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ABSTRACT
Here we propose an alternative non-explicit way to take

into account the relations among wavelet coefficients in nat-
ural images for denoising: we use Support Vector Machines
(SVM) to learn these relations. Since relations among the
coefficients are specific to the signal, SVM regularization re-
moves the noise, which does not share this property. More-
over, due to its non-parametric nature, the method can eventu-
ally cope with different noise sources. The results show that:
(1) the proposed non-parametric method outperforms conven-
tional methods that assume coefficient independence, and (2)
its performance is similar to state-of-the-art parametric meth-
ods that do explicitly include these relations. Therefore, the
proposed machine learning approach can be seen as a more
flexible (model-free) alternative to the explicit description of
wavelet coefficient relations in Bayesian approaches.

Index Terms— SVM, denoising, wavelet, natural images.

1. INTRODUCTION

Denoising requires representing the distorted signal in a do-
main where signal and noise display different enough behav-
ior. In such a representation, noise is removed by imposing
the known properties of the signal to the distorted samples.
For example, regularization techniques impose smoothness in
the spatial domain since noise is typically uncorrelated.

Wavelet representations are better suited to represent high-
er order relations among image samples. In fact, Independent
Component Analysis (ICA), designed to remove higher or-
der statistical relations, gives rise to local frequency (wavelet-
like) basis functions when applied to a set of natural images.
Wavelet representations are quite convenient in image denois-
ing because natural image samples have a very specific sta-
tistical behavior in this domain. On the one hand, smooth-
ness is represented by a strong energy compaction in coarse
scales. On the other hand, the combination of smooth re-
gions with local, high contrast features, such as edges, gives
rise to sparse activation of wavelet sensors. This leads to
very particular, heavy-tailed, marginal PDFs. These basic
features were incorporated in the classical wavelet-based im-
age denoising techniques [1–3]. Classical techniques such as
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hard and soft thresholding [1] have been generalized by us-
ing Bayesian approaches, looking for Maximum a Posteriori
(MAP) or Least Squares (LS) estimators, together with sim-
ple marginal models and assuming statistical independence
among coefficients [2, 3].

Marginal models in the wavelet domain are not enough
for a proper signal characterization. As images do not re-
ally come from a linear combination of independent sources
(as assumed by linear ICA), relevant relations among coef-
ficients still remain after wavelet transforms [2]. Relations
among wavelet coefficients have proven to be a key issue in
applications such as image coding [4, 5] or texture synthe-
sis [6]. The use of these relations is in the core of the most
recent and successful image denoising approaches [7, 8]. In
this case, more complex image models explicitly including
the relations among coefficients have to be plugged and fitted
into the Bayesian framework to obtain the image estimates.

Unfortunately, all these model-based Bayesian techniques
have three common problems: (1) they critically depend on
the accuracy of the image model; (2) MAP or LS estima-
tions can only be analytically derived for particular, typically
Gaussian noise sources (for different noise sources, the whole
technique has to be reformulated and may not be analytically
tractable); and (3) image model parameter estimation from
the noisy observation is difficult in general. On the contrary,
non-parametric approaches can include the above qualitative
properties in an indirect way without the restriction of being
analytically attached to particular image or noise models. In
this way, in principle, their applicability may be more general.

In this work, we propose recovering the natural relations
among wavelet coefficients by using non-parametric support
vector machines (SVM) on the noisy image. Since these re-
lations are an intrinsic feature of the signal, the SVM regu-
larization removes the noise, which does not share this prop-
erty. We focus on the ability of the proposed SVM method to
take into account these relations with regard to model-based
Bayesian methods. Table 1 shows the properties of differ-
ent previously reported approaches and the proposed SVM
method1. This classification shows three eventual advantages

1Hard and soft thresholding were classified as model-dependent since
they can be derived using a very specific combination of noise and image
(MAP estimation assuming Gaussian noise, and Generalized Laplacian PDF
signal with particular kurtosis [2, 3]), thus being otherwise suboptimal.



Table 1. Properties of the considered denoising methods.

Method Indep. of Indep. of Signal
Image Model Noise Model Relations

Hard thres. (HT) [1] × × ×
Soft thres. (ST) [1] × × ×
Bayes.Gen.Lapl.(BL) [2] × × ×
Bayes.Gauss. (BG) [3] × × ×
Bayes. GSM [7] × × √
SVM

√ √ √

of the proposed approach: (1) it does not use a particular para-
metric image model to be fitted; (2) its solution may be found
for complex noise sources even without knowing the func-
tional form of the noise PDF, since it can work with just noise
histograms; and (3) it is capable to take into account the re-
lations among wavelet coefficients of natural images. There-
fore, the proposed machine learning approach can be seen as a
more flexible (model-free) alternative to the explicit descrip-
tion of wavelet coefficient relations for image denoising.

Non-explicit use of dependencies in local frequency do-
mains for denoising was also introduced in [9]. In that case,
relations were embedded into a perceptual model used for
non-parametric spectrum estimation. Here we pursue the same
goal (a model-free technique) with a completely different fra-
mework (SVM instead of perceptual information). The idea
of using SVM regularization in the wavelet domain for im-
age denoising was introduced in [10], but in this preliminary
work, (1) the qualitative effect of the different parameters of
the SVM was not analyzed, (2) these parameters were set ad-
hoc, and more importantly (3) the relevance of the relations
among the wavelet coefficients of the signal was not an issue,
so the ability of SVM to learn these relations was not assessed
nor compared to other methods that do consider them.

The paper is outlined as follows. Section 2 motivates the
need for regularization in the wavelet domain, and how SVM
can address this issue. Section 3 presents a criterion to select
the SVM that better identifies the noise PDF and gives rise to
an appropriate (smooth) signal estimation. In Section 4, the
performance of the proposed non-parametric method is com-
pared to all parametric Bayesian methods in Table 1. Finally,
Section 5 draws some conclusions and further work.

2. RESTORING WAVELET RELATIONS WITH SVM

The effect of noise in the wavelet domain is introducing ar-
tificial deviations on top of the original signal and hiding the
natural relations among the coefficients (see an illustrative ex-
ample at the top panel of Fig. 1). The regularization ability of
SVM [11] can be applied on the noisy signal to remove these
artificial deviations while recovering (or imposing) the natu-
ral relations among the coefficients.

Throughout this work, the degraded observation, id, is
obtained from an original image, io, plus an unknown real-
ization of additive noise, n, with known PDF or histogram,
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Fig. 1. Top: magnitude of original and noisy wavelet subband
patches of ‘Barbara’ image. Bottom: effect of SVM param-
eters on the noisy patch. KL-divergence values between the
estimated and the actual noise PDFs are given in each case
(see text).

P (n). A wavelet transform, T , is applied to the observed im-
age, leading to a set of (noisy) coefficients, y = T · id.

Now, given an input-output pair of N -dimensional vec-
tors {xi, yi}N

i=1, where xi are the wavelet indices and yi are
the noisy wavelet coefficients, and a non-linear mapping φ to
a higher dimensional feature space, the SVM computes the
weights w to obtain the estimation, ŷi = φ(xi)>w, minimiz-
ing the following regularized functional:

‖w‖2 + C
∑

i

ξi (1)

subject to |yi − φ(xi)>w| ≤ ε + ξi, ∀i = 1, . . . , N , where
ξi are the magnitude of the deviations of the estimated signal
from the observed noisy data outside the insensitivity zone
ε. Parameter C tunes the trade-off between fitting the model
to the observed noisy data (minimizing the deviations) and
keeping model weights ‖w‖ small (enforcing flatness in the
feature space). It is worth stressing that parameter ε accounts
for the allowed error, and it is strongly linked to the noise
variance [12]. Explicitly working with the non-linearity φ is
no longer necessary since the whole formulation can be ex-
pressed in the form of dot products of the mapping functions
called kernels, K(xi,xj) = φ(xi)>φ(xj). In this case, the
estimation is given by ŷ = Kα, where α is the dual repre-
sentation of weights w [11]. The kernel matrix can be seen



as a similarity matrix among samples (or coefficients), and
should reflect the relations among them. Many kernel func-
tions have been proposed in the literature [11]. Here we used
Radial Basis Functions (RBF) in the kernel since the relation-
ship among the wavelet coefficients corresponding to spatial
neighbors within a subband is local.

According to the above, the regularization behavior of the
SVM depends on three parameters: the insensitivity zone,
ε, the extent of the neighborhood defined by the kernel (the
width, σ, in the particular RBF choice), and the penalization
factor, C. The bottom panel of Fig. 1 shows the qualitative
effect of SVM estimation as a function of these parameters.
Increasing the kernel width, σ (vertical direction), introduces
too strong relations among coefficients in such a way that spu-
rious energy appears. Increasing the insensitivity, ε (horizon-
tal direction), a sparser solution is obtained, leading to infor-
mation loss and thus relevant features of the signal are dis-
carded. On the contrary, too small insensitivity gives rise to
overfitting, and hence noise is not removed. Small values of
the C parameter gives rise to over-regularized estimations.

According to the above example, dedicated SVMs can
certainly discover the underlying structure of the original sig-
nal from the noisy observation, but a criterion to choose the
appropriate SVM is needed.

Fitting an arbitrary SVM on the noisy data in the trans-
formed domain, gives rise to a particular image estimation,
î = T−1 ŷ. The difference between this estimation and the
noisy input is the estimated noise, ne = id − î. In general,
ne 6= n, however, one can always find the SVM that max-
imizes the similarity between the estimated and actual noise
probability functions (or histograms), P (ne) and P (n), re-
spectively. Our proposal considers minimizing the Kullback-
Leibler divergence (KLD) between the joint PDFs to enforce
similarity up to the higher (computationally estimable) order.
The underlying idea is that the SVM that enforces the simi-
larity between the estimated noise and the actual noise is the
one that best captures the relevant features of the true signal.

The proposed scheme is depicted in Fig. 2. The noisy
image is transformed to a wavelet domain where intraband
coefficients are grouped into N -dimensional vectors because,
in images, the mutual information is typically larger among
intraband than interband neighbors. Starting from an arbitrary
set of SVM parameters, θ = {ε, σ, C}, the feedback loop in
Fig. 2 selects the SVM with parameters

θ∗ = arg min
θ

{
KLD[P (ne(θ)), P (n)]

}
, (2)

Fig. 2. The proposed denoising algorithm.

Table 2. Similarities/errors of the estimations at σ2
n = 400.

‘Barbara’ ‘Boats’ ‘Lena’
SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.74 13.69 0.72 13.00 0.73 11.84
ST 0.74 11.96 0.72 11.75 0.71 10.78
BG 0.75 11.99 0.73 11.64 0.73 10.68
BL 0.75 11.45 0.77 10.27 0.72 12.36
GSM 0.87 8.72 0.84 8.47 0.85 7.99
SVM 0.85 9.76 0.81 11.01 0.81 9.95

leading to an estimation with appropriate relations among co-
efficients. KLD values in Fig. 1 illustrate the usefulness of
the above procedure: the minimum divergence point (central
patch) is also the best estimation of the original patch.

All the analyzed Bayesian algorithms in Table 1 rely on a
particular analytical noise PDF (typically Gaussian of known
covariance). The advantage of our method is that KLD can
be computed regardless of the complexity this PDF or even in
the case that only the noise histogram is available.

3. EXPERIMENTAL RESULTS

We used an 8-orientation, 4-scale, steerable wavelet trans-
form, T [13]. Subbands are decomposed into 256-dimensional
vectors y. In eq. (2) we restricted ourselves to 2-dimensional
joint histograms due to the lack of noise samples yet enforcing
decorrelation in the estimated noise. SVM optimization was
carried out through exhaustive search. A scale-dependent εi

profile [14] was used according to the noise variance in the
selected wavelet domain. This profile was scaled by a factor
varied in the range [0.4, 2.6], which was chosen according
to [12]. The penalization parameter C was varied in the range
[10, 104], according to the prescription in [15] related to the
signal variance. The kernel width σ was varied in the range
[0.01, 3.5] in spatial coefficient units, to cover a wide range
of possible intrascale signal relations.

Our algorithm was compared to all methods in Table 1 us-
ing different standard 256×256 images with different levels
of degradation (Gaussian noise with σ2

n = {100, 200, 400}).
Table 2 shows representative distortion results measured us-
ing the standard (yet not perceptually meaningful) RMSE,
and the perceptually meaningful Structural SIMilarity (SSIM)
index [16]. Results show that our algorithm performs better
than the methods that neglect signal relations (HT, ST, BG and
BL), and obtains similar (yet slightly lower) numerical results
than the one which incorporates them (GSM). The method
performs consistently through all images. Besides, the same
was observed for all the considered noise variances, thus sug-
gesting that the guiding criterion is robust.

Figure 3 shows representative results in the challenging
situation of σ2

n = 400. It can be noted that thresholding meth-
ods (HT, ST) and Bayesian generalizations not including rela-
tions in the model (BG, BL) show poor performance, produc-
ing images either grained or corrupted by too salient wavelet
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Fig. 3. Visual results for ‘Barbara’, σ2
n = 400.

functions. Even though SVM yields slightly lower numeri-
cal scores than GSM, global visual performance is compara-
ble. Nevertheless, our method reveals better in some aspects:
GSM produces some residual patches, which are not present
in our solution, and also high and low frequency details (e.g.,
see Barbara’s scarf and nose) are better preserved.

4. CONCLUSIONS

In this work, we proposed a novel image denoising procedure
based on the use of SVM in a steerable wavelet domain. A
KLD-based criterion was proposed to automatically select the
SVM that best recovers the relevant wavelet coefficient rela-
tions of the true signal. The results show that the performance
of the proposed non-parametric method (1) is better than con-
ventional methods that assume coefficient independence, and
(2) is similar to state-of-the-art methods that do explicitly in-

clude these relations. Therefore, the proposed SVM approach
can be seen as a more flexible (model-free) alternative to the
explicit description of coefficient relations. Future work is
tied to the incorporation of new information in the kernel,
and to test the flexibility of the method in restoring images
corrupted by more general noise sources.
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