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ABSTRACT

This paper introduces a new method for dimensionality reduction
via regression (DRR). The method generalizes Principal Compo-
nent Analysis (PCA) in such a way that reduces the variance of the
PCA scores. In order to do so, DRR relies on a deflationary pro-
cess in which a non-linear regression reduces the redundancy be-
tween the PC scores. Unlike other nonlinear dimensionality reduc-
tion methods, DRR is easy to apply, it has out-of-sample extension,
it is invertible, and the learned transformation is volume-preserving.
These properties make the method useful for a wide range of appli-
cations, especially in very high dimensional data in general, and for
hyperspectral image processing in particular. We illustrate the per-
formance of the algorithm in reducing the dimensionality of IASI
hyperspectral image sounding data. We compare DRR with related
and invertible methods such as linear PCA and Principal Polyno-
mial Analysis (PPA) in terms of reconstruction error, and expressive
power of the extracted features to estimate atmospheric variables.

Index Terms— Manifold learning, nonlinear dimensionality re-
duction, principal component analysis, Principal Polynomial Analy-
sis, hyperspectral sounder, MetOp, IASI

1. INTRODUCTION

In recent years, a plethora of nonlinear dimensionality reduction
methods has been presented trying to deal with manifolds that
cannot be described with linear methods, see [1] for a comprehen-
sive review. Approaches to the problem range from local meth-
ods [2–6], kernel-based and spectral decompositions [7–9], neural
networks [10–12], and projection pursuit approaches [13, 14]. De-
spite the advantages of nonlinear methods, the fact is that classical
principal component analysis (PCA) [15] is still the most widely
used dimensionality reduction technique in real applications. The
main reasons are that PCA: 1) is easy to apply, 2) involves solving a
fast and convex problem, 3) its performance can be simply evaluated
because of its invertibility, 4) the components can be interpreted,
and 5) has a straightforward out-of-sample extension. In this pa-
per, we present a nonlinear extension of PCA that shares the above
mentioned appealing properties of PCA.

The above properties are not always present in the new dimen-
sionality reduction algorithms due to either their complex formula-
tions, introduction of a number of non-intuitive free parameters to
be tuned, high computational cost, non-invertibility of the achieved
transformation, strong assumptions about the manifold characteris-
tics (e.g. Gaussianity), and the difficulty to obtain out-of-sample
predictions. More plausibly, though, the limited adoption of non-
linear methods in daily practice has to do with the lack of feature
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and model interpretability. Actually, interpretation of the model is
tightly related to invertibility of the learned transform: invertibility
allows to both characterize the transformed domain, and to evaluate
the quality of the transform. On the one hand, inverting the data
back to the input domain is an important feature because one can
understand the input physical units therein, while analyzing the re-
sults in the transformed domain is typically more complicated (if
at all possible). On the other hand, regarding evaluation, invertible
transforms like PCA allow simple assessment of the reconstruction
errors. We should stress here that invertibility is scarcely achieved in
the manifold learning literature. For instance, spectral methods do
not generally yield intuitive mappings between the original and the
intrinsic curvilinear coordinates of the low dimensional manifold.

In this paper, we introduce the dimensionality reduction based
on regression (DRR) technique, which is a nonlinear generalization
of PCA and still shares its important properties. DRR is compu-
tationally inexpensive, and it is robust since it reduces to solving
a series of convex problems. DRR actually implements a volume-
preserving and invertible map. Moreover, applying the learned trans-
form to new samples is also straightforward, as in PCA.

The paper is organized as follows. Section 2 introduces the
main characteristics of the algorithm. We focus on a very high-
dimensional problem to estimate atmospheric state vectors from
IASI hyperspectral sounding data with reduced dimensionality,
which is described and motivated in Section 3. Section 4 com-
pares DRR with PCA [15] and with recent nonlinear generalizations
(e.g. Principal Polynomial Analysis, PPA [16, 17]) that yield better
results than Non-Linear PCA based on neural networks [10, 12].
Comparisons are made both in terms of reconstruction error and of
expressive power of the extracted features. We end the paper with
some concluding remarks in Section 5.

2. DIMENSIONALITY REDUCTION VIA REGRESSION

PCA removes the second order dependencies between the compo-
nents, i.e. the PCA scores are decorrelated [15]. Equivalently, PCA
can be casted as the linear transformation that ensures minimum re-
construction error when a fixed number of dimensions are neglected.
However, for general non-Gaussian sources, and in particular for hy-
perspectral signals, the PCA scores still display significant statistical
relations [18][ch. 1]. The scheme presented in this work tries to
remove the information that still remains between the PCA compo-
nents.

2.1. DRR learning scheme

We propose a deflationary scheme in which each PCA component
is nonlinearly predicted from the higher-variance components. For
each coefficient, we estimate a given score from the rest, and then
compute its residual. Only the non-predictable information (the



residual error) is retained in each case. The first score to be es-
timated is the last component, the one with less variance, and we
continue the procedure until the first component is reached. Once
we removed the estimate from one score, we will not use this score
in the following iterations. Schematically, the so-called DRR on
n-dimensional signals can be depicted as:
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where αi are the Principal Component (PC) scores, i.e. the projected
data α = V x, being V a matrix containing the eigenvectors in rows
and x the original centered data. In the i-th step, we compute the
residual of the approximation,

yi = αi − α̂i = αi − fi(αi−1, αi−2, ..., α1),

where the residual, yi, is the i-th dimension of the DRR domain.
Note that using linear regressions in fi(·) would lead to zeros in

α̂i (the components are decorrelated) and hence yi = αi, i.e. linear-
DRR reduces to PCA. Therefore, DRR generalizes PCA whenever
using nonlinear functions in fi(·). The flexibility of these functions
with regard to the linear case will reduce the variance of the residu-
als, and hence the reconstruction error in dimensionality reduction.

2.2. Selecting the family of approximation functions

In practice, the functions fi(·) = α̂i reduce to the training of a non-
linear regression. In our experiments, we used the kernel ridge re-
gression (KRR) [19] to implement the predictions fi(·), although
any alternative regression method could be applied. KRR can be
quite convenient in this scheme because it implements flexible non-
linear regression functions, and reduces to solving a unique convex
matrix inversion problem. KRR combines a good performance in
prediction, offers a moderate training complexity, obtains an effi-
cient consuming time for prediction, and also offers the possibility
to generate multi-output nonlinear regression and, due to its tight
relation with Gaussian Processes, confidence intervals for the pre-
dictions in a natural way. Finally, KRR has been widely used in
many real problems, including remote sensing applications involv-
ing high dimensional data, but even in such cases a previous feature
extraction was mandatory to attain significant results [20–22].

2.3. Inversion and out-of-samples extension

Given the DRR transformed vector, (α1, y2, y3, . . . , yn)
>, and

knowing the series of models fi(·), the inverse is straightforward
since it reduces to undo the sequence described above. At some
point of the inversion sequence, we use the previous known PCs to
predict the considered one using the known function, fi(·), and then
we use the known residual, yi, to correct the prediction:

αi = α̂i + yi = fi(αi−1, αi−2, ..., α1) + yi

Note that forward and inverse DRR transforms can be applied to
new data (out-of-samples extension) since there is no restriction in
KRR prediction functions fi(·).

2.4. Relation to previous methods and computational cost

Removal of the predictions from each dimension in (what can be
considered) a sequential procedure, may sound similar to recently
proposed methods based on drawing a sequence of Principal Curves:
Sequential Principal Curves Analysis (SPCA) [23] and Principal
Polynomial Analysis (PPA) [16, 17]. In those methods, each curve,
either non-parametrical (SPCA) or analytical (PPA), accounts for
one curvilinear dimension of the data. For instance, in PPA, the i-th
curve is used to predict the (n− i)-dimensional subspace orthogonal
to αi: (x̂i+1, x̂i+2, x̂i+3, ..., x̂n) = fi(αi), and hence, the same
behavior (curve) is applied along the previously considered dimen-
sions, 1, 2, . . . , (i− 1). This is a limitation of PPA that may restrict
the success of the model in cases where the manifold displays more
complex structure.

On the contrary, DRR is not about drawing a sequence of Prin-
cipal Curves, but on using nonlinear regressions to remove the de-
pendence between PCA components. The consideration of multiple
components in the DRR regressions, α̂i = fi(αi−1, αi−2, ..., α1),
implies that the interaction at different locations of the space may
be quite different and hence richer structures may be described with
DRR.

Moreover, even though each Kernel regression in DRR is more
expensive than fitting polynomials in PPA, note that DRR allows
trivial parallel implementations. The sequence depicted above is just
a convenient way to think on the transform, but the prediction of
each component is done from a subset of the original PC scores. As
a result, all the predictions fi(·) can be done at the same time after
the initial PCA, which is not possible in PPA.

2.5. DRR is a volume preserving transform

A nonlinear transform preserves the volume of the input space if the
determinant of its Jacobian is one for all x. The nature of DRR en-
sures that its Jacobian fulfils this property. DDR can be seen as a
sequential algorithm in which only one dimension is addressed at
a time. In each step of this sequence, remaining relations among
the principal components are reduced by subtracting the prediction
of each PCA component obtained from the components of larger
variance (taken from the previous DRR stage). Hence, the (global)
Jacobian of DRR is the product of the Jacobians of the elementary
transforms in this sequence. The i-th elementary transform leaves
all components but the i-th dimension unaltered. Therefore, the Ja-
cobian for this transform is the identity matrix except for the i-th
row, where below the diagonal it contains the derivatives of the i-th
regression function with regard to each component in the previous
stage. Whatever these derivatives are (whatever regression function
is used), the determinant of such a simple matrix (identity with a
single non-zero row below the diagonal) is always one. Therefore,
the determinant of the global Jacobian, including the PCA rotation,
is guaranteed to be one.

3. EXPERIMENTAL SETUP

In this work we will analyze the benefits of using DRR methods
for the estimation of atmospheric parameters from hyperspectral in-
frared sounding data with a reduced dimensionality.

3.1. Infrared sounders and the high-dimensional problem

Temperature and water vapor are atmospheric parameters of high
importance for weather forecast and atmospheric chemistry stud-
ies [24, 25]. Observations from spaceborne high spectral resolution



infrared sounding instruments can be used to calculate the profiles of
such atmospheric parameters with unprecedented accuracy and verti-
cal resolution [26]. The Infrared Atmospheric Sounding Interferom-
eter (IASI) [27,28], in which we will focus in this work, is a Fourier-
transform instrument onboard the MetOp-A satellite. IASI spectra
consist of 8461 spectral channels, between 3.62 and 15.5 µm, with
a spectral resolution of 0.5 cm−1 after apodization. Its spatial reso-
lution is 25 km at nadir with an Instantaneous Field of View (IFOV)
size of 12 km at a satellite altitude of 819 km. The huge input data di-
mensionality typically requires simple and computationally efficient
data processing techniques.

One of the retrieval techniques available in the MetOp-IASI L2
PPF is a computationally inexpensive method based on linear regres-
sion of the principal components of the measured brightness temper-
ature spectra and the atmospheric state parameters. However, linear
methods often fail to reproduce the nonlinear dependencies in the
state vector. Recent works have successfully tackled the problem
of atmospheric parameter retrieval by using alternative nonlinear re-
gression methods, such as artificial neural networks [29, 30], and
kernel ridge regression [20–22]. We aim to introduce DRR in such
scheme as an alternative to PCA. In this application it is important
that dimensionality reduction minimizes the reconstruction error and
that the identified features are useful in the retrieval stage.

3.2. Data Collection

We used a collection of 23 datasets of input (IASI/AMSU/MHS)
data and output atmospheric variables (e.g. temperature, moisture,
surface pressure). Results were similar for all the datasets so, for the
sake of simplicity, we show absolute results for the first dataset and
relative results for all the datasets. In each dataset, the input data
are 110-dimensional. In particular, each dimension corresponds to:
secant of satellite zenith angle (dim 1), radiance in 14 AMSU chan-
nels (channel 7 excluded, dims [2-14]), radiance in 5 MHS channels
(dims [15 20]), 30 leading IASI band 1 PC scores (dims [21 50]),
30 leading IASI band 2 PC scores (dims [51 80]), and 30 leading
IASI band 3 PC scores (dims [81 110]). The output data is 277 di-
mensional, in particular each dimension corresponds to: Ta, Wa, Ts,
Sp (hPa), T profile (K) at 91 model levels, W profile (W) dew point
temperature at 91 model levels, O profile (K) at 91 model levels, and
a quality indicator computed as the mean absolute error of Ta, Ts,
Wa and T[79], T[86], T[90], W[86], and W[90].
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Fig. 1. Reconstruction error. Left: Absolute reconstruction error
for different number of retained features obtained when using differ-
ent DR methods on the first (just one) dataset. Right: Relative error
(percentage) with regard to the error in PCA, mean and standard de-
viation have been obtained over the 23 (all) datasets.
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Fig. 2. Retrieval performance. Accuracy of the parameter retrieval
(MAE) with regard to the number of retained features. Results
are given for different feature extraction (PCA,DRR) and regression
(LR,KRR) methods. Left: Absolute MAE for the first dataset. The
performance has to be compared to the baseline behavior obtained
using LR or KRR on the original data (full dimension in the input
representation) represented by the blue lines. Right: Relative (to the
PCA-LR MAE in each dimension) results. Results have been com-
puted for the 23 dataset.

4. EXPERIMENTAL RESULTS

We evaluate the performance of DRR in terms of both the recon-
struction error and the expressive power of the features to perform
prediction of atmospheric profiles and physical variables.

4.1. Reconstruction error

In this experiment, we study the representation power of a small
number of features extracted by DRR. The 110 input features are
processed with PCA [15], PPA [16, 17] and the presented DRR
method. Comparison of DRR with PPA is sensible due to the for-
mal similarity between these nonlinear generalizations of PCA, and
because PPA is better than previously reported techniques such as
NLPCA [10,12] or SPCA [23]. On the one hand, PPA overperforms
NLPCA in reconstruction error [17], and, on the other hand, PPA
is computationally feasible in high dimensional scenarios, as op-
posed to SPCA. Here the quality of the transformation is evaluated
solely with the error in the input space computed from the original
signals, X , and the obtained from the r most relevant coefficients
retained, Xr , i.e. E = ‖X − Xr‖2F . Figure 1 illustrates the effect
of reconstructing the input data when using PCA, PPA and DRR for
different numbers of components. Results in absolute and relative
terms show that DRR obtains less reconstruction error than PCA for
an arbitrary number of features.

4.2. Retrieval accuracy

Figure 2 illustrates the effect of using the features either from PCA,
PPA or DRR for the retrieval of physical parameters. We used both
linear regression and KRR in the features-to-parameters estimation.
We plot the mean absolute error (MAE) for all the variables. These
plots show the effect of using different (linear and non-linear) con-
figurations for dimensionality reduction and retrieval. Using DRR
features to estimate the state vectors has clear benefits. For instance,
in the linear regressor framework (LR, solid lines), using just the
25% of the DRR features obtains the same accuracy as PCA when
using all the components. Moreover, the benefits of using non-linear
methods are clearer when combining them: when using DRR and
the nonlinear regression, just 14% of the features are necessary to
achieve the same performance as PCA combined with LR.



5. CONCLUSIONS

We introduced a novel method for dimensionality reduction via the
application of a nonlinear regression to approximate each projection
onto the principal directions from a subset of the other PC scores.
The method is shown to generalize PCA and to achieve more data
compression (smaller MSE for a fixed number of retained compo-
nents) and better features for prediction (less approximation error in
regression) than competitive methods like PCA and PPA. Besides,
unlike other nonlinear dimensionality reduction methods, DRR is
easy to apply, it has out-of-sample extension, it is invertible, and
the learned transformation is volume-preserving. We focused on the
challenging problem of atmospheric parameter retrieval from hyper-
spectral infrared sounding data. Extension of DRR to cope with mul-
tiset/output regression, as well as impact of the data dimensionality
and noise sources, will be explored in the future. It is also planned
to extend this study using as input IASI infrared radiances alone.
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[16] V. Laparra, S. Jiménez, G. Camps-Valls, and J. Malo. Nonlin-
earities and adaptation of color vision from sequential principal
curves analysis. Neural Comp., 24(10):2751–88, 2012.
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