responses at a certain stage (e.g. independence)
suggests that the efficient coding hypothesis is correct, since the brain is reducing
the redundancy in the signal along the visual pathway, even though no statistical in-
formation was used in computing these responses (direct recordings or perceptually
transformed signals).

In this work we take the second approach:
We show that the psychophysical divisive normalization masking model has appealing

statistical properties (e.g. factorization of the PDF of natural images) even though no sta-
tistical information is used to fit the model. Therefore, this work can be seen as the reverse
approach version of [Malo & Gutiérrez, 2006; Schwartz & Simoncelli, 2001], thus providing
an original evidence in favor of the efficient coding hypothesis.

The structure is as follows. In section 2.1.1 we review the standard non-linear model
of the V1 visual cortex and propose a new (indirect) psychophysical procedure to set its
parameters. In our case, the model parameters are obtained to predict perceived distor-
tions on a large subjectively rated database. Details on the parameters setting will be latter
presented in chapter 3, section 3.1.2. Chapter 3 also shows that the proposed model works
better than state-of-the-art image quality metrics. Section 2.1.2 analytically shows how
the proposed perception model may factorize a plausible PDF for natural images (which
captures local image dependencies). Section 2.1.3 empirically shows the good statistical
behavior of the perceptual model when confronted to natural images: the non-linear part
of the V1 model strongly reduces the mutual information between coefficients of the previ-
ous linear stage and approximately achieves the predicted component independence, thus
confirming the match between the psychophysical model and the image statistics. Section
2.1.4 shows that the fitted model qualitatively reproduces traditional psychophysics (fre-
quency sensitivity and masking). Finally, section 2.2 draws the conclusions of the work.
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2.1.1 The Divisive Normalization V1 model

The perceptual image representation considered here is based on the standard psychophys-
ical and physiological model that describes the early visual processing up to the V1 cortex.
The linear part of the model describes the shape of the receptive fields as linear edge detec-
tors tuned to different scales [J. Daugman, 1980; A. Watson, 1983, 1987], and accounts for
the threshold contrast sensitivity [Campbell & Robson, 1968; Malo, Pons, Felipe, & Artigas,
1997; Mullen, 1985]. The non-linear part of the model accounts for the non-linearities re-
lated to contrast masking [Carandini & Heeger, 1994; Carandini et al., 1997; Foley, 1994;
Heeger, 1992; A. Watson & Solomon, 1997]. In this model, the input image, x = (x1, · · · , xN),
is first analyzed by a set of wavelet-like linear sensors, Tij, that provide a scale and orien-
tation decomposition of the image [J. Daugman, 1980; A. Watson, 1983, 1987]. The linear
sensors have a frequency dependent linear gain according to the Contrast Sensitivity Func-
tion (CSF), Sii, [Campbell & Robson, 1968; Malo, Pons, Felipe, & Artigas, 1997; Mullen,
1985]. The weighted response of these sensors is non-linearly transformed according to the
divisive normalization gain control, R [Carandini & Heeger, 1994; Carandini et al., 1997;
Foley, 1994; Heeger, 1992; A. Watson & Solomon, 1997]:

x T−→ w S−→ w′ R−→ r (2.1)

In this scheme, the set of local-frequency analyzers (matrix T) and the slopes of their
responses (matrix S) constitute the linear part of the model. The diagonal in S, is described
by a function that depends on the scale, e = 1, 2, 3, 4, (e ranges from fine to coarse), may
depend on the orientation, o = 1, 2, 3, (the o values stand for horizontal, diagonal and
vertical), but it is constant for every spatial position, p:

Si = S(e,o,p) = Ao · exp
(
− (4− e)θ

sθ
o

)
(2.2)

where Ao is the maximum gain for the considered orientation, so controls the bandwidth
of the frequency response, and θ determines the sharpness of the decay with spatial fre-
quency. The rows of the matrix T contain the linear receptive fields of V1 neurons. In this
model we used an orthogonal 4-scales QMF wavelet transform1 [E. Simoncelli & Adelson,
1990] to model such receptive fields. S is a diagonal matrix containing the linear gains
to model the CSF. Finally, R is the divisive normalization response which describes the
non-linear behavior:

R(w′)i = ri = sign(w′i)
|Sii · wi|γ

β
γ
i + ∑n

k=1 Hik|Skk · wk|γ
(2.3)

where H is a kernel matrix that controls how the responses of neighboring linear sensors,
k, affect the non-linear response of sensor i. The constants βi determine the minimum
contrast for significant response saturation.

1http://www.cns.nyu.edu/∼lcv/software.php
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Even though in the original use of Divisive Normalization for image quality purposes
[Teo & Heeger, 1994] the interaction kernel weights every sensor in a certain neighbor-
hood in the same way, here we use the Gaussian interaction kernel proposed by Watson
and Solomon [A. Watson & Solomon, 1997], which has been successfully used in block-
frequency domains [Camps-Valls et al., 2008; Epifanio et al., 2003; Gutiérrez et al., 2006;
Malo et al., 2006], and in steerable wavelet domains [Laparra, Gutiérrez, et al., 2010]. In
the orthogonal wavelet domain this reduces to:

Hik = H(e,o,p),(e′,o′,p′) = K · exp

(
−
(
(e− e′)2

σ2
e

+
(o− o′)2

σ2
o

+
(p− p′)2

σ2
p

))
(2.4)

where (e, o, p) and (e′, o′, p′) refer to the scale, orientation and spatial position meaning
of the wavelet coefficients i and k respectively, and K is a normalization factor to ensure

∑k Hik = 1.
In our implementation of the model we set the profile of the regularizing constants βi ac-

cording to the standard deviation of each subband of the wavelet coefficients of natural im-
ages in the selected wavelet representation. This is consistent with the interpretation of the
values βi as priors of the amplitude of the coefficients [Schwartz & Simoncelli, 2001]. This
profile (computed from 100 images of a calibrated image data base [Olmos & Kingdom,
2004]) is further multiplied by a constant b to be set in the optimization process. Section
3.1.2 gives further details on the parametrization and the optimization process.

The color version of the V1 response model involves the same functional form of spa-
tial transforms described above applied to the image channels in an opponent color space
[Martı́nez-Uriegas, 1997]. In particular, we used the standard YUV (luminance, yellow-
blue, red-green) representation [Pratt, 1991]. According to the well known differences in
frequency sensitivity in the opponent channels [Mullen, 1985], we will allow for different
matrices S in each channel. We will assume the same behavior for the other spatial trans-
forms since the non-linear behavior of the chromatic channels is similar to the achromatic
non-linearities [Martı́nez-Uriegas, 1997].

The natural way to set the parameters of the model is empirical: by fitting low-level per-
ception data, either physiological recordings [Heeger, 1992] or threshold psychophysics
[A. Watson & Solomon, 1997]. This low-level approach is not straightforward because the
experimental literature is often interested in a subset of the parameters, and a variety of
experimental settings is used (e.g. different stimuli, different contrast definitions, etc.). As
a result, it is not easy to unify the wide range of data into a common computational frame-
work. Alternative (theoretical) approaches involve using image statistics and the efficient
coding hypothesis to derive the parameters [Malo & Gutiérrez, 2006; Olshausen & Field,
1996; Schwartz & Simoncelli, 2001]. Obviously, this is not an option in our case since our
aim is assessing the statistical efficiency of a non-statistically optimized model.

Instead, in this work we used an empirical but indirect approach: we set the parameters
of the model to reproduce experimental (but higher-level) visual results such as image
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quality assessment as in [A. Watson & J.Malo, 2002]. In particular, we optimized the V1
model to obtain an image distortion metric that maximizes the correlation with the subjec-
tive ratings of a subset of the LIVE Quality Assessment Database2 [Sheikh, Sabir, & Bovik,
2006]. Section 3.1.2 gives further details on the parametrization and the optimization pro-
cess.

Figure 2.1 shows the optimal values for the linear gains S, the saturation constants, βγ,
and the interaction kernel H. Note that the interaction kernel is (1) convolutional (i.e., each
coefficient is normalized by other nearby coefficients) and (2) for each coefficient, neigh-
bors are taken only from the orientation bands at the same scale. The optimal value for
the excitation and inhibition exponent was γ = 1.7. An implementation of the proposed
model is available on-line3.

Section 2.1.4 shows that the obtained model simultaneously accounts for a wide variety
of suprathreshold distortions as well as for the basic trends of threshold psychophysics
(e.g. frequency sensitivity and contrast masking).

2.1.2 PDF factorization through V1 Divisive Normalization

In this section, we assume a plausible joint PDF model for natural images in the wavelet
domain and we show that this PDF is factorized by a divisive normalization transform,
given that some conditions apply. The analytical results shown here predict quite char-
acteristic marginal PDFs in the transformed domain. In section 2.1.3 we will empirically
check the predictions made here by applying the normalization model proposed above to
a set of natural images.

Image model

It is widely known that natural images display a quite characteristic behavior in the wavelet
domain: on the one hand, they show heavy-tailed marginal PDFs, Pw′i

(w′i) (see Fig. 2.2),
and, on the other hand, the variance of one particular coefficient is related to the vari-
ance of the neighbors. These relations are easy to see by looking at the so called bow-tie
plot: the conditional probability of a coefficient given the values of its neighbors, P(w′j|w′i),
normalized by the maximum of the function for each value of w′i (see Fig. 2.2). In this
representation tilting of the conditional density suggests that the coefficients are corre-
lated, but more importantly, it can be seen that the variance of one coefficient strongly
depends on the variance of the neighbor. These observations on the marginal and con-
ditional PDFs have been used to propose leptokurtotic functions to model the marginal
PDFs [Hyvärinen, 1999b; E. Simoncelli, 1997; E. P. Simoncelli, 1999] and models of the

2http://live.ece.utexas.edu/research/quality/
3http://www.uv.es/vista/vistavalencia/standard V1 model/
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Figure 2.1: Linear gains S (top left), saturation constants βγ (top right), and kernel H
(bottom left). The particular structure of the interaction kernel comes from the particu-

lar arrangement of wavelet coefficients used in the transform [E. Simoncelli & Adelson,

1990]. The bottom right figure shows the individual rows highlighted in different colors

in the kernel figure. Each row corresponds to the particular coefficients in white in the

bottom right figure. The different shades of color represent the interaction intensity

with the spatial and orientation neighbors. In this example we assumed 72× 72 discrete

images sampled at 64 cycles per degree. According to this, the spatial extent of the

subbands is 1.125 degrees.

conditional PDFs in which the variance of one coefficient depends on the variance of the
neighbors [Buccigrossi & Simoncelli, 1999; Schwartz & Simoncelli, 2001].

Inspired on these conditional models, we propose the following joint PDF (for the N-
dimensional vectors w′), in which, each element of the diagonal matrix, Σ, depends on the
neighbors:

Pw′(w′) =
1
Z

1
|Σ(w′)|1/2 e−

1
2 w′T ·Σ(w′)−1·w′ (2.5)
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where
Σii(w′) = (β

γ
i + ∑

j
Hij · |w′j|γ)

2
γ , (2.6)

and Z is simply a normalization constant.
The diagonal matrix Σ(w′) can be thought as playing similar role as the covariance ma-

trix in a regular Gaussian PDF. However, note that Σ(w′) is point dependent (i.e. it is not
a covariance matrix), and even though it is diagonal, it introduces relations among the en-
ergies of neighbor coefficients (see eq. (2.6)). Therefore, this joint PDF is not Gaussian, and
the coefficients of the wavelet transform are not independent since the joint PDF, Pw′(w′),
cannot be factorized by its marginal PDFs, Pw′i

(w′i).
The proposed PDF is inspired by the models used in [Buccigrossi & Simoncelli, 1999;

Schwartz & Simoncelli, 2001] since it tries to describe the relations among neighbor coeffi-
cients in wavelet domains using linear combinations of them. The differences include (1)
the specific exponent, a sort of norm, γ, applied to the coefficients of the wavelet trans-
form used in the linear combination (whether you consider amplitudes, γ = 1, as in
[Buccigrossi & Simoncelli, 1999]; energy, γ = 2, as in [Schwartz & Simoncelli, 2001]; or
some generic γ, here); and (2) the fact that here we are proposing a joint PDF model while
in those cases the model was conditional.

A 2D example using the above joint PDF illustrates its suitability to capture the reported
marginal and conditional behavior of wavelet coefficients: see the predictions shown in
Fig. 2.2.

V1 normalized components are approximately independent

Here we compute the PDF of the natural images in the divisive normalized representation
assuming (1) the above image model, and (2) the match between the parameters of the V1
representation and the parameters of the image model. Specifically, the match between
the denominator in the perceptual response (eq. 2.3) and the matrix Σ in the image model
(eq. 2.6).

We will use the fact that given the PDF of a random variable, w′, and some transform,
r = R(w′), the PDF of the transformed variable can be computed by [Stark & Woods,
1994],

Pr(r) = Pw′(R−1(r)) · |∇rR−1| (2.7)

Considering that the divisive normalization (in vector notation) can be expressed as

r = sign(w′)Σ(w′)−
γ
2 · |w′|γ (2.8)

where | · |γ is an element-wise exponentiation, the inverse R−1 can be obtained from one
of these (equivalent) expressions [Malo et al., 2006]:

|w′|γ = (I−D|r|H)−1 ·Dfifl · |r| (2.9)

w′ = sign(r)Σ(w′)
1
2 · |r|

1
γ (2.10)
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Figure 2.2: Top: empirical behavior of wavelet coefficients of natural images (marginal

PDF -left- and conditional PDF -right-). Darker values indicate higher probability.

Bottom: simulated behavior according to the proposed model. In this 2D experiment

we considered two coefficients of the second scale of w′ (computed for 10000 images of

the database [Olmos & Kingdom, 2004], using 3 · 106 samples). We used Sii = 0.14,

βi = 0.4, Hii = 0.7 and Hij = 0.3 and γ = 1.7, according to the psychophysically

fitted model.

where Dv are diagonal matrices with the vector v in the diagonal. Plugging w′, eq. 2.10,
into the image model we obtain,

Pw′(R−1(r)) =
1
Z

1
|Σ(w′)|1/2 e−

1
2 (|r|1/γ)T ·I·(|r|1/γ) (2.11)

Taking derivatives on the inverse, eq. 2.9, the determinant of the Jacobian is:

|∇rR−1| = det

 1
γ

Σ(w′)1/2 · D
|r|

1
γ−1 ·

I + Dβ−γ · H · (I − D|r|H)−1 · Dβγ · D|r|︸ ︷︷ ︸
M(r)
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|∇rR−1| = det
(

1
γ

Σ(w′)1/2 · D
|r|

1
γ−1 · (I + M(r))

)

|∇rR−1| = |Σ(w′)|1/2 ·
N

∏
i=1

1
γ
|ri|

1
γ−1det(I + M(r))

1
N

Since det(I + M(r))
1
N ≈ 1 in natural images4, it follows,

|∇rR−1| ≈ |Σ(w′)|1/2 ·
N

∏
i=1

1
γ
|ri|

1
γ−1 (2.12)

Therefore, from Eqs. (2.7), (2.11) and (2.12), it follows that the joint PDF of the normalized
signal is just the product of N functions that depend solely on ri:

Pr(r) ≈
N

∏
i=1

1
γ Z1/N |ri|

1
γ−1 e−

|ri |
2/γ

2 =
N

∏
i=1

Pri(ri) (2.13)

i.e., we have factorized the joint PDF into its marginal PDFs.

Note that our proof of factorization holds whenever the normalization transform is per-
formed using parameters that are matched to those of the image probability model. Nev-
ertheless, the shape of the marginal densities of the normalized coefficients do depend on
those parameters. Figure 2.3 illustrates this fact by showing marginal PDF’s for different
values of γ.

In particular, if the appropriate value were γ = 1, the transform would give rise to
Gaussian marginal PDFs thus becoming similar to Radial Gaussianization transforms as
suggested in [Lyu & Simoncelli, 2009]. However, note that different values of γ in the
transform would imply a better (or worse) match between the denominator of the nor-
malization and the matrix Σ of the image model. This match is required to achieve the
factorization result in Eq. (2.13).

2.1.3 Statistical results

This section assesses the statistical independence performance of the psychophysically fit-
ted V1 representation (i.e. the validity of Eq. 2.13) by (1) analyzing the marginal and
conditional probabilities of the transformed coefficients, and (2) by mutual information
measures. To do so, 10000 natural image patches of size 72× 72 from the McGill database
[Olmos & Kingdom, 2004] were considered and transformed to the linear V1 representa-
tion (the wavelet domain), and to the non-linear V1 representation.

4We found that the average value and standard deviation of this determinant on 10000 images taken from
McGill calibrated image dataset [Olmos & Kingdom, 2004] is: 〈det(I + M(r))

1
N 〉 = 1.013± 0.003.
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Figure 2.3: Family of marginal PDFs of the normalized coefficients ri as a function of

γ.

Marginal and conditional PDFs

Figure 2.4 shows the experimental and the predicted marginal and conditional PDFs in
the normalized domain. These results correspond to two spatial neighbors of the second
scale and horizontal orientation (3 · 106 2D samples). Similar results are obtained for other
subbands. For the sake of illustration, in the case of the marginal PDFs, we show the re-
sults for different values of the exponent γ in the transform: the psychophysically optimal
value, γ = 1.7, and other values, γ = 0.5 and γ = 0.25, due to the characteristic bimodal
shape of the predicted marginal PDFs in those cases (see Fig. 2.3).

Bimodal results are obtained in the marginal PDFs for the (psychophysically non-optimal)
values of γ as predicted by the theory. However, note that the agreement with the theoret-
ical prediction is much better for the psychophysically optimal exponent, thus indicating
the match of the psychophysical vision model to image statistics.

The result for the conditional probability shows that the vision model substantially re-
duces the redundancy among neighbor coefficients with regard to the linear wavelet repre-
sentation: note that the bow-tie has practically disappeared (compare with the equivalent
result in Fig. 2.2), in close agreement with the theoretical prediction.

Mutual Information results

Mutual information (MI) between pairs of neighbor coefficients of image samples in the
spatial domain, in the linear V1 image representation (wavelet domain), and in the V1 non-
linear representation were computed. The eventual reduction of MI values would point
out the redundancy reduction along the visual pathway. In order to assess the magnitude
of the achieved reductions we also include the results of two non-linear statistically-based
techniques designed to give rise to independent components in images: Radial Gaussian-



2.1 STATISTICAL PROPERTIES OF DIVISIVE NORMALIZATION MODEL 35

−1 0 1
0

0.5

1

1.5

P(r
i
(0.25))

r
i
(0.25)

P
(r

i(0
.2

5)
)

−1 0 1
0

0.5

1

1.5

P(r
i
(0.5))

r
i
(0.5)

P
(r

i(0
.5

) )

−1 0 1
0

0.5

1

1.5

P(r
i
(1.7))

r
i
(1.7)

P
(r

i(1
.7

) )

−1 0 1
0

0.5

1

1.5

P(r
i
(0.25))

r
i
(0.25)

P
(r

i(0
.2

5)
)

−1 0 1
0

0.5

1

1.5

P(r
i
(0.5))

r
i
(0.5)

P
(r

i(0
.5

) )

−1 0 1
0

0.5

1

1.5

P(r
i
(1.7))

r
i
(1.7)

P
(r

i(1
.7

) )

r
i
(1.7)

r j(1
.7

)

P(r
j
(1.7)|r

i
(1.7))

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

r
i
(1.7)

r j(1
.7

)

P(r
j
(1.7)|r

i
(1.7))

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.4: Marginal and conditional PDFs in the response domain. The first row

shows the experimental marginal PDF of the responses for illustrative values of the

exponent γ = 0.25, 0.5, 1.7. The second row shows the corresponding predictions ac-

cording to the theoretical results in section 2.1.2. The third row shows the experimental

(left) and the theoretical (right) conditional distributions for pairs of coefficients of the

psychophysically optimal V1 model (γ = 1.7).

ization using L2 norm as in [Lyu & Simoncelli, 2009], and Lp norm as in [Eichhorn et al.,
2009]. These transforms start from a whitened linear representation of image vectors fol-
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lowed by a univariate (radial) non-linear transform tuned to obtain Gaussian distribution
of the L2 or Lp lengths of the vectors.

In order to make the comparison easier, we used the same initial linear stage (wavelets)
in those non-linear transforms. It is true that orthogonal wavelets may not be the best
linear transform to achieve independence, but it is important to stress that (1) the selected
linear stage is not critical for the final independence results obtained by using Radial Gaus-
sianization techniques as pointed out in [Eichhorn et al., 2009], and (2) the aim of this work
is not looking for the ultimate transform to achieve independence, but to show that the
brain substantially reduces redundancy through the gain control non-linearity. The sec-
ond non-linear stage in these illustrative Gaussianization techniques was performed by
equalizing the L2 and Lp lengths respectively, as done in [Lyu & Simoncelli, 2009]. In our
simulations we used p = 1.2 in the Lp norm according to the results in [Eichhorn et al.,
2009]. This is the optimal norm for ICA, while other linear representations are optimal
for exponents in the range [1.2, 2]. As stated above, choosing different linear representa-
tions with norm exponents in the cited range gives rise to similar independence results
[Eichhorn et al., 2009].

Section 2.1.3 gives the details on the used MI estimator and its errors: it shows that the
errors are small compared to the MI differences presented in this section, thus ensuring
the significance of the differences.

We performed two experiments:

1. The first one tries to obtain a rough estimate of the global redundancy reduction
ability of the linear (wavelet) and the non-linear (divisive normalization) stages of
the V1 model. In this experiment we computed the MI among one coefficient and all
the other coefficients (both in the spatial domain and in the local frequency domains,
also including Radial Gaussianization using both L2 and Lp).

2. The second experiment consists of a more accurate analysis of the different possible
relations in the local frequency representations, w, r, and Radial Gaussianization
using L2 and Lp: (1) intra-band, measuring the MI of one coefficient with its 9 ×
9− 1 neighbors of the same subband, (2) inter-orientation, measuring the MI of one
coefficient with its corresponding 5× 5 spatial neighbors in a subband of the same
scale but different orientation, and (3) inter-scale, measuring the MI of one coefficient
in a coarser scale with its 2× 2 sons in the corresponding finer scale.

Figure 2.5 shows representative results of the first experiment. In each MI computation
104 2D samples from the McGill database [Olmos & Kingdom, 2004] were used. The MI
values in the spatial domain monotonically decrease with distance, as previously reported
in [Lyu & Simoncelli, 2009]. The MI values among neighbors in the local frequency do-
mains decrease as the distance in space, orientation and scale increases. The behavior is
similar for coefficients of other scales and orientations.
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As expected, the statistically tuned Gaussianization techniques obtain quite good in-
dependence results on the considered data set. Interestingly, the psychophysically tuned
transform (that uses no statistical optimization at all) obtains very similar results in re-
dundancy reduction. These results show that about 86% of the average MI in the spatial
domain is reduced by the linear wavelet transform, while the non-linear psychophysical
transform further reduces an additional 82% of the remaining MI in the linear wavelet
domain. As a consequence, the non-linear V1 representation reduces about 98% of the
average MI in the spatial domain, which is comparable to the reductions achieved by the
statistically tuned Radial Gaussianization techniques using L2 norm (99.2%) and Lp norm
(99.5%).

Figure 2.6 shows a representative subset of the results of the second experiment: intra-
band and inter-orientation MI values for the different orientations of the second scale, and
inter-scale MI values for parents of the third scale and the corresponding sons of the sec-
ond scale. Overlapping blocks of the different subbands were used to obtain more samples
for a reliable MI estimation. The intra-scale, inter-orientation and inter-scale results were
computed using 0.8 · 106, 1.3 · 106, and 0.7 · 106 2D samples respectively.

Again, the results show that the statistically tuned Radial Gaussianization transforms
substantially reduce the redundancy among the different neighbor coefficients with re-
gard to the linear wavelet representation. The psychophysically optimal divisive normal-
ized representation (second column) achieves very similar results. This means that the
redundancy removal obtained through the psychophysical transform is significant. This
is consistent with the removal of the bow-tie relations in the conditional probability plots
(Figure 2.4).

Moreover, it is interesting to note the similarity between the exponents to be used in the
Lp norm in [Eichhorn et al., 2009], and the psychophysical value for γ in the V1 normaliza-
tion (which normalizes each wavelet coefficient by a sort of γ norm of its neighbors). In the
first case, the value for better independence is in the range [1.2, 2]. In the psychophysically
tuned V1 transform, γ = 1.7.

The fact that relatively more redundancy is reduced in the intra-band and inter-orientation
cases may be due to the quantization of the masking kernel which was necessary for prac-
tical computational reasons (see comment in section 3.1.2). The quantization of the kernel
in divisive normalization removes inter-scale interactions so the normalization is not as
effective in that situation. Note that the optimal kernel in figure 2.1 does not reflect inter-
scale interactions.

Summarizing, the agreement between the experimental and the predicted marginal and
conditional PDFs of r, and the substantial MI reduction with regard to the linear wavelet
domain confirm the theoretical result in eq. (2.13): the psychophysically optimal divisive
normalization is well matched to image statistics and approximately factorizes the PDF of
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MIx: 0.38, [0.21, 1.70] bits

MIw: 0.052, [10−3, 0.27] bits MIr: 0.009, [10−4, 0.15] bits

MIRG L2 : 0.003, [6 · 10−5, 0.06] bits MIRG Lp : 0.002, [10−5, 0.05] bits

Figure 2.5: MI results between one coefficient (the one in white) and its neighbors in

the spatial domain (top) the linear V1 response, wavelet domain (middle left); the non-

linear V1 response domain (middle right); the Radial Gaussianization using L2 norm

(bottom left); and the Radial Gaussianization using Lp norm (bottom right). The

numbers in each case represent the average and the range of MI values found in bits.

The top figure is scaled so that the black and white correspond to the maximum MI

value in the spatial domain, 1.70 bits, and 0 bits respectively. All the other figures are

scaled with regard to the maximum MI value in the wavelet domain: white and black

correspond to the limits of the range [0, 0.27] bits.
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w r RG L2 RG Lp w r RG L2 RG Lp

H HV
0.122 0.020 0.013 0.011 0.085 0.004 0.005 0.003

V HD
0.140 0.021 0.014 0.011 0.116 0.009 0.010 0.007

D DV
0.126 0.013 0.006 0.004 0.129 0.009 0.010 0.007

w r RG L2 RG Lp

H
0.193 0.048 0.054 0.054

V
0.219 0.047 0.054 0.054

D
0.183 0.031 0.030 0.027

Figure 2.6: MI (in bits) between pairs of coefficients in the linear V1 representation

(wavelet, w) and in the non-linear V1 representation (normalized response, r). The last

two columns in each panel show the results of Radial Gaussianization techniques using

L2 norm and Lp norm respectively. The top left panel shows intra-band relations within

2nd scale subbands of different orientation. The top right panel shows inter-orientation

relations for the 2nd scale coefficients. The bottom panel shows inter-scale relations of

coefficients of the 3rd scale with their sons in the 2nd scale for different orientations.

All images are scaled so that back and white correspond to the maximum MI value

and 0 bits respectively. The numbers represent the average MI value (in bits) in each

image.
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natural images.

Measuring Mutual Information

Mutual information (MI) between two random variables is defined as the difference be-
tween the sum of marginal entropies and the joint entropy [Cover & Tomas, 1991]:

MI(v1, v2) = h(v1) + h(v2)− h(v1, v2) (2.14)

Since MI is invariant under point-wise transforms [Cover & Tomas, 1991], our MI esti-
mator first equalizes the marginal PDF of each coefficient to obtain uniform densities in
the range [0, 1]. Then, the joint entropy is computed by using the 2D histogram and the
Miller-Madow correction [Miller, 1955]. In our implementation, the total number of bins
in the 2D histogram was set to the square root of the number of available samples. In our
case, the marginal entropies are zero due to the uniformization step. Therefore the MI is
equal to minus the joint entropy.

In order to assess the accuracy of the above estimator we tested it for two particular
densities of known MI: (1) Gaussian densities, whose MI can be computed in closed-form
[Cover & Tomas, 1991], and (2) the image model in the wavelet domain, Eq. 2.5, whose MI
can be obtained by numerical integration of the joint PDF.

In Table 2.1 we show the mean and the standard deviation of the percentage of error for
2D PDFs of different MI as a function of the number of samples used in the estimation. The
explored range of MI values is [0.01, 0.32] bits, and the number of samples is in the range
[104, 106]. These error percentages have been obtained with 100 different realizations for
each sample size. These results ensure that the estimation error is always below the MI
differences shown in section 2.1.3.

2.1.4 Reproducing low-level and high-level psychophysics

In this section we show that the model optimized to account for (high-level) image quality
opinion also accounts for the fundamental trends of (low-level) threshold psychophysics.

Figures 2.7-2.9 show the results of three experiments: (1) reproduction of subjectively
rated distortion, (2) reproduction of frequency-dependent threshold contrast sensitivity,
and (3) reproduction of contrast masking non-linearities.

In the first experiment, the generalization ability and robustness of the model to account
for a wide variety of suprathreshold distortions is assessed by checking its performance
on a more general image quality database (with more images and distortions of different
nature than the used for fitting the model). Here we applied the model (optimized for 83
images) to predict distortions on the whole LIVE database (779 distorted images), plus on
the whole TID database [Ponomarenko et al., 2008]. The extension to the TID database is
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Gaussian PDFs
Number of samples (×104)

MI 1 2.5 6.3 15.8 39.8 100
0.01 14 ± 18 9 ± 10 5 ± 6 3 ± 3 2 ± 2 1.3 ± 1.5
0.04 7 ± 7 4 ± 4 4 ± 3 2 ± 2 2.1 ± 1.3 1.6 ± 0.7
0.09 8 ± 5 5 ± 3 4 ± 2 2.8 ± 1.3 2.4 ± 0.8 1.7 ± 0.5
0.14 8 ± 4 5 ± 2 4 ± 1.5 3.3 ± 1.0 2.5 ± 0.6 1.9 ± 0.4
0.19 8 ± 3 6 ± 2 5 ± 1.5 3.5 ± 0.9 2.6 ± 0.6 1.9 ± 0.3
0.24 8 ± 3 6 ± 2 5 ± 1.2 3.3 ± 0.7 2.7 ± 0.5 2.0 ± 0.3
0.28 8 ± 2 6 ± 1.8 5 ± 0.9 3.7 ± 0.7 2.6 ± 0.4 2.0 ± 0.3
0.31 8 ± 2 6 ± 1.6 5 ± 1.1 3.7 ± 0.6 2.8 ± 0.4 2.0 ± 0.2
0.32 9 ± 2 6 ± 1.6 5 ± 1.0 3.7 ± 0.6 2.8 ± 0.4 2.1 ± 0.2

Image PDF model in the wavelet domain (Section 2.1.2)
Number of samples (×104)

MI 1 2.5 6.3 15.8 39.8 100
0.21 8 ± 3 5 ± 2 2.9 ± 1.4 1.5 ± 0.6 1.5 ± 0.6 1.0 ± 0.3

Table 2.1: Relative error (in %) of the mutual information estimator on Gaussian

densities and on the proposed image model in the wavelet domain.

challenging since it does not only contain different images, but more importantly, it in-
cludes 12 kinds of distortion not included in the LIVE database. The model was finally
applied to 2479 distorted images. The performance of the proposed model (figure 2.7.a)
can be compared to the performance of the state-of-the-art Visual Information Fidelity in-
dex (VIF) [Sheikh & Bovik, 2006] of the same authors as the LIVE database (figure 2.7.b).
Note that the VIF metric fails to account for some of the distortions in the TID database
(represented by different symbols/colors in the plots) while the proposed V1 image rep-
resentation model obtains significantly better correlation when considering a wide range
of distortions (see the Pearson and Spearman correlation coefficients at the plots). More
details on the performance of the proposed model as image quality metric are given in
section 3.1. The Matlab implementation of the metric is available on-line5.

The second experiment shows how the model accounts for the threshold frequency sen-
sitivity. Here, the response of the model to a given incremental pattern (target), ∆x, seen
on top of a background, x, is computed as the perceptual distance d(x, x + ∆x). The CSF
can be simulated by computing the above distances between sinusoids with fixed contrast,
but different frequencies and orientations, and a uniform gray background. Figures 2.8.a

5http://www.uv.es/vista/vistavalencia/div norm metric/
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Figure 2.7: Reproduction of high-level perception results. The figures show the cor-

relation among the predicted distortion, d, and the observers opinion, DMOS, for the

distance in the proposed V1 image representation (a), and the state-of-the-art VIF met-

ric (b). The different symbols in the plot and legend represent images with distortions

of different nature. For details on the different distortions see [Ponomarenko et al.,

2008; Sheikh, Sabir, & Bovik, 2006].

and 2.8.b compare the result of this simulation for achromatic sinusoids in a wide range
of spatial frequencies with the corresponding achromatic CSF of the Standard Spatial Ob-
server [A. Watson & Ramirez, 2000]. Note that the model approximately reproduces the
band pass behavior, the overall bandwidth, and the oblique effect.

The third experiment simulates contrast masking results. In order to do so, the contrast
of a Gabor patch is increased on top of different backgrounds (sinusoids with different
contrasts and orientations). As widely known [Foley, 1994; A. Watson & Solomon, 1997],
the visibility of the target increases quickly for low contrast targets, while remains more
stable for higher contrast targets, thus revealing a non-linear response. Moreover, the
visibility of the target is reduced as the contrast of the background is increased. This effect
is bigger when the the background has the same orientation as the target.

Figures 2.9.a and 2.9.b show the response curves of the model to vertical targets for
the different background sets: vertical (left) and horizontal (right). The model response
to the target is a saturating non-linearity when the target is shown on top of no back-
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Figure 2.8: Reproduction of (low-level) frequency-dependent sensitivity. In the plots,

the achromatic CSF as predicted by the proposed V1 model (a) is compared to the

Standard Spatial Observer CSF (b).

ground (auto-masking). The model predicts the reduction of the response when the target
is shown on top of a background (cross-masking). The reduction increases with the con-
trast of the mask. Moreover, note that the reduction in visibility is bigger for backgrounds
of the same nature (vertical target and vertical background). Therefore, the behavior of the
model with the proposed parameters is compatible with the low-level behavior of human
observers reported elsewhere [A. Watson & Solomon, 1997].

Figures 2.9.c and 2.9.d show contrast incremental thresholds ∆C for non-zero mask con-
trast as a function of the test contrast. These plots have been obtained from the previous
response curves (with Cmask = 0.1) looking for the amount of contrast deviation needed
to obtain a constant increment in the response (or distance). The left plot corresponds to
target and background of the same frequency and orientation while the right plot corre-
sponds to the orthogonal orientation situation. In both cases the thresholds increase with
contrast (as expected from saturating responses). However, when target and background
have the same orientation the sensitivity is reduced (thresholds increase faster). Figures
2.9.e and 2.9.f show equivalent experimental results by Foley [Foley, 1994] explicitly re-
produced from [A. Watson & Solomon, 1997], which display the same behavior.

To summarize, the results in this section show that the divisive normalization model
optimized to reproduce high level distortions (such as those in the LIVE database) can
simultaneously reproduce the basic features of low-level psychophysics (e.g. frequency
sensitivity and contrast masking), while being robust enough to account for a wider range
of suprathreshold distortion data (TID database).
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Figure 2.9: Reproduction of (low-level) masking non-linearities and contrast incre-

mental thresholds. Top row non-linear response: (a) response to Gabor targets of

increasing contrast seen on top of sinusoids of the same frequency and orientation, and

(b) equivalent responses on top of orthogonal sinusoids. Middle row: contrast incre-

mental thresholds ∆C as a function of the test contrast when mask and test have the

same orientation (c) and orthogonal orientations (d). Bottom row: equivalent ∆C psy-

chophysical data by Foley [Foley, 1994], as reported in [A. Watson & Solomon, 1997].

In the middle and bottom rows contrast is expressed in dB: CdB = 20 log10 C.
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2.2 Chapter conclusions

Here we showed that the non-linear stage of the standard V1 cortex model optimized to
reproduce image quality psychophysics substantially increases the independence of the
image coefficients obtained in the linear stage. Theoretical results (confirmed by experi-
ments) show that the psychophysically tuned V1 model approximately factorizes a plausi-
ble joint PDF for natural images in the wavelet domain: bow-tie dependencies are almost
removed and redundancy among coefficients is substantially reduced.

Therefore, the results presented here confirm the efficient coding hypothesis in a novel
direction: from perception to image statistics. These results complement the standard ap-
proach to validate the hypothesis (e.g. from image statistics to perception) taken in [Kayser et al.,
2003; Malo & Gutiérrez, 2006; Olshausen & Field, 1996; Schwartz & Simoncelli, 2001].

It is true that redundancy reduction is not the only goal in early visual processing
[H. B. Barlow, 2001], but the results presented here suggest that this initial set of percep-
tual transforms performs a sort of non-linear independent components extraction.

Further work should address additional issues such as (1) internal noise, and (2) re-
dundancy of the sign (or phase) of the wavelet coefficients. On the one hand, it is worth
noting that efficient coding is not equivalent to redundancy reduction, except in the noise-
free case [Dayan & Abbott, 2001; E. Simoncelli & Olshausen, 2001]. That is the case here
since the assumed V1 model is deterministic. In the more general stochastic case, the fac-
torization of the PDF is an idealized goal, and may need refinement under conditions of
response noise (surely present in real neurons). On the other hand, sign or phase informa-
tion is not taken into account in the image model since the PDF is symmetric around the
origin, and signs (and their eventual relations) are not modeled in any way. The proposed
divisive normalization model does not take this issue into account either since it acts on
the amplitude of the wavelet coefficients. A separate or complementary model for the
signs of image coefficients is needed. Extensions of the perception model could be fitted
by using the specific distortions in subjectively rated image databases consisting of phase
alteration (e.g. fast fading or JPEG2000 transmission errors).



Chapter 3

From Neuroscience to Applications

3.1 Divisive Normalization model as image quality metric

Reproducing subjective opinion of image distortion has two broad applications: in en-
gineering, image quality metrics may replace the (time consuming) human evaluation to
assess the results of the algorithms, and in vision science, image quality results may provide
insight on the way the brain processes visual information.

Nowadays there is a fruitful debate about the right approach in the image quality assess-
ment problem. The image quality metrics have been classified according to the following
broad taxonomy [Wang & Bovik, 2009]: (1) error visibility techniques based on human
visual system (HVS) models, (2) structural similarity techniques, and (3) information the-
oretic techniques.

The classical error visibility approach to simulate human judgement naturally tried to
include empirical aspects of the HVS in the image metric [Ahumada, 1993; A. B. Watson,
1993]. Basic features taken into account include decomposition in orientation and scale
channels [Lubin, 1993], contrast sensitivity [Ahumada, 1993; Nill, 1985; Saghri et al., 1989;
X. Zhang & Wandell, 1996], and contrast masking non-linearities through simple point-
wise models [Barten, 1990; Daly, 1990; Malo, Pons, & Artigas, 1997], the more general Divi-
sive Normalization [Epifanio et al., 2003; Malo et al., 2006; Teo & Heeger, 1994], or equiv-
alently, the non-uniform nature of just noticeable differences (JND) [Chandler & Hemami,
2007]. The final distance measure is typically obtained from a certain summation norm
of the difference vector in the internal image representation domain (Minkowski pooling)
[Ahumada, 1993; A. Watson & Solomon, 1997].

Recently, alternatives to the above empirical approach have been proposed: structural
similarity methods [Wang et al., 2004a,b; Wang & Simoncelli, 2005b] and information theo-
retic methods [Sheikh & Bovik, 2006; Sheikh et al., 2005]. The common ground of these
new techniques rely on the relation between image statistics and the behavior of the vi-
sual system [H. Barlow, 1961; Schwartz & Simoncelli, 2001]: since the organization and
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non-linearities of visual sensors seem to emerge from image statistics [Malo & Gutiérrez,
2006; Olshausen & Field, 1996], it is sensible to assess the image distortion by measuring
the departure of the corrupted image from the average behavior of natural images.

The structural similarity approach quantifies visual quality by comparing three statis-
tical measures in the original and distorted images: mean (related to luminance), vari-
ance (related to contrast), and cross-correlation (related to structure). The aim of using a
characterization of the structure is achieving invariance under small changes in the im-
age [Wang & Simoncelli, 2005a]. This general concept has been applied both in the spa-
tial domain (SSIM) [Wang et al., 2004a] and in multi-scale image representations (MSSIM)
[Wang et al., 2004b] and (CW-SSIM) [Wang & Simoncelli, 2005b].

The information theoretic approach (VIF [Sheikh & Bovik, 2006]) quantifies the similarity
by comparing the information that could ideally be extracted by the brain from the dis-
torted and the original image, respectively. The authors assume a certain image source
model and characterize the HVS as a simple channel that introduces additive noise in the
wavelet domain. The amount of information that can be extracted from the original signal
from the perceived images is modeled by the mutual information between the output of
the above simplified HVS model and the original image.

Despite some of the new approaches claim to be a new philosophy [Wang et al., 2004a],
a number of qualitative relations have been pointed out among the newer approaches and
Divisive Normalization masking models [Seshadrinathan & Bovik, 2008; Sheikh & Bovik,
2006; Sheikh et al., 2005].

However, no explicit comparison has been done with metrics based on updated versions
of the Divisive Normalization error visibility. Moreover, the new approaches criticize the
classical error visibility approach in many ways:

• Suprathreshold problem. Since the empirical HVS models are based on near thresh-
old measurements using too simple (academic) stimuli, it is argued that there is no
guarantee that these models are applicable to suprathreshold distortions on complex
natural images [Sheikh & Bovik, 2006; Wang et al., 2004a].

• Geometric limitations of error visibility techniques. In [Wang et al., 2004a], the au-
thors criticize linear and point-wise non-linear HVS models because they give rise to
too rigid discrimination regions, while stressing the flexibility of structural measures.
Nevertheless, the authors (qualitatively) recognize that general Divisive Normaliza-
tion models (including inter-coefficient masking) may induce a richer geometric be-
havior.

• Minkowski pooling assumes statistical independence among error coefficients. It
has been argued that this is not an appropriate summation strategy in linear do-
mains where there are statistical relations among coefficients [Wang et al., 2004a].
This criticism is certainly appropriate for linear (CSF-based) HVS models. Again,
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this would not be the case for image representations with reduced relations among
coefficients.

These un-addressed criticisms, and the fact that the new approaches are easy to use in a
number of engineering applications [Wang & Bovik, 2009], have popularized the idea of
their superiority over the error visibility approach.

The aim of this work is to provide new results in favor of the classical error visibility
approach by showing that the above criticisms do not apply to the Divisive Normalization
masking models, and by showing that what will be referred to as Divisive Normalization
metric (originally proposed as image quality measure in [Teo & Heeger, 1994]) can be eas-
ily adapted to be competitive with the new approaches. This is an additional evidence to
confirm the link among the different strategies, and suggests that, despite the criticisms,
Divisive Normalization masking models should still be considered in the image quality
discussion.

The structure is as follows. In Section 3.1.1 we review and generalize the Divisive
Normalization masking model, and we show that the resulting metric successfully ad-
dresses the criticisms against the error visibility approach. Finally we show the rela-
tion of the proposed metric to other error visibility techniques. In Section 3.1.5 we com-
pare the performance of the proposed metric to structural similarity techniques SSIM
[Wang et al., 2004a] and MSSIM [Wang et al., 2004b], and information theoretic techniques
VIF [Sheikh & Bovik, 2006]. An extensive comparison is made according to standard pro-
cedures in a number of recently available subjectively rated databases including a total
of 2173 distorted images and 25 kinds of distortion. Finally in Section 3.2 we draw the
conclusions of the work and discuss additional issues that may improve the Divisive Nor-
malization performance.

3.1.1 The Divisive Normalization model as metric

In this section we first review the associated error visibility metric to the Divisive Normal-
ization model exposed in section 2.1.1. In subsection 3.1.2 we describe the procedure to set
the parameters of the model. Previously (in sections 2.1.4 to 2.1.3), we have addressed two
of the main criticisms made against error visibility techniques: we showed (1) the ability
to simultaneously reproduce high level and low level distortion data, and (2) the statistical
independence effect that justifies uniform Minkowski pooling. Here also we are going to
adress the third criticism: (3) the geometric richness of the model (Sec. 3.1.3). Finally in
subsection 3.1.4 we show how the proposed metric relates to other error visibility metrics.

Given an input image, x, and its distorted version, x′ = x + ∆x, the above model pro-
vides two response vectors, r, and r′ = r + ∆r. The perceived distortion can be obtained
through the appropriate pooling of the one dimensional deviations in the vector ∆r. Non-
quadratic pooling norms have been reported [Ahumada, 1993; A. Watson & J.Malo, 2002;
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A. Watson & Solomon, 1997]. Moreover, different summation exponents, for the pooling
across spatial position, qp, and frequency, q f , may be used:

dp f (x, x′) =
1
n

[
∑

f

[
[∑

p
∆rqp

fp]
1

qp

]q f
] 1

q f

(3.1)

d f p(x, x′) =
1
n

[
∑
p

[
[∑

f
∆r

q f
fp]

1
q f

]qp
] 1

qp

(3.2)

where f ≡ {e, o}. In this general case, the order in which dimensions are pooled matters.
Pooling across space and frequency is not commutative unless both pooling exponents are
the same. In particular, Teo and Heeger proposed to compute the perceived distortion
as the Euclidean norm of the difference vector (quadratic Minkowski pooling exponent
qp = q f = 2).

According to the well known differences in frequency sensitivity in the achromatic and
chromatic channels [Mullen, 1985], we will allow for different matrices S in the YUV chan-
nels. In particular, we will allow for different gains (AoY, AoU = AoV) and different band-
widths (soY, soU = soV). We will assume the same behavior for the other spatial transforms
since the non-linear behavior of the chromatic channels is similar to the achromatic non-
linearities [Martı́nez-Uriegas, 1997].

3.1.2 Setting model parameters

In the original work introducing the metric based on Divisive Normalization [Teo & Heeger,
1994] and in the sequels [Epifanio et al., 2003; Malo et al., 2006] the parameters were in-
spired in psychophysical facts. In general there are three basic strategies to obtain the
parameters of the model:

• The direct empirical approach implies fitting the parameters to reproduce direct low-
level perception data such as physiological recordings on V1 neurons (as in [Heeger,
1992]), or psychophysical measurements of contrast incremental thresholds (as in
[A. Watson & Solomon, 1997]). Since the realization of direct experiments is beyond
the scope of this work, this low-level empirical approach is not straightforward be-
cause the physiological and psychophysical literature is often interested in a subset
of the parameters, and a variety of experimental settings is used in these restricted
experiments (e.g. different selected stimuli, different contrast units...). As a result, it
is not easy to unify the wide range of experimental results into a common computa-
tional framework.

• The indirect empirical approach implies fitting the parameters of the model to repro-
duce higher level visual tasks such as image quality assessment: for instance, in
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[A. Watson & J.Malo, 2002] the authors fitted the parameters of the Standard Spatial
Observer to the VQEG subjectively rated data.

• The statistically-based approach assumes that the goal of the different signal transforms
is to increase the independence among the coefficients of the image representation
[H. Barlow, 1961; Malo & Gutiérrez, 2006; Olshausen & Field, 1996]. In this case, the
parameters of the model may be optimized to maximize some statistical indepen-
dence measure as in [Schwartz & Simoncelli, 2001].

In this work we take the second approach: we fitted the parameters of the Divisive Nor-
malization metric to maximize the Pearson correlation with the subjective ratings of a
subset of the LIVE Quality Assessment Database [Sheikh, Z.Wang, et al., 2006]. In order
to point out the generalization ability of the proposed metric, we optimized the Divisive
Normalization model just for 3 of the 27 images in the database (house, sailing2 and wom-
anhat) that represents about 10% of the available data. In Section 3.1.5 we not only test
the behavior of the model in the whole dataset but also in other databases not including
LIVE distortions (TID [Ponomarenko et al., 2008], IVC [Le Callet & Autrusseau, 2005], and
Cornell [Chandler & Hemami, 2007] 1). By using this testing strategy, we address one of
the criticisms to the error visibility techniques: the model is applicable to a variety of new
supra-threshold distortions, while still reproducing the low-level psychophysical results
(as shown in Section 2.1.4).

Assuming the same behavior in the horizontal and vertical directions (o = 1, 3), and
assuming that the oblique effect in the frequency sensitivity [A. Watson & Ramirez, 2000]
is described by a single attenuation of the gain in the diagonal direction (i.e. A2 = d · A1

in every chromatic channel), the model described so far has 13 free parameters:

Ω ≡ { A1Y, d, A1UV , sY, sUV , θ, γ, b, σe, σo, σp, qs, q f }. (3.3)

In order to simplify the optimization process, we did not explore all the dimensions of
the parameter space at the same time, but optimized the parameters using a three stages
procedure obtaining local optima in restricted subspaces. We first obtained the basic pa-
rameters of the model by neglecting the chromatic channels, the oblique effect and the
non-quadratic summation, i.e. using A1UV = 0, d = 1, and qs = q f = 2, thus reducing the
dimensions of the parameter space to 8, Ω1 ≡ { AY, sY, θ, γ, b, σe, σo, σp}. Afterwards,
we checked the eventual improvements obtained from the previous (local) optimal con-
figuration by considering the chromatic channels and allowing different values for the
sensitivity in the diagonal direction, Ω2 ≡ { AUV , sUV , d}. Finally, different summation
exponents for the spatial and frequency pooling (in both possible orders) were considered
Ω3 ≡ { qs, q f }.

1Available at: http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html.
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The only computational inconvenience of the proposed metric is the size of the kernel
H. In order to circumvent this problem, two approximations were necessary:

• Kernel thresholding and quantization. The Gaussian interaction matrices were con-
verted to sparse matrices by eliminating those elements below a given threshold,
that in our experiments was set to 1/500 of the maximum in each interaction neigh-
borhood. Once the best Gaussian kernel was obtained, their size was further reduced
by quantizing it using 6 bits. No appreciable reduction of the performance was in-
troduced by this quantization, while extremely reducing the storage requirements.

• Limitation of the image size. The LIVE database include images of size 512× 768.
This size implies a huge kernel. Since the computation and storage of a number
of non-quantized kernels is necessary for the optimization process, we decided to
restrict ourselves to work with cropped versions of the images in the database. The
cropped versions of the images were obtained by selecting the 256× 256 area around
the most salient point of each (original) image for 10 observers. The most salient
point was estimated as the average of the points selected by the observers. This
approximation is relevant just in the optimization process. Actually, the resulting
Divisive Normalization is used for images of any size by applying it first to each
256 × 256 block of the image and then by merging the result of each block into a
single pyramid.

The parameter ranges were set starting from an initial guess obtained from the low-
level psychophysical behavior [A. Watson & Solomon, 1997] and previous use of similar
models in image processing applications [Camps-Valls et al., 2008; Epifanio et al., 2003;
Gutiérrez et al., 2006; Malo et al., 2006]. The explored ranges for the parameters and the
optimal values found are shown in Table 3.1. The optimal pooling strategy found in our
experiment was Eq. 3.2: first sum over subbands and then over spatial positions. Figure
2.1 shows the shape of the linear gains S, the regularization constants βγ and the inter-
action kernel H when using the optimal parameters. The structure of the interaction ker-
nel comes from the particular arrangement of wavelet coefficients used in the transform
[E. Simoncelli & Adelson, 1990].

3.1.3 Geometry of the Divisive Normalized domain

Assuming a quadratic pooling in the distance computation, a number of analytical results
can be obtained that show the appealing geometric behavior of the proposed metric. This
behavior still holds for non quadratic schemes.

In the quadratic summation case, the Euclidean metric, I, in the Divisive Normalization
domain may be interpreted as using non-Euclidean (Riemannian) metrics, M, in other im-
age representation domains [Epifanio et al., 2003; Malo et al., 2006]. The metric matrix,
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Table 3.1: Parameter space, optimal values found, and improvement of the

Pearson correlation in the progressive stages of the optimization.

Parameter Range Optimal Correlation
AY 30, . . . , 60 40
sY 0.25, . . . , 3 1.5
θ 2, . . . , 8 6
γ 0.5, . . . , 3 1.7
b 0.5, . . . , 8 2
σe 0.15, . . . , 3 0.25
σo 0.15, . . . , 3 3
σp 0.03, . . . , 0.4 0.25 (in deg) ρp = 0.916
AUV 30, . . . , 40 35
sUV 0.25, . . . , 1.5 0.5
d 0.6, . . . , 1.4 0.8 ρp = 0.922
qp 0.5, . . . , 6 2.2
q f 0.5, . . . , 6 4.5 ρp = 0.931

M, is a quadratic form that determines the size and shape (orientation) of the ellipsoidal
discrimination regions in the corresponding image representation domain. The diagonal
or non-diagonal nature of the metric determines whether the discrimination regions are
oriented along the axes of the representation. The magnitude of the metric elements de-
termines the size of the discrimination regions.

In particular, in the spatial, the wavelet, and the normalized representations, we have:

d(x, x + ∆x)2 = ∆xT ·M(x) · ∆x =

= ∆wT ·M(w) · ∆w = ∆rT · I · ∆r
(3.4)

Since the sequence of transforms are differentiable, a small distortion ∆r may be written
as:

∆r = ∇R(w′) · S · T · ∆x (3.5)

Therefore (from Eqs. 3.4 and 3.5), the expression of the metrics in the spatial and the
wavelet domain are:

M(x) = TT · S · ∇R(w′)T · ∇R(w′) · S · T (3.6)

M(w) = S · ∇R(w′)T · ∇R(w′) · S (3.7)

According to the above expressions, the metric in the spatial and wavelet domains criti-
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cally depends on the Jacobian of the Divisive Normalization, which is:

∇R(w′)ij =
∂Ri

∂w′j
= (3.8)

= γ

(
|w′i|γ−1

βi + ∑k Hik|w′k|γ
· δij −

|w′i|γ|w′j|γ−1

(βi + ∑k Hik|w′k|γ)2 · Hij

)
A number of interesting geometrical conclusions can be obtained from the above expres-
sions:

• Linear image spaces are not perceptually Euclidean since the distortion metric is im-
age dependent. As one could expect from contrast masking, the non-linear nature of
the Divisive Normalization transform implies that the visibility of a given distortion
∆x depends on the background image x.

• Discrimination regions increase with the contrast of the image. Note that the ele-
ments of the Jacobian ∇R (Eq. 3.8) decrease as the magnitude of the wavelet coef-
ficients (or contrast of the image components) increases. The reduction of the sensi-
tivity is bigger in high activity regions where a number of linear sensors |w′k| have
non-zero values in the denominators of Eq. 3.8.

• Discrimination regions are not aligned with the axes of the wavelet representation.
Note that the Jacobian has a positive diagonal contribution (proportional to δij) and
a negative non-diagonal contribution due to the kernel, Hij, and depending on w′i
and w′j with i 6= j. This coupling implies that the discrimination ellipsoids are not
oriented along the axes of the wavelet representation. Since the Jacobian is input
dependent, it can not be strictly diagonalized in any linear representation.

The above considerations on the metric, M(w), analytically demonstrate that the appeal-
ing geometric behavior of structural similarity techniques (as in Fig. 4 in [Wang et al.,
2004a]) can be shared by error visibility techniques when considering non-linearities in-
cluding relations among wavelet coefficients (e.g. Divisive Normalization).

Note also that the above considerations (that show that the geometric criticism does
not apply to the Divisive Normalization metric) still hold even though non-quadratic
schemes are considered. In that general case the shape of the discrimination regions will
not be ellipsoidal, but still its size and orientation will be determined by ∇R(w′) · S · T or
∇R(w′) · S.

3.1.4 Relations to other error visibility metrics

The proposed model can reproduce Just Noticeable Differences (JNDs), which is a key
factor in other recent error visibility metrics [Chandler & Hemami, 2007]. JNDs of a cer-
tain target can be computed from the inverse of the slope of the corresponding non-linear
response.
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On the other hand, if the proposed model is simplified to be completely linear by setting,
∇R = I, the proposed metric reduces to M(w) = S2. In this case, the distortion is just the
sum of differences in the transform domain weighted by the contrast sensitivity values (as

in [Nill, 1985]): d(x, x′) =
(
∑i S2

i ∆w2
i
) 1

2 .
If the proposed model is simplified to be point-wise non-linear by neglecting the non-

diagonal elements in ∇R, a contrast dependent behavior (smaller sensitivity for higher
contrasts) is achieved as in [Barten, 1990; Daly, 1990; Malo, Pons, & Artigas, 1997].

3.1.5 Metric results

In this section we compare the performance of the proposed Divisive Normalization met-
ric (code available at2) with structural similarity metrics (SSIM [Wang et al., 2004a] and
MSSIM [Wang et al., 2004b]), and information theoretic measures (VIF [Sheikh & Bovik,
2006]) on on-line available subjectively rated databases (LIVE [Sheikh, Sabir, & Bovik, 2006;
Sheikh, Z.Wang, et al., 2006], TID [Ponomarenko et al., 2008], IVC [Le Callet & Autrusseau,
2005], Cornell3). Note that more recent structural measures on wavelet domains (such as
CW-SSIM [Wang & Simoncelli, 2005b]) are designed to take into account phase distortions
(translations and rotations). For registered images, as is the case in the available databases,
the results of CW-SSIM basically reduce to the results of previously reported structural
measures4.

On-line available implementations from the authors were used in each case (SSIM5, VIF
and MSSIM6). In the SSIM case, the two available implementations were used: the stan-
dard one (ssim index.m), and a posterior recommended modification (ssim.m) that sub-
samples the images to look for the best scale to apply SSIM. This will be referred as SSIMsub

in the experiments. SSIM results will not be shown since they are always worse than those
obtained with SSIMsub. The whole set of results is available at 7. In every case, we used
the RGB to Luminance conversion recommended by the authors. In the experiments we
also include the Euclidean measure RMSE for illustration purposes.

The experiments will be analyzed in two parts: (1) LIVE database, and (2) additional
databases with different distortions.

This distinction comes from the fact that even though a small subset of images of the
LIVE database was used to derive the parameters of the Divisive Normalization model,
all the five distortions in the LIVE database were used. One could argue that using LIVE
to check the performance of the model is not fair since it learnt the distortions. According
to this, we will show the results on the whole LIVE database for illustrative purposes,

2Available at: http://www.uv.es/vista/vistavalencia/div norm metric/
3Available at: http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html
4Personal communication by Z. Wang.
5SSIM available at: http://www.ece.uwaterloo.ca/~z70wang/research/ssim/.
6MSSIM and VIF available at: http://live.ece.utexas.edu/research/quality/.
7http://www.uv.es/vista/vistavalencia/div norm metric/div norm.html.
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but more interestingly, we will check the generalization ability of the model using data
of other subjectively rated databases corresponding to distortions not included in the LIVE
database.

The good performance of the proposed metric on the new data can not come from over
fitting a particular database, but from the fact that it accurately models human percep-
tion. A different indication of this accuracy is that even though the model was set using
suprathreshold data, it also reproduces the basic trends of threshold psychophysics (fre-
quency sensitivity and contrast masking, as shown in Figs. 2.8 and 2.7).

Accuracy of a metric: correlations and calibration functions

Representing the ground truth subjective distortions (referred to as DMOS) as a function
of the distances, d, computed by some metric leads to a scatter plot. Ideally, the data in
this scatter plot should follow a straight line thus showing a perfect correlation among the
computed distances and the subjective ratings. In real situations the data depart from this
ideal behavior.

From the engineering point of view, any monotonic (not necessarily linear) relation be-
tween d and DMOS is good enough provided that the calibration function, DMOS = f (d),
is known by the metric user. According to this, non-parametric rank order correlation mea-
sures (such as the Spearman correlation) or prediction errors using standard non-linear
calibration functions have been used to measure the accuracy of the distortion metrics
[Group, 2008; Sheikh, Sabir, & Bovik, 2006]. Rank order correlations have been criticized
for a number of reasons [Sheikh, Sabir, & Bovik, 2006]: they do not take into account the
magnitude of the deviation from the predicted behavior and, as a result, it is difficult
to obtain useful confidence intervals to discriminate between metrics. Therefore, even
though the Spearman correlation is usually given for illustrative purposes, F-test on the
quotient of the sum of squared prediction errors and standard non-linear calibration func-
tions are usually preferred [Sheikh, Sabir, & Bovik, 2006], and has been extensively used
[Chandler & Hemami, 2007; Group, 2008; Sheikh & Bovik, 2006; Sheikh, Sabir, & Bovik,
2006; A. Watson & J.Malo, 2002].

However, from the vision science point of view, systematic deviations from the linear pre-
diction suggest a failure (or limitation) of the underlying model: residual non-linearities
should be avoided by including the appropriate (perceptually meaningful) correction in
the model, instead of using an ad-hoc calibration afterwards. Besides, since distortion met-
rics are commonly used without reference to such calibration functions 8, the unexperi-
enced user may (erroneously) interpret the metric results in a linear way.

In the experiments below we analyze the results of the considered metrics by using the

8The software implementations [Chandler & Hemami, 2007; Sheikh & Bovik, 2006; Wang et al., 2004a,b] do
not come with this non-linearity.
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standard F-test [Sheikh, Sabir, & Bovik, 2006] along with the intuitive linear calibration
and the previously reported non-linear calibration functions [Chandler & Hemami, 2007;
Group, 2008; Sheikh & Bovik, 2006]. Even though we feel that linear calibration is the most
intuitive scale for the final user and the most challenging situation for a model intended to
reproduce human perception, we will see that the basic message (the proposed error visi-
bility metric is competitive with the newer techniques) is independent from the calibration
measure. This is good since F-test may be criticized as well because it depends on an ar-
guable choice of the calibration function. For illustration purposes we will also include
the (linear) Pearson’s correlation and the Spearman’s correlation. Note that the Pearson’s
correlation on the raw data as done here conveys the same kind of information as the F-
test when using a linear calibration function. The difference is that the F-test is useful to
establish confidence levels in the results so that it is easy to assess when the differences in
prediction errors (or Pearson correlation) are statistically significant.

Performance of the metrics

In this section we show the scatter plots, the correlations, the fitted calibration functions
and the F-test results for (1) the LIVE database, and (2) additional databases (TID, IVC,
and Cornell) excluding LIVE-like distortions. Note that distortions in Cornell database
are different since it consists of achromatic images only.

As stated above, we used the linear calibration and three additional non-linear calibra-
tion functions used in the literature: a 4 parameter logistic [Chandler & Hemami, 2007], a
5 parameter logistic [Sheikh & Bovik, 2006; Sheikh, Sabir, & Bovik, 2006], and a 4th order
polynomial [Group, 2008]. In every case, the calibration functions were fitted using the
Nelder-Mead simplex search method [Lagarias et al., 1998] with equivalent initial guesses
(according to the corresponding ranges of the distances).

Provided that the prediction errors of the metrics mi and mj are independent and Gaus-
sian, the F-test gives the probability that the sum of squared errors of metric i, ε2

i , is smaller
than the corresponding value of metric j, ε2

j . This probability, P(ε2
i < ε2

j ), can be used to
assess if metric i is better than metric j. The F-test has been applied to compare among
the previously reported metrics [Chandler & Hemami, 2007; Sheikh, Sabir, & Bovik, 2006].
Here we apply the same standard procedure. In the case of the proposed Divisive Normal-
ization metric the correlation between its residuals and the residuals of the other metrics is
similar or smaller than the equivalent results among the other (previously compared) met-
rics. Therefore, the independence condition holds as accurately as in previously reported
comparisons. Unless explicitly stated, residuals can be taken as Gaussian according to pre-
viously used kurtosis-based criteria [Chandler & Hemami, 2007; Sheikh, Sabir, & Bovik,
2006]. Therefore, the Gaussianity condition holds as accurately as in previously reported
comparisons.
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None of the available image quality databases used an experimental procedure similar
to A. Watson & Kreslake [2001] (which gives rise to subjective ratings in meaningful JND
units). The differences in the experimental procedures imply that the available results are
not ready to be merged into a single database. Nevertheless, the different DMOS data were
linearly scaled to fall within the range of the LIVE database for visualization purposes. In
this work we used the DMOS scores that come with the on-line file databaserelease2

.zip, as used in [Sheikh & Bovik, 2006]. This convenient linear DMOS scaling is not a
problem since (1) a separate analysis for each database is done, and (2) it does not modify
the correlation results (either Pearson or Spearman), nor the F-test results (since the scaling
is taken into account in fitting the corresponding calibration functions and it cancels out
in the quotient of squared errors).

Figures 3.1-3.4 show the scatter plots and the fitted functions for the considered metrics
in the considered situations (1) LIVE, Fig. 3.1; and (2) TID, Fig. 3.2, IVC, Fig. 3.3, Cor-
nell, Fig. 3.4. Each distortion is identified by a different symbol/color combination. The
details on these distortions can be found in the corresponding references. In every case in-
creasing functions were obtained by linearly turning similarity measures, s, into distortion
measures, d (as indicated in the plots).

Note that non-linear fitting functions may be unreliable: too flexible fitting functions
(such as the 4th order polynomial and the 5 parameter sigmoid) may give rise to non-
monotonic behavior. The behavior of these functions strongly depends on the considered
data, thus suggesting that it may not account for more general data.

In tables 3.2-3.5 we show the results of the F-test for the quotients of the sum of residuals
of the considered metrics in the two considered situations: (1) LIVE, table 3.2; and (2) TID,
table 3.3, IVC, table 3.4, Cornell, table 3.5. In these tables, highlighted cells in a row mean
that the model in the row is better than the model in the column at 90% confidence level.
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Figure 3.1: Scatter plots, fitted functions and correlation coefficients for the

considered metrics on the LIVE database. The legend shows the symbols rep-

resenting each distortion in the LIVE database. The solid line represents the

linear fitting. The dashed line represents the 4 parameter sigmoid function used

in [Chandler & Hemami, 2007], the dash-dot line represents the 5 parameter

sigmoid used in [Sheikh & Bovik, 2006; Sheikh, Sabir, & Bovik, 2006]. The

dotted line stands for the 4th order polynomial used in [Group, 2008].
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Figure 3.2: Scatter plots, fitted functions and correlation coefficients for the

considered metrics on the TID database (excluding LIVE-like distortions). The

legend represents the symbols corresponding to the distortions which are not

present in the LIVE database. Line styles for the calibration functions have the

same meaning as in figure 3.1.



60 CHAPTER 3. FROM NEUROSCIENCE TO APPLICATIONS

Figure 3.3: Scatter plots, fitted functions and correlation coefficients for the

considered metrics on the IVC database (excluding LIVE-like distortions). The

only non-LIVE distortion in the IVC database is what they call LAR distortion

(see [Le Callet & Autrusseau, 2005] for details). Line styles for the calibration

functions have the same meaning as in figure 3.1.
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Figure 3.4: Scatter plots, fitted functions and correlation coefficients for the

considered metrics on the Cornell database. The legend represents the symbols

corresponding to the distortions which are not present in the LIVE database (no

Cornell distortion is present in LIVE since Cornell is an achromatic database).

Line styles for the calibration functions have the same meaning as in figure 3.1.
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Table 3.2: Quality of metrics on the LIVE database (F-test): probability that

the model in the row is better than the model in the column for the linear and

several non-linear fits. Highlighted cells mean that model in the row is better

than the model in the column at 90% confidence level. The models highlighted

with ? have non-Gaussian residuals, so the result is not strictly correct.

P(ε2
row < ε2

col) Linear Fit
RMSE SSIMsub. MSSIM VIF DN

RMSE: - 0.00 0.08 0.00 0.00
SSIMsub.: 1.00 - 1.00 0.00 0.00
MSSIM: 0.92 0.00 - 0.00 0.00

VIF: 1.00 1.00 1.00 - 1.00
DN: 1.00 1.00 1.00 0.00 -

P(ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.64 0.00 0.09
MSSIM: 1.00 0.36 - 0.00 0.04

VIF?: 1.00 1.00 1.00 - 1.00
DN: 1.00 0.91 0.96 0.00 -

P(ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.58 0.00 0.14
MSSIM: 1.00 0.42 - 0.00 0.10

VIF?: 1.00 1.00 1.00 - 1.00
DN: 1.00 0.86 0.90 0.00 -

P(ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.12 1.00 0.00 0.00

SSIMsub.: 0.88 - 1.00 0.00 0.00
MSSIM: 0.00 0.00 - 0.00 0.00

VIF: 1.00 1.00 1.00 - 1.00
DN: 1.00 1.00 1.00 0.00 -
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Table 3.3: Quality of metrics on the TID database (excluding LIVE-like distor-

tions). See caption of table 3.2 for details.

P(ε2
row < ε2

col) Linear Fit
RMSE SSIMsub. MSSIM VIF? DN

RMSE: - 0.00 0.00 0.00 0.00
SSIMsub.: 1.00 - 0.12 0.00 0.00
MSSIM: 1.00 0.88 - 0.01 0.03

VIF?: 1.00 1.00 0.99 - 0.75
DN: 1.00 1.00 0.97 0.25 -

P(ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.01 0.10 0.29
MSSIM?: 1.00 0.99 - 0.86 0.97

VIF?: 1.00 0.90 0.14 - 0.77
DN: 1.00 0.71 0.03 0.23 -

P(ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.01 0.13 0.32
MSSIM?: 1.00 0.99 - 0.91 0.98

VIF?: 1.00 0.87 0.09 - 0.75
DN: 1.00 0.68 0.02 0.25 -

P(ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.01 0.05 0.31
MSSIM?: 1.00 0.99 - 0.79 0.97

VIF: 1.00 0.95 0.21 - 0.86
DN: 1.00 0.69 0.03 0.14 -
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Table 3.4: Quality of metrics on the IVC database (excluding LIVE-like distor-

tions). See caption of table 3.2 for details.

P(ε2
row < ε2

col) Linear Fit
RMSE SSIM?

sub. MSSIM? VIF DN
RMSE: - 0.00 0.00 0.00 0.00

SSIM?
sub.: 1.00 - 0.62 0.28 0.34

MSSIM?: 1.00 0.38 - 0.19 0.23
VIF: 1.00 0.72 0.81 - 0.56
DN: 1.00 0.66 0.77 0.44 -

P(ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.72 0.86 0.86
MSSIM?: 1.00 0.28 - 0.69 0.68

VIF: 1.00 0.14 0.31 - 0.50
DN: 1.00 0.14 0.32 0.50 -

P(ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.00 0.00 0.00 0.00

SSIMsub.: 1.00 - 0.75 0.87 0.87
MSSIM?: 1.00 0.25 - 0.68 0.68

VIF: 1.00 0.13 0.32 - 0.50
DN: 1.00 0.13 0.32 0.50 -

P(ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.00 0.00 0.00 0.01

SSIMsub.: 1.00 - 0.64 0.81 0.89
MSSIM?: 1.00 0.36 - 0.70 0.82

VIF: 1.00 0.19 0.30 - 0.65
DN: 0.99 0.10 0.18 0.35 -
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Table 3.5: Quality of metrics on the (achromatic) Cornell database. See caption

of table 3.2 for details.

P(ε2
row < ε2

col) Linear Fit
RMSE SSIMsub. MSSIM VIF? DN

RMSE: - 0.17 0.00 0.63 0.27
SSIMsub.: 0.83 - 0.03 0.90 0.63
MSSIM: 1.00 0.97 - 1.00 0.99

VIF?: 0.37 0.10 0.00 - 0.17
DN: 0.73 0.37 0.01 0.83 -

P(ε2
row < ε2

col) 4 parameter Sigmoid Fit
RMSE: - 0.07 0.00 0.64 0.18

SSIMsub.: 0.93 - 0.06 0.97 0.72
MSSIM: 1.00 0.94 - 1.00 0.98

VIF?: 0.36 0.03 0.00 - 0.10
DN: 0.82 0.28 0.02 0.90 -

P(ε2
row < ε2

col) 5 parameter Sigmoid Fit
RMSE: - 0.05 0.00 0.63 0.17

SSIMsub.: 0.95 - 0.08 0.97 0.74
MSSIM: 1.00 0.92 - 1.00 0.98

VIF?: 0.37 0.03 0.00 - 0.10
DN: 0.83 0.26 0.02 0.90 -

P(ε2
row < ε2

col) 4th order polynomial Fit
RMSE: - 0.08 0.00 0.64 0.28

SSIMsub.: 0.92 - 0.06 0.96 0.80
MSSIM: 1.00 0.94 - 1.00 0.99

VIF?: 0.36 0.04 0.00 - 0.17
DN: 0.72 0.20 0.01 0.83 -
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3.1.6 Discussion

In the LIVE case, VIF is the best performing metric. The proposed Divisive Normalization
metric is the second best and shows a significantly better performance than structural
methods. This reveals that the proposed model can adequately account for the whole
database even though its parameters were set by using the 10% of the data (and cropped
images). This good performance is independent from the fitting function.

When considering a wider range of distortions (TID and IVC), and using the most chal-
lenging linear fit, no algorithm outperforms the proposed Divisive Normalization metric.
In the (small) Cornell database, MSSIM is the only metric that significantly outperforms
the proposed metric. However, note that the proposed metric significantly outperforms
MSSIM in the (bigger) LIVE case no matter the calibration function.

To summarize, the proposed metric performs quite well in the LIVE database (5 distor-
tions) and successfully generalizes to a wide range of distortions (e.g. 20 new distortions
in the TID, IVC and Cornell databases). This suggests that the parameters found are per-
ceptually meaningful thus giving rise to a robust metric. In most of the cases the proposed
metric is statistically indistinguishable from structural and information theoretic methods.
In some particular cases, it is outperformed by VIF (as in LIVE) or by MSSIM (as in Cor-
nell), but it is important to note that, conversely, it significantly outperforms MSSIM in
LIVE, and works better than VIF in Cornell (at 80% confidence level). The above is true
for all the considered calibration functions.

As a result, the proposed error visibility metric based on Divisive Normalization seems
to be competitive with structural and information theoretic metrics. It is quite robust and
easy to interpret in linear terms. This is consistent with the fact that the criticisms made to
the error visibility techniques do not apply to the Divisive Normalization metric as shown
in sections 2.1.4, 3.1.3 and 2.1.3.

3.2 Chapter conclusions

In this work, the classical Divisive Normalization metric [Teo & Heeger, 1994] was revis-
ited to address the criticisms raised against error visibility techniques. It was straightfor-
wardly fitted by using a small subset of the subjectively rated LIVE database, and proved
to generalize quite well for the whole database as well as for more general databases in-
cluding distortions of different nature (e.g. TID, IVC, Cornell) .

We showed that the three basic criticisms made against error visibility techniques do not
apply to the Divisive Normalization metric: (1) even though the Divisive Normalization is
inspired in low-level (threshold) psychophysical and physiological data, it can account for
higher-level (suprathreshold) distortions while approximately reproducing the frequency
sensitivity and masking results. (2) It was shown that the Divisive Normalization repre-
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sentation reduces the statistical relations among the image coefficients, thus justifying the
use of uniform Minkowski summation strategies in the normalized domain. (3) It was
analytically shown that the Divisive Normalization has a rich geometric behavior, so it is
not a singular feature of structural similarity metrics.

The experiments show that the proposed metric is competitive with structural and infor-
mation theoretic metrics, it performs consistently when facing a wide range of distortions,
and it is easy to interpret in linear terms. These results suggest that the classical error
visibility approach based on gain control models should still be considered in the image
quality discussion.

In fact, the proposed Divisive Normalization framework can still be improved in many
ways. The linear chromatic and spatial transforms can be improved by (1) using non-linear
color representations to account for the chromatic adaptation ability of human observers
[M. Fairchild, 1997], and (2) better wavelet transforms may be used for a better simula-
tion of V1 receptive fields (e.g. steerable pyramids [E. Simoncelli et al., 1992]). Useful
Divisive Normalization transforms for image enhancement have already been proposed
on steerable pyramids [Lyu & Simoncelli, 2009]. Different wavelet basis (as in CW-SSIM
[Wang & Simoncelli, 2005b]) could be used to introduce translation and rotation invari-
ance. Better (non-linear) color representations can be useful to assess changes in average
luminance or in the spectral radiance (i.e. including color constancy). Linear models may
overestimate the effect of such distortions. The proposed non-linear transform can also
be generalized since masking interactions among sensors of different chromatic channels
may occur [Gegenfurtner & Kiper, 1992], but they were not considered here in order to
keep the interaction kernel small. Summation over the color dimension can be generalized
as well by including different summation exponents on the opponent channels. Another
issue to be explored is the role of the low-frequency residual which was neglected in this
work. Weber-law like non-linearities should be used in this case (in agreement with non-
linear color appearance models) together with and appropriate relative weight between
the low-pass and the higher frequency subbands. From a more general point of view, the
proposed model may be complemented by bottom-up techniques for saliency prediction
based on the V1 image representation [Zhaoping, 2006]. Finally, better optimization tech-
niques instead of the reported exhaustive search of the parameter subspaces may be used
in order to obtain a more accurate estimation of the optimal parameters with a reduced
computational burden.



Chapter 4

From Statistics to Neuroscience

4.1 Color vision mechanisms from Sequential Principal Curves
Analysis

Human color vision is mediated by opponent mechanisms, achromatic and chromatic,
with two fundamental properties [Abrams et al., 2007; M. Fairchild, 2005; Hillis & Brainard,
2005]: (i) their response is nonlinear given some fixed observation conditions (e.g. illumi-
nant, spatial context, etc.); and (ii) they are able to compensate changes in the observation
conditions to keep the perception (color) of the objects constant despite the changes in the
input. On the one hand, the nonlinear response of the mechanisms is revealed by the non-
uniform nature of discrimination thresholds throughout the tristimulus space [Cole et al.,
1990; Krauskopf & Gegenfurtner, 1992; Romero et al., 1993; Wyszecki & Stiles, 1982]. On
the other hand, the adaptation ability of these mechanisms is revealed by asymmetric
color matching experiments [Breneman, 1987; M. Luo et al., 1991; M. Luo & Rhodes, 1999;
M. A. Webster & Mollon, 1991]: different physical inputs give rise to the same perception
(corresponding stimuli) for equivalent shifts in the context.

The standard empirical models of color vision assume that the system is formed by
three linear photoreceptors sensitive to long, medium and short wavelengths (LMS). These
models try to reproduce the above mentioned effects using three basic ingredients as re-
ported in [Abrams et al., 2007; M. Fairchild, 2005; Hillis & Brainard, 2005]: (i) context de-
pendent weighting of the sensitivity of LMS mechanisms, also known as Von Kries nor-
malization, (ii) linear transform to an opponent color space, and (iii) nonlinear saturation
of the achromatic and the opponent-chromatic responses.

Following the classical suggestion by Barlow on the relation between image statistics
and neural behavior [H. Barlow, 1961; H. B. Barlow, 2001], a large body of literature ar-
gues that mechanisms underlying the perception of object colors are organized according
to the statistical regularities of the signals confronted by the sensory systems. However,
very often, the proposed statistical approaches deal with color discrimination and color



4.1 COLOR VISION MECHANISMS FROM SEQUENTIAL PRINCIPAL CURVES

ANALYSIS 69

constancy in a separated way: they are not able to address both adaptation and nonlineari-
ties jointly.

On the one hand, linear approaches based on decorrelation (linear principal compo-
nent analysis, PCA) and higher order redundancy removal (linear independent compo-
nent analysis, ICA) explain the existence of spectrally opponent chromatic channels with
the right spatial sensitivity. The seminal work of Buchsbaum & Gottschalk [1983] de-
rives opponent channels from PCA applied to LMS signals subject to a rough model
of natural radiances (white noise). Atick et al. [Atick, 1992] derive the achromatic and
chromatic Contrast Sensitivity Functions using decorrelation arguments constrained with
error minimization and an idealized model of spatio-spectral radiances. Ruderman et
al. [D. Ruderman & Chiao, 1998] obtain Fourier-like spatio-chromatic opponent sensors
using PCA on the LMS signals obtained from real reflectance measurements. Wachtler
et al. [Wachtler et al., 2001] apply linear ICA pixel-wise and patchwise on real hyper-
spectral photographic images and obtain better coding results than using PCA. Doi et
al. [Doi et al., 2003] use PCA and ICA to derive spatio-chromatic properties of the lateral
geniculate nucleus (LGN) and the primary visual cortex (V1). Even though the above tech-
niques do not explicitly address adaptation, Webster and Mollon [M. Webster & Mollon,
1997] show that the mean shift (or chromatic adaptation), and the covariance shift (or
contrast adaptation) can be roughly reproduced by dimension-wise normalization of the
LMS responses, and PCA followed by whitening using the set of adaptation colors un-
der different illuminants. Their work combines an extension of the measurements re-
ported in [M. A. Webster & Mollon, 1991] (which used single-color adaptation) with the
decorrelation-oriented explanation given by Atick et al. [Atick et al., 1993]. The obvious
problem with linear methods is that they cannot explain non-uniform discrimination, i.e.
the nonlinear response.

On the other hand, color discrimination and the associated nonlinearities have been
statistically addressed from a different point of view. In this case, the key is the consider-
ation of the limited resolution of any physical sensor and its optimal design to deal with
non-uniformly distributed signals. Two different criteria have been proposed in this con-
text. First, Laughlin [Laughlin, 1983] argued that limited resolution mechanisms should
be designed to maximize the information transfer (infomax). In noise-free scenarios, the in-
fomax principle leads to component independence and nonlinear responses related to the
marginal probability density functions (PDFs) [Bell & Sejnowski, 1995]. Second, MacLeod
et al. proposed that, in order to minimize the representation error in the presence of neural
noise, the response of the color sensors should be related to some power of the marginal
PDFs in the color opponent directions [D. MacLeod & Twer, 2003; D. A. MacLeod, 2003;
Twer & MacLeod, 2001]. The same reasoning has been applied to explain physiological
nonlinearities at the LGN [Goda et al., 2009]. Unfortunately, in these studies, an explicit
multidimensional data-driven algorithm to get the optimal set of sensors remained un-
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addressed: in their experiments they just showed marginal PDFs in predefined linear
axes [Goda et al., 2009; D. MacLeod & Twer, 2003; D. A. MacLeod, 2003; Twer & MacLeod,
2001]. And more importantly, no attempt has been made to explain adaptation using in-
fomax or error minimization. Again, just one of the aspects, the nonlinear behavior, was
addressed by these techniques.

Among the statistically inspired approaches, a remarkable exception to the separate
consideration of color discrimination and adaptation is the work by Abrams et al. [2007],
where the authors investigate whether optimizing the nonlinearity is compatible with
optimal color constancy or adaptation. The problem in this case is that the presented
model already has the appropriate parametric formulation adopted from the empirical mod-
els [Hillis & Brainard, 2005]. Therefore, it may be argued that, even though the model was
statistically fitted, the expected behavior is somehow imposed in advance through the
use of a convenient functional form. According to this, it is not shown that the behavior
emerges directly from data, but the fact that the selected functional model may be simul-
taneously optimal in color discrimination and adaptation.

Finally, we should note an important shortcoming present across the literature: many
of the above statistical studies rely on simplified databases. In particular, most of the works
dealing with adaptation to changes in the illuminant usually assume that the input ra-
diance is just the product of the spectral reflectance and the illuminant radiance: they
assume flat Lambertian surfaces. Therefore, relevant nonlinear phenomena in the image
formation process, such as mutual illumination in rough surfaces, are neglected.

In this work, we address the simultaneous explanation of (i) the nonlinear behavior of
achromatic and chromatic mechanisms in a fixed adaptation state; and (ii) the change of
such behavior, i.e. adaptation, under the change of observation conditions. This is done
by proposing a single non-parametric method based on Principal Curves (PCs) [Delicado,
2001; Hastie & Stuetzle, 1989]: the Sequential Principal Curves Analysis (SPCA). The method
exploits the flexibility of PCs to find adaptive (eventually non-linear) sensors. More-
over, SPCA is equipped with tunable local metric so that the proposed analysis may
follow either the infomax or the error minimization principles. Given the fact that psy-
chophysical adaptation data are given under D65 and A illuminations [M. Luo et al., 1991;
M. Luo & Rhodes, 1999], in this work, the statistical analysis is made on a new database
consisting of colorimetrically calibrated images of natural objects under these calibrated
illuminations. SPCA reproduces the psychophysical behavior on color discrimination
thresholds, discount of the illuminant and corresponding pairs in asymmetric color match-
ing. These color vision properties are demonstrated to emerge directly from realistic data
regularities without assuming any a priori functional form. Moreover, the results sug-
gest that color perception at this low abstraction level may follow an error minimiza-
tion strategy, as suggested by MacLeod [D. MacLeod & Twer, 2003; D. A. MacLeod, 2003;
Twer & MacLeod, 2001], instead of the information maximization principle suggested in
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Laughlin [Laughlin, 1983].

The remainder is organized as follows. Section 4.1.1 motivates the statistical study of
color vision by reviewing (i) the basic features of color PDFs and their changes, and (ii)
the non-linear and adaptive nature of color vision mechanisms. Section 4.1.2 reviews the
results on infomax and error minimization in unsupervised manifold learning. This motivates
our computational approach, which is presented in Section 4.1.3: the Sequential Princi-
pal Curves Analysis (SPCA) with local metric. Section 4.1.4 describes the design of the
experiments: the database of calibrated natural color images used and how the simula-
tion of color vision phenomena from SPCA is carried out. Section 4.1.5 shows how the
proposed statistical technique simultaneously reproduces experimental data on color dis-
crimination and adaptation, compares its performance with empirical color appearance
models (CIELab, LLab, CIECAM), and discusses the biological implications of the results.

4.1.1 Facts on color PDFs and color mechanisms behavior

This section motivates the problem of characterizing nonlinearities and adaptation of the
color vision mechanisms. First, we review the special characteristics of the color mani-
folds. The considered perception phenomena are reviewed through two sets of results:
(i) the nonlinear behavior of the achromatic and the chromatic opponent mechanisms
[Cole et al., 1990; Krauskopf & Gegenfurtner, 1992; Romero et al., 1993; Wyszecki & Stiles,
1982]; and (ii) the ability to compensate changes in spectral illumination according to ex-
periments on corresponding colors [Breneman, 1987; M. Luo et al., 1991; M. Luo & Rhodes,
1999].

Non-uniformities and shifts in color manifolds

Observation of the natural world gives rise to measurements that typically live in low di-
mensional manifolds. The shape of these manifolds and its PDF depend on the interesting
features of the underlying phenomenon. For example, in vision, it is known that the spec-
tral reflectance of objects is intrinsically low dimensional [Maloney, 1986]. Moreover, the
physical constraints on the reflectance as well as the geometry of the surfaces give rise
to particular statistics of the tristimulus values [Koenderink, 2010; Motoyoshi et al., 2007].
However, these distributions are also modified by additional, eventually non-interesting,
causes [Funt & Drew, 1993]: both mutual illumination in surfaces of complex geometry
and changes in the spectral illumination and its geometry introduce nonlinear changes in
the PDF of the tristimulus values that are difficult to characterize. The examples in Fig. 4.1
show real (top) and synthetic (bottom) examples of the nonlinear nature of changes in
color distributions, which clearly cannot be compensated by linear transforms.

Top panel in Figure 4.1 illustrates the basic features of the tristimulus PDF in natural
scenes and its changes:
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• The distribution is remarkably non-uniform, i.e. densely populated around the color
direction determined by the illuminant, and of decreasing density for higher satura-
tion values (see LMS distribution).

• It displays a strong correlation between the LMS values.

• Different illumination geometry gives rise to different data distribution along the
principal axes. In particular, the highlighted regions differ in the illumination angle:
the scene illuminated with D65 (A) is relatively more populated in the high (low)
luminance region.

The change in orientation of the PDF due to the change in the spectral radiance of the
illuminant can be approximately compensated by a rotation, and the change in total ra-
diance by a suitable scaling [Atick et al., 1993; M. Webster & Mollon, 1997]. However, the
classical PCA plus whitening linear transform is not able to compensate the uneven data
distribution along the principal axes. In the example, black dots represent the prediction
of the data under D65 from A data using PCA+whitening. In this case, the transformed
data are still relatively more concentrated in the low luminance region. Nonlinear trans-
forms either in D65 or A data would be required to equalize the distributions along the
individual subspaces. The effect of such equalization would remove the shaded regions
that remain in the linearly compensated image.

The inability of linear transforms can be better stressed in a synthetic example with
controlled reflectance, surface and illumination geometries. The bottom panel in Fig. 4.1
shows a triangularly undulated surface illuminated with D65 and A radiances from differ-
ent angles (11o and 22o). In this synthetic case, a one-to-one correspondence between the
colors can be established so the linear transform can be optimized to minimize the least
squares error, which is not possible in real examples. The result of such optimal linear
transform (not restricted to be based on rotations) is represented by the black dots and
by the reconstructed image. In this case, the best possible linear transform is unable to
compensate for the color changes induced by the change in spectral radiance, surface and
illumination geometries: it can shift the yellowish colors to the region of the gray-blueish
colors but, as a byproduct, the low luminance colors are markedly desaturated. In this
example, the nonlinear change in the PDF comes from the differences in the surface and
illumination geometries. This stresses the fact that general changes occurring in colors of
natural surfaces are nonlinear.

Nonlinear behavior of achromatic and opponent chromatic mechanisms

The sensitivity of some underlying sensory mechanism is related to its discrimination abil-
ity according to the classical Fechner’s hypothesis used in psychophysics [Hillis & Brainard,
2005; Laming, 1997]: given a unidimensional measure x and an eventually nonlinear trans-
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Figure 4.1: Illustration of nonlinearities and shifts in color manifolds. Images, tristimulus

distributions in LMS and CIExy chromatic coordinates are shown for real (top panel) and

synthetic (bottom panel) examples. Top: Flower images under diffuse D65 (blue dots)

and A (yellow dots) illuminant. The synthesized colors (black dots and right image) are

obtained from linear manifold matching by PCA plus whitening. A particular color (large

yellow dot) and its linearly obtained corresponding pair (large black dot) have been

highlighted for convenient comparison with equivalent illuminant compensation results

that will be shown in Section 4.1.4. Bottom: Undulated surface under Lambertian D65

and A illuminants tilted 11o and 22o, respectively. The synthesized image is obtained

by fitting the best least squares linear regression (black dots).
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form R, the bigger the incremental threshold (or just noticeable difference), ∆x(x), the
smaller the slope (or sensitivity) of the underlying mechanism,

dR(x)
dx

∝
1

∆x(x)
. (4.1)

Therefore, the response can be estimated from the experimental incremental thresholds by

R(x) = R(xo) + β
∫ x

xo

1
∆x(x′)

dx′, (4.2)

where β is an irrelevant scaling factor. As a result, if the incremental thresholds are not
constant over the stimulus range, the response of the underlying mechanism is nonlinear.

Figure 4.2 (top panel curves) shows the experimental behavior of the achromatic (A),
red-green (T), and yellow blue (D) mechanisms. Top left plot shows the experimental in-
crease of the luminance thresholds (data derived from Fig. 7.10.1 in [Wyszecki & Stiles,
1982], page 569). Luminance has been expressed in terms of the Ingling and Tsou color
space [Ingling & Tsou, 1977] for appropriate comparison to the theoretical predictions be-
low. The increase in thresholds is classically known as the Weber’s law [Wyszecki & Stiles,
1982]. Middle left figure shows the saturating nonlinearity of the underlying brightness
perception mechanism using Eq. (4.2). Top center and top right plots show the V-shaped
curves of the color incremental thresholds for red-green and yellow-blue stimuli (replotted
from Figs. 10 and 11 in [Krauskopf & Gegenfurtner, 1992]). Axes in the figures have been
expressed in absolute T and D units by re-scaling the original data (given in threshold
relative units) using threshold values for appropriate comparison to the theoretical pre-
dictions. Krauskopf and Gegenfurtner [Krauskopf & Gegenfurtner, 1992] used two adap-
tation conditions: (i) white adaptation point (at the origin in the T and D axes); and, in the
case of the T discrimination, they also used (ii) a reddish adaptation point (about 2.5 in the
rescaled T axis). Middle central and right plots show the corresponding response curves
using Eq. (4.2).

The data show two interesting features of T and D color perception mechanisms:

• The discrimination is optimal (minimum threshold) at the chromaticity of the adap-
tation point, and then the sensitivity decreases as one departs from it. This gives rise
to the saturating sigmoidal response curves with maximum slope at the adaptation
point.

• A change in the adaptation state implies a shift in the response curve in order to set
the maximum sensitivity region at the new adaptation point.

Adaptation and corresponding pairs

Corresponding colors are two sets of tristimulus values that give rise to the same per-
ceived color when one sample is observed under two different light sources [Breneman,
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Figure 4.2: Summary of psychophysical results. Experimental color discrimination

thresholds in ATD channels (top row) and the corresponding nonlinear responses (mid-

dle row). From left to right: channel A (Achromatic), channel T (Green-Red), and

channel D (Yellow-Blue). In the case of the T channel, the green and the red curves

represent the thresholds in two adaptation conditions: white adaptation point and red-

dish adaptation point respectively. Bottom row shows the experimental corresponding

colors (CIE xy chromaticities) under CIE D65 illuminant (left) and under CIE A illumi-

nant (right).

1987; M. Luo et al., 1991; M. Luo & Rhodes, 1999]. Corresponding colors reveal the color
constancy ability of human observers under change of illumination conditions: despite
the change in the linear measurements, the corresponding pairs are perceived as equal.
A chromatic adaptation transform should be able to predict corresponding colors. The
chromatic diagrams in Fig. 4.2 show the data compiled by Luo et al. [M. Luo et al., 1991;
M. Luo & Rhodes, 1999] regarding corresponding colors under CIE D65 and CIE A illu-
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minants1. Note that the corresponding stimuli under CIE A illuminant have reddish-
yellowish chromaticities with regard to those under CIE D65 indicating the illuminant
compensation ability of human viewers.

4.1.2 Sensor design by learning nonlinear data representations

The responses of sensory systems devoted to describe some phenomenon of interest have
to convey as much information as possible about the phenomenon while minimizing the
representation error for every possible input. The first of these related, but not exactly
equivalent, requirements is usually known as Information Maximization [Bell & Sejnowski,
1995; Laughlin, 1983; Lee et al., 2000; Linsker, 1988]. Here we will refer to the second re-
quirement [Lloyd, 1982; D. MacLeod & Twer, 2003; D. A. MacLeod, 2003; Twer & MacLeod,
2001] as Error Minimization.

Additionally, the sensors should discount variations in linear measurements coming
from non-interesting sources: even though eventual modifications of the measurement
conditions may give rise to changes in the PDF of the linear measurements, such as the
ones illustrated in Fig. 4.1, the internal representation (the perception) has to be invariant
to these changes. In the psychophysics literature, this ability is usually known as adapta-
tion [M. Fairchild, 2005], in the signal processing literature as adaptive modeling and filtering
[Haykin, 2002], while in the machine learning literature this has been recently referred to
as domain adaptation [Pan et al., 2009; Storkey, 2009].

The manifold learning method proposed in this section is motivated by the infomax and
the error minimization principles, and by the need of learning systems capable of dealing
with the adaptation or dataset shift problem in the specific context of the color statistics.

Nonlinear sensory systems design: infomax and error minimization principles

Processing input observations x ∈ Rn requires the design of an appropriate set of n, sensors
that respond according to the mapping R, which transforms points x to r ∈ Rn. Physical
sensors may have limited resolution or may be subject to internal noise in such a way that
the responses are corrupted according to a sort of quantization Q,

x
R

''
ff

R−1

r
Q

))
r? . (4.3)

The infomax sensory organization principle states that the mapping R has to be selected
to maximize the transferred information from x to r?. This requirement induces different
constraints on the Jacobian of the response transform ∇R(x) in the noise-free and noisy
scenarios depending on the PDF of the input measurements, p(x), as will be reviewed

1Data available on-line at http://colour.derby.ac.uk
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below and extensively reported elsewhere [Bell & Sejnowski, 1995; Gersho & Gray, 1992;
Laughlin, 1983; Lee et al., 2000; Lloyd, 1982; D. A. MacLeod, 2003]. In general, the sensi-
tivity of the system (the slope of the response) in each region of the input space has to be
related to the population in that region. Additionally, assuming that the internal represen-
tation of the sensory system Euclidean, as done in psychophysics [Hillis & Brainard, 2005;
Laming, 1997], the system induces a perceptual metric in the input domain, M(x), related
to the Jacobian of the response transform, see [Dubrovin et al., 1982; Epifanio et al., 2003;
Laparra, Marı́, & Malo, 2010; Malo et al., 2006]:

M(x) = ∇R(x)> · ∇R(x), (4.4)

which follows from considering an Euclidean metric in the response domain, i.e. the sen-
sory system considers all distortions in the same way2. Accordingly, relations between the
sensitivity of the system and the population of the input space will give rise to relations
between the induced metric in the input space and p(x). The information maximization
and error minimization criteria impose different restrictions on both the Jacobian and the
metric.

On the one hand, in the noise-free case, the infomax principle to set R reduces to looking
for transforms that lead to responses with maximal entropy or equivalently, to indepen-
dent responses [Bell & Sejnowski, 1995; Lee et al., 2000]. This scenario implies a restriction
on the Jacobian of the transform:

|∇R(x)| ∝ p(x), (4.5)

which, according to Eq. (4.4), leads to the following determinant of the induced metric:

|M(x)| ∝ p(x)2. (4.6)

On the other hand, the minimization of the representation error in sensory systems subject
to internal noise or limited resolution leads to a different constraint on the Jacobian. In
particular, in [D. A. MacLeod, 2003], MacLeod and Twer show that, in that situation, the
optimal sensitivity in mean-square-error terms has to be,

|∇R(x)| ∝ p(x)1/3, (4.7)

which is consistent with the classical optimal MSE distribution of discrete perceptions
in Vector Quantization [Gersho & Gray, 1992; Lloyd, 1982]. According to Eq. (4.4), the
determinant of the induced metric should be:

|M(x)| ∝ p(x)2/3. (4.8)

The exponent accompanying the PDF in the Jacobian will be hereafter referred to as γ.
2 In the situation described in Eq. (4.3), distances induced by small distortions in the input and the response

domains, ∆x and ∆r, may be described by local metrics M(x) and M(r): d(x, x + ∆x)2 = ∆x> ·M(x) · ∆x =

∆r> ·M(r) · ∆r = d(r, r + ∆r)2. Assuming that the response transform R is differentiable, the distortion in the
response may be approximated by ∆r ≈ ∇R(x) · ∆x, which, assuming M(r) = I, leads to Eq. (4.4).
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Particular solutions for the response transform

The above constraints on the Jacobian do not lead to a unique solution for the transform.
It is well-known that independent responses from input signals following a certain PDF
(the infomax goal) may be obtained in many different ways [Hyvärinen & Pajunen, 1999].
A straightforward solution such as the equalization of the slices of the joint PDF at the
input representation is not possible in practice from a finite set of samples due to the curse
of dimensionality.

Iterative approaches related to Projection Pursuit [Huber, 1985] may circumvent this
problem. In fact, as pointed out in [Laparra, Camps-Valls, & Malo, 2011], obtaining inde-
pendent responses with deep neural networks is possible even using random rotations in
the linear stages. However, in general, these iterative approaches lead to non-intuitive (or
even meaningless) transform domains since R is not constrained to preserve the local ge-
ometry of the input space. According to this non-uniqueness, the infomax principle and the
nonlinear ICA goals are not enough to determine the sensors that reveal the intrinsic coor-
dinates of data. Nevertheless, a wide range of unsupervised manifold learning techniques
has been proposed to extract the latent coordinates from raw measurements, although not
exactly in the context of nonlinear ICA.

Self-Organizing Maps [Kohonen, 1982] and variants [Bishop et al., 1998] are based on
tuning a predefined topology in such a way that the nonlinearities of the sensors and the
complete lattice of discrete responses are obtained simultaneously. These approaches are
not feasible in highly dimensional situations since the number of nodes in the lattice ex-
plodes with dimensionality. Another group of techniques is based on the eigen-analysis of
graphs and kernels related to the local structure of the data in the manifold [Schölkopf et al.,
2000; Tenenbaum et al., 2000; Weinberger & Saul, 2004], or on sparse matrices describing
the local topology of the data [Belkin & Niyogi, 2002; Roweis & Saul, 2000]. Though ef-
ficient in many tasks, these spectral methods do not generally yield intuitive mappings
between the original and the intrinsic curvilinear coordinates of the low dimensional man-
ifold. In addition, even though a metric can be derived from particular kernel func-
tions [Burges, 1999], the interpretation of the transformation is hidden behind implicit
mappings and out-of-sample extensions are typically difficult, if not impossible. An alter-
native family of manifold learning methods consider complicated manifolds as a mixture
of local models [Kambhatla & Leen, 1997] that are identified and conveniently merged
into a single global representation [Brand, 2003; Roweis et al., 2002; Teh & Roweis, 2003;
Verbeek et al., 2002]. The explicit direct and inverse transforms to the intrinsic representa-
tion can be derived from the obtained mixture model.

Enforcing coordination between neighboring local models may be seen as reducing
multi-information between variables in the coordination (or unfolding) operation. This re-
lates NL-ICA with techniques based on coordination of local models. However, in [Brand,
2003; Roweis et al., 2002; Teh & Roweis, 2003; Verbeek et al., 2002], the effect of these local
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operations in the (eventually point-dependent) metric or line element was not explicitly
analyzed. In the context of NL-ICA, an alternative way of merging locally disconnected
representations was proposed in [Malo & Gutiérrez, 2006]. In that case, the global repre-
sentation was based on the fact that the global NL-ICA at a certain point, R(x), may be dif-
ferentially approximated by the local linear ICA separating matrix, W(x), [Chang & Lin,
2001a]. The issue was posed as an initial value problem and the global representation
was obtained by integrating the local separating matrices in arbitrary paths. Note that,
in the particular case of a mixture of Gaussians, the factorization of local models is con-
sistent with (1) the Mahalanobis distance, and (2) the relation between the probability,
the response and the metric under the noise-free infomax assumption3. However, the
coordination by integrating the differential behavior in arbitrary paths as proposed by
Malo & Gutiérrez [2006] only works for manifolds where the set of local basis functions
fulfills the Stokes’ theorem in the sense used in conservative vector fields. Moreover, the
invertibility of the transform was not addressed therein [Malo & Gutiérrez, 2006].

In conclusion none of the above learning techniques is readily applicable to the simulta-
neous explanation of the non-linearities and adaptation of color vision mechanisms.

Our proposal for the response transform

The method proposed in Section 4.1.3 is based on the assumption of mixture of local mod-
els as classical methods based on vector quantization [Kambhatla & Leen, 1997] and the
variants that enforce model coordination [Brand, 2003; Roweis et al., 2002; Teh & Roweis,
2003; Verbeek et al., 2002]. However, no explicit mixture of models is computed in our
approach. On the contrary, as in [Malo & Gutiérrez, 2006], we propose to merge the local
models by integrating some differential behavior,∇R. However, unlike [Malo & Gutiérrez,
2006], the integration is done along a particular sequence of successive Principal Curves,
similar to propossed by Delicado [2001], instead of using arbitrary paths. In this way,
fulfillment of the Stokes’ theorem in the manifold is no longer required, and a mean-
ingful transformed domain is obtained since the differential behavior is integrated along
meaningful trajectories in the manifold thus preserving the local topology of the input
space. Easy interpretation of the features defined by the Principal Curves solves the in-
terpretability problem of nonlinear ICA techniques related to Projection Pursuit where the
independent representation may be even random [Laparra, Camps-Valls, & Malo, 2011].
Moreover, here we propose an explicitly tunable local metric according to the local PDF to
achieve different goals such as infomax, as in Eq. (4.6), or error minimization, as in Eq. (4.8).

3If the local models are assumed to be Gaussian, local factorization is achieved by local PCA and whitening.
Specifically, if the local covariance can be decomposed as Σ(x) = B(x)Λ(x)B(x)>, the local separating matrix
is just W(x) = Λ(x)−1/2B(x)>. In that case, the metric is M(x) = W(x)> ·W(x) = B(x)Λ(x)−1B(x)> =

Σ(x)−1, i.e. the local Mahalanobis metric. Note also that |Σ(x)|−1/2 is inversely proportional to the volume of
the local Gaussian support, thus, in this case, |∇R(x)| = |W(x)| ∝ p(x) as in Eq. (4.5).
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Finally, the proposed transform is readily invertible which is a key issue to reproduce
chromatic adaptation (see Section 4.1.5). Accordingly, the proposed response is suitable
to reproduce the experimental facts reviewed in Section 4.1.1 using the optimality criteria
reviewed in Section 4.1.2.

4.1.3 Sequential Principal Curves Analysis (SPCA) with local metric

This section presents a manifold learning method, SPCA, that gives rise to an invertible
transform, R. The technique can be seen as a method to design a set of eventually nonlinear
sensors optimized according to the different goals reviewed in Section 4.1.2. The method is
first motivated by the particular characteristics of smooth manifolds. Then, we present the
direct and inversion transforms, and finally study the impact of the metric on the solution.

Motivation

SPCA is based on the following characteristics of curved manifolds:

1. Representing the data in curvilinear coordinates defined by Principal Curves (PCs)
yields a representation where the data are unfolded. Intuitively, the dimensions
become more meaningful in the sense that each one isolates a distinct feature of
the signal (i.e. they are more independent). In [Laparra, Jiménez, et al., 2011b] it is
shown that formulating PCs as a set of local rotations and alignments reduces multi-
information in curved manifolds. Specifically, unfolding along a PC is an adequate
step towards independence since it makes equal the first moment of all the condi-
tional PDFs along the curve.

2. Additional local processing after unfolding is required to achieve, either indepen-
dence or minimum representation error, by using local expansions or compressions
(i.e. locally changing the metric) of the unfolded domain.

The diagram in Fig. 4.3 illustrates the intuitive ideas behind the proposed SPCA, that will
be confirmed in the example of Fig. 4.4. We assume the existence of a transformation
defined by a curvilinear lattice made of recursively defined PCs along all dimensions. This
lattice is similar to the topology assumed in Self-Organizing Maps (SOMs) and variants.
In our context, each dimension of the lattice can be seen as the optimal feature for an
eventually non-linear sensor in the original domain, defining a canonical direction in the
transformed domain. However, unlike SOM, the whole lattice has not to be explicitly
computed in order to find the transformation (response) of a particular point (stimulus).
To do so, we propose to integrate a local differential behavior, ∇R(x), along a particular
path.

The proposed integration path first follows the standard PC of the set [Hastie & Stuetzle,
1989] up to the geodesic projection of the point x on this first PC, x1

⊥. The first PC pro-
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Figure 4.3: Illustration of the SPCA with Local Metric. Left plot represents the input

domain x and right plot represents the response domain r. Colored contours represent

the underlying PDF, p(x). The assumed curvilinear lattice (gray lines) is not explicitly

computed. The proposed differential behavior (Eqs. (4.9) and (4.11)) implies that

highly populated regions (such as the orange area) are expanded while lower density

regions (such as the green area) are shrunk in the response domain (right figure). Given

an origin of coordinates, xo, in the first PC (red line) and some point of interest, x, the

response for the point of interest is given by the lengths (the integrals in Eq. (4.18))
along the path consisting of successive PCs: the first (or standard) PC in red, and

the second PC (in green) in the orthogonal subspace at x1
⊥, which is the (geodesic)

orthogonal projection of x on the first PC.

vides a global summary of the whole dataset but the residual structure in the hyperplanes
orthogonal to this first PC may also be worth to be described. In principle, any set of
(d − 1) linearly independent vectors living in the corresponding hyperplanes would be
equally suited to form a linear basis to describe this structure. However, as noted by
Delicado [Delicado, 2001], the structure at those hyperplanes may also be nonlinear so it
makes sense to draw secondary PCs to capture this residual structure. These ideas imply
that geodesic projections according to the local structure of the manifold can be obtained
by secondary PCs [Laparra, Jiménez, et al., 2011b]. After following the first PC, the path
follows the second PC [Delicado, 2001] at x1

⊥, i.e. the PC of the orthogonal subspace with
regard to the first PC at the point x1

⊥. In this second segment, the path goes up to the
geodesic projection of the point x on the second PC, x2

⊥. This sequence is continued until
the last dimension. The lengths of the curved segments represent the projections in each
dimension of the new representation and may be seen as the response of d sensors tuned
to curved features.

The proposed differential behavior,∇R, is based in the above mentioned characteristics
of smooth manifolds, and can be expressed as:

∇R(x) = D(x) · ∇U(x), (4.9)

where u = U(x) is the unfolding transform that consists of concatenated local rotations
along the proposed path made of a sequence of PCs, and the diagonal matrix D(x) rep-
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resents the local length of the line element along this path (change of metric). Note that
∇U(x) is orthonormal for all x since the unfolding U can be formulated as a set of concate-
nated local rotations. In fact, in the selected method to draw one PC [Laparra, Jiménez, et al.,
2011b], the curve consists of aligned rotations estimated by using local PCA. This is con-
sistent with the fact that other PC algorithms use local PCA to estimate the tangent to the
curves [Delicado, 2001; Einbeck et al., 2005].

In order to adapt the metric to the density, we set the elements of D using the marginal
PDF on the unfolded coordinates and an appropriate exponent γ ≥ 0:

D(u)ii ∝ pui(ui)
γ, (4.10)

where the marginal on each direction is estimated following k-neighborhood rule. The
metric induced in the input space is:

M(x) = ∇U(x)> · D(x)2 · ∇U(x). (4.11)

Assuming that local clusters can be factorized by the local rotations, and taking into ac-
count that |∇U(x)| = 1, we have

|M(x)| = |D(x)|2 ∝
n

∏
i=1

pui(ui)
2γ = p(u)2γ = p(x)2γ|∇U(x)|−2γ = p(x)2γ, (4.12)

which, with the appropriate choice of γ, is the behavior required in Eqs. (4.6) or (4.8).

Unfolding along Principal Curves: the cumulants perspective

Unfolding along a principal curve and cluster alignment imply a step in the right (inde-
pendence) direction but it is not enough since a metric change is needed. This is easy to
see by looking at the cumulant expansion of PDFs. Unfolding along a principal curve with
parameter, u1, implies independence with regard to orthogonal subspaces iff it gives rise
to:

p(u2, . . . , ud|u1) = p(u2, . . . , ud) (4.13)

Therefore, the cumulant generating functions of both sides of the above equation should
be equal:

1− jω>m1 +
1
2

ω>m2ω− . . . = 1− jω>m′1 +
1
2

ω>m′2ω− . . . (4.14)

where mi and m′i are the ith-order moments of each PDF, and ω is the parameter of the
characteristic functions. Independence holds if mi = m′i, ∀i.

One principal curve should satisfy the parametric equation [Hastie & Stuetzle, 1989]:

f (u1) = E[x|λ(x) = u1], (4.15)
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where λ(x) is the orthogonal projection of x on the curve, so {x|λ(x) = u1} is the orthogo-
nal subspace at the curve point u1. According to this, the curve passes through the average
of the orthogonal subspace (the origin of the subspace in the unfolded representation):

E[u2, . . . , ud|u1] = 0, ∀u1 ⇒ E[u2, . . . , ud] = 0, (4.16)

which means that unfolding along a principal curve makes m1 = m′1 = 0. However higher
order moments may not be equal along the curve.

In the infomax context, the effect of the suggested local change of the metric along the
curve (setting the line element, or local equalization) should be achieving a constant PDF
along the curve thus ensuring the equality of all higher order moments.

Direct transform

Given an arbitrary origin of coordinates on the first PC, xo, assumed to give zero response,
ro = 0, and some point of interest, x, the corresponding response is given by the following
integration along the path on PCs described above (cf. Fig. 4.3):

r = R(x) = C ·
∫ x

xo
∇R(x′) · dx′ = C ·

∫ x

xo
D(x′) · ∇U(x′) · dx′, (4.17)

where C is just a constant diagonal matrix that independently scales each component of
the response. The selected path implies displacements in one PC at a time. According
to this, in each segment of the path, the vectors du′ = ∇U(x′)dx′ have only one non-
zero component: the one corresponding to the considered PC at the considered segment.
Therefore, the response of each sensor to the point x is just the length on each Principal
Curve in the path from xo to x, measured according to the metric related to the local density
with the selected exponent,

ri = Cii ·
∫ xi

⊥

xi−1
⊥

D(x′) · ∇U(x′) · dx′ = Cii

∫ ui
i⊥

0
pui(u

′
i)

γ du′i, (4.18)

SPCA is initialized by setting (i) the origin of the coordinate system, and (ii) the scale of
the different dimensions, Cii, and the order in which they will be visited by the sequential
algorithm. Sensible choices for the origin are those suggested in other bottom-up Principal
Curve algorithms [Delicado, 2001; Einbeck et al., 2005]: the most dense point of the distri-
bution (if known) or the mean of the data. Then a set of d locally orthogonal principal
curves is drawn at the selected origin, which will be used to set the order and the rela-
tive scale of the dimensions. In our case, we set the scaling constants Cii according to an
information distribution criterion: we use the number of quantization bins per dimension
given by classical bit allocation results in transform coding [Gersho & Gray, 1992]. This
is consistent with sorting the curvilinear dimensions according to the marginal entropy
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(higher entropy first). Note that, other criteria could be used, as for instance the total stan-
dard deviation of the projected data (as in global PCA) or the total Euclidean length of the
curvilinear axes.

Once the dimensions have been sorted and the global scaling is set, SPCA obtains the
transform of an arbitrary point x by sequentially applying the next two steps. Step 1 traces
a principal curve in the i-th direction from the previous starting point x⊥i−1 (x⊥0 is the
origin of the coordinate system). Step 2 defines the line element in the drawn princi-
pal curve using the marginal PDF along the curve, pui(ui)

γ. The response ri will be the
integral of the line element from x⊥i−1 to the geodesic projection of x into the principal
curve, which is x⊥i (cf. Eq. 4.18). Details on the iterative refinement procedure to obtain
the geodesic projections from orthogonal projections are given in [Laparra, Jiménez, et al.,
2011b]. Since SPCA requires that the individual principal curves are drawn in particu-
lar directions from particular points, appropriate algorithms to draw individual curves
should operate in a bottom-up manner, as those in [Delicado, 2001; Einbeck et al., 2005] or
the particular one used here [Laparra, Jiménez, et al., 2011b]. The local-to-global behavior
in the selected algorithm to draw each PC is necessary to identify the structure around
x⊥i−1 in the subspace locally orthogonal to the previous PC.

A Matlab implementation of SPCA with worked examples is available on-line4. Figure
4.4 illustrates the performance of SPCA in a practical situation.

Inverse transform

A distinctive property of the method is the possibility of computing the inverse of the
transform. Given a set of samples from the same source, the origin in the input space, xo,
and the scale and order of the dimensions, the computation of the inverse, x = R−1(r), is
very simple. It involves drawing the first PC through the origin and taking the length r1 on
this curve, measured according to pu1(u1)

γ. Displacement on the first curve by the length
r1 leads to the first projection x1

⊥. Then, the second locally orthogonal curve is drawn
from x1

⊥, and one takes a second displacement r2 on this second PC leading to the second
projection, x2

⊥. This process is repeated sequentially in every dimension until the desired
point x is found by taking the displacement rd from xd−1

⊥ on the d-th principal curve.

Infomax and error minimization through SPCA

Here we present a synthetic experiment that stresses the usefulness of SPCA in sensor
design, and study the effect of using different metrics (γ = 0, 1 and 1

3 ). We generated 10000
samples from an illustrative curved manifold with changing PDF: half of the manifold has
an increasing variance Laplacian distribution while the other half follows an increasing
variance uniform distribution (Fig. 4.4).

4http://isp.uv.es/spca.html
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Figure 4.4: Infomax and error minimization through SPCA. Samples of the sets in the

first row were transformed using SPCA (second row) with different γ value. Addi-

tionally, Cartesian lattices in the response domain were inverted back into the input

domain giving rise to the curved lattices in the top row. Results are analyzed in terms

of independence (Mutual Information in bits), and reconstruction error (root-mean-

square-error, RMSE). In each case, MI was computed in the corresponding transform

domain, while RMSE values refer to the quantization error in the original domain using

the corresponding lattices as codebook. For the sake of reference, in the original do-

main results were MI = 0.75 bits and RMSE=0.63 (using uniform scalar quantization).

Note how γ = 1 obtains better results in independence while γ = 1
3 is better for RMSE

minimization.

The advantage of using Principal Curves to design a set of sensors is that their flexi-
bility makes them suitable to describe curved manifolds, as pointed out in the example.
No matter the metric used, an unwrapped representation of the data is obtained. When
using γ = 0 the data is unfolded and the original local metric is preserved (e.g. the dif-
ferent distributions inside the manifold remain the same). When using γ = 1, we obtain a
representation where the different distributions are almost uniformized leading to a rep-
resentation where the different dimensions are almost independent. Finally, when using
γ = 1

3 , the reconstruction error is minimized. In this latter case, redundancy is certainly
reduced with regard to the input domain, however, the kurtotic structure of the Laplacian
is more visible than in the second case. Note also the differences in the distribution of the
inverted lattices: while in the γ = 0 case, lattice cells are approximately uniform no matter
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the local population (local metric independent of the PDF), in the other cases, the size is
related to the population, e.g. the γ = 1 case results in tighter slices around the peak of the
Laplacian. As anticipated in this section, unfolding alone (γ = 0) in general is not enough
to remove redundancies, but additional processing, i.e. local changes in the metric related
to the local PDF, are required to achieve independent components.

4.1.4 Simulation of color psychophysics using SPCA

This section describes the procedure to simulate the experimental nonlinearities and the
adaptation results described in Section 4.1.1 using SPCA on suitable ensembles of natural
colors. Since the available experimental data involve adaptation under specific white and
reddish illuminations, a new database was required.

Database of calibrated natural color images

Calibrated measurements (tristimulus values instead of digital counts) and controlled
white and reddish illumination on the same objects are needed to ensure the appropriate
statistical adaptation conditions in the simulation of the psychophysics. Unfortunately,
the current available color image databases do not fulfill such requirements because of
different reasons:

1. Spectro-radiometric natural image databases, such as those used in [Brown, 1994;
D. Ruderman & Chiao, 1998; J. et al., 1994; Nascimento et al., 2002; Parraga et al., 1998;
M. Webster & Mollon, 1997], may be used to estimate the reflectance of natural sur-
faces under the flat Lambertian assumption. Then, these reflectance values can be
used to obtain new tristimulus values under different illuminants. However, such
procedure neglects the nonlinearities induced by geometric factors and mutual il-
lumination, which are relevant factors to induce non-uniformities within the PDF
support (as illustrated in Fig. 4.1).

2. Databases where the illumination is modified on the same objects, include spectro-
radiometric examples [Brainard et al., 2000] and uncalibrated examples [Barnard et al.,
2002; Geusebroek et al., 2005]. The problem in these cases is that either the database
consists of a very restricted set of artificial objects (unnatural clusters in the color
space) [Barnard et al., 2002; Brainard et al., 2000], or that the database is not cali-
brated [Barnard et al., 2002; Geusebroek et al., 2005].

3. Calibrated natural image color databases, such as [Doi et al., 2003; Olmos & Kingdom,
2004; Parraga et al., 2009], are not suitable for the simulation of color adaptation be-
cause either they do not include the same surfaces under the required controlled
illuminants or they are not wide enough to find samples with the appropriate illu-
mination.
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4. A large database, such as that in [Ciurea & Funt, 2003], does include a wide range
of scenes, a subset of which could match the desired white and reddish adaptation
conditions but, unfortunately, it has been acquired with an uncalibrated video cam-
era.

These shortcomings led us to compile a new color image database of natural objects in
controlled illumination conditions. We used a Macbeth light chamber equipped with stan-
dard CIE D65 and CIE A illuminants and we took the CIE XYZ pictures using a calibrated
image colorimeter Lumicam1300. The accuracy of the illuminants and the measurements
was checked by taking pictures of 10 hue pages of the Munsell’s Book of Color and com-
paring the results with theoretical tristimulus values computed from the reflectance of the
samples and the radiances of the illuminants. The database consists of 75 scenes of size
1000× 1280. For each scene, two pictures were taken under CIE A and CIE D65 illumi-
nants. The scenes include plants and flowers, natural terrain and materials, samples of
colored fabric, office material, and Munsell chips.

The database is publicly available on-line5 and it is suitable for other accurate experi-
ments on color constancy and chromatic adaptation. Details on the experimental proce-
dure to gather the database are given in the dedicated web site. In our specific experi-
ments, we used 50 images excluding the Munsell chips and the pictures of the (too flat)
artificial objects. This amounts to 64 · 106 color samples for each illumination. Figure 4.5
shows the pictures considered in our experiments. Transformation from CIE XYZ values
to VGA digital counts for visualization purposes in Fig. 4.5 was done using standard dis-
play calibration data [Malo & Luque, 2000]. This may introduce some color reproduction
errors in Fig. 4.5. However, note that these eventual errors do not affect the simulations,
which were done from the raw CIE XYZ measurements.

Procedure for the simulation of color mechanisms behavior using SPCA

Simulation of nonlinearities Nonlinearities along the A, T and D dimensions of the
color space and their variations under adaptation changes can be reproduced by comput-
ing the response of the SPCA mechanisms on the corresponding axes and the appropriate
adaptation environment (CIE D65 set or CIE A set). Figure 4.6 (top row) shows the points
considered in the simulation in the Ingling and Tsou ATD space [Ingling & Tsou, 1977].
This space is selected as the input linear representation instead of the MacLeod and Boyn-
ton ATD space [D. MacLeod & Boynton, 1979] used in [Krauskopf & Gegenfurtner, 1992]
because it better reproduces basic psychophysical data such as color matching functions
similar to Jameson and Hurvich hue cancellation curves, and appropriate orientation of
the McAdam’s ellipse at the white point [Capilla et al., 1998].

5http://isp.uv.es/databasecolor.html
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CIE D65 illuminant CIE A illuminant

Figure 4.5: Scenes used in the statistical simulations under different illumination.

Experimental results on nonlinearities can be simulated in two different ways that we
will refer to as the psychophysical paradigm and the physiological paradigm. In the physiologi-
cal paradigm, we assume we have access to the response of each mechanism as in an ideal
neuron recording. In this case, we can register the response of the corresponding sensor
(the first sensor in the A case, the second in the T case, and the third in the D case), and we
can simulate the incremental thresholds of these mechanisms from the derivative (slope)
of the responses at the considered points. In the psychophysical paradigm, the isolated re-
sponses are assumed to be inaccessible. On the contrary, we assume a certain summation



4.1 COLOR VISION MECHANISMS FROM SEQUENTIAL PRINCIPAL CURVES

ANALYSIS 89

Figure 4.6: Training and test points for the simulation of the psychophysics. Small

points represent the training samples of the database (cyan for CIE D65 and yellow for

CIE A) and large points represent the different sets of test points. In these plots only

a subset of randomly selected training points is shown for better visualization. Top:

Black, green and blue dots in the top row are the considered points to simulate the

nonlinearity of the A, T, and D mechanisms respectively. In these cases the response is

computed using the CIE D65 training set (gray dots). Dark red dots are the considered

points to simulate the nonlinearity in a reddish environment using the CIE A training

set (light red dots). Top left plot shows the data in the tristimulus ATD space. A

zoom around the origin is shown here for better visualization. However note that test

points along the achromatic axis spread up to A = 80. Top center plot show the data

in the (T, D) plane. Top right plot shows the data in the CIE xy chromaticity diagram.

In this case, the chromatic coordinates of the CIE D65 and CIE A illuminants are also

shown for reference (larger gray and red dots respectively). Bottom: Green and red

points in the bottom row are the considered points to compute the corresponding pairs

using the CIE D65 training set (cyan dots) and the CIE A training set (yellow dots).

of the variations in the responses of the sensors (e.g. the Euclidean norm for simplicity).
The incremental threshold is reached when this norm achieves some prefixed value. In
this way, we can simulate the thresholds and, by integrating their inverse, the underlying
response can be derived as in psychophysics, cf. Eq. (4.2).

As in any finite color database, a certain bias is expected [Koenderink, 2010]. Fig-
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ure 4.6 displays the existing bias in the collected database. Note that the maximum of
the PDFs (the statistical adaptation points) in each case do not match the CIE D65 and
the CIE A chromaticities due to the particular objects in the database. Moreover, the
most dense points are also shifted from the origin in the considered linear representa-
tion (intersection point between the T and D axes in the top right plot in Fig. 4.6). This
will introduce the corresponding bias in the results but it does not reduce the general-
ity of the results, as recognized in previous statistical studies also dealing with biased
databases [D. MacLeod & Twer, 2003; D. A. MacLeod, 2003].

Simulation of adaptation Our proposal for domain adaptation using SPCA as re-
sponse transform, R, is inspired by the corresponding pair procedure framework used in
chromatic adaptation models to predict corresponding stimuli [Capilla et al., 2004]. In this
framework, linear measurements (e.g. CIE XYZ, LMS or ATD tristimulus values, x), ob-
tained in different conditions, C, are transformed according to an invertible color appear-
ance model described by a transform, R, to a canonical space, e.g. the space of perceptual
descriptors, r, related to brightness, hue and colorfulness. The direct and inverse trans-
forms depend on the measurement conditions, C. Measurement conditions may include
information about the environment (e.g. spectral illumination, geometry), or information
about the properties of the measurement system (e.g. normal or defective observers):

r = RC(x). (4.19)

Once a given point acquired in situation B is transformed to the canonical representation
of perceptual descriptors, it can be transformed back into the input domain of situation A
by using the inverse of the transform for situation A (see Eq. (1) in [Capilla et al., 2004]):

x̂A = R−1
A (rB) = R−1

A (RB(xB)). (4.20)

In problems where changes in the PDF due to non-interesting sources are smooth such as
the ones found in color vision, we conjecture that transforms to canonical domains defined
by the meaningful latent variables of the manifold can be used to solve the dataset shift
problem. Changes in the PDF may give rise to nonlinear deformations of the curvilinear
coordinates of the manifold and to changes on the length measures on them. By using
the technique proposed in Section 4.1.3, one should be able to arrive to the same response
thus achieving a canonical invariant representation. The results in Fig. 4.7 illustrate this
concept.

In the simulations of the empirical chromatic adaptation data, we transform one of the
sets of the corresponding color data (e.g. colors at the bottom row in Fig. 4.6) using the
learned transform with SPCA with the appropriate adaptation environment (e.g. the CIE
D65 training set). Then, the obtained responses are inverted back into the ATD space by
using the inverse SPCA with the other environment set (e.g. the CIE A training set). In
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Figure 4.7: Dataset shift compensation by using the corresponding pair concept and

SPCA. Transforms leading to the corresponding latent coordinates of the manifold in

the environments A and B may be used to estimate the position in environment A
of new points measured in environment B. Unlike in the linear adaptation cases in

Fig. 4.1, the proposed nonlinear transform not only removes the yellowish appearance,

but additionally the shadows are reduced as expected in a better PDF matching. In

particular, note how the highlighted point xB (the same one as in Fig. 4.1) results in a

white, higher luminance corresponding point x̂A.

our simulations, the procedure was applied in both directions: from CIE D65 to CIE A, and
viceversa. In each case, the computed colors have to be compared with the experimental
data in Fig. 4.2 (bottom row). Figure 4.6 (bottom row) shows the training and test data for
the corresponding pairs experiment.

4.1.5 Numerical results and discussion

This section shows how both nonlinearity and adaptation phenomena emerge from tris-
timulus samples using the proposed SPCA. In particular, we show the results for the non-
linear behavior along the ATD directions and the corresponding data reproduction using
SPCA with the error minimization and the infomax strategies (exponents γ = 1/3 and γ = 1
respectively).
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Parameters for drawing a principal curve

The parameters associated to the particular algorithm used to draw individual Principal
Curves refer to the rigidity of the assumed underlying grid, or equivalently, to the free-
dom to find curved axes far from the global linear PCA solution. In our implementa-
tion, rigidity is controlled with the locality k, the step size τ, and the stiffness q (details in
[Laparra, Jiménez, et al., 2011b]). In the color statistics problem, the manifold is not glob-
ally curved and changes in spectral illumination induce almost linear rotations. In this
situation, the relevant nonlinearities come from the non-uniform data distribution inside
the PDF support basically due to the statistics of reflectance and geometric issues such as
oblique illumination (cf. Fig. 4.1). These non uniformities are not taken into account by the
rigidity parameters of the particular PC algorithm (k, τ and q) but by the non-Euclidean
metric used in the SPCA framework (i.e. by the infomax or the error minimization strate-
gies). According to this, in the problem at hand, the relevant comparison is between these
strategies, which incidentally is the biologically interesting issue.

In our case, the rigidity constraints of the principal curves algorithm have been opti-
mized for best performance and applied in the same way in both infomax and error mini-
mization cases. Optimization of rigidity parameters has been done by exhaustive search in
a discrete grid in the parameter space. The best values found were: k = 0.2 (20 % of the
samples in the neighborhoods), τ = 15 in Euclidean units in the considered ATD space,
and q = 16 for the stiffness parameter. These parameters imply assuming a relatively rigid
underlying grid, which makes sense in the color statistics problem.

Results

Figures 4.8 and 4.9 show the SPCA results for the error minimization and the infomax strate-
gies respectively. In the reproduction of the thresholds and nonlinearities, we used both
the physiological and the psychophysical paradigms. Since results are very similar for both,
we just show the physiological-like result in each case. Black lines in the plots indicate
the axes in the input ATD space. The deviation of the responses from the origin comes
from the bias of the database. This just stresses the fact that the algorithm is adapted
to the environment represented by the PDFs, which are biased with regard to the partic-
ular adaptation conditions used in the experiments. As stated above, this kind of bias
does not represent a failure of the model, but the (necessarily) restricted nature of the
database [D. MacLeod & Twer, 2003; D. A. MacLeod, 2003].

As convenient reference to assess the quality of the statistical results, which use no per-
ceptual information, we also show the performance of several psychophysically-based
Color Models with chromatic adaptation transform and nonlinearities in opponent chan-
nels: CIELab [Robertson, 1977], SVF [Seim & Valbereg, 1986], RLAB [M. D. Fairchild, 1996],
LLab [M. R. Luo et al., 1996], and CIECAM [Moroney et al., 2002]. See [M. Fairchild, 2005]
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Figure 4.8: Simulation of psychophysics with SPCA using the error minimization strat-

egy.

for recent collective comparison of these models. A Matlab implementation of the consid-
ered color appearance models is available on-line [Malo & Luque, 2000]. Figures 4.10, 4.11
and 4.12 show the results for CIELab, LLab and CIECAM, respectively. These results illus-
trate the general trend when using empirical models and stress the challenge represented
by the simultaneous reproduction of nonlinearities and color adaptation data: widely used
traditional models such as CIELab, LLab, RLab and SVF fail to simultaneously reproduce
both aspects of the phenomenology. They reproduce either the color adaptation (as in
the CIELab case) or the nonlinear behavior (as in the LLab case). Only the more recent
CIECAM model is able to approximately account for both psychophysical aspects.

Interestingly, the results show that both SPCA strategies (error minimization and info-
max) qualitatively reproduce the trends in both aspects of the phenomenology. SPCA
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Figure 4.9: Simulation of psychophysics with SPCA using the infomax strategy.

gives rise to nonlinear responses in the ATD directions that shift in the appropriate way
when changing the adaptation environment from white to reddish illumination. More-
over, SPCA qualitatively reproduces the shift in the corresponding colors and the orien-
tation of chroma circles, both in the CIE D65 from CIE A data and viceversa. This gen-
eral behavior comes from the fact that the proposed algorithm follows the changes in the
PDFs, and has increased resolution, higher sensitivity, in the more populated regions (as
illustrated in the example of Fig. 4.4). Note that the minima in the thresholds in the T and
D axes (Figs. 4.8 and 4.9, top row) coincide with the corresponding maximum in each PDF
(Fig. 4.6).
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Figure 4.10: Simulation of psychophysics with CIELab color appearance model.

Discussion

The proposed statistical explanation is more general than previous statistical approaches
only focused on one of the two phenomena. On the one hand, PCA-based approaches such
as [Atick et al., 1993; M. Webster & Mollon, 1997] do reproduce the shift and scaling of Luo
et al. corresponding colors (results not shown), but their linear nature implies that they
cannot reproduce the nonlinearities in ATD. We did not check the performance of more re-
cent linear-ICA-based approaches such as [Doi et al., 2003; Wachtler et al., 2001] in repro-
ducing corresponding colors, but in any case, they inherently suffer from the same limita-
tion with regard to the Weber’s Law and the chromatic nonlinearities. On the other hand,
Laughlin and MacLeod et al. certainly introduced strategies to account for the nonlinear-
ities [Laughlin, 1983; D. MacLeod & Twer, 2003; D. A. MacLeod, 2003; Twer & MacLeod,
2001] but they did not explicitly propose a multidimensional transform to perform the
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Figure 4.11: Simulation of psychophysics with LLAb color appearance model.

analysis, so their ideas cannot be used to straightforwardly derive the corresponding col-
ors dataset.

The performance of our non-analytic technique is consistent with the general conclu-
sions found by Abrams et al. [Abrams et al., 2007] where discrimination and color con-
stancy are simultaneously considered. They found that analytic models based on Von-
Kries adaptation, color opponent transforms and dimension-wise nonlinearities can be si-
multaneously optimal in discrimination and adaptation under spectral illumination changes,
but not when the reflectance ensemble is substantially changed. Here we did not try to ad-
dress the optimality of the proposed technique in terms of ROC as in [Abrams et al., 2007],
but it is obvious by the construction of SPCA that compensation of observation conditions
is not going to be possible for our technique if the objects giving rise to the different adap-
tation ensembles are very different from each other. Our technique needs wide enough
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Figure 4.12: Simulation of psychophysics with CIECAM color appearance model.

reflectance ensembles for a proper adaptation: if one tristimulus manifold comes from a
wide set of objects while the other comes from a (restricted) set of, say, mainly reddish
objects, the manifolds do not qualitatively match, so color compensation results are not
going to be accurate. In Abrams et al. terms, a different set of parameters (a different
mechanism) is needed in this situation. Our results represent a data-driven alternative to
Abrams et al. approach since, in our case, no analytic model is assumed in advance. Here,
the nonlinear and adaptive behavior (and its limitations) strictly emerge from data, and
not from a statistically fitted model with a particularly convenient functional form.

An additional issue is answering to the question of what strategy is using the brain in
encoding color information at this abstraction level. In this respect, with the considered color
image database, better agreement with the experimental data is obtained using the error min-
imization strategy. As expected from its design, the infomax principle gives rise to steeper
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nonlinear responses, while the experimental nonlinearities (and the error minimization so-
lutions) are smoother. Better reproduction of corresponding pairs is also obtained with the
error minimization strategy. These results seem to favor the MacLeod suggestions on error
minimization in front of the infomax principle.

A possible objection to such preliminary conclusion would be related to its dependence
on the particular dataset. Note that the steepness of the statistically derived chromatic
responses depends on the relative concentration around the achromatic axis in the consid-
ered database: if the database would be strongly biased towards achromatic objects, the
higher concentration around the achromatic axis would favor the error minimization strat-
egy. And the other way around for a database of highly saturated objects. Even though
we subscribe the dependence of the results on the database, it does not seem that our
database is particularly biased towards achromatic objects (cf. Fig. 4.5). In fact, neglect-
ing the cluster towards saturated green (due to over representation of plants), the curved
cluster visible in the CIExy diagram under D65 is quite consistent with the theoretical
predictions in [Koenderink, 2010]. Therefore, the database does not seem to be specifi-
cally favoring the error minimization strategy. Nevertheless, given the practical impossi-
bility of achieving a truly unbiased database [Koenderink, 2010], the definitive way to
confirm these suggestions on the optimality strategy is extending the Webster and Mol-
lon’s measures [M. Webster & Mollon, 1997] performing both color discrimination and
corresponding-pairs experiments in which observers are adapted to the same (controlled)
statistics as the ones used in the numerical simulations. Recent experiments in color dis-
crimination seem to follow this direction [Giesel et al., 2009; Hansen et al., 2008]. In such
experiments, the analysis we proposed here could be used to obtain some insight into the
question of the particular optimality criterion applied by the brain in these tasks.
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4.2 Complex Independent Component Analysis of Images

In recent years, the advances in natural image statistics have been mainly in describing
the signals statistics after the linear stage [Eichhorn et al., 2009; Hyvärinen & Hoyer, 2000;
Hyvärinen & Köster, 2007; Lyu & Simoncelli, 2009; Malo & Laparra, 2010a; Portilla et al.,
2003]. A common point of these models is that they focus on the total magnitude of the
sensor (simple cell) outputs. Often, a combination of the squared outputs of simple cells is
learned, leading to something like complex cells. However, there is evidence that relative
magnitude, or phase, of simple cells plays an important role. A simple example about
the relative importance of the magnitude and phase can be found in [Oppenheim & Lim,
1981]. In this example the magnitude and the phase in the Fourier domain of two images
were exchanged, and the images which were perceptually more similar to the originals
were the ones that carried the phase information. Moreover there is experimental evidence
of phase coupled Gabor-like filters in V1 [Pollen & Ronner, 1981; Touryan et al., 2005]. For
this reason, J. G. Daugman [1993] suggested that the receptive field in the first stage could
be seen as Gabor sensors defined in the complex domain: the real and the imaginary part
are essentially the same Gabor filter but with phases in quadrature.

Despite the evidences of the importance of the phase, not too much progress has been
made in modeling the phase of the signals after the simple cell step statistically. The con-
tributions in this field are restricted to models with a fixed linear stage, the wavelet trans-
form [Cadieu, 2009; Portilla & Simoncelli, 2000]. Although this led to interesting results
about the distribution of natural images, the statistics used in this kind of modeling could
depend on the particular choice of using the wavelet transform as first linear stage.

Here, we aim at both modeling the phase distribution and learning the first linear stage
from the data. For that purpose, we are proposing a extension of complex independent
component analysis (cICA) [Bingham & Hyvärinen, 2000]. The proposed extension deals
with explicit modeling the phase of non-circularly symmetric sources as an alternative to
[J. Eriksson & Koivunen, 2005], which does consider non-symmetric sources but it does
not model the lack of symmetry.

The present work falls naturally in two parts. In Section 4.2.1, we review cICA and point
out its limitations in modeling the phase distribution. Section 4.2.2 shows how cICA can
be extended to better capture the distribution of the phase variable. The extension includes
the version of [Bingham & Hyvärinen, 2000] as special case. Although we focus here on
natural images, the extension can be applied to all kinds of data.

4.2.1 Complex Independent Component Analysis and its limitations

As in Independent Component Analysis (ICA) for real variables, the goal in complex ICA
(cICA) [Bingham & Hyvärinen, 2000] is to find a linear transformation W such that, when
applied to some vector of signals x, the elements of the output vector s = WHx are statis-
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tically as independent as possible. The difference to real ICA is that W, x, and hence also
s are complex valued. Furthermore, instead of the transpose WT, the transposed, complex
conjugate WH is used.

In ICA, one approach to find such a W is to first whiten the data and then to maximize
the kurtosis, or a statistically more robust contrast function. In cICA, the same approach
can be taken by appropriately defining whitening and choosing an appropriate contrast
function.

For complex variables, the random vector x is white if both the real and imaginary
parts can be defined to be white and if the real and imaginary parts are uncorrelated.
An equivalent condition is that E{xxH} = I and E{xxT} = 0. Denoting a column of W
by wi, in [Bingham & Hyvärinen, 2000], cICA can be performed by optimization of JG,

JG(W) =
n

∑
i=1

E{G(|wH
i x|2)}, (4.21)

under the constraint WHW = I. Depending on the nature of the sources, JG needs to be
maximized or minimized. The contrast function G must be a smooth even function and x
is assumed to be white. Possible candidates include G(y) = −

√
a + y2 for a small constant

a. In the simulations in the next section, we will use this contrast function with a = 0.1.
Note that the objective function depends only on the moduli ri = |wH

i x| of the complex
variable si = wH

i x, no matter the choice of G. For sparse sources, maximization of this G
leads to consistent estimators [Bingham & Hyvärinen, 2000].

An alternative viewpoint of cICA is based on maximum likelihood estimation of the
statistical model x = Ws where x and s are white and WHW = I. Assuming independence
of the sources in s = (s1, . . . , sn), the log-likelihood is

`(W) = ∑
t

n

∑
i=1

log psi(w
H
i xt), (4.22)

where xt is the t-th observation of x and psi is the density of the sources si. Since the
variables are complex valued, psi(si) is a bidimensional distribution that can be written as
prφ(ri, φi)/ri, where ri is the modulus and φi is the phase of si. Assuming further that the
modulus and the phase are independent and that, importantly for the next sections, the
distribution of the phase is a uniform distribution, maximization of ` becomes maximiza-
tion of

J2(W) = ∑
t

n

∑
i=1

(log pr(rit)− log rit) . (4.23)

The term pr denotes the distribution for the moduli ri, where we assume that all of them
follow the same distribution. Replacing sample average by expectation, we obtain the
objective function in Eq.(4.21) with G(r2) = log pr(r) − log r. Note further that the dis-
tribution pq of the squared modulus q = r2 is pq(q) = pr(r)/(2r). This means that
G(q) = log pq(q) + log 2. Hence, the contrast function G used in cICA can be directly
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related to the distribution of the squared moduli of the complex sources. In particular,
we can relate the contrast function G(q) = −

√
a + q2, to the choice of pq being a Gamma

distribution,

pq(q) = qk−1 exp (−q
θ )

Γ(k)θk , (4.24)

with k = 1. Then, log pq(q) = −q + const, which is, up to additive constants, the same as
the above contrast function when a is small.

Simulations with natural images

Here we apply cICA on natural images in the Fourier domain. The natural images are
16× 16 patches extracted from the data base in [Olmos & Kingdom, 2004]. The data x on
which we apply cICA are the complex Fourier coefficients. For the visualization, we show
the learned W combined with the whitening matrix and the Fourier transform.

Figure 4.13 shows the results. The real and the imaginary part of the complex filters
obtained are shown in pairs from left to the right. Real and imaginary parts in Figure 4.13
display a quadrature-phase relationship. This statistical result is consistent with measure-
ments in V1 [Pollen & Ronner, 1981; Touryan et al., 2005] and related empirical models
[J. G. Daugman, 1993]. Complex ICA results essentially replicate those obtained by inde-
pendent subspace analysis [Hyvärinen & Hoyer, 2000], but the complex-valued formalism
automatically creates two-dimensional subspaces in ordinary linear ICA.

Checking model assumptions

Here we check whether, for natural images, the obtained complex sources si follow the as-
sumption in cICA that the (squared) moduli follow a Gamma distribution and the phases
are uniformly distributed.

Fitting gamma distributions to the empirical distributions of the modulus of the sources
leads to good fits, see Figure 4.14. In contrast, the empirical distributions of the phases
do not follow the model assumptions, as shown in Figure 4.15. The clearly visible oscilla-
tions in the phases violate the assumption of uniformity in cICA. These roughly bimodal
histograms may be modeled by a modified Von Mises distribution to account for the two
peaks,

pφ(φ|k, µ) =
1

2π I0(k)
ek cos(2(φ−µ)), (4.25)

where I0(k) is the Bessel function of order 0. In contrast to the ordinary von Mises distri-
bution, we have here introduced the factor 2 inside the cosine to model the two-peaked
distributions seen in Fig. 4.15. Note that this distribution correspond to a uniform distri-
bution when the parameter k = 0. In figure 4.15 we can see how fitting this distribution to
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Figure 4.13: Filters and features (defined by the pseudoinverse of the filter ma-

trix) obtained with cICA using the algorithm in [Bingham & Hyvärinen, 2000],

ordered according to contrast function value (first 36 of 126). Filters and fea-

tures are shown in pairs, with the real part at the left and the imaginary part at

the right. Top: complex filters. Bottom: complex features.

the empirical distribution of the phase is much more precise than fitting a uniform distri-
bution.

4 7 10 11 15 16

17 20 22 23 28 31

Figure 4.14: Selection of distributions of the modulus of the cICA sources (blue)

and a fitted gamma distribution (black). The curves are strongly overlapping

and thus not clearly visible. Numbers refer to the corresponding sensor in the

figure 4.13 (left to right, top to bottom).
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4.2.2 Extension of complex ICA

In this section we propose an extension of cICA. The extension builds on the maximum
likelihood approach to cICA in Eq. 4.22. It will take into account that the distribution of the
phase variables can be non-uniform, as found in natural images (Eq. 4.25 and Fig. 4.15).

As in the previous section, we write in Eq. 4.22 psi as prφ(ri, φi)/ri, where ri is the mod-
ulus and φi is the phase of si. Also as previously, we assume that the modulus and the
phase are independent. However, instead of assuming a uniform distribution for the
phases, we assume the distribution in Eq. 4.25. Since this distribution includes the uni-
form distribution, our extension includes the conventional cICA as a special case. With
these assumptions, the maximum likelihood principle leads us to maximize the following
objective function

JGQ(W) = ∑
i

E{G(ri) + Q(φi, ki)}. (4.26)

Here, ri is the modulus of the complex number wH
i x, and φi is its phase. As before, wi

denotes a column of the matrix W and we have the constraint WHW = I. The function
G is, as before, related to the distribution of the squared modulus. A possible choice is
G(y) = −

√
a + y2. The function Q is related to the distribution of the phase and is given

by Q(φi) = ki cos(2φi), and depends on the wi and the shape parameters ki. Here, we
can set µ = 0 because this phase localization parameter is redundant: the phase of the
oscillations will be determined by the estimated features anyway.

This modification of cICA can also be considered from an information theoretical point
of view. The main goal of all ICA-based algorithms is to obtain independent sources,
which is equivalent to reduce the mutual information (MI) between them. Therefore, as
MI(s1, s2, ..., sn) = ∑i{h(ri) + h(φi)} − h(s1, s2, ..., sn), where h(·) is the entropy. This result
can be derived by using the same assumptions as in section 4.2.1. Accordingly, we have to
reduce the entropy of ri and φi, (the joint entropy is invariant under unitary transforms).
Note that the uniform distribution is the one with maximum entropy when the domain
is bounded. Therefore, anything different to a uniform phase distribution will have less

4 7 10 11 15 16

17 20 22 23 28 31

Figure 4.15: Selection of distributions of the phases of the cICA sources (blue)

and a fitted modified Von Mises distribution (black). Numbers refer to the

corresponding sensor in the figure 4.13 (left to right, top to bottom).
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entropy, which means less MI between the variables, and hence more independent sources.
Figure 4.16 shows the results when the above extended cICA is applied to natural im-

ages (same setup as before). Note how the shape of the filters is more elongated (especially
the highest-ranked ones) and spatially more extended than for the classical cICA. In fig-
ure 4.17 we can see the distribution of phases of the sources obtained with the proposed
algorithm. The distributions are similar to the proposed modified Von Mises distribution.

Figure 4.16: Filters and features obtained with the extended cICA, ordered ac-

cording to contrast function value (first 36 of 126). Filters and features are

shown in pairs with the real part at the left and the imaginary part at the right.

Top: complex filters. Bottom: complex features.
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Figure 4.17: Phase distributions of the sources obtained using the modified cICA

algorithm corresponding to the filters and features of the figure 4.16. Empirical

distributions in blue and fitted modified Von Mises distribution in black
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4.3 Ability of Linear Transforms in Removing Dependencies

Lately, a lot of works have been developed under the assumption that Independent Com-
ponents Analysis (ICA) is a good tool to obtain independent components over natural
images. Moreover, a number of suggestions about how the brain works are based on this
ability of ICA. In [Bethge, 2006] the ability of Principal Components Analysis (PCA) and
ICA in removing dependencies in natural images was analyzed. Surprisingly the ability
of ICA of obtaining independent components was set only around 5% better than PCA in
mutual information terms. Here we analyze this fact in detail. Specifically, since natural
images display very different features, here we assess the effect of the linear transforms
more widely used in natural image statistics, Discrete Cosine Transform (DCT), PCA and
ICA, when dealing with textures of different nature. Moreover, the effect of adapting these
transformations to the specific kind of image is also analyzed.

Section 4.3.1 reviews how to measure the mutual information difference after perform-
ing a linear transformation. Moreover the accuracy of the estimator is shown. The two
main experiments are presented in section 4.3.2. The first experiment consists of mea-
suring the amount of redundancy reduction achieved when the DCT, PCA and ICA are
adapted to different natural textures. The second experiment consists of measuring the
amount of redundancy reduction achieved when the DCT and a generic ICA basis are ap-
plied over natural textures. Generic ICA basis are trained for a wide set of natural images.
This experiment remarks the importance of adapting the basis to the particular situation.

4.3.1 Measuring dependencies

Measuring multi-information is a difficult task, sometimes impossible, due to the fact that
it is implicitly based on the estimation of multidimensional distributions. However, mea-
suring the difference of multi-information before and after a transformation can be ex-
pressed in terms of unidimensional entropy measures and the Jacobian of the transforma-
tion:

∇I = I[~x]− I[~y]
= ∑i h[xi]−∑i h[yi] + log |∇F(x)|

(4.27)

where I[·] is the multi-information, h[·] is the differential entropy, ~y = F(~x), and ∇F(x) is
the Jacobian of the transformation.

If F is a linear transformation, ∇F(x) reduces to |F|, which can be easily computed. In
our case we will restrict to |F| = 1. Therefore,∇I requires only to estimate the differential
entropies in each dimension before and after the transformation.
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Figure 4.18: Left: example of Laplacian distribution with different λ values.

Right: distribution of natural images DCT coefficients for different dimensions.

Testing the entropy estimator

In order to compute the marginal entropies we use the MLE entropy estimator with the
Miller-Maddow correction [Miller, 1955]. In this section the accuracy of this entropy es-
timator is tested. We assume that the marginal distribution of a natural image dataset
transformed with DCT, PCA or ICA closely follows a Laplacian distribution. Figure 4.18
shows theoretic Laplacian distributions with different λ values and empirical distribu-
tions for DCT coefficients. PCA and ICA coefficients have similar distributions (results
not shown).

We have tested the committed error when using the entropy estimator in a random data
drawn from a Laplacian distribution with different values of the λ parameter. We used
20.000 samples, which is the same number used in all the experiments of this work, and
the same λ values as in the theoretic distributions of Fig. 4.18. Results shown in Fig. 4.19
suggest that the error committed using this estimator is negligible respect to the obtained
multi-information differences.

4.3.2 Measuring dependencies on natural textures

In this section, we evalue the differences in multi-information when applying DCT, PCA
and ICA over a set of natural textures in order to: 1) quantify the difference in redundancy
reduction when the data (image) has different features, and 2) know what is the effect of
applying generic linear transforms on different images. For these tasks we have selected
32 different natural textures from McGill Calibrated Color Image Database6 (Figure 4.20).
FastICA algorithm [Hyvärinen, 1999a] has been used in order to obtain the ICA basis.

6http://tabby.vision.McGill.ca
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Figure 4.19: Errors of using the proposed estimator for different λ values and

patch size of 7× 7 (left) and 14× 14 (right).

Experiment 1: Adaptive linear transforms

Here we analyze the effect on redundancy reduction when widely used linear transforma-
tions are applied to different textures. In this section PCA and ICA transforms are trained
for each texture. The experiment consists of applying the following sequence to each tex-
ture:

1. 20.000 patches are randomly extracted from the current texture.

2. DCT is performed over each patch.

3. The difference in multi-information is measured using the formula (4.27).

4. The DC component (mean patch luminance) is removed, and PCA transform is com-
puted and applied over the data.

5. The difference in multi-information is measured using the formula (4.27).

6. ICA transform is trained and applied over the data.

7. The difference in multi-information is measured using the formula (4.27).

Results for 7× 7 and 14× 14 patch size are shown in figure 4.21.

Experiment 2: Fixed linear transforms

Similarly to the previous section, here we analyze the effect on redundancy reduction
when the most used linear transformations are applied over different textures. However,
in this section we do not adapt the transforms to each texture but we use the same trans-
formations for the whole set. We use DCT and a generic ICA transform. Note that generic
PCA would obtain similar basis to the DCT. The idea is to analyze how much redundancy
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Figure 4.20: Textures used in the experiments.
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Figure 4.21: Results of multi-information reduction when PCA and ICA are

adapted to each texture. Reduction of DCT is shown in blue, for PCA in

green and, for ICA in red. In the left panel results are shown in bits per pixel

(bpp). In the right panel results are shown relative to the reduction achieved by

ICA. These results are obtained for 7× 7 (top) and 14× 14 (bottom) patches.

reduction can be achieved when fixed basis, optimized for processing natural images, are
applied on particular images. Note that, unlike in the first experiment, here the ICA basis
are not trained/adapted for each texture. However a generic ICA basis is computed from
a set of 20.000 patches randomly selected from a wide set of natural images extracted from
[Olmos & Kingdom, 2004]). The experiment consists of applying the following sequence
to each texture:

1. 20.000 patches are randomly selected from a texture.

2. DCT is performed over each patch.

3. The difference in multi-information is measured using formula 4.27.

4. The DC component is removed, and the generic ICA transform is applied over the
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data

5. The difference in multi-information is measured using formula 4.27.

Results for 7× 7 and 14× 14 patch size are shown in figure 4.22.
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Figure 4.22: Results of multi-information reduction when using DCT (blue) and

generic ICA (red). Right: Reduction achieved in bits/pixel. Note that are not

shown in stacked way as in previous figures because for some textures reduction

achieved by generic ICA is less than with DCT. Left: Reduction achieved by

generic ICA, shown relative to the reduction achieved by DCT. These results

are obtained for 7× 7 (top) and 14× 14 (bottom) patches.

4.4 Chapter conclusions

In section 4.1 we have shown that the basic features of color vision sensors, namely their
nonlinearities, the variation of their response under change of adaptation conditions, and
their ability to compensate for the changes in spectral illumination emerge from the de-
scription of the manifolds of tristimulus values of natural objects under different illumina-
tions. To this end, we have proposed a new nonlinear manifold description technique, the
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Sequential Principal Curves Analysis with local metric. SPCA is better suited to the color
statistics problem than previous manifold description techniques since it is readily invert-
ible and can be easily tuned for the infomax or the error minimization principles by simply
selecting the appropriate population-dependent metric. In addition, a new accurate color
image database has been collected that could be eventually used for further accurate ex-
periments on color constancy and chromatic adaptation.

The proposed technique generalizes previous statistical explanations of color perception
that just account for a subset of the data [Atick et al., 1993; Doi et al., 2003; Laughlin, 1983;
D. MacLeod & Twer, 2003; D. A. MacLeod, 2003; Twer & MacLeod, 2001; Wachtler et al.,
2001; M. Webster & Mollon, 1997]. Moreover, it also generalizes the results in [Abrams et al.,
2007], which simultaneously analyze discrimination and adaptation, because we do not
assume an explicit functional form of the model. Consistently with the results of Abrams
et al. on the performance of statistically fitted analytic models [Abrams et al., 2007], the
proposed non-parametric technique also requires similarity between the reflectance en-
sembles for an accurate color adaptation.

The simulation of perceptual results with the considered image database suggests that
color vision mechanisms may be guided by an error minimization strategy. However, in
order to confirm this conjecture, new psychophysical data are required in which the ob-
servers adaptation is determined by particular statistics. In that case, SPCA could be ap-
plied to obtain some insight about the goal used by the brain in encoding color informa-
tion.

We have started with modeling natural images with complex Independent Component
Analysis (cICA). This led to the emergence of complex filter where the real and the imag-
inary part have the same Gabor-like shape (same orientation and same frequency) but a
difference in the phases of π

2 , which are similar to the complex cells in the V1 visual area.

Checking the model assumptions in cICA, we have noticed that the assumption of uni-
formity of the phases is often violated for natural image data. This led us to formulate
an extension of cICA which models also the phase distributions. Simulations with natural
images showed that the empirical distribution of the phases provide a good match to the
assumptions of the extended model.

This research has the potential for more extensions. For instance, the assumption of the
independence between modulus and phase should be investigated more carefully.

In section 4.3 the potential for redundancy reduction of the most popular local linear
transforms used in image processing (DCT, PCA and ICA) has been evaluated for different
textures.

In the first experiment Sec. 4.3.2, where ICA basis are adapted to each texture, we found
only a small average improvement of ICA over PCA or even the fixed DCT representation,
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which further corroborates the results in [Bethge, 2006]. Furthermore, the absolute ∆I
between DCT and ICA is always smaller than 0.5 bits/pixel for all textures, and smaller
than 0.3 bits/pixel between PCA and ICA. In contrast, the redundancy reduction achieved
with the fixed DCT basis is highly dependent on the type of texture, ranging from 0.4 to
3.2 bits/pixel. However, the redundancy reduction achieved by PCA and ICA with regard
to DCT remains more or less constant. This effect makes that the relative redundancy
reduction achieved by ICA regard DCT is very different depending on the texture. In the
presented experiments for a particular texture the reduction is 30% and for other particular
texture 2%. Results show that for a patch size of 14× 14 the reduction achieved by PCA
and ICA is bigger than for patches of 7× 7.

The second experiment analyzes the redundancy reduction achieved when using generic
ICA basis (trained for a set of natural images) on particular textures. The generic ICA ba-
sis yield an average improvement of about only 0.5% of ∆I for 7× 7 patches, and even
no reduces but increases the mutual information (3.5%) for 14× 14 patch size. These re-
sults raises the question about the ability of fixed ICA basis in obtaining an independent
representation. This is even clearer when analyzing particular textures: for some textures,
generic ICA is even 20% worst in independence terms than DCT. It has been argued that
the shape of the filters in V1 is due to its capacity to obtain a representation were the com-
ponents are independents, experiments were ICA algorithms are trained using natural im-
ages data show that the ICA filters have similar shape to the V1 filters [Bell & Sejnowski,
1997; Olshausen & Field, 1996]. However, the results reported in the second experiment
suggest that this idea should be revisited. On the other hand, these results together with
those reported in the experiment 1 of Sec.4.3.2, stress the importance of adaptation or
overcompleteness in the V1 representation. Therefore, these last results suggest that (1)
the framework of linear transformations is too limited to achieve a large reduction of re-
dundancy, even if the basis functions are adapted to visually homogeneous regions such
as textures, (2) the idea that the shape of the V1 filters is due to its optimization to obtain an
independent representation, and (3) adaptation or overcompleteness is necessary in order
to obtain an optimal linear representation for natural images.



Chapter 5

From Statistics to Applications

5.1 Denoising with Kernels Based on Image Relations

Denoising requires representing the distorted signal in a domain where signal and noise
display different enough behavior. In such a representation, noise is removed by imposing
the known properties of the signal to the distorted samples. In image denoising, classical
regularization techniques are used to impose smoothness in the spatial domain since noise
is typically white [Banham & Katsaggelos, 1997]. Smoothness in the spatial domain means
predictability of the signal from the neighborhood, and thus classical approaches exploit
the low-pass behavior of the power spectrum to rely on band-limitation or autoregressive
models of the signal [Andrews & Hunt, 1977; Banham & Katsaggelos, 1997; Bertero et al.,
1988]. Several image denoising methods working in the spatial domain have been pre-
sented in the literature, either based on splines [Takeda et al., 2007], patch-based approxi-
mations [Kervrann & Boulanger, 2007], local auto-regressive models [Gutiérrez et al., 2006],
or support vector regression [Ginneken & Mendrik, 2006; Kai Tick Chow & Lee, 2001] to
perform smooth (regularized) approximations of the noisy signal. Recently, successful
methods use adaptive local basis representations [K. Dabov & Egiazarian, 2007]. Approaches
to the problem using local basis is qualitatively related to wavelet descriptions. In fact,
wavelet representations have been recognized as quite appropriate domains for image de-
noising.1

Wavelet representations are convenient in image denoising because natural image sam-
ples have a very specific statistical behavior in this domain. On the one hand, smoothness
is represented by a strong energy compaction in coarse scales. On the other hand, the
combination of smooth regions with local, high contrast features, such as edges, gives
rise to sparse activation of wavelet sensors. This leads to very particular, heavy-tailed,

1In the 2007 IEEE International Symposium on Information Theory (ISIT2007), the tutorial “Recent Trends
in Denoising” (http://www.stanford.edu/∼slansel/tutorial/summary.htm) pointed out that state-of-the-
art methodologies are usually defined in the wavelet domain.



5.1 DENOISING WITH KERNELS BASED ON IMAGE RELATIONS 115

marginal probability density functions (PDFs) of the wavelet coefficients [Burt & Adelson,
1983; Field, 1987; Hyvärinen, 1999a; E. Simoncelli, 1997]. These basic features were incor-
porated in the classical wavelet-based image denoising techniques [Donoho & Johnstone,
1995; Figueiredo & Nowak, 2001; E. P. Simoncelli, 1999]. Classical techniques such as hard
and soft thresholding [Donoho & Johnstone, 1995] have been derived by using Bayesian
approaches in non-redundant wavelets, looking for either Maximum a Posteriori (MAP)
or Bayesian Least Squares (BLS) estimators, in combination with simple marginal mod-
els and assuming statistical independence among coefficients [Figueiredo & Nowak, 2001;
E. P. Simoncelli, 1999].

It is well-known, however, that marginal models in the wavelet domain are not enough
for a proper signal characterization: relevant relations among coefficients still remain af-
ter wavelet transforms [E. P. Simoncelli, 1999]. For instance, edges lead to strong cou-
pling between the energy of neighboring wavelet coefficients of natural images. These
relations among wavelet coefficients have proven to be a key issue in applications such
as image coding [Camps-Valls et al., 2008; Malo et al., 2006], texture analysis and synthe-
sis [Portilla & Simoncelli, 2000] or image quality metrics [Laparra, Marı́, & Malo, 2010].
The use of these relations is in the roots of the most recent and successful image denoising
approaches as well [Goossens et al., 2009; Portilla et al., 2003; Simei & Simoncelli, 2007]. In
this case, more complex image models explicitly including the relations among coefficients
have to be plugged and fitted into the Bayesian framework to obtain the image estimates.

Unfortunately, all these model-based Bayesian techniques have three common prob-
lems:

1. They critically depend on the accuracy of the image model, whose definition is not
trivial;

2. MAP or LS estimations can only be derived analytically for particular, typically
Gaussian, noise sources. For different noise sources, the whole technique has to be
reformulated which may not be analytically tractable;

3. The estimation of the parameters of the image model from the noisy observation is
difficult in general.

Conversely, non-parametric approaches can include the above qualitative properties in an
indirect way without the restriction of being analytically attached to particular image or
noise models. These approaches are based on learning the underlying model directly from
the image samples.

In this work we apply support vector regression (SVR) in a redundant (overcomplete)
wavelet domain to the noisy image. The proposed method has the following advantages
in front of the Bayesian framework:



116 CHAPTER 5. FROM STATISTICS TO APPLICATIONS

1. It does not use a particular parametric image model to be fitted, for example, no
analytical PDF is required.

2. Its solution may be found for arbitrary noise sources even without knowing the func-
tional form of the noise PDF since it can work with just noise histograms. Therefore,
the procedure does not need to be reformulated for different noise sources.

3. It is capable to take into account the relations among wavelet coefficients of natural
images through the use of a suitable kernel. In this way, the method preserves the
relevant relations among the coefficients of the true signal and better removes the
degradation.

The proposed method does not assume independence among the signal coefficients in the
wavelet domain, as opposed to [E. P. Simoncelli, 1999] and [Figueiredo & Nowak, 2001],
nor an explicit model of signal relations, as done in [Portilla et al., 2003]. Therefore, the
proposed machine learning approach can be seen as a more flexible (model-free) alterna-
tive to the explicit description of wavelet coefficient relations for image denoising. Even
though the selection of a particular SVR may be seen as a signal parametrization, the
model is still non-parametric in the sense that no functional form of the signal (or noise)
characteristics (e.g., the PDF) is assumed.

Non-explicit use of dependencies in local frequency domains for denoising was also
introduced in [Gutiérrez et al., 2006]. In that case, relations were embedded into a per-
ceptual model used for non-parametric spectrum estimation, and offered better results
than local parametric autoregressive models not including these relations. Here we pur-
sue the same goal (a model-free technique including local frequency relations), but with
a completely different framework (SVR instead of perceptual information). The idea of
using SVR regularization in the wavelet domain for image denoising has been recently in-
troduced in [Kai Tick Chow & Lee, 2001], [Cheng et al., 2004] and [Ginneken & Mendrik,
2006]. However, in these works, (1) the qualitative effect of the different parameters of
the SVR was not analyzed, (2) these parameters were set without plausible justification of
their values, and more importantly, (3) the relevance of the relations among the wavelet
coefficients of the signal was not an issue, so the ability of SVR to take these relations
into account in the kernel was neither assessed nor compared to other methods that do
consider them. In fact, a trivial isotropic Gaussian kernel was used in all cases. On the
contrary, in this work we address the key following issues:

• Natural images features in redundant wavelet domains. Interesting insight about
the problem can be obtained by analyzing the mutual information between the co-
efficients of wavelet representations [Buccigrossi & Simoncelli, 1999; Liu & Moulin,
2001]. However, in redundant domains, it is strictly necessary to discern what are
the relations specific to the signal and those due to the transform.
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• General constraints of the SVR parameters in image denoising. Generic recom-
mendations about the SVR parameters have been adapted to propose specific subband-
dependent profiles for the insensitivity and the penalization parameters, and to pro-
pose a mutual information based kernel.

• Effect of the SVR parameters. We show the qualitative effect of varying the values
of the parameters under the constrained parameter space.

• Procedure to optimize the SVR parameters. We propose an automatic procedure to
select the SVR parameters based on the Kullback-Leibler divergence, under certain
assumptions on signal and noise.

Even though this methodological framework is proposed in the context of achromatic im-
age denoising, it can be readily extended to other denoising problems in which wavelet
coefficients exhibit particular relations, such as in color or multispectral images, speech
signals, etc.

The remainder is outlined as follows. In Section 5.1.1, we point out relevant signal fea-
tures in redundant wavelet domains through mutual information measurements. These
key properties will be used by the proposed algorithm presented in Section 5.1.2. In Sec-
tion 5.1.3, the effect of SVR parameters and the validity of the proposed criterion for its
selection is addressed experimentally. Section 5.1.6 shows the performance of the pro-
posed method compared to standard denoising methods in the wavelet domain. Several
experiments dealing with different amount and nature of noise illustrate the capabilities
of our proposal.

5.1.1 Features of natural images in the Steerable Wavelet Domain

The starting hypothesis for image denoising is that signal and noise display different char-
acteristics and thus it is possible to separate them in a certain domain. Natural images
show non-trivial relationships among wavelet transform coefficients. In the following,
we review the reported statistical properties of natural images in orthogonal wavelet do-
mains, and then analyze them in the redundant steerable wavelet domain selected in our
implementation. Specifically we will use mutual information (MI) to assess the statisti-
cal relations among wavelet coefficients of natural images as in [Buccigrossi & Simoncelli,
1999] and [Liu & Moulin, 2001].

Intraband versus interband signal relations in Orthogonal Wavelets

Dependencies among orthogonal wavelet coefficients were measured using mutual informa-
tion in [Liu & Moulin, 2001]. The dependencies were studied at interband and intraband
levels, and the results suggested that the mutual information between intraband neighbors
is typically larger than the interband relations for several models and types of interaction.
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In [Buccigrossi & Simoncelli, 1999], the authors analyzed the linear predictability of a coef-
ficient’s magnitude from a conditioning coefficient set, either its parent, neighbors (left and
upper), cousins (coefficients at the same location but in different orientation subbands), or
aunts (cousins of the parent). After an exhaustive mutual information analysis, the parent
provided less information content than the neighbors. These evidences suggest that the
dependencies among spatial neighboring coefficients (intraband) in orthogonal wavelet
descriptions are stronger than the interband dependencies.

Natural images relations in Steerable Wavelets

Redundant wavelet representations may be more suited to image denoising applications
since is easier to describe the invariant statistical image features. Specifically, some repre-
sentations are designed to be translation or rotation invariant [Coifman & Donoho, 1995;
Freeman & Adelson, 1991; Kingsbury, 2006]. This behavior is convenient to ensure that a
particular feature in different spatial regions (or with different orientations) gives rise to
the same neighboring relations. Some translation invariant wavelets have also a smoother
rotation behavior than non-redundant transforms [E. Simoncelli & Freeman, 1995]. This
justifies applying the same processing all over a particular subband and dealing with the
different orientations in similar ways. Besides, this prevents aliasing artifacts appearing
in critically-sampled wavelets. In this work we choose a redundant steerable pyramid
representation [E. Simoncelli & Freeman, 1995] to take advantage of these properties.

Despite the reported results on the relations of signal coefficients in orthogonal trans-
forms, a number of questions have to be answered in the case of redundant representa-
tions, and in particular, in the steerable wavelet domain:

1. How relevant are the relations among coefficients of natural images in this domain?

2. How relatively important are interorientation, interscale and intraband signal rela-
tions?

3. How is the spatial arrangement of these signal relations?

The first question is particularly important since, even though the steerable transform may
intensify the relations among signal coefficients, its redundant nature may also introduce
relations which could be due to the transform but not to the signal. The second question
allows us to focus on the most significant relations. Answering the third question is crucial
to design suitable kernels for image denoising.

In the following, we get some insight on these concerns by performing two experiments
on a representative database of 920 achromatic images of size 256× 256 extracted from the
McGill Calibrated Colour Image Database [Olmos & Kingdom, 2004].
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Signal relations are specific to the signal

In our first test, following [Liu & Moulin, 2001], we computed the mutual information
among steerable wavelet coefficients of the data set for different spatial, orientation, and
scale distances. We used a steerable pyramid with 8 orientations and 4 scales. The mu-
tual information was estimated from the uniformly binned empirical data (256 bins) by
computing the histogram of all available sample pairs (721280 samples) for the three con-
sidered neighborhoods. In addition, as stated above, in redundant domains it is necessary
to know whether these relations come from the images or they are due to the transform.
Note that, considering i.i.d. signals, any relation among the coefficients after a linear trans-
form will be due to the transform no matter their PDF in the original domain. Therefore, in
order to assess the amount of relations due to the transform, we compared the MI among
natural images coefficients, and the MI among the coefficients of an i.i.d. signal (Fig. 5.1).
The relations displayed by i.i.d. signals in the transformed domain may be seen as a lower
bound for the mutual information of signal coefficients. From Fig. 5.1, it can be noticed
that, in every case, relations found in natural images are bigger than those introduced by
the transform.

Intraband signal relations dominate over interscale or orientation

Besides, the results show that intraband relations in the signal are also more important
than interorientation or interscale relations. Note that mutual information measures are
defined to depend on logarithms of probability so that comparisons have to be done by
subtraction, not by division. Beyond consistency with previously reported results for or-
thogonal wavelet transforms [Buccigrossi & Simoncelli, 1999; Liu & Moulin, 2001], it has
been observed that the relations are specific to the signal and not just induced by the trans-
form.

Intraband relations are strongly oriented

In our second test, we studied the spatial arrangement of the relations among intraband
coefficients since they display the most relevant relations. To this end, we computed the
mutual information in a 2D 5× 5 neighborhood for the different orientations and scales.
Figure 5.2[top] shows the above mentioned results for the set of natural images (finest
scale). We also provide the relations introduced by the transform (i.i.d. signal, Fig. 5.2
[bottom]). Similar results were obtained for the other (coarser) scales. Again, the relations
among the signal coefficients are higher than those introduced by the transform. Another
key issue observed in Fig. 5.2 [top] is the specific spatial arrangement of these relations: the
presence of oriented structures in natural images gives rise to strong anisotropic intraband
relations in the different subbands. Coefficients following these relations are expected to
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(a) (b) (c)

Figure 5.1: Comparison between redundancy of natural image coefficients in

the steerable wavelet representation (solid), and the redundancy due to this

representation (dashed). Redundancy is measured in terms of relative mutual

information in logarithmic scale among (a) spatial (b) orientation and (c) scale

neighbors.

be representative of natural features. These mutual information results match recently re-
ported results on autocorrelation of intraband wavelet coefficients [Goossens et al., 2009].
The results obtained in these experiments will be further used in Section 4 to design spe-
cific kernels that take into account the observed natural image relations.

Summarizing, natural images have singular features in the steerable wavelet domain
(Figs. 5.1 and 5.2): given a distorted image, enforcing these singular oriented relations
among coefficients in every subband (with the appropriate kernels) will eventually pre-
serve the natural signal relations and remove the noise. Of course, the bigger the differ-
ence between the shape of the intraband relations in signal and noise the better the results
are expected to be.

5.1.2 Restoring Wavelet relations with SVR

The effect of noise in the wavelet domain is introducing artificial deviations from the orig-
inal signal and hiding the natural relations among the coefficients (see an illustrative ex-
ample in Fig. 3). In the more general case, the degraded observation, id, can be written as
the result of the addition of a certain realization of noise, n, to the original signal, i:

id = i + n (5.1)

Note that this (convenient) way to state the problem does not necessarily mean that the
physical degradation has to be additive. In fact, the nature of the degradation should
ideally be expressed through a probabilistic noise model that may depend on the original
signal, p(n|i). The other desirable piece of information is a probabilistic model of the
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Figure 5.2: Mutual information among the central coefficient and its spatial

neighbors in the same subband (intraband) in the steerable wavelet domain.

Darker gray values indicate higher mutual information. Top row shows the

results for the different orientations of the finest scale of the natural image

database, and bottom row shows the equivalent results for Gaussian noise.

signal, p(i). However, in most practical situations, the complete probabilistic description
of the problem, that is, having p(i) and p(n|i), is not available in analytical form.

In order to avoid this lack of information, we propose to use the regularization ability
of SVRs. In this section, first we review the capabilities of the SVR for signal approxima-
tion. Afterwards, general constraints to the SVR parameter space are given for the partic-
ular problem of natural image denoising. Finally, we present an automatic procedure to
choose the appropriate SVR parameters (from the above restricted space) to be used for
any combination of image and noise.

Capabilities of SVR for signal estimation

Throughout this work, a wavelet transform, matrix T, is applied to the observed image,
leading to a set of (noisy) coefficients, y = T · id. The original set of wavelet coefficients,
x = T · i, has to be estimated from the distorted observation, y. Due to the observed strong
intraband relations, we will use the SVR in the wavelet domain in patches inside each
subband. Subbands are decomposed into non-overlapping 16× 16 patches, leading to sets
of N = 256 samples. Now, given input-output pairs {pi, yi}N

i=1, where pi are the wavelet
indices and yi are the corresponding noisy wavelet coefficients in a patch, we train the
adaptive SVR [Camps-Valls et al., 2001; Gómez et al., 2005; Navia-Vázquez et al., 2001] to
approximate the signal.

Let φ be a non-linear mapping to a higher dimensional feature space, then the adaptive
SVR computes the weights w to obtain the estimation, x̂i = φ>(pi)w, by minimizing the
following regularized functional:

‖w‖2 + ∑
i

Ci ξi (5.2)
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(Original) (Noisy)

Figure 5.3: Effect of noise on the wavelet coefficients. Patch of a subband of a

wavelet representation of the original image Barbara (left) and its noisy version

(right). Darker values indicate higher amplitudes.

subject to |yi −φ>(pi)w| ≤ ε i + ξi, ∀i = 1, . . . , N, where ξi are the magnitude of the devia-
tions of the estimated signal from the observed noisy data outside the (sample-dependent)
insensitivity zones ε i. Sample-dependent penalization parameters, Ci, tune the trade-off
between fitting the model to the observed noisy data (minimizing the deviations) and
keeping model weights ‖w‖ small (enforcing flatness in the feature space).

This adaptive SVR differs from the standard formulation [Smola & Schölkopf, 2004], in
two aspects: (1) the loss function given by (ε i, Ci) is sample-dependent, which is conve-
nient in wavelet domains where signal and noise variances strongly depend on the sub-
band, and (2) the usual bias term in SVM formulations has been intentionally dropped to
account for the fact that the expected value of wavelet coefficients is zero. The appropriate
design of Ci and ε i profiles is analyzed in Section 5.1.3.

Explicitly working with the non-linearity φ is no longer necessary since the whole for-
mulation can be expressed in the form of dot products of the mapping functions called
kernels, K(pi, pj) = φ(pi)

>φ(pj). In this case, the estimation is given by x̂ = K · α, where
α is the dual representation of weights w [Smola & Schölkopf, 2004]. The kernel matrix
can be seen as a similarity matrix between samples (or coefficients), and should reflect
the relations between them. Many kernel functions have been proposed in the literature
[Smola & Schölkopf, 2004]. In the image denoising case in wavelet domains, we focus on
the basic structure of the generalized Radial Basis Functions (RBF) kernel since the rela-
tionship among the wavelet coefficients corresponding to spatial neighbors within a sub-
band is local. However, as it will be analyzed in Section 5.1.3, the kernel will be adapted
to incorporate the anisotropic signal relations studied in Section 5.1.1, see Fig. 5.2.
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5.1.3 General constraints on SVR parameter space in image denoising

As stated above, SVR signal approximation will depend on the penalization parameters,
Ci, the insensitivities, ε i, and the kernel K. In the following, we restrict the range of possible
values of these parameters, θ = (Ci, ε i, K), in the particular case of image denoising in
wavelet domains:

Penalization factor. In general, the penalization factor of SVRs should be related to the
standard deviation of the signal [Cherkassky, 2004]. In the denoising problem con-
sidered here, the signal variance substantially differs in each wavelet scale. Accord-
ing to this, it is strictly necessary to set a different penalization factor per scale, Ci =

C ki, where ki is a scale-dependent profile. This profile ki was obtained by averag-
ing the standard deviation of wavelet coefficients over 100 images from the database
used in Section 5.1.1. This profile was multiplied by a factor, C, varied in the range
[10, 104], which did not show a strong impact on the results provided a sufficiently
large value. This is consistent with the suggestions reported in [Chalimourda et al.,
2004] in a more general context. Note that, for instance, in the examples of the next
section (Fig. 5.3), indistinguishable results are obtained for a large enough C. In our
experiments, we found that a reasonable prescription for the global factor on the
penalization profile is C ≈ 103.

Adaptive insensitivity zone. In general, the insensitivity has to be related to the standard
deviation of the noise [Kwok & Tsang, 2003]. In transformed domains, the effect
of the transform has to be taken into account in order to estimate the correspond-
ing standard deviation. In redundant wavelet representations, this standard devi-
ation is coefficient dependent. Thus it is strictly necessary to introduce a subband-
dependent ε i profile [Camps-Valls et al., 2001; Gómez et al., 2005]. The transformed
standard deviations can be estimated either (1) empirically from noise samples, or
(2) computed from the noise covariance matrix if it is known. In the empirical case,
noise samples can be experimentally obtained by applying the noise source to a large
enough set of images, and writing the noise as in Eq. 5.1. In our experiments, we
used the natural image database used in Section 5.1.1, and we obtained fairly stable
results for the profile by considering 100 images. In the case that the noise covariance
is known, the corresponding matrix in the selected wavelet domain can be obtained
from the noise covariance matrix in the spatial domain, Σn, and the transform T
[Stark & Woods, 1994]. Therefore, the insensitivity profile can be computed as:

ε i = τ diag(T · Σn · T>)1/2
i (5.3)

In the case of white noise, Σn = σ2
n · I, and thus Eq. (5.3) reduces to:

ε i = τ σn diag(T · T>)1/2
i , (5.4)
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Figure 5.4: Anisotropic kernel functions used in the support vector regression

method for the eight considered orientation subbands.

where σ2
n is the noise variance in the spatial domain, and τ is a scaling factor to

be adapted for each particular image and noise combination. The scaling factor,
τ, should be in the range [0.5, 3] according to the known relationship between the
ε-insensitivity zone and the noise standard deviation [Kwok & Tsang, 2003]. Note
that (5.3) may cope with colored noise. Considering the off-diagonal elements of
the covariance matrix (neglected in (5.3) and (5.4)) would give rise to coupling ε-
insensitivities among samples. This issue has been already considered and solved
in the context of image coding by using an additional non-linear transform and a
constant ε in the transformed domain [Camps-Valls et al., 2008]. However, here we
restrict ourselves to the approximated diagonal case.

Including signal relations in the kernel. In the kernel methods literature, the use of prior
knowledge about the problem can be encoded through bagged, cluster, or proba-
bilistic kernels [Jebara et al., 2004; Weston et al., 2004]. In our case, we propose to
take into account image coefficient relations by analyzing a large (representative)
database and taking the (oriented) mutual information among samples as core dis-
tance measure. However, using these empirical measures to set the kernels is not
straightforward since the kernels have to fulfill Mercer’s Theorem [Mercer, 1905].
According to this, we propose to use generalized Gaussian kernels. In particular,
we fitted anisotropic Laplacian kernels to the MI measures to consider the intraband
oriented relations within each subband:

Kα(pi, pj) = exp
(
− ((pi − pj)

>G(α)>Σ−1G(α)(pi − pj))
1/2), (5.5)

where Σ =

(
σ1 0
0 σ2

)
, σ1 and σ2 are the widths of the kernels, pi ∈ R2 denotes

the spatial position of coefficient yi within a subband, and G(α) is the 2D rotation
matrix with rotation angle, α, corresponding to the orientation of each subband (see
Fig. 5.4). Note that these set of oriented kernels describe the signal relationships that
emerge from experiments in Section 5.1.1 (cf. Fig. 5.2[top]).

We obtained proper values for the widths σ1 and σ2 by fitting the above kernel to the
MI measures among coefficients described in Section 5.1.1 (σ1 = 2σ2, and σ1 = 4.8
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in spatial coefficient units). The kernel was further normalized in the standard way.
Since this width comes from direct measures from images, it describes a fundamental
property of natural images so it can be kept fairly constant.

The conclusion of this section is that in the case of image denoising in wavelet domains,
an appropriate analysis of the signal variance, the noise variance, and the relations among
the wavelet coefficients of the signal can be used to strongly reduce the dimensionality of
the SVR parameter space. After this analysis, the only SVR parameter that remains fixed
is the global scaling, τ, to be applied to the insensitivity profile.

5.1.4 Procedure for automatic SVR selection

In the more general case, applying SVRs with a given set of parameters, `, to a noisy
image leads to a certain image estimate, îθ = T−1 · x̂θ . From this image estimate, and the
convenient additive notation for the noise (Eq. (5.1)), a noise estimate can be obtained:
n̂θ = id − îθ . In this section we propose a procedure to select the SVR parameters, θ, that
better approximates the noise free image, using the available information.

In the more general situation the only available information is the noisy image. How-
ever, as stated above, denoising methods usually assume that additional probabilistic in-
formation on the signal and noise is available: p(i) and p(n|i). Note that this knowledge
is equivalent to the knowledge of the joint signal and noise distribution since p(i, n) =

p(n|i) p(i).
Let us momentarily assume that this information is available to propose the general

procedure to set the SVR parameters. Afterwards, we will relax the requirements by con-
sidering an approximation that can be easily applied in practical situations.

In order to enforce solutions that closely follow the (assumed to be known) statistics of
signal and noise, we propose to select the SVR that minimizes the k-th order Kullback-
Leibler divergence (KLD) [Cover & Tomas, 1991] between the joint PDF of signal and
noise, and the joint PDF of the estimated signal and the estimated noise:

θ∗ = arg min
θ

{
DKL

[
p(îθ , n̂θ) ‖ p(i, n)

]}
(5.6)

The underlying idea is that the SVR that minimizes the divergence between the above
PDFs is the one that better captures the features of the true signal and better removes the
degradation.

Although in ideal situations the application of this procedure would obtain the best
results in statistical terms, in practical situations the full probabilistic description of the
problem is not available. A number of approximations are done in practical situations.
For instance, thermal noise in CCD cameras is not independent from the input signal since
diffusion increase with the irradiance. However, thermal noise is usually assumed to be
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independent of the input signal. Additional assumptions as additivity or certain analytical
marginal PDF of the noise are also widely used.

In our case, we assume independence between signal and noise:

p(i, n) = p(i) p(n) (5.7)

However, no analytical model for these PDFs is assumed. Under this independence as-
sumption, it is easy to see that eq. 5.6 reduces to:

θ∗ = arg min
θ

{
DKL

[
p(îθ) ‖ p(i)

]
+ DKL

[
p(n̂θ) ‖ p(n)

]}
(5.8)

This means that the selected SVR parameters are those that give rise to both signal and
noise estimates probabilistically similar to the true signal and noise respectively. Note that
this similarity does not require analytical models of the PDFs since it can be computed
from histograms (or signal and noise samples).

Of course, the independence assumption does not hold in general, however, as it will
be shown in, this is not a critical fact for a good behavior of the method even in non-
additive cases in which the noise is clearly signal-dependent. Moreover, the independence
assumption simplifies the practical application of the criterion for SVR selection since, for
a limited number of samples, histogram estimations of p(i) and p(n) are far more reliable
than histogram estimations of p(i, n), which implies the duplication of the dimensionality
(in an already high dimensional situation).

In the examples we restricted ourselves to second order KLD measures due to the lack
of samples, yet capturing the second order structure of signal and noise. The optimization
in Eq. (5.8) was carried out by exhaustive search.

Summary of the proposed denoising method

The proposed denoising method can be summarized as follows. First the noisy image
is transformed by a steerable wavelet filter bank. Then, a set of SVRs is applied to the
patches of the subbands of the transform. These SVRs use the profiles for the penaliza-
tion factor and the insensitivity computed from signal and noise samples as described in
Section 5.1.3. The SVRs use the kernel based on MI that captures signal relations in the
wavelet domain as described in Section 5.1.3. While the scaling of the penalization profile
and the kernels are kept fixed as indicated in Section 5.1.3, the scaling of the insensitivity
profile is automatically selected following the procedure described in section 3.3.

5.1.5 Behavior of the proposed method

In this section, we show an illustrative example of how the SVR parameters affect the es-
timated solution. Moreover we validate the proposed automatic procedure for SVR selec-
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Figure 5.5: Effect of SVR parameters on the noisy wavelet patch of Fig. 5.3.

The values of the KL-divergence criterion between the estimated and the actual

PDFs of noise and signal are given in each case (see text in Section 3.3).

tion considering examples with different noise sources including non-additive and signal
dependent cases.

Impact of SVR parameters in image denoising

As stated above, the regularization behavior of the SVR depends on θ = (Ci, ε i, K). Here
we show the qualitative effect of the global penalization scaling C, the global insensitivity
scaling τ, and the kernel width σ assuming a generalized RBF kernel. Figure 5.5 shows the
qualitative effect of SVR estimation as a function of these parameters. Compare the results
with the original and noisy subbands shown in Fig. 5.3.

Increasing the kernel width, σ (vertical direction), introduces too strong relations among
coefficients in such a way that spurious energy appears in the reconstruction. Increasing
the insensitivity, τ (horizontal direction), a sparser solution is obtained, leading to infor-
mation loss and thus relevant features of the signal are discarded. On the contrary, a too
small insensitivity value gives rise to overfitting, and hence noise is not removed. Small
values of the C parameter gives rise to over-regularized estimations. Large enough values
of C give rise to similar behavior (see comments in Section 5.1.3).

Of course, interactions among these parameters occur, and have been studied in other
contexts elsewhere [Chalimourda et al., 2004; Cherkassky, 2004; Cherkassky & Ma, 2003].
In the image denoising case, the deviation from an appropriate solution in combined direc-
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tions of the parameters gives rise to different solutions that combine the negative effect of
the departure in each direction.

The above example suggests that appropriate SVRs can certainly recover the underlying
structure of the original signal from the noisy observation, which is the rationale of the
proposed method.

Validation of the automatic procedure for SVR selection

In this section, we validate the previous SVR selection procedure in two different ways.
Firstly, note that KLD values in the example of Fig. 5.3 qualitatively illustrate the usefulness
of the proposed procedure: the minimum divergence solution (central subband patch)
gives also a reasonable trade-off between smoothness and detail preservation of the origi-
nal subband patch.

Secondly, we quantitatively show that the SVR that enforces the similarity between the
estimated and actual signal and noise joint PDFs (in KLD terms) is not far from the SVR
that maximizes the structural similarity between the estimated and the original image. In
order to do so, we compare the KLD measures for different SVRs, with the corresponding
distortion measured with the Structural SIMilarity (SSIM) index [Wang et al., 2004a]. The
SSIM index is a widely used similarity measure, which is better related to human quality
assessment than Euclidean measures, such as MSE or PSNR. Note that while KLD val-
ues are available in real situations (provided the noise histogram and a generic natural
images histogram are known), distortion measures are not available since the original im-
age is unknown. Consequently, the SSIM results next presented are for mere comparison
purposes.

In this experiment, the SVM parameter space is reduced to the scaling factor on the in-
sensitivity profile as recommended in Section 5.1.3. Accordingly, Fig. 5.6 shows the KLD
and distortion (1-SSIM) results as a function of τ (see Eq. (5.4)). Curves are shown for dif-
ferent kinds of (Gaussian and non-Gaussian) noise sources corrupting a particular image
(details on the noise sources are given in Section 5.1.6).
For the Gaussian noise case, two different variances are shown. It is worth noting that (1)
the KLD criterion (solid) closely follows the actual distortion curve (dashed), and (2) the
minima for low and high noise regime curves are very similar. These facts suggest that,
in the Gaussian noise case, the proposed criterion is quite robust and provides consistent
results: the higher the noise (red curves) the higher the ε zone minima. Besides, the linear
relation between ε and the noise standard deviation, reported in [Kwok & Tsang, 2003],
is confirmed here: as expected, the scaling factor keeps fairly constant, τ ≈ 2.5, for both
σ2

n = 200 and σ2
n = 400. Obviously, higher noise levels imply more distorted estimations.

For other (non-Gaussian) noise sources, similar results are obtained. For the JPEG and
JPEG2000 quantization noise sources, the KLD criterion also matches SSIM performance.
For the case of more complex noise sources, such as vertical striping (VS) and Infra Red
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Imaging System (IRIS) noise, the criterion gives close-to-optimal solutions in SSIM terms.
Note that, remarkably, the KLD criterion is better suited to the error minimization when
the signal and noise independence assumption holds (Gaussian case). Therefore there is
room to further improve the SVR selection criterion. The above results suggest that the
proposed SVR selection procedure can be considered as a convenient approximation to
distortion minimization (which is not possible in real situations).

5.1.6 Denoising experiments and discussion

In this section, we evaluate the performance of the proposed method in different scenar-
ios for image denoising. Our algorithm is compared to several wavelet-based denoising
methods using standard 256×256 images (‘Barbara’, ‘Boats’, ‘Lena’) with different levels
and sources of degradation. In the following, we first give details on implementation is-
sues of the considered algorithms. Then, we analyze their performance for several kinds
of noise sources:

• Experiment 1. Additive Gaussian noise of different variances (σ2
n = {200, 400}).

• Experiment 2. Coding noise: JPEG and JPEG2000 at different quantization coarse-
ness.

• Experiment 3. Acquisition noise: vertical striping and Infra Red Imaging System
(IRIS) noise.

Note that the noise PDF is in general unknown, except for the academic case of Gaussian
noise, but the histogram can be computed from samples in all cases.
All results are compared numerically by using the standard (yet not perceptually meaning-
ful) RMSE, and the perceptually meaningful SSIM index [Wang et al., 2004a]. Moreover,
representative examples are shown in every case for visual inspection. For proper visual-
ization, all the results are equalized in the same way by truncating the values outside the
[0, 255] range.

Implementation details

The denoising algorithms used for comparison that do not use information about the inter-
coefficient relations are straightforward to implement and have few parameters to tune
[Donoho & Johnstone, 1995; Figueiredo & Nowak, 2001; E. P. Simoncelli, 1999]. All these
methods use orthogonal wavelet representations. In our particular implementation, we
used 4-scale QMF wavelets from MatlabPyrTools.2 In every case, we followed authors’
prescriptions to choose these parameters for the best performance:

2See http://www.cns.nyu.edu/~eero/software.php.
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Gaussian Noise

JPEG JPEG2000

Vertical Striping IRIS noise

Figure 5.6: Validation of the proposed KLD criterion to adjust SVR parameter

ε (or equivalently τ, see text). In every distortion case, solid lines represent the

KLD criterion and dashed lines represent the distortion (1-SSIM). For proper

visualization, KLD curves were normalized to fall in the same range as the dis-

tortion. In the Gaussian noise case, two different noise variances are considered:

σ2
n = 200 (black lines) and σ2

n = 400 (red lines). As can be seen, the minima

of the KL distance (squares) are always in the same region as the minima of the

distortion (circles), thus giving rise to similar SSIM performance.
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• Hard Thresholding (HT). The key parameter is the threshold value λ. We use the noise
variance to set the threshold, λ = 3σn, as suggested in [Donoho & Johnstone, 1995].

• Soft Thresholding (ST). In our implementation, the threshold in each subband is de-
rived from the standard deviation of the noise, σn, using optimized values to mini-
mize the mean square error (MSE) in a set of 100 natural images. Threshold values
were optimized for the σ2

n in the range [0,1600].

• Bayesian Laplacian (BL). In this case, the parameters of the Laplacian distribution (s
and p in [E. P. Simoncelli, 1999]) for the marginal PDFs in each subband are estimated
by maximum likelihood (ML), as suggested by the author.

• Bayesian Gaussian (BG). The threshold value was set according to the function of noise
variance provided in [Figueiredo & Nowak, 2001].

On the other hand, in the case of the Gaussian Scale Mixture (GSM) [Portilla et al., 2003],
which does consider inter-coefficient relations, we used the implementation provided by
the authors.3 We have used (1) the same representation as in the proposed method (4-
scale, 8-orientation steerable pyramid), and (2) we also provided the average noise power
spectral density (PSD) to achieve the best possible performance of the GSM method.

Details of the proposed SVR method are included in previous Section 5.1.3. A Matlab
implementation of the algorithm is available online.4 Since the Ci and ε i profiles are com-
puted off-line, the computational cost of the proposed method is mainly constrained by
the SVR training. In our current implementation, we used the IRWLS algorithm in Matlab
[Pérez-Cruz et al., 2000] in order to drop the bias term and incorporate the insensitivity
and penalization profiles easily. These modifications are not trivial in faster implementa-
tions [Huang & Kecman, 2004; Kecman et al., 2004]. As a result, our Matlab implementa-
tion takes about 30 seconds5 for each image/noise estimation for a set of SVR parameters.
Three strategies can be carried out for speeding up the optimization: (1) using faster SVR
implementations [Chang & Lin, 2001b; Platt, 1999; Tsang et al., 2005], (2) alternative pro-
cedures to exhaustive search on convex error surfaces [Lewis & Torczon, 2002; Torczon,
1997; Vishwanathan et al., 2006], and (3) restricting the dimension of the parameter space
(as done in Section 5.1.3).

Experiment 1. Additive Gaussian noise

Table 5.1 shows the distortion results for the three considered images and the two noise
variances, σ2

n = 200 and σ2
n = 400.. The best SSIM values in each case are highlighted.

In every case, we also provide the SVRopt result, which is the best result the proposed

3See http://decsai.ugr.es/~javier/denoise/.
4See http://www.uv.es/vista/vistavalencia/denoising SVR/.
5Computations were carried out in a 2.8GHz processor with 4GB RAM.
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‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.77 16.48 0.76 13.62 0.73 18.97
ST 0.78 14.37 0.79 10.26 0.74 12.59
BG 0.80 14.14 0.79 11.70 0.76 12.75
BL 0.81 12.95 0.83 8.30 0.78 11.66
GSM 0.90 8.94 0.87 8.94 0.83 13.61
SVR 0.87 10.11 0.84 10.16 0.81 12.54
SVRopt 0.87 10.11 0.85 10.36 0.82 12.30

‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.67 24.52 0.68 20.15 0.67 20.22
ST 0.69 19.04 0.71 16.16 0.66 19.72
BG 0.70 20.40 0.70 19.17 0.67 19.26
BL 0.73 16.52 0.77 10.26 0.67 18.45
GSM 0.86 11.02 0.80 17.40 0.79 15.95
SVR 0.83 13.13 0.81 10.73 0.78 14.50
SVRopt 0.83 13.13 0.81 10.73 0.78 14.06

Table 5.1: Results for the Gaussian noise: distortions for different images and

methods are given at σ2
n = 200 (top) and σ2

n = 400 (bottom).

method can get in SSIM terms. This is useful to assess the performance of the proposed
divergence-based criterion and to give an upper bound of method’s performance. Results
show that our algorithm performs better than the methods that neglect signal relations
(HT, ST, BG and BL), and obtains similar (yet slightly lower) numerical results than the one
which incorporates them (GSM). It is not surprising that the GSM method achieves the best
performance in this case, since it is analytically suited to deal with Gaussian noise. The
SVR performance is consistent through all images and noise variances, thus suggesting
that the guiding criterion is robust. Finally, it must be noted that, in the most difficult case
of σ2

n = 400, GSM and SVR offer more similar results, and clearly outperform the rest of
the methods.

Figure 5.7 shows representative visual results in the challenging situation of σ2
n = 400.

It can be noticed that thresholding methods (HT, ST) and Bayesian generalizations not
including signal relations in the model (BG, BL) show poor performance, producing im-
ages either grained or corrupted by too salient wavelet functions. Even though SVR yields
slightly lower numerical scores than GSM, global visual performance is comparable.

Experiment 2. Coding noise: JPEG and JPEG2000

In this section, we focus on restoring grayscale images after JPEG or JPEG2000 compres-
sion, which induces non-Gaussian noise: it produces heavy tailed marginal error PDFs
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Noisy Image (0.46) HT (0.67)

ST (0.66) BG (0.67)

BL (0.67) GSM (0.79)

SVR (0.78) SVRopt (0.78)

Figure 5.7: Visual results for the ‘Lena’ image corrupted with Gaussian noise,

σ2
n = 400. SSIM values are given in parentheses.
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in the spatial domain with non-negligible relations among the pixels (see comments in
Section 5.1.7). Quantization noise is an illustrative example of how the proposed method
can cope with non-Gaussian, colored and signal-dependent noise. In order to obtain the
necessary samples to build the noise histograms, we used 100 images from the database
described in Section 2 encoded by JPEG and JPEG2000. In the first case, the Matlab imple-
mentation of the JPEG algorithm with quality factors Q = 9 (small distortion) and Q = 7
(large distortion) was used. In the second case, scalar quantization of the QMF wavelet
domain using standard JPEG2000 bit allocation tables [Taubman & Marcellin, 2001] was
used. Different values of quantization coarseness, that will be referred to as ∆1 (small
distortion) and ∆2 (large distortion) were applied.

Table 5.2 shows the quantitative results for all considered methods for the three images
at different quantization levels. It can be noticed that again the SVR method outperforms
the thresholding methods (HT, ST) and those not including signal relations in the model
(BG, BL). SVR yields similar numerical scores than GSM in JPEG (Fig. 5.8). However, in
JPEG2000 better numerical (Table 5.2 [bottom]) and visual (Fig. 5.9) results are obtained
with SVR. In general, high frequency details are better preserved by our method, while
GSM yields over smoothed solutions, particularly in JPEG2000.

Experiment 3. Acquisition noise: Vertical Striping and IRIS

Real imaging systems introduce complex forms of noise depending on the acquisition pro-
cess, so assuming a particular PDF for all cases is far from being realistic. For instance,
variation of the intensity between neighboring elements of the CCD typically leads to ver-
tical striping noise in pushbroom sensors [Barducci & Pippi, 2001; Mouroulis et al., 2000].
Other typical acquisition noise source is observed in infrared imaging cameras, which is a
complex mixture of different noise sources. In this section, we pay attention to these two
particular non-Gaussian realistic acquisition noises through controlled experiments:

1. Vertical striping noise. We simulated this noise by modifying 4% of the image columns
selected randomly. The luminance of the selected columns was modified by a ran-
dom factor following a uniform distribution between 0.8 and 1. Spatial coherence
was forced by attaching groups of contiguous 5 to 10 strips.

2. InfraRed Imaging System (IRIS) noise. Inspired in the observed characteristics of a
representative number of acquired images by a commercial IR camera, the noise
was modeled by a combination of four noise sources: low-variance Gaussian noise
(σ2

n ≈ 50), ‘salt-and-pepper’ noise (with a percentage of corrupted pixels about
0.05%), some spatially coherent missing pixels (black patches), and interlaced lines
all over the image.

In both cases, we computed the contrast noise PDF, p(n), from 100 noisy images. In the
next Section 5.1.7, the non-Gaussian nature of these acquisition noise PDFs is shown.
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Noisy Image (0.68) HT (0.65)

ST (0.68) BG (0.66)

BL (0.64) GSM (0.71)

SVR (0.71) SVRopt (0.73)

Figure 5.8: Visual results for the ‘Barbara’ image with JPEG quantization noise

(Q = 7). SSIM values are given in parentheses.
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Noisy Image (0.54) HT (0.54)

ST (0.55) BG (0.54)

BL (0.54) GSM (0.55)

SVR (0.57) SVRopt (0.57)

Figure 5.9: Visual results for the ‘Barbara’ image with coarse quantization

JPEG2000 noise. SSIM values are given in parentheses.
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JPEG Q = 9 Q = 7

‘Barbara’ ‘Boats’ ‘Lena’ ‘Barbara’ ‘Boats’ ‘Lena’

Method SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.70 20.05 0.75 13.07 0.70 18.40 0.65 22.11 0.71 16.34 0.65 24.99
ST 0.73 17.51 0.78 11.59 0.73 15.13 0.68 19.71 0.75 12.72 0.68 18.77
BG 0.72 18.76 0.77 12.30 0.72 16.27 0.66 21.57 0.74 13.32 0.67 21.05
BL 0.71 20.37 0.77 13.43 0.73 16.52 0.64 21.67 0.74 14.70 0.69 17.65
GSM 0.77 15.50 0.80 11.15 0.75 13.66 0.71 18.56 0.77 12.18 0.71 17.45
SVR 0.78 14.89 0.78 12.13 0.74 13.22 0.71 18.42 0.76 12.84 0.71 15.68
SVRopt 0.78 14.89 0.80 11.35 0.75 13.97 0.73 18.28 0.76 12.89 0.71 15.72

JPEG2000 ∆2 ∆1

‘Barbara’ ‘Boats’ ‘Lena’ ‘Barbara’ ‘Boats’ ‘Lena’

Method SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.54 30.81 0.55 26.23 0.51 32.66 0.67 24.82 0.59 25.18 0.56 28.25
ST 0.55 28.83 0.55 25.15 0.51 31.24 0.68 22.52 0.60 23.69 0.56 27.47
BG 0.54 30.37 0.55 26.08 0.51 32.45 0.67 24.16 0.59 24.92 0.56 28.10
BL 0.54 30.30 0.55 25.87 0.51 29.05 0.67 24.35 0.59 24.79 0.56 28.12
GSM 0.55 28.47 0.57 20.92 0.52 25.84 0.68 20.54 0.64 17.94 0.58 23.64
SVR 0.57 25.31 0.57 21.88 0.52 29.32 0.71 17.23 0.64 18.27 0.59 21.55
SVRopt 0.57 25.31 0.57 21.74 0.52 25.35 0.72 17.04 0.64 18.27 0.59 21.55

Table 5.2: Results for the coding noise: distortions at different quality levels

of JPEG (Q = {9, 7}) and JPEG2000 (coarseness ∆1 and ∆2) are given for

different images and methods.

Table 5.3 shows the obtained numerical results for all images and both acquisition noise
sources. In both complex scenarios, the proposed SVR-based method outperforms GSM
and the rest of methods numerically. A noticeable gain in SSIM is observed, which is con-
firmed when looking at the restored images in Figs. 5.10 and 5.11. It is worth noting that in
the vertical striping noise (Fig. 5.10), SVR yields a sharper (and more realistic) reconstruc-
tion while GSM produces an over-blurred solution. In the case of the IRIS noise, only SVR
removes the interlacing noise contribution, producing better visual results. Including the
average PSD information in GSM, as we do in the experiments, improves its performance.
However, it is not enough to remove the interlacing artifact due to the particular nature of
IRIS noise. IRIS noise is difficult because the PSD and variance of each particular realiza-
tion of the noise may substantially differ from the (estimated) averages. On the contrary,
the proposed SVR method uses an adaptive cost function learned from the noisy image.
Here, nevertheless, the upper bound of performance is not met, suggesting that there is
still room for improving the selection criterion proposed, possibly considering the joint
density.
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Noisy Image (0.77) HT (0.69)

ST (0.75) BG (0.73)

BL (0.77) GSM (0.75)

SVR (0.79) SVRopt (0.80)

Figure 5.10: Visual results for the ‘Lena’ image with vertical striping noise. SSIM

values are given in parentheses.
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Noisy Image (0.59) HT (0.58)

ST (0.64) BG (0.62)

BL (0.60) GSM (0.64)

SVR (0.67) SVRopt (0.70)

Figure 5.11: Visual results for the ‘Boats’ image with IRIS noise. SSIM values

are given in parentheses.
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Method ‘Barbara’ ‘Boats’ ‘Lena’
SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.73 17.43 0.73 15.99 0.69 18.07
ST 0.77 15.71 0.78 14.04 0.75 14.08
BG 0.76 16.01 0.76 14.75 0.73 15.14
BL 0.77 16.56 0.81 14.96 0.77 14.64
GSM 0.79 14.83 0.79 14.36 0.75 14.45
SVR 0.80 15.66 0.80 13.47 0.79 13.18
SVRopt 0.80 15.45 0.82 14.25 0.80 13.31

HT 0.50 30.80 0.58 28.70 0.56 28.81
ST 0.55 27.02 0.64 23.48 0.60 24.40
BG 0.54 28.40 0.62 25.44 0.59 26.20
BL 0.50 28.74 0.60 21.77 0.55 24.08
GSM 0.53 30.51 0.64 25.92 0.61 30.99
SVR 0.59 31.07 0.67 21.44 0.66 31.44
SVRopt 0.60 30.71 0.70 24.56 0.66 32.05

Table 5.3: Acquisition noise: vertical striping (top) and IRIS noise (bottom).

Distortions for different images and methods.

5.1.7 Analysis of the residuals

Further qualitative insight in the obtained solutions can be achieved by comparing the es-
timated and actual PDFs of signal and noise with the different methods and noise sources.
Since we are restricting ourselves to second order KLD criterion, this comparison reduces
to assess the difference between 2D histograms (in the spatial domain).

It is widely known that the PDF of pairs of neighbor pixels in natural images is an
oriented ellipsoid reflecting the strong correlation among luminance values in the spatial
domain [Clarke, 1985]. The corresponding restored images (even for the worse performing
algorithms) also display such strong local correlation. Therefore, no relevant conclusion
is gained by direct inspection of these histograms (results not shown). On the contrary,
the 2D histograms of the noise are more suitable for direct inspection because (1) actual
noise histograms are quite different for the different noise sources, and (2) the estimated
histograms strongly depend on the denoising method.

Figure 5.12 represents the distribution of the actual and estimated noise PDFs by all the
considered methods in the spatial domain. It can be noticed that, for the Gaussian noise,
all methods reproduce quite well the shape and extent of the PDF, as expected for the
parametric models, which use a proper Gaussian noise model. Note that the SVR method
also succeeds in approximating the energy of the noise even without using the Gaussian
assumption explicitly.



5.1 DENOISING WITH KERNELS BASED ON IMAGE RELATIONS 141

For non-Gaussian noise sources, the behavior of the methods markedly differ. For in-
stance, the quantization noise induced by JPEG/JPEG2000 follows a non-Gaussian, ori-
ented joint distribution (the central dark area is actually an oriented ellipsoid), indicating
correlation among noise samples. In the case of JPEG, this central ellipsoid is better repro-
duced by hard thresholding and the proposed SVR method. The other methods slightly
underestimate the variance of the noise. For the case of JPEG2000, methods not consid-
ering signal relations dramatically underestimate the noise variance. In the case of more
complex noise sources, such as vertical striping or IRIS, none of the methods reproduce
the low probability structure (light gray regions). However, the central peak is poorly
reproduced by marginal methods, either overestimating (HT, ST, BG) or underestimating
(BL) the width. On the contrary, GSM and SVR give more reasonable width estimation.
To conclude, methods assuming an (inadequate) Gaussian noise model do not match, in
general, the noise distribution, so they should be reformulated for each particular noise
source, which may be complicated or even impossible. GSM constitutes an exception to
this statement, since results suggest that the quality of the signal model compensates the
unsuitability of the noise model. On the contrary, this is not necessary for the proposed
method, which only needs examples of noisy images to learn from.
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5.2 Iterative Gaussianization Framework

Many signal processing problems such as coding, restoration, classification, regression or
synthesis greatly depend on an appropriate description of the underlying probability den-
sity function (PDF) [Banham & Katsaggelos, 1997; R. O. Duda et al., 2000; Gersho & Gray,
1992; Hastie et al., 2003; Portilla & Simoncelli, 2000]. However, density estimation is a
challenging problem when dealing with high-dimensional signals because direct sampling
of the input space is not an easy task due to the curse of dimensionality [Scott, 1992]. As
a result, specific problem-oriented PDF models are typically developed to be used in the
Bayesian framework.

The conventional approach is to transform data into a domain where interesting fea-
tures can be easily (i.e. marginally) characterized. In that case, one can apply well-known
marginal techniques to each feature independently and then obtain a description of the
multidimensional PDF. The most popular approaches rely on linear models and statistical
independence. However, they are usually too restrictive to describe general data distri-
butions. For instance, principal component analysis (PCA) [Jolliffe, 1986], that reduces
to DCT in many natural signals such as speech, images and video, assumes a Gaussian
source [R. O. Duda et al., 2000; Jolliffe, 1986]. More recently, linear ICA, that reduces to
wavelets in natural signals, assumes that observations come from the linear combination
of independent non-Gaussian sources [Hyvärinen, 1999b]. In general, these assumptions
may not be completely correct, and residual dependencies still remain after the linear
transform that looks for independence. As a result, a number of problem-oriented ap-
proaches have been developed in the last decade to either describe or remove the rela-
tions remaining in these linear domains. For example, parametric models based on joint
statistics of wavelet coefficients have been successfully proposed for texture analysis and
synthesis [Portilla & Simoncelli, 2000], image coding [Buccigrossi & Simoncelli, 1999] or
image denoising [Portilla et al., 2003]. Non-linear methods using non-explicit statistical
models have been also proposed to this end in the denoising context [Gutiérrez et al.,
2006; Laparra, Gutiérrez, et al., 2010] and in the coding context [Camps-Valls et al., 2008;
Malo et al., 2006]. In function approximation and classification problems, a common ap-
proach is to first linearly transform the data, e.g. with the most relevant eigenvectors from
PCA, and then applying nonlinear methods such as artificial neural networks or support
vector machines in the reduced dimensionality space [R. O. Duda et al., 2000; Hastie et al.,
2003; Jolliffe, 1986].

Identifying the meaningful transform for an easier PDF description in the transformed
domain strongly depends on the problem at hand. In this work we circumvent this con-
straint by looking for a transform such that the transformed PDF is known. Even in the
case that this transform is qualitatively meaningless, being differentiable, allows us to es-
timate the PDF in the original domain. Accordingly, in the proposed context, the role
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(meaningfulness) of the transform is not that relevant. Actually, as we will see, an infinite
family of transforms may be suitable to this end, so one has the freedom to choose the
most convenient one.

In this work, we propose to use a unit covariance Gaussian as target PDF in the trans-
formed domain and iterative transforms based on arbitrary rotations. We do so because
the match between spherical symmetry and rotations makes it possible to define a cost
function (negentropy) with nice theoretical properties. The properties of negentropy al-
low us to show that one Gaussianization transform is always found no matter the selected
class of rotations.

The remainder is organized as follows. In Section 5.2.1 we present the underlying idea
that motivates the proposed approach to Gaussianization. In Section 5.2.2, we give the
formal definition of the Rotation-based Iterative Gaussianization (RBIG), and show that
the scheme is invertible, differentiable and it converges for a wide class of orthonor-
mal transforms, even including random rotations. Section 5.2.3 discusses the similarities
and differences of the proposed method and Projection Pursuit (PP) [Chen & Gopinath,
2000; Friedman & Tukey, 1974; Huber, 1985; Rodrı́guez-Martı́nez et al., 2010]. Links to
other techniques (such as single-step Gaussianization transforms [Erdogmus et al., 2006;
Lyu & Simoncelli, 2009], one-class support vector domain descriptions [Tax & Duin, 1999],
and deep neural network architectures [Hinton & Salakhutdinov, 2006]) are also explored.
Section 5.2.4 shows the experimental results. First, we experimentally show that the pro-
posed scheme converges to an appropriate Gaussianization transform for a wide class of
rotations. Then, we illustrate the usefulness of the method in a number of high-dimensional
problems involving PDF estimation: image synthesis, classification, denoising and multi-
information estimation. In all cases, RBIG is compared to related methods in each partic-
ular application.

5.2.1 Motivation

This section considers a solution to the PDF estimation problem by using a differentiable
transform to a domain with known PDF. In this setting, different approaches can be adopted
which will motivate the proposed method.

Let x be a d-dimensional random variable with (unknown) PDF, px(x). Given some
bijective, differentiable transform of x into y, G : Rd → Rd, such that y = G(x), the PDFs
in the original and the transformed domains are related by [Stark & Woods, 1986]:

px(x) = py(G(x))
∣∣∣∣dG(x)dx

∣∣∣∣ = py(G(x))|∇xG(x)|, (5.9)

where |∇xG| is the determinant of the Jacobian matrix. Therefore, the unknown PDF in
the original domain can be estimated from a transform of known Jacobian leading to an
appropriate (known or straightforward to compute) target PDF, py(y).
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One could certainly try to figure out direct (or even closed form) procedures to trans-
form particular PDF classes into a target PDF [Erdogmus et al., 2006; Lyu & Simoncelli,
2009]. However, in order to deal with any possible PDF, iterative methods seem to be a
more reasonable approach. In this case, the initial data distribution should be iteratively
transformed in such a way that the target PDF is progressively approached in each itera-
tion.

The appropriate transform in each iteration would be the one that maximizes a simi-
larity measure between PDFs. A sensible cost function here is the Kullback-Leibler di-
vergence (KLD) between PDFs. In order to apply well-known properties of this measure
[Cardoso, 2003; Comon, 1994], it is convenient to choose a unit covariance Gaussian as
target PDF, py(y) = N (0, I). With this choice, the cost function describing the divergence
between the current data, x, and the unit covariance Gaussian is the hereafter called ne-
gentropy6, J(x) = DKL (p(x)|N (0, I)). Negentropy can be decomposed as the sum of two
non-negative quantities, the multi-information and the marginal negentropy:

J(x) = I(x) + Jm(x). (5.10)

This can be readily derived from Eq. (5) in [Cardoso, 2003], by considering as contrast PDF

∏i qi(xi) = N (0, I). The multi-information is [Studeny & Vejnarova, 1998]:

I(x) = DKL(p(x)|∏i pi(xi)) (5.11)

Multi-information measures statistical dependence, and it is zero if and only if the different
components of x are independent. The marginal negentropy is defined as:

Jm(x) =
d

∑
i=1

DKL (pi(xi)|N (0, 1)) (5.12)

Given a data distribution from the unknown PDF, in general both I and Jm will be non-
zero. The decomposition in (5.10) suggests two alternative approaches to reduce J:

1. Reducing I: This implies looking for interesting (independent) components. If one is
able to obtain I = 0, then J = Jm ≥ 0, and this reduces to solving a marginal problem.
Marginal negentropy can be set to zero with the appropriate set of dimension-wise
Gaussianization transforms, Ψ. This is easy as will be shown in the next section.

However, this is an ambitious approach since looking for independent components
is a non-trivial (intrinsically multivariate and nonlinear) problem. According to this,
linear ICA techniques will not succeed in completely removing the multi-information,
and thus a nonlinear post-processing is required.

6This usage of the term negentropy slightly differs from the usual definition [Comon, 1994] where ne-
gentropy is taken to be KLD between px(x) and a multivariate Gaussian of the same mean and covariance.
However, note that this difference has no consequence assuming the appropriate input data standardization
(zero mean and unit covariance), which can be done without loss of generality.
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Figure 5.13: Example of marginal Gaussianization in some particular dimension i.
From left to right: marginal PDF of xi, uniformization transform u = Ui(xi),

PDF of the uniformized variable p(u), Gaussianization transform G(u), and

PDF of the Gaussianized variable pi(Ψi(xi)).

2. Reducing Jm: As stated above, this univariate problem is easy to solve by using the ap-
propriate Ψ. Note that I will remain constant since it is invariant under dimension-
wise transforms [Studeny & Vejnarova, 1998]. In this way, one ensures that the cost
function is reduced by Jm. Then, a further processing has to be taken in order to
come back to a situation in which one may have the opportunity to remove Jm again.
This additional transform may consist of applying a rotation R to the data, as will be
shown in the next section.

The relevant difference between the approaches is that, in the first one, the important part
is looking for the interesting representation (multivariate problem), while in the second
approach the important part is the univariate Gaussianization. In this second case, the
class of rotations has no special qualitative relevance: in fact, marginal Gaussianization is
the only part reducing the cost function.

The first approach is the underlying idea in Projection Pursuit methods focused on look-
ing for interesting projections [Chen & Gopinath, 2000; Huber, 1985]. Since the core of
these methods is looking for meaningful projections (usually ICA algorithms), they suffer
from a big computational complexity: for example, robust ICA algorithms such as RAD-
ICAL [Learned & Fisher, 2003] would lead to extremely slow Gaussianization algorithms
whereas relatively more convenient alternatives such as FastICA [Hyvärinen, 1999a] may
not converge in all cases. This may explain why, so far, Gaussianization techniques have
been applied just to low-dimensional (audio) signals in either simple contexts based on
point-wise nonlinearities [Squartini et al., 2006; K. Zhang & Chan, 2005], or after ad hoc
speech-oriented feature extraction steps [Xiang et al., 2002]. In this work, we propose fol-
lowing the simpler second approach using the most computationally convenient rotation.
Intentionally, we do not pay attention to the meaningfulness of the rotations.
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5.2.2 Rotation-based Iterative Gaussianization (RBIG)

This section first introduces the basic formulation of the proposed method, and then ana-
lyzes the properties of differentiability, invertibility, and convergence. Finally, we discuss
on the role of the rotation matrix used in the scheme.

Iterative Gaussianization based on arbitrary rotations

According to the above reasoning, we propose the following class of Rotation-based Iter-
ative Guassianization (RBIG) algorithms: given a d-dimensional random variable x(0), fol-
lowing an unknown PDF, p(x(0)), in each iteration k, a two-step processing is performed:

G : x(k+1) = R(k) ·Ψ(k)(x
(k)) (5.13)

where Ψ(k) is the marginal Gaussianization of each dimension of x(k) for the corresponding
iteration, and R(k) is a generic rotation matrix for the marginally Gaussianized variable
Ψ(k)(x(k)).

The freedom in choosing the rotations is consistent with the intuitive fact that there is
an infinite number of ways to twist a PDF in order to turn it into a unit covariance Gaus-
sian. In principle, any of these choices is equally useful for our purpose, i.e. estimating the
PDF in the original domain using Eq. (5.9). Note that when using different rotations, the
qualitative meaning of the same region of the corresponding Gaussianized domain will be
different. As a result, in order to work in the Gaussianized domain, one has to take into
account the value of the point-dependent Jacobian. Incidentally, this is also the case in
the PP approach, and more generally, in any non-linear approach. However, the interpre-
tation of the Gaussianized domain is not an issue when working in the original domain.
Finally, it is important to note that the method just depends on univariate (marginal) PDF
estimations. Therefore, it does not suffer from the curse of dimensionality.

Invertibility and differentiation

The considered class of Gaussianization transforms is differentiable and invertible. Differ-
entiability, allows us to estimate the PDF in the original domain from the Jacobian of the
transform in each point, cf. Eq. (5.9). Invertibility guarantees that the transform is bijec-
tive which is a necessary condition to apply Eq. (5.9). Additionally, it is convenient for
generating samples in the original domain by sampling the Gaussianized domain.

Before getting into the details, we take a closer look at the basic tool of marginal Gaus-
sianization. Marginal Gaussianization in each dimension i and each iteration k, Ψi

(k), can
be decomposed into two equalization transforms: (1) marginal uniformization, Ui

(k), based
on the cumulative density function of the marginal PDF, and (2) Gaussianization of a uni-
form variable, G(u), based on the inverse of the cumulative density function of a univari-
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ate Gaussian: Ψi
(k) = G�Ui

(k), where:

u = Ui
(k)(x(k)i ) =

∫ x(k)i

−∞
pi(x′(k)i ) dx′(k)i (5.14)

G−1(xi) =
∫ xi

−∞
g(x′i) dx′i (5.15)

and g(xi) is just a univariate Gaussian. Figure 5.13 shows an example of the marginal
Gaussianization of a one-dimensional variable xi.

One dimensional density estimation is an issue by itself, and it has been widely stud-
ied [Hastie et al., 2003; Silverman, 1986]. The selection of the most convenient density
estimation procedure depends on the particular problem and, of course, the univariate
Gaussianization step in the proposed algorithm could benefit from the extensive literature
on the issue. In our case, we take a practical approach and no particular model is assumed
for the marginal variables to keep the method as general as possible. Accordingly, the
univariate Gaussianization transforms are computed from the cumulative histograms. Of
course, alternative analytical approximations could be introduced at the cost of making
the model more rigid. On the positive side, parametric models may imply better data
regularization and avoid overfitting. However, exploring the effect of alternative density
estimators will not be analyzed here. Let us consider now the issue of invertibility. By
simple manipulation of (5.13), it can be shown that the inverse transform is given by:

G−1 : x(k) = Ψ−1
(k)(R

>
(k) · x(k+1)). (5.16)

The rotation R(k) is not a problem for invertibility since the inverse is just the transpose,
R−1
(k) = R>(k). However, the key to ensure transform inversion is the invertibility of Ψ(k).

This is trivially ensured when the support of each marginal PDF is connected, that is, there
are no holes (zero probability regions) in the support. In this way all the marginal CDFs
are strictly monotonic and hence invertible. Note that the existence of holes in the support
of the joint PDF is not a problem as long as it gives rise to marginal PDFs with a connected
support. Problems in inversion will appear only when the joint PDF gives rise to clusters
that are so distant that their projections onto the axes do not overlap. However, in such a
situation, it may make more qualitative sense to consider that distinct clusters come from
different sources and learn each one with a different Gaussianization transform.

The Jacobian of the series of K iterations is just the product of the corresponding Jacobian
in each iteration:

∇xG = ∏K
k=1 R(k) · ∇x(k)Ψ(k) (5.17)

Marginal Gaussianization, Ψ(k), is a dimension-wise transform, whose Jacobian is the di-
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agonal matrix,

∇x(k)Ψ(k) =



∂Ψ1
(k)

∂x(k)1

· · · 0

...
. . .

...

0 · · ·
∂Ψd

(k)

∂x(k)d


(5.18)

According to the two equalization steps in each marginal Gaussianization, Eq. (5.15), each
element in∇x(k)Ψ(k) can be easily computed by applying the chain rule on u defined in Eq.
(5.14):

∂Ψi
(k)

∂x(k)i

=
∂G
∂u

∂u

∂x(k)i

=

(
∂G−1

∂xi

)−1

pi(x(k)i )

= g(Ψi
(k)(x(k)i ))−1 pi(x(k)i ) (5.19)

Again, the differentiable nature of the considered Gaussianization is independent from the
selected rotations R(k).

Convergence properties

Here we prove two general properties of random variables, which are useful in the con-
texts of PDF description and redundancy reduction.

Property 1 (Negentropy reduction). Marginal Gaussianization reduces the negentropy and this
is not modified by any posterior rotation:

∆J = J(x)− J(RΨ(x)) ≥ 0, ∀R (5.20)

Proof. Using Eq. (5.10), the negentropy reduction due to marginal Gaussianization fol-
lowed by a rotation is:

∆J = J(x)− J(RΨ(x)) = J(x)− J(Ψ(x))

since N (0, I) is rotation invariant. Therefore,

∆J = I(x) + Jm(x)− I(Ψ(x))− Jm(Ψ(x))

Since multi-information is invariant under dimension-wise transforms such in our case Ψ
[Studeny & Vejnarova, 1998], and the marginal negentropy of a marginally Gaussianized
variable is zero,

∆J = Jm(x) ≥ 0, ∀R
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Property 2 (Redundancy reduction). Given a marginally Gaussianized variable, Ψ(x), any ro-
tation reduces the redundancy among coefficients,

∆I = I(Ψ(x))− I(RΨ(x)) ≥ 0, ∀R (5.21)

Note that this property also implies that the combination of marginal Gaussianization and rotation
gives rise to redundancy reduction since I(Ψ(x)) = I(x).

Proof. Using Eq. (5.10) on both I(Ψ(x)) and I(RΨ(x)), the redundancy reduction is:

∆I = J(Ψ(x))− Jm(Ψ(x))− J(RΨ(x)) + Jm(RΨ(x)).

Since negentropy is rotation invariant and the marginal negentropy of a marginally Gaus-
sianized variable is zero,

∆I = Jm(RΨ(x)) ≥ 0, ∀R

The above properties suggest the convergence of the proposed Gaussianization method.
Property 1 (Eq. (5.20)) ensures that the distance between the PDF of the transformed vari-
able to a zero mean unit covariance multivariate Gaussian is reduced in each iteration.
Property 2 (Eq. (5.21)) ensures that redundancy among coefficients is also reduced after
each iteration. According to this the distance to a Gaussian will decay to zero for a wide
class of rotations.

On the rotation matrices

Admissible rotations are those that change the situation after marginal Gaussianization in
such a way that Jm is increased. Using different rotation matrices gives rise to different
properties of the algorithm.

The above Properties 1 and 2 provide some intuition on the suitable class of rotations.
By using (5.20) and (5.21) in the sequence (5.13), one readily obtains the relations:

∆J(k) = Jm(x(k)) = ∆I(k−1), (5.22)

and thus, interestingly, the amount of negentropy reduction (the convergence rate) at
some iteration k will be determined by the amount of redundancy reduction obtained
in the previous iteration, k− 1. Since dependence can be analyzed in terms of correlation
and non-Gaussianity [Cardoso, 2003], the intuitive candidates for R include orthonormal
ICA, hereafter simply referred to as ICA, which maximizes the redundancy reduction;
and PCA, which removes correlation. Random rotations (RND) will be considered here
as an extreme case to point out that looking for interesting projections is not critical to
achieve convergence. Note that other rotations are possible, for instance, a quite sensible
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choice would be randomly selecting projections that uniformly recover the surface of an
hypersphere [León et al., 2006]. Other possibilities include extension to complex variables
[Novey & Adali, 2008].

As an illustration, Table 5.4 summarizes the main characteristics of the method when
using ICA, PCA and RND. The table analyzes the closed-form nature of each rotation,
the theoretical convergence of the method, the convergence rate (negentropy reduction
per iteration), and the computational cost of each rotation. Section 5.2.4 is devoted to the
experimental confirmation of the reported characteristics of convergence presented here.

Using ICA guarantees the theoretical convergence of the Gaussianization process since
it seeks for the maximally non-Gaussian marginal PDFs. Therefore, the negentropy re-
duction ∆J (Eq. (5.20)) is always strictly positive, except for the case that the Gaussian
PDF has been finally achieved. This is consistent with previous results [Chen & Gopinath,
2000]. Moreover, the convergence rate is optimal for ICA since it gives rise to the maximum
Jm(x) (indicated in Table 5.4 with ‘Max ∆J’). However, the main problem of using ICA as
the rotation matrix is that it has no closed-form solution, so ICA algorithms typically re-
sort to iterative procedures with either difficulties in convergence or high computational
load.

Using PCA leads to sub-optimal convergence rate because it removes second-order re-
dundancy (indicated in Table 5.4 with ‘∆J = 2nd order’), but it does not maximize the
marginal non-Gaussianity Jm(x). Using PCA guarantees the convergence for every input
PDF except for one singular case: consider a variable x(k) which is not Gaussian but all
its marginal PDFs are univariate Gaussian and with a unit covariance matrix. In this case,
∆J(k+1) = Jm(x(k)) = 0, i.e. no approximation to the Gaussian in negentropy terms is ob-
tained in the next iteration. Besides, since Ψ(k+1)(x(k)) = x(k), the next PCA, R(k+1), will
be the identity matrix, thus x(k+1) = x(k): as a result, the algorithm may get stuck into a
negentropy local minimum. In our experience, this undesired effect never happened in
real datasets. On the other hand, advantages of using PCA is that the solution is closed-
form, very fast, and even though the convergence rate is lower than for ICA, the solution

Table 5.4: Properties of the Gaussianization method for different rotations (see

comments in the text).

Closed Theoretical Convergence CPU cost†

Rotation -form convergence rate 7

ICA ×
√

Max ∆J O(2md(d + 1)n)
PCA

√ √
∆J = 2nd order O(d2(d + 1)n)

RND
√ √

∆J ≥ 0 O(d3)

† Computational cost considers n samples of dimension d. The cost for the ICA transform is that of FastICA

running m iterations.
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is achieved in a fraction of the time.

Using RND transforms guarantees the theoretical convergence of the method since ran-
dom rotations ensure that, even in the above considered singular case, the algorithm will
not be stuck into this particular non-Gaussian solution. On the contrary, if the achieved
marginal non-Gaussianity is zero after an infinite number of random rotations, it is be-
cause the desired Gaussian solution has been finally achieved (Cramer-Wold Theorem
[Feller, 1968]). In practice, the above property of RND can be used as a way to check con-
vergence when using other rotations (e.g. PCA): when the zero marginal non-Gaussianity
situation is achieved, a useful safety check consists of including RND-based iterations.
In the RND case, the convergence rate is clearly sub-optimal, yet non-negative (∆J ≥ 0):
the amount of negentropy reduction may take any value between zero and the maximum
achieved by ICA. However, the method is much faster in practice: even though it may take
more iterations to converge, the cost of each transform does not depend on the number
of samples. The rotation matrix can be computed by fast orthonormalization techniques
[Golub & Loan, 1996]. In this case, the computation time of the rotation is negligible com-
pared to that of the marginal Gaussianization.

5.2.3 Relation to other methods

In this section we discuss the relation of RBIG to previously reported Gaussianization
methods. Specifically, iterative Projection Pursuit techniques [Chen & Gopinath, 2000;
Friedman & Tukey, 1974; Huber, 1985] and direct approaches suited for particular PDFs
[Eichhorn et al., 2009; Erdogmus et al., 2006; Lyu & Simoncelli, 2009]. Additionally, rela-
tions to other machine learning tools are also considered, Support Vector Domain De-
scription [Tax & Duin, 1999] and deep neural networks [Hinton & Salakhutdinov, 2006].

Iterative Projection Pursuit Gaussianization

As stated above, the aim of Projection Pursuit (PP) techniques [Friedman & Tukey, 1974;
Huber, 1985] is looking for interesting linear projections according to some projection in-
dex measuring interestingness, and after, this interestingness is captured by removing
it through the appropriate marginal equalization, thus making a step from structure to
disorder. When interestingness or structure is defined by departure from disorder, non-
Gaussianity or negentropy, PP naturally leads to iterative application of non-orthogonal
ICA transforms followed by marginal Gaussianization, as in [Chen & Gopinath, 2000]:

G : x(k+1) = Ψ(k)(R
ICA · x(k)) (5.23)

As stated in Section 5.2.1, this is Approach 1 to the Gaussian goal. Unlike PP, RBIG aims at
the Gaussian goal following Approach 2. The differences between (5.23) and (5.13) (reverse
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order between the multivariate and the univariate transforms) suggest the different qual-
itative weight given to each counterpart. While PP gives rise to an ordered transition from
structure to disorder8, RBIG follows a disordered transition to disorder.

Direct (single-iteration) Gaussianization algorithms

Direct (non-iterative) Gaussianization approaches are possible if the method has to be ap-
plied to restricted classes of PDFs, for example: (1) PDFs that can be marginally Gaussian-
ized in the appropriate axes [Erdogmus et al., 2006], or (2) elliptically symmetric PDFs so
that the final Gaussian can be achieved by equalizing the length (norm) of the whitened
samples [Eichhorn et al., 2009; Lyu & Simoncelli, 2009].

The method proposed in [Erdogmus et al., 2006] is useful when combined with tools
that can identify marginally Gaussianizable components, somewhat related to ICA trans-
forms. Nevertheless, the use of alternative transformations is still an open issue. Erdog-
mus et al. proposed PCA, vector quantization or clustering as alternatives to ICA in order
to find the most potentially ‘Gaussianizable’ components. In this sense, the method could
be seen as a particular case of PP in that it only uses one iteration: first finding the most
appropriate representation and then using marginal Gaussianization. Elliptically sym-
metric PDFs constitute a relevant class of PDFs in image processing applications since this
kind of functions is an accurate model of natural images (e.g. Gaussian Scale Mixtures
[Portilla et al., 2003] and related models [Malo & Laparra, 2010a] share this symmetry).
Radial Gaussianization (RG) was specifically developed to deal with these particular kind
of models [Lyu & Simoncelli, 2009]. This transform consists of a nonlinear function that
acts radially, equalizing the histogram of the magnitude (energy) of the data to obtain the
histogram of the magnitude of a Gaussian. Other methods have exploited this kind of
transformation to generalize it to Lp symmetric distributions [Eichhorn et al., 2009]. Ob-
viously, elliptical symmetry is a fair assumption for natural images, but it may not be
appropriate for other problems. Even in the image context, particular images may not
strictly follow distributions with elliptical symmetry, therefore if RG-like transforms are
applied to these images, they will give rise to non-Gaussianized data.

Figure 5.14 shows this effect in three types of acquired images: (1) a standard grayscale
image, i.e. a typical example of a natural photographic image, (2) a band (in the visible
range) of a remote sensing multispectral image acquired by the Landsat sensor, and (3) a
ERS2 synthetic aperture radar (SAR) intensity image for the same scene (of course out of
the visible range). In these illustrative examples, RG and RBIG were trained with the data
distribution of pairs of neighbor pixels for each image, and RBIG was implemented using
PCA rotations according to the results in Section 5.2.4. Both RG and RBIG strongly reduce

8In PP the structure of the unknown PDF in the input domain is progressively removed in each iteration
starting from the most relevant projection and continuing by the second one, and so on, until total disorder
(Gaussianity) is achieved.
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Image Image PDF RG RBIG
(0.34) (0.04) (0.0006)

(0.59) (0.034) (0.0002)

(0.066) (0.052) (0.0001)

Figure 5.14: Gaussianization of pairs of neighbor pixels from different images with

RG and RBIG: natural image (top row), remote sensing Landsat channel in the

optical range (middle row) and intensity of a ERS2 synthetic aperture radar

(SAR) image (bottom row). Contour plots show the PDFs in the corresponding

domains. The estimated mutual information (in bits) is given in parenthesis.

the mutual-information of pairs of neighbor pixels (see the mutual information values, in
bits), but it is noticeable that RG is more effective, higher I reduction, in the natural image
cases (photographic and visible channel images), in which the assumption of elliptically
symmetric PDF is more reliable. However, it obviously fails when considering non-natural
(radar) images, far from the visible range (I is not significantly reduced). The proposed
method is more robust to these changes in the underlying PDF because no assumption is
made.
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Relation to Support Vector Domain Description

The Support Vector Domain Description (SVDD) is a one-class classification method that
finds a minimum volume sphere in a kernel feature space that contains 1− ν fraction of
the target training samples [Tax & Duin, 1999]. The method tries to find the transformation
(implicit in the kernel function) that maps the target data into a hypersphere. The proposed
RBIG method and the SVDD method are conceptually similar due to their apparent geo-
metrical similarity. However, RBIG and SVDD represent two different approaches to the
one-class classification problem: PDF estimation versus separation boundary estimation.
RBIG for one-class problems

may be naively seen as if test samples were transformed and classified as target if lying
inside the sphere containing 1− ν fraction of the learned Gaussian distribution. According
to this interpretation, both methods reduce to the computation of spherical boundaries in
different feature spaces. However, this is not true in the RBIG case: note that the value of
the RBIG Jacobian is not the same at every location in the Gaussianized domain. Therefore,
the optimal boundary to reject a ν fraction of the training data is not necessarily a sphere
in the Gaussianized domain. In the case of the SVDD, though, by using an isotropic RBF
kernel, all directions in the kernel feature spaces are treated in the same way.

Relation to Deep Neural Networks

RBIG is essentially an iterated sequence of two operations: non-linear dimension-wise
squashing functions and linear transforms. Intuitively, these are the same processing
blocks used in a feedforward neural network (linear transform plus sigmoid-shaped func-
tion in each hidden layer). Therefore, one could see each iteration as one hidden layer
processing of the data, and thus argue that complex (highly non-Gaussian) tasks should
require more hidden layers (iterations). This view is in line with the field of deep learning
in neural networks [Hinton & Salakhutdinov, 2006], which consists of learning a model
with several layers of nonlinear mappings. The field is very active nowadays because
some tasks are highly nonlinear and require accurate design of processing steps of differ-
ent complexity. Note, that it may appear counterintuitive the fact that full Gaussianization
of a dataset is eventually achieved with a large enough number of iterations, thus leading
to overfitting in the case of a neural network with such number of layers. Nevertheless,
note that capacity control also applies in RBIG: we have observed that early-stopping cri-
teria must be applied to allow good generalization properties. In this setting, one can see
early stopping in the Gaussianization method as a form of model regularization. This is
certainly an interesting research line to be pursued in the future.

Finally, we would like to note that it does not escape our notice that the exploitation
of the RBIG framework in the previous contexts might eventually be helpful in designing
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new algorithms or helping understanding them from different theoretical perspectives.

5.2.4 Experimental Results

This section shows the capabilities of the proposed RBIG methods in some illustrative
examples. We start by experimentally analyzing the convergence of the method depend-
ing on the rotation matrix in a controlled toy dataset, and give useful criteria for early-
stopping. Then, method’s performance is illustrated for mutual information estimation,
image synthesis, classification and denoising. In each application, results are compared to
standard methods in the particular field. A documented Matlab implementation is avail-
able at http://www.uv.es/vista/vistavalencia/RBIG.htm.

Method convergence and early-stopping

The RBIG method is analyzed here in terms of convergence rate and computational cost
for different rotations: orthonormal ICA, PCA and RND. Synthetic data of varying dimen-
sions (d = 2, . . . , 16) was generated by first sampling from a uniform distribution hyper-
cube and then applying a rotation transform. This way we can compute the ground-truth
negentropies of the initial distributions, and estimate the reduction in negentropies in ev-
ery iteration by estimating the difference in marginal negentropies, cf. Eq. (5.21). A total
of 10000 samples was used for the methods, and we show average and standard deviation
results for 5 independent random realizations.

Two-dimensional scatter plots in Figure 5.15 qualitatively show that different rotation
matrices give rise to different solutions in each iteration but, after a sufficient number of
iterations, all of them transform the data into a Gaussian independently of the rotation
matrix.

RBIG convergence rates are illustrated in Fig. 5.16. Top plots show the negentropy
reduction for the different rotations as a function of the number of iterations and data di-
mension. We also give the actual negentropy estimated from the samples, is an univariate
population estimate since Eq. (5.20) can be used. Successful convergence is obtained when
the accumulated reduction in negentropy tends to the actual negentropy value (cyan line).
Discrepancies are due to the accumulation of computational errors in the negentropy re-
duction estimation in each iteration.

Bottom plots in Fig. 5.16 give the result of the multivariate Gaussianity test presented
by Székely & Rizzo [2005]: when the outcome of the test is 1, it means accepting the hy-
pothesis of multidimensional Gaussianity. Several conclusions can be extracted: (1) the
method converges to a multivariate Gaussian independently of the rotation matrix; (2)
ICA requires a less number of iterations to converge, but it is closely followed by PCA; (3)
random rotations take a higher number of iterations to converge and show high-variance
in the earlier iterations; and (4) convergence in cumulative negentropy is consistent with



5.2 ITERATIVE GAUSSIANIZATION FRAMEWORK 157

Figure 5.15: Scatter plots of a 2D data in different iterations for the considered

rotation matrices: RND (top), PCA (middle) and ICA (bottom).
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Figure 5.16: Cumulative negentropy reduction (top) and multivariate Gaussian

significance test (bottom) for each iteration in 2D (left) and 4D (right) di-

mensional synthetic problem. Average and standard deviation results from 5
realizations is shown.

the parametric estimator in [Székely & Rizzo, 2005] which, in turn, confirms the analysis
in Table 5.4.

Despite the previous conclusions, and as pointed out before, in practical applications, it
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Table 5.5: Average (± std. dev.) convergence results.

RND PCA ICA
Dim. iterations time [s] iterations time [s] iterations time [s]

2 14 ± 3 0.01 ± 0.01 7 ± 3 0.005 ± 0.002 3 ± 1 6 ± 5
4 44 ± 6 0.06 ± 0.01 33 ± 6 0.05 ± 0.01 11 ± 1 564 ± 223
6 68 ± 7 0.17 ± 0.01 43 ± 12 0.1 ± 0 11 ± 2 966 ± 373
8 92 ± 4 0.3 ± 0.1 54 ± 23 0.2 ± 0 16 ± 1 1905 ± 534

10 106 ± 10 0.4 ± 0 58 ± 25 0.3 ± 0.1 19 ± 1 2774 ± 775
12 118 ± 10 0.5 ± 0.2 44 ± 5 0.2 ± 0.1 21 ± 2 3619 ± 323
14 130 ± 8 0.7 ± 0.1 52 ± 21 0.4 ± 0.1 19 ± 1 4296 ± 328
16 139 ± 10 0.7 ± 0 73 ± 36 0.4 ± 0.2 22 ± 1 4603 ± 932

is not the length of the path to the Gaussian goal what matters, but the time required to
complete this path. Table 5.5 compares the number of iterations for appropriate conver-
gence and the CPU time of 5 realizations of RBIG with different matrix rotations (RND,
PCA and ICA) in several dimensions. While, in general, CPU time results are obviously
implementation dependent, note that results in Table 5.5 are fairly consistent with the
computational burden per iteration shown in Table 5.4 since each ICA computation is an
iterative procedure itself which needs m iterations.

The use of ICA rotations critically increases the convergence time. This effect is more
noticeable as the dimension increases, thus making the use of ICA computationally un-
feasible when the number of dimensions is moderate or high. The use of PCA in RBIG
is consequently a good trade-off between Gaussianization error and computational cost if
the number of iterations is properly chosen. An early-stopping criterion could be based
on the evolution of the cumulative negentropy reduction, or of a multivariate test of Gaus-
sianity such as the one used here [Székely & Rizzo, 2005]. Both are sensible strategies for
early-stopping. According to the observed performance, we restrict ourselves to the use of
PCA as the rotation matrix in the experiments hereafter. Note that by using PCA, the algo-
rithm might not converge in a singular situation. However, we checked that such singular
situation never happened by jointly using both criteria in each iteration.

Multi-information estimation

As previously shown, RBIG can be used to estimate the negentropy, and therefore could
be used to compute multi-information (I) of high dimensional data (Eq. (5.10)). Essen-
tially, one learns the sequence of transforms to Gaussianize a given dataset, and the I es-
timate reduces to compute the cumulative ∆I since, at convergence, full independence is
supposedly achieved. We illustrate the ability of RBIG in this context by estimating multi-
information in three different synthetic distributions with known I: uniform distribution
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Table 5.6: Average (± std. dev.) multi-information (in bits) for the different

estimators in 2D problems.

DIST EG GG UU
RBIG 0.49 ± 0.01 1.38 ± 0.004 0.36 ± 0.03
NE 0.35 ± 0.02 1.35 ± 0.006 0.39 ± 0.002
RE 0.32 ± 0.01 1.29 ± 0.004 0.30 ± 0.002

Actual 0.51 1.38 0.45

(UU), Gaussian distribution (GG), and a marginally composed exponential and Gaussian
distribution (EG). An arbitrary rotation was applied in each case to obtain non-zero multi-
information. In all cases, we used 10, 000 samples and repeated the experiments for 10
realizations. Two kinds of experiments were performed:

• A 2D experiment, where RBIG results can be compared to the results of naive (his-
togram based) mutual information estimates (NE), and to previously reported 2D
estimates such as the Rudy estimate (RE) [Moddemeijer, 1989] (see Table 5.6).

• A set of d-dimensional experiments, where RBIG results are compared to actual val-
ues (see Table 5.7).

Table 5.6 shows the results (in bits) for the mutual information estimation in the 2D ex-
periment to standard approaches. The ground-truth result is also given for comparison
purposes.

For Gaussian and exponential-Gaussian data distributions, RBIG outperforms the rest
of methods, but when data are marginally uniform, NE yields better estimates. Table IV
extends the previous results to multidimensional cases, and compares RBIG to the actual
I. Good results are obtained in all cases. Absolute errors slightly increase with data di-
mensionality.

Data synthesis

RBIG obtains an invertible Gaussianization transform that can be used to generate (or
synthesize) samples. The approach is simple: the transform G is learned from the available
training data, and then synthesized samples are obtained from random Gaussian samples
in the transformed domain inverted back to the original domain using G−1. Two examples
are given here to illustrate the capabilities of the method.

• Toy data

Figure 5.17 shows examples of 2D non-Gaussian distributions (left column) trans-
formed into a Gaussian (center column). The right column was obtained sampling
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Table 5.7: Multi-information (in bits) with RBIG in different d-dimensional prob-

lems.

Dim. EG GG UU
d RBIG Actual RBIG Actual RBIG Actual
3 1.12 ± 0.03 1.07 1.91 ± 0.01 1.9 1.6 ± 0.1 1.6
4 5 ± 0.1 5.04 1.88 ± 0.02 1.86 2.2 ± 0.1 2.2
5 4.7 ± 0.1 4.82 1.77 ± 0.02 1.75 2.7 ± 0.1 2.73
6 7.8 ± 0.1 7.9 2.11 ± 0.01 2.08 3.5 ± 0.1 3.72
7 6.2 ± 0.1 6.33 2.68 ± 0.03 2.65 3.6 ± 0.1 3.92
8 8.1 ± 0.1 8.19 2.72 ± 0.02 2.68 4.1 ± 0.1 4.29
9 9.5 ± 0.1 9.6 3.22 ± 0.02 3.18 5.3 ± 0.1 5.69

10 12.7 ± 0.1 13.3 3.45 ± 0.03 3.4 5.8 ± 0.2 6.24

data from a zero mean unit covariance Gaussian and inverting back the transform.
This example visually illustrates that synthesized data approximately follow the
original PDF.

• Face synthesis

In this experiment, 2, 500 face images were extracted from [Georghiades et al., 2001],
eye-centered, cropped to have the same dimensions, mean and variance adjusted,
and resized to 17× 15 pixels. Images were then reshaped to 255-dimensional vectors,
and Gaussianized with RG and RBIG. Figure 5.18 shows illustrative examples of
original and synthesized faces with RG and RBIG.

Note that both methods achieve good visual qualitative performance. In order to
assess performance quantitatively, we compared 200 actual and synthesized images
using the inner product as a measure of local similarity. We averaged this similarity
measure over 300 realizations and show the histograms for RG and RBIG. Results
suggest that the distribution of the samples generated with RBIG is more realistic
(similar to the original dataset) than the obtained with RG.

One-class classification

In this experiment, we assess the performance of the RBIG method as one-class classi-
fier. Performace is illustrated in the challenging problem of detecting urban areas from
multispectral and SAR images. The ground-truth data for the images used in this sec-
tion were collected in the Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP project9

[Gómez-Chova et al., 2006]. The considered test sites were the cities of Rome and Naples,

9http://dup.esrin.esa.int/ionia/projects/summaryp30.asp
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Figure 5.17: Toy data examples synthesized using RBIG.

Italy, for two acquisitions dates (1995 and 1999). The available features were the seven
Landsat bands, two SAR backscattering intensities (0–35 days), and the SAR interfero-
metric coherence. We also used a spatial version of the coherence specially designed to
increase the urban areas discrimination [Gómez-Chova et al., 2006]. After this preprocess-
ing, all features were stacked at a pixel level, and each feature was standardized.

We compared the RBIG classifier based on the estimated PDF for urban areas with the
SVDD classifier [Tax & Duin, 1999]. We used the RBF kernel for the SVDD whose width
was varied in the range σ ∈ [10−2, . . . , 102]. The fraction rejection parameter was varied
in ν ∈ [10−2, 0.5] for both methods. The optimal parameters were selected through 3-fold
cross-validation in the training set optimizing the κ statistic [Cohen, 1960]. Training sets of
different size for the target class were used in the range [500, 2500]. We assumed a scarce
knowledge of the non-target class: 10 outlier examples were used in all cases. The test
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Original
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RBIG

Figure 5.18: Example of real (top) and synthesized faces with RG (middle) and

RBIG (bottom).
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Figure 5.19: Histogram of the similarity (inner product) between the distribution

of original and synthesized face images for 300 realizations. For reference, the

average image energy (average inner product) in the original set is 1.81 · 104.

set was constituted by 10, 000 pixels of each considered image. Training and test samples
were randomly taken from the whole spatial extent of each image. The experiment was
repeated for 10 different random realizations in the three considered test sites.

Figure 5.20 shows the estimated κ statistic and the overall accuracy (OA) in the test set
achieved by SVDD and RBIG in the three images. The κ scores are relatively small because
samples were taken from a large spatial area thus giving rise to a challenging problem due
to the variance of the spectral signatures. Results show that SVDD behavior is similar to
the proposed method for small size training sets. This is because more target samples are
needed by the RBIG for an accurate PDF estimation. However, for moderate and large
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Figure 5.20: Overall accuracy (left) and kappa statistic, κ (right) for RBIG (solid

line) and SVDD (dashed line) in different scenes: Naples 1995 (top), Naples

1999 (center) and Rome 1995 (bottom).

training sets the proposed method substantially outperforms SVDD. Note that training
size requirements of RBIG are not too demanding: using 750 samples in a 10-dimensional
problem is enough for RBIG to outperform SVDD when very little is known about the
non-target class.
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GT SVDD (0.67, 0.32) RBIG (0.79, 0.42)

Figure 5.21: Ground-truth (GT) and classification maps obtained with SVDD and

RBIG for the Naples 1995 scene. The white points represent urban area and

the black points represent non-urban area. The corresponding overall accuracy

and κ-statistic are given in parenthesis.

Figure 5.21 shows the classification maps for the representative Naples95 scene for SVDD
and RBIG. Note that RBIG better rejects the ‘non-urban’ areas (in black). This may be be-
cause SVDD training with few non-target data gives rise to a too broad boundary. As
a result, too many pixels are identified as belonging to the target class (in white). An-
other relevant observation is the noise in neighboring pixels, which may come from the
fact that no spatial information was used. This problem could be easily alleviated by im-
posing some post-classification smoothness constraint or by incorporating spatial texture
features.

Image denoising

Image denoising tackles the problem of estimating the underlying image, x, from a noisy
observation, xn, assuming an additive degradation model: xn = x + n. Many image de-
noising methods have exploited the Bayesian framework to this end [Donoho & Johnstone,
1995; Figueiredo & Nowak, 2001; Portilla et al., 2003; E. P. Simoncelli, 1999]:

x̂ = argmin
x∗

{ ∫
L(x, x∗)p(x|xn)dx

}
, (5.24)

where x∗ is the candidate image, L(x, x∗) is the cost function, and p(x|xn) is the posterior
probability of the original sample x given the noisy sample xn. This last term plays an
important role since it can be decomposed (using the Bayes rule) as

p(x|xn) = Z−1 p(xn|x)p(x), (5.25)

where Z−1 is a normalization term, p(xn|x) is the noise model (probability of the noisy
sample given the original one), and p(x) is the prior (marginal) sample model.

Note that, in this framework, the inclusion of a feasible image model, p(x), is critical
in order to obtain a good estimation of the original image. Images are multidimensional
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signals whose PDF p(x) is hard to estimate with traditional methods. The conventional
approach consists of using parametric models to be plugged into Eq. (5.25) in such a way
that the problem can be solved analytically. However, mathematical convenience leads to
the use of too rigid image models. Here we use RBIG in order to estimate the probability
model of natural images p(x).

In this illustrative example, we use the L2-norm as cost function, L(x, x∗) = ||x− x∗||2,
and an additive Gaussian noise model, p(xn|x) = N (0, σ2

nI). We estimated p(x) using 100
achromatic images of size 256× 256 extracted from the McGill Calibrated Colour Image
Database [Olmos & Kingdom, 2004]. To do this, images were transformed using orthonor-
mal QMF wavelet domain with four frequency scales [E. Simoncelli & Adelson, 1990], an
then each subband was converted to patches in order to obtain different PDF models for
each subband according to well-known properties of natural images in wavelet domains
[Laparra, Gutiérrez, et al., 2010; Liu & Moulin, 2001]. In order to evaluate Eq. (5.24), we
sampled the posterior PDF at 8, 000 points from the neighborhood of each wavelet coef-
ficient by generating samples with the PDF of the noise model (p(xn|x)), and evaluated
the probability for each sample with the PDF obtained in the training step p(x). The esti-
mated coefficient x̂ is obtained as the expected value over the 8000 samples of the posterior
PDF. Obtaining the expected value is equivalent to using the L2 norm [Bernardo & Smith,
1994]. Note that the classical hard-thresholding (HT) and soft-thresholding (ST) results
[Donoho & Johnstone, 1995] are a useful reference since they can be interpreted as solu-
tions to the same problem with a marginal Laplacian image model and L1 and L2 norms
respectively [E. P. Simoncelli, 1999].

Figure 5.22 shows the denoising results for the ‘Barbara’ image corrupted with Gaussian
noise of σ2

n = 100 using marginal models (HT and ST), and using a RBIG as the PDF
estimator. Accuracy of the results is measured in Euclidean terms (RMSE), and using
a perceptually meaningful image quality metric such as the Structural Similarity Index
(SSIM) [Wang et al., 2004a]. Note that RBIG method obtains better results (numerically
and visually) than the classical methods due to the more accurate PDF estimation.
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Original Noisy (10.0, 0.76)

HT (8.05, 0.86) ST (6.89, 0.88) RBIG (6.48, 0.90)

Figure 5.22: Original, noisy (noise variance σ2
n = 100) and restored ‘Barbara’

images. The root-mean-square-error (RMSE) and the perceptually meaningful

Structural Similarity Measure (SSIM) [Wang et al., 2004a] are given in paren-

theses.

5.3 Chapter conclusions

In section 5.1 we proposed an alternative way to take into account the relations among
natural image wavelet coefficients for denoising: we used SVR in the wavelet domain to
enforce these relations in the estimated signal. The specific signal relations, which proved
to be more relevant in intraband coefficients, are encoded in an anisotropic kernel based
on mutual information computed from a representative image database. An adaptive SVR
with different cost function per subband was developed: the subband-dependent ε i and Ci

are modeled by analyzing the particular signal and noise variances in a representative
image database. By following general recommendations for the design of the kernel, ε i

and Ci, and adapting them to the particular image denoising problem, we restricted the
class of appropriate SVRs. A KLD-based criterion was proposed to automatically select
the SVR that best recovers the relevant wavelet coefficient relations of the true signal. The
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criterion was quite consistent but there is still room for improvement, specially in the case
of complex noise sources.

Results show that the performance of the proposed method is (1) better than conven-
tional wavelet methods that assume coefficient independence, (2) similar to state-of-the-
art methods that do explicitly include these relations when the noise source is Gaussian,
and (3) numerically and visually better results are obtained when more complex realis-
tic noise sources are considered. Therefore, the proposed SVR approach can be seen as
a more flexible (model-free) alternative to the explicit description of coefficient relations.
The important thing here is that no reformulation is needed for dealing with any other
kinds of noise. Moreover, these results are an additional indication that relation between
local frequency coefficients is a salient natural image feature that should not be neglected
in denoising applications.

Future work is tied to the incorporation of new information in the kernels: here we
focused on the consideration of signal relations in the kernel, but the particular structure
of the noise could be eventually incorporated. Note that the denoising procedure is quite
general and admits any kind of regression machine, see Gómez-Chova et al. [2011] for a
review in regression kernel methods.

In section 5.2 we proposed an alternative solution to the PDF estimation problem by us-
ing a family of Rotation-based Iterative Gaussianization (RBIG) transforms. The proposed
procedure looks for differentiable transforms to a Gaussian so that the unknown PDF can
be computed at any point of the original domain using the Jacobian of the transform.

The RBIG transform consists of the iterative application of univariate marginal Gaus-
sianization followed by a rotation. We show that a wide class of orthonormal transforms
(including trivial random rotations) is well suited to Gaussianization purposes. The free-
dom to choose the most convenient rotation is the difference with formally similar tech-
niques, such as Projection Pursuit, focused on looking for interesting projections (which
is an intrinsically more difficult problem). In this way, here we propose to shift the focus
from ICA to a wider class of rotations since interesting projections as found by ICA are
not critical to solve the PDF estimation problem in the original domain. The suitability of
multiple rotations to solve the PDF estimation problem may help to revive the interest of
classical iterative Gaussianization in practical applications. As an illustration, we showed
promising results in a number of multidimensional problems such as image synthesis,
classification, denoising, and multi-information estimation.

Particular issues in each of the possible applications, such as stablishing a convenient
family of rotations for a good Jacobian or convenient criteria to ensure the generalization
ability, are a matter for future research.



Chapter 6

Conclusions

THIS chapter summarizes the knowledge I acquired during the last years regarding
the issues of this Thesis. For further details, I address the reader to the partial con-

clusions drawn in each section. Most of the conclusions presented here are focused on
confirming the efficient coding hypothesis, which is already a well-established one. In this
sense, this conclusions are just another brick in the wall.

One of the main conclusions is that the computational model of the HVS designed us-
ing physiological information, and fitted in a novel way using psychophysical data, has
good statistical properties (chapter 2). Note that no statistical information has been used
in the model definition. Which suggests that the HVS takes advantage of the statistical
regularities of the visual environment. This is an unconventional approach to explain the
relation between neuroscience and statistics, departing from neuroscience and studying
the statistical properties of the HVS.

Regarding the conventional approach (from statistics to neuroscience) some of the HVS
behavior has been derived by using only statistical information, i.e. optimizing models
statistically through natural images data. The importance of these results falls in the fact
that not too complex statistical models and data gathering are needed. The statistical mod-
els proposed in sections 4.1 and 4.2 obtain similar behavior to the HVS color and spatial
mechanisms, respectively.

Section 4.1 presented a new non-linear method to design a sensory system in which the
optimization criterion can be tuned. Results in natural images showed that a statistically
optimal sensory system obtains similar behavior to the color mechanisms in the HVS.
Moreover, results also suggested that color mechanisms in HVS may be guided by an
error minimization strategy instead of a redundancy reduction strategy. Evidences against
the independence goal have been also obtained for the spatial representation mechanisms
(Sec. 4.3). Results suggested that the shape of the filters in V1 might not be due to an
independence goal, and also is suggested that adaptation or overcompleteness properties
are convenient at the linear stage in the V1 area.
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Section 4.2 highlighted the need of analyzing the phase statistical relations between co-
efficients in the statistical models, which is still not well addressed nowadays. Moreover
some insights on the phase treatment have been established. These results make also clear
that it is necessary to introduce phase properties in the HVS model, which currently takes
only the modulus information into account.

Another practical conclusion is that the HVS model of chapter 2 can be used to design
image processing applications. Using this model as an image quality metric obtains similar
results to the state-of-the-art image quality algorithms (chapter 3), and it could be easily
used in other image processing tasks such as image compression or denoising.

Also regarding applications, one conclusion is that including statistical information (and
even perceptual information) definitely improves image processing algorithms. In section
5.1, statistical regularities of natural images were included in a machine learning algorithm
in order to impose these regularities to noisy images. This algorithm showed very good
results (similar to well-established algorithms) in image denoising. The method presented
in section 5.2 is able to obtain estimations of multidimensional PDFs circumventing the
curse of dimensionality. The method was used in image problems by estimating PDFs of
images and applying classical image processing formulas. Good results in a wide range
of image processing problems have been obtained, comparable in some cases to those ob-
tained with state-of-the-art algorithms. Results of both methods confirm that understand-
ing higher order statistical relations is essential to improve existing image processing algo-
rithms. Moreover, since these learning algorithms can be seen as inference machines, their
behavior could be interpreted in order to explain the brain behavior, as done in section 4.1.

Although the relation between neuroscience and statistics was already well-established,
this Thesis has been useful to clarify some ideas to me. All the works presented here
highlighted this relation. It is clear to me now that the human brain (not only the HVS)
has evolved to process information taking into account the statistical regularities of the
world. Otherwise, the brain could not be able to process this amount of information with
such high accuracy.

In the case of the HVS, I think these regularities are used for an error minimization
goal. This strategy makes more sense to me, and moreover the results obtained in this
Thesis make me feel that this is the goal that guide the early stages, instead of the redun-
dancy reduction strategy. Figure 6.2 shows the codebook optimized for quantizing images
(extracted from [Gersho & Gray, 1992]). These vectors resemble border filters similar to
the filters obtained when optimizing for redundancy reduction, like in [Bell & Sejnowski,
1997; Olshausen & Field, 1996]. Moreover thinking about the brain as an inference ma-
chine, decision would be the main task of the HVS. Therefore, as suggested by the sta-
tistical learning theory [Vapnik, 1995], learning directly the decision function rather than
modeling the PDF may be a good strategy for learning decision models. Therefore, this
would be also a good strategy to follow in order to obtain some conclusions about the HVS
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Figure 6.1: Images VQ codebook [Gersho & Gray, 1992].

behavior.
On the other hand, it is also clear to me that, in order to properly develop signal pro-

cessing algorithms, it is necessary to understand what are the statistical regularities of the
data. In the particular case of image processing, since the HVS is optimized statistically
and it obtains near optimal performance for some tasks, it is a good reference in order to
evaluate object recognition tasks or even more basic tasks as quantization or denoising.
In this sense, understanding how the brain works is a field with lots of opportunities and
applications.



Conclusiones

EN este capı́tulo se resume el conocimiento relacionado con los temas de la Tesis que
he adquirido durante estos años. Para más detalles sugiero al lector que lea las con-

clusiones parciales que hay en cada sección. La mayorı́a de las conclusiones presentadas
aquı́ se centran en confirmar la hipótesis de la codificación eficiente, la cuál está actual-
mente muy bien establecida. En este sentido, estas conclusiones son just another brick in the
wall.

Una de las conclusiones principales de la Tesis es que el modelo computacional del Sis-
tema Visual Humano (SVH) descrito en el capı́tulo 2, el cual ha sido diseñado usando
información fisiológica y ajustado de una forma novedosa usando datos psicofı́sicos, tiene
unas buenas propiedades estadı́sticas. Nótese que no se ha usado ninguna información
estadı́stica en la definición modelo. Por lo tanto estas propiedades sugieren que el SVH
utiliza las regularidades estadı́sticas del entorno visual. Esta es una aproximación no con-
vencional para explicar la relación entre neurociencia y estadı́stica, estudiar las propiedades
estadı́sticas de un modelo de neurociencia.

Respecto a la aproximación convencional, desde la estadı́stica a la neurociencia, en esta
Tesis se han derivado comportamientos del SVH a partir de información estadı́stica, es
decir optimizando modelos estadı́sticos utilizando datos de imágenes naturales. La im-
portancia de estos resultados recae en el hecho de que no son necesarios ni modelos es-
tadı́sticos ni datos experimentales muy complejos. Los modelos estadı́sticos de las sec-
ciones 4.1 y 4.2 obtienen un comportamiento similar al de los mecanismos de color y espa-
ciales del SVH, respectivamente. Concretamente, en la sección 4.1 se presenta un método
nuevo para diseñar un sistema de sensores no-lineales en los cuales se puede seleccionar
la métrica deseada. Los resultados sobre imágenes naturales muestran que los sistemas
de sensores óptimos aprendidos obtienen un comportamiento similar al de los mecanis-
mos de color del SVH. Además, estos resultados también sugieren que los mecanismos de
color del SVH pueden estar guiados por una estrategia de minimización de error en lugar de
una estrategia de reducción de redundancia. También se han encontrado evidencias contra la
estrategia de independencia en la representación de los mecanismos espaciales (Sec. 4.3).
Los resultados sugieren que, en términos de codificación eficiente, es necesaria algún tipo
de adaptación o sobrecompletitud en la transformada lineal del área V1.
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En la sección 4.2 se resalta la idea de la necesidad de analizar las relaciones entre las fases
de los coeficientes de los modelos estadı́sticos de imagen, la cual no está desarrollada hoy
en dı́a. Además se introducen algunos nuevos conocimientos sobre aspectos de las fases.
Los resultados dejan también clara la necesidad de introducir las propiedades de fase en
los modelos del SVH, los cuales normalmente hacen uso únicamente de la información del
módulo.

Otra conclusión de tipo práctico es que el modelo de SVH del capı́tulo 2 puede ser
usado para diseñar aplicaciones de procesado de imágenes. Al usar este modelo para
la medida de calidad de imágenes se obtienen resultados similares a los de los métodos
actuales (capı́tulo 3). Además podrı́a ser usado fácilmente en otras tareas de procesado
de imágenes como compresión. Siguiendo con las aplicaciones, una conclusión impor-
tante es que incluir información estadı́stica (e incluso perceptual) mejora los algoritmos
de procesado de imagen. En la sección 5.1, se introducen regularidades estadı́sticas en un
algoritmo de aprendizaje máquina para imponer dichas regularidades en imágenes con
ruido. Este algoritmo muestra muy buenos resultados en limpieza de imágenes similar a
los de algoritmos punteros. El método presentado en la sección 5.2 es capaz de paliar los
problemas de la maldición de la dimensión y ası́ obtener estimaciones de PDFs multidimen-
sionales. Este método ha sido usado en aplicaciones de imagen haciendo una estimación
de PDFs de imágenes y aplicando fórmulas clásicas de procesado de imagen. Los resul-
tados obtenidos en diversos problemas son buenos en general y comparables en algunos
casos a los obtenidos por algunos de los mejores algoritmos actuales. Los resultados de
ambos métodos confirman que el conocimiento de las relaciones estadı́sticas de alto orden
es esencial a la hora de mejorar los algoritmos de procesado de imágenes. Además, puesto
que estos algoritmos pueden ser vistos como máquinas de inferencia, su funcionamiento
podrı́a ser interpretado para explicar el funcionamiento del cerebro, como se hace con el
método propuesto en la sección 4.1.

Aunque la relación entre neurociencia y estadı́stica ya estaba bien establecida, esta Tesis
ha sido útil para clarificarme algunas ideas a mi mismo. Todos los trabajos presenta-
dos resaltan esta relación. Ahora mismo tengo claro que el cerebro humano (no sólo el
SVH) se ha adaptado para procesar información teniendo en cuenta las regularidades es-
tadı́sticas del mundo. De otro modo, no serı́a posible procesar la cantidad de información
que procesa con la precisión con que lo hace.

En el caso del SVH, creo que dichas regularidades son usadas para minimizar el error
de representación. Personalmente, creo que esta estrategia tiene mucho más sentido, y
además los resultados obtenidos a lo largo de la Tesis me hacen pensar que este es el cri-
terio que guı́a las primeras etapas del SVH, en lugar de la reducción de redundancia. La
figura 6.2 muestra los representantes obtenidos cuando se optimiza un código de cuanti-
zación para imágenes (extraı́do de [Gersho & Gray, 1992]). Estos vectores son similares a
los filtros de bordes obtenidos al optimizar el código de reducción de redundancia, como
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Figure 6.2: Images VQ codebook [Gersho & Gray, 1992].

en [Bell & Sejnowski, 1997; Olshausen & Field, 1996]. Además, pensando en el cerebro
como una maquina de inferencia, tomar decisiones serı́a la tarea principal del SVH. Por
tanto, como se sugiere en Vapnik [1995], aprender directamente la función de decisión,
en lugar de modelar por separado la PDF y la función de coste, puede ser una buena es-
trategia para el aprendizaje de modelos de decisión. Por tanto, esta podrı́a ser una buena
estrategia a seguir para obtener conclusiones a cerca del funcionamiento del SVH.

Por otro lado, también tengo claro que para poder desarrollar buenos algoritmos de
procesado de señal, es necesario entender cuales son las regularidades estadı́sticas de los
datos a tratar. En el caso particular del procesado de imagen, puesto que el SVH está op-
timizado estadı́sticamente y obtiene un resultado óptimo en algunas tareas, es una buena
referencia a a la hora testear tareas de reconocimiento de objetos o incluso tareas más
básicas como cuantización o limpieza de ruido. En este sentido, entender cómo funciona
el cerebro es un campo con una gran cantidad de posibilidades y aplicaciones.
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Hyvärinen, A., & Köster, U. (2007, June). Complex cell pooling and the statistics of natural
images. Network, 1–20.

Hyvärinen, A., & Pajunen, P. (1999). Nonlinear independent component analysis: Exis-
tence and uniqueness results. Neural Networks, 12(3), 429–439.

Ingling, C., & Tsou, B. (1977). Orthogonal combination of the three visual channels. Vision
Research, 17, 1075–1082.

J., V. M., R., G., & S., I. L. (1994). Measurement and analysis of object reflectance spectra.
Color Research and Application, 19, 4–9.



REFERENCES 183

Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine
Learning Research, 5, 819-844.

J. Eriksson, A. S., & Koivunen, V. (2005). Complex ICA for circular and non-circular
sources. In in proc. EUSIPCO.

Jolliffe, I. T. (1986). Principal component analysis. Springer-Verlag.

Kai Tick Chow, D., & Lee, T. (2001). Image approximation and smoothing by support
vector regression. In International joint conference on neural networks, ijcnn’01. (Vol. 4,
p. 2427-2432). Washington, DC, USA.

Kambhatla, N., & Leen, T. (1997). Dimension reduction by local PCA. Neural Computation,
9, 1493-1500.

Kayser, C., Kording, K. P., & Konig, P. (2003). Learning the nonlinearity of neurons from
natural visual stimuli. Neural Computation, 15, 1751–1759.

K. Dabov, V. K., A. Foi, & Egiazarian, K. (2007). Image denoising by sparse 3D transform-
domain collaborative filtering. IEEE Transactions on Image Processing, 16, 2080-2095.

Kecman, V., Huang, T. ming, & Vogt, M. (2004). Iterative single data algorithm for training
kernel machines from huge data sets: Theory and. In Performance, support vector ma-
chines: Theory and applications, springer-verlag,.studies in fuzziness and soft computing (pp.
255–274).

Kervrann, C., & Boulanger, J. (2007, Feb). Local adaptivity to variable smoothness for
exemplar-based image denoising and representation. International Journal of Computer
Vision, 16(2), 349-366.

Kingsbury, N. (2006). Rotation-invariant local feature matching with complex wavelets.
In Proceedings European Conference on Signal Processing. Florence, Italy.

Koenderink, J. J. (2010). The prior statistics of object colors. Journal of the Optical Society of
America A, 27(2), 206–217.

Kohonen, T. (1982, January 1). Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43(1), 59–69.

Krauskopf, J., & Gegenfurtner, K. (1992). Color discrimination and adaptation. Vision
Research, 32(11), 2165-75.

Kwok, J. T., & Tsang, I. W. (2003, May). Linear dependency between ε and the input
noise in ε-Support Vector Regression. IEEE Transactions on Neural Networks, 2130/2001,
544-553.



184 CHAPTER 6. CONCLUSIONS

Lagarias, J., Reeds, J., Wright, M., & Wright, P. (1998). Convergence properties of the
nelder-mead simplex method in low dimensions. SIAM Journal of Optimization, 9(1),
112-147.

Laming, D. (1997). The measurement of sensation (oxford psychology series) (1st ed., Vol. 30).
Oxford Medical Publications.

Laparra, V., & Bethge, M. (2011). Redundancy reduction of linear transforms on image textures
(Tech. Rep.). In preparation.

Laparra, V., Camps, G., & Malo, J. (2009). PCA gaussianization for image processing. In
Proceedings of the IEEE International Conference on Image Processing. IEEE.

Laparra, V., Camps-Valls, G., & Malo, J. (2011). Iterative Gaussianization: from ICA to
Random Rotations. IEEE Transactions on Neural Networks, 22:4, 537 - 549.

Laparra, V., Gutierrez, J., Camps-Valls, G., & Malo, J. (2008). Recovering wavelet relations
using svm for image denoising. In Proceedings of the IEEE International Conference on
Image Processing (p. 541 -544).

Laparra, V., Gutiérrez, J., Camps-Valls, G., & Malo, J. (2010, March). Image denoising
with kernels based on natural image relations. Journal of Machine Learning Research, 11,
873–903.

Laparra, V., Gutman, M., Malo, J., & Hyvärinen, A. (2011). Complex-valued independent
component analysis of natural images. In International Conference on Artificial Neural
Networks.
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