
Operational	
  Research	
  an	
  International	
  Journal	
  –	
  Springer	
  –	
  2018	
  
https://doi.org/10.1007/s12351-­‐018-­‐0405-­‐2	
  	
  
	
  
	
  
	
  

1	
  
	
  

 

 

Multiple Criteria performance evaluation of YouTube 
mathematical educational videos by IS-TOPSIS 

 

Claudia Margarita Acuña Soto1, Vicente Liern2, Blanca Pérez-Gladish3 

 

Abstract 

In this work, a TOPSIS-based approach is proposed based on the idea of ideal 
similarity. It considers the ideal solution not necessarily related to the optimum 
values of the decision criteria, but to any values between the minimum and 
maximum values of the criteria ranges. The proposed method allows the 
consideration of one or several decision makers; different types of data (single 
numerical values, intervals or linguistic variables); different normalization functions 
describing the importance given by the decision makers to the deviation of 
alternatives from the ideal solution and different weighting schemes. The procedure 
also allows the decision maker to decide how much information about the intervals 
he is willing to take into account (e.g. the expected value, the extremes of the 
interval or the entire set of values in the intervals). 

In order to illustrate the practical applicability of the approach we include a real 
example consisting of the ranking of mathematical educational videos based on six 
didactical dimensions. The rating of educational videos is of great interest for 
educators due to their high popularity in Internet, especially in platforms as You 
Tube which has become one of the most used sources of information nowadays. 

 

Keywords: MCDM, TOPSIS, normalization, ideal, educational videos, didactical 
performance. 
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1. Introduction 

Real world decision making problems are complex decision problems usually 
characterized by several conflicting criteria, different preferences and a great diversity 
of types of data with different degrees of uncertainty, ambiguity and imprecision. 
Multiple Criteria Decision Aid (MCDA) or Multiple Criteria Decision Making 
(MCDM) methods are concerned with structuring and solving decision problems 
involving multiple criteria with either continuous or discrete set of alternatives. In this 
paper, we are mainly concerned with the ranking of a set of discrete decision 
alternatives taking into account decision criteria of different nature: precise and 
imprecise and, a reference solution or benchmark which will be called the ideal 
solution. The decision matrix describing the valuation of alternatives with respect to 
each criterion will be formed by data of diverse nature: real numbers, intervals on the 
real line and/or linguistic or categorical variables handled by means of natural numbers.  
One of the first steps in any ranking MCDM method consists of the normalization of the 
criteria. However, classical normalization procedures do not always take into account 
situations where the different nature of the data of the decision matrix (real numbers, 
intervals, linguistic variables) could make the ranking of the alternatives quite unstable. 
The proposed normalization method will be based on the similarity with the reference 
solution and will permit us to construct a new decision matrix composed of the 
similarity degrees of each alternative to the benchmark or ideal for each criterion.  In 
this way, and thanks to this normalization procedure, the nature of the transformed 
normalized data will be homogeneous. 

In order to illustrate our proposal, we will address the problem of the ranking of 
mathematical educational videos in You Tube based on their pedagogical 
characteristics. The Internet has become a strategic source of information worldwide. 
The use of educational videos in You Tube has dramatically increased over the last 
years. In fact, as stated by Azer et al. (2013) it “is the largest Internet video-sharing site 
and is a useful tool in social communication, business, advertising, and news as well as 
a promising learning resource for students and the general public”. Therefore, the 
assessment and ranking of the performance of these videos in didactical terms is a 
crucial question for the educative community (from both, the teaching and learning 
perspectives). The ranking of instructional videos is clearly a multiple criteria decision 
making problem. The diverse nature of the decision making criteria makes this real 
problem especially adequate for the application of a new TOPSIS-based approach using 
the proposed normalization process, Ideal Similarity TOPSIS (IS-TOPSIS).  
TOPSIS, Technique for Order Preference by Similarity to Ideal Solution (Hwang and 
Yoon, 1981), is one of the most widely used ranking methods due to its characteristics 
(it is simple, rational, comprehensible, efficient from a computational point of view and 
able to measure the relative performance for each alternative in a simple mathematical 
form).  

TOPSIS attempts to choose alternatives that simultaneously have the shortest distance 
from the positive ideal solution (PIS) and the farther distance from the negative-ideal 
solution (NIS). In the classical approach the positive ideal solution maximizes criteria of 
the type “the more, the better” and minimizes criteria of the type “the less, the better”, 
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whereas the negative ideal solution maximizes “the more, the better” criteria and 
minimizes “the more, the better” criteria.  
TOPSIS makes full use of the attribute information, provides a cardinal ranking of 
alternatives, and does not require the attribute preferences to be independent (Chen and 
Hwang, 1992; Yoon and Hwang, 1995). To apply this technique attribute values must 
be numeric, monotonically increasing or decreasing, and have commensurable units.  
As far as the authors of this paper know, this is the first work in which the ranking of 
mathematical educational videos is addressed from a multiple criteria point of view 
taking into account six well-known epistemic dimensions of didactical mathematical 
knowledge (Godino et al., 2005, Pino-Fan et al., 2015). The utility of the didactical 
performance assessment of the mathematical educational videos available in You Tube 
goes beyond the simple control of their contents in mathematical terms. It takes into 
account the correctness and precision of the mathematical contents but also other 
important didactical features as the waste of time in the exposition, the empathy with 
the user, the capacity to attract the attention of the user or the degree of adaptation of the 
contents to the educational context. Therefore, the high number of possible uses of the 
videos assessed by the educators in these terms, makes them a very attractive 
educational tool.  
In what follows, we will present a brief literature review concerning several 
methodological aspects related to the ranking method proposed in this paper, TOPSIS, 
highlighting the contribution of this paper with regards to the normalization procedure 
usually addressed in the first steps of the ranking method. In the next sections, we will 
present the TOPSIS-based proposed approach, Ideal Similarity TOPSIS (IS-TOPSIS). 
This new approach considers the ideal solution not necessarily related to the optimum 
values of the decision criteria, but to any values between the minimum and maximum 
values of the criteria ranges. The method makes use of this ideal solution with 
normalizing purposes avoiding in this way problems related to the simultaneous 
consideration of data of different nature (real numbers, intervals, linguistic variables...) 
generalizing the method proposed by Cables et al. (2016), Reference Ideal Method 
(RIM-TOPSIS) which only allows the consideration of decision matrices composed of 
real numbers. Finally, and in order to illustrate the applicability of the proposed method, 
we will present a real decision making application and the main conclusions of this 
work. 

 
2. Literature review 

Several MCDM methods have been proposed to assist decision makers in the process of 
ranking a set of discrete decision alternatives (Roy, 1985, Triantaphyllou, 2000). 
Among the most popular discrete MCDM methods for ranking alternatives we can 
highlight the Simple Additive Weighting (SAW) (Churchman and Ackoff, 1954), the 
Elimination et Choice Traduisant la Realité (ELECTRE) II and III methods (Roy, 
1968), the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 
(Hwang and Yoon, 1981), the Preference Ranking Organization Method for Enrichment 
Evaluations (PROMETHEE) II (Brans and Vincke, 1985), the compromise ranking 
method (VIKOR) (Orpocovic, 1998)  and the Tomada de Decisão Interativa 
Multicritério (TODIM) (Gomes and Lima, 1992).  



Operational	
  Research	
  an	
  International	
  Journal	
  –	
  Springer	
  –	
  2018	
  
https://doi.org/10.1007/s12351-­‐018-­‐0405-­‐2	
  	
  
	
  
	
  
	
  

4	
  
	
  

According to Zanakis et al. (1998) the decision maker must first face the task of 
selecting the most suitable method considering different dimensions, such as simplicity, 
reliability, robustness and quality. However, as these authors conclude, it is very 
difficult to answer questions such as "which method is the most appropriate for a 
specific type of problem and what are the advantages and disadvantages of using 
method rather than another?" (Zanakis et al. 1998, Triantaphyllou, 2000). In this work, 
as mentioned in the previous section and due to the previously described characteristics 
of the addressed real application, we have selected TOPSIS. This method has been 
widely used in a large number of real-world applications (see Behzadian et al. 2012 and 
Zyoud and Fuchs-Hanusch, 2017 for recent state of the art surveys showing its high 
applicability) which includes novel application areas as e-commerce (Arroyo-Cañada 
and Gil-Lafuente, 2017), new energy contexts (Thomaidis et al. 2008) or climate change 
or sustainability assessment (Bilbao-Terol et al. 2017) among others. 

Another alternative to TOPSIS for the ranking of alternatives taking into account 
reference solutions is VIKOR. The method introduces a multiple criteria ranking index 
based on the particular measures of “closeness” to the ideal solution (Opricovic, 1998; 
Opricovic and Tzeng, 2004). The compromise solution is a feasible solution, which is 
the closest to the ideal solution.  
Both methods are MCDM ranking approaches based on the distance to a reference 
point. However, in the case of TOPSIS both, distance to the positive ideal solution and 
distance to the negative ideal solution, are considered whereas in the VIKOR approach, 
the only goal is to minimize the distance to the positive ideal solution. This can lead to a 
situation where the best solution ranked by TOPSIS is not the closest to the ideal as the 
relative importance of the distances to the ideal and negative ideal are not considered 
(see Opricovic and Tzeng, 2004 for a further discussion on this topic). The selection of 
one method or another will depend on the real decision making problem to be solved. In 
the case of the ranking of instructional or educational videos the instructors usually aim 
at simultaneously taking into account maximum similarity with the best educational 
contents and avoidance of inappropriate educational contents. Therefore, in this work, 
the videos are ranked using TOPSIS instead of VIKOR although other approaches could 
also be considered depending on the didactical purposes of the instructors. 

Decision criteria are usually measured in different units and therefore, do not 
necessarily have the same domains, nor do the same range (Cables et al., 2016). It is, 
therefore, necessary to normalize data in the decision matrix. Normalization can be 
carried out in different ways. The classical TOPSIS approach uses non-linear vector 
normalization although other types of normalization have been used in the TOPSIS 
literature (comparison about different normalization procedures and analysis of their 
impact on the decision results in the context of TOPSIS, have been widely discussed in 
the literature, e.g. See, Pavlicic, 2001, Zavadskas et al., 2003, Milani et al., 2005, 
Zavadskas et al., 2006, Chakraborty and Yeh, 2009, Çelen, 2014 or Cables et al., 2016). 
Another controversial question regarding the classical TOPSIS procedure is related to 
the weighted scheme. In its classical formulation, criteria weights are the only 
subjective element and are directly determined by the decision maker. Many extensions 
of the classical TOPSIS method have been proposed combining TOPSIS with other 
methods such as AHP, PROMETHEE, ELECTRE or DEA in order to determine the 
criteria weights in those cases where they cannot be directly assigned by the decision 
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maker (see Zavadskas et al., 2006 and more recently Yang et al. 2017 for an example of 
consensual weights).  
Separation measurement of each alternative to the PIS and NIS involves, in the classical 
TOPSIS approach, consideration of a distance. Following the original proposal, most of 
the authors use the Euclidean distance to calculate the similarity of each alternative to 
the PIS and NIS. However, other distances have been also proposed to deal with this 
step of the TOPSIS procedure, as the Manhattan distance (see for example, Chang et al., 
2010, Khademi-Zare et al., 2010, Tan, 2011 or Vega et al., 2014) or the Mahalanobis 
distance (Chang et al., 2010 or Vega et al., 2014) and comparison of the obtained results 
have been provided highlighting the advantages and disadvantages of each distance 
choice (Chang et al., 2010 and Vega et al., 2014). 

One of the questions less discussed in the literature is the one concerning the considered 
ideal solution, the solution taken as a reference for the ranking of the alternatives. The 
classical TOPSIS approach, as well as most of its extensions, uses as references the 
positive and negative ideal solutions, PIS and NIS, respectively, which involves 
determining maximum and minimum solutions. That is, in the determination of the 
reference solutions there is an optimizing philosophy.  

However, as pointed out by Cables et al. (2016), there may be decision contexts where 
the ideal solution is not necessarily one of the extreme values , but may be an 
intermediate value between the maximum and the minimum values. In this work we 
deal with those decision situations in which the ideal solution is not necessarily an 
optimum solution. Extending the results obtained by Cables et al. (2016) we propose a 
generalization of the method that allows the simultaneous use of data of different nature 
(simple numerical values, numerical intervals or linguistic sets of variables). Our 
proposal permits the consideration of more than one decision maker and proposes a very 
simple procedure to obtain consensual evaluations of the alternatives.  
Based on the idea of ideal similarity we provide different normalizing functions and a 
support tool for the decision makers to facilitate the selection of the most adequate 
normalizing process. As we will see, this decision will depend on the particular decision 
contexts as it will take into account the importance given by the decision makers to the 
deviations from the ideal solutions (in terms of slack or surplus) and on the way they 
prefer to handle the information included in the numerical intervals. 
 

3. Preliminaries on the proposed approach 
The main steps of the TOPSIS procedure originally proposed by Hwang and Yoon 
(1981) comprise the forming of the decision matrix, followed by decision matrix 
normalization. In a next step, weights are assigned to the different criteria and the 
weighted normalized decision matrix is obtained. After that, the positive and negative 
ideal solutions are calculated and separation measures for each alternative are 
determined. Finally, in the last step relative closeness coefficients are obtained and used 
to rank the alternatives in descending order (see Table1). 
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Table 1. Main steps of the classical TOPSIS approach 

STEP 1.  Determine the decision matrix X, where the number of alternatives is m 
and the number of criteria is n, , being real numbers. 

STEP 2. Construct the normalized decision matrix, 

 2
1

/ ,     1  ,   1  .m
ij ij iji
r x x i m j n

=
= ≤ ≤ ≤ ≤∑  

STEP 3. Determine the weighted normalized decision matrix. Given, [0,1]jw ∈ ,	
  
with	
  w1+w2+…+wn=1, we calculate 

. 

STEP 4. Determine the positive ideal  (PIS) and negative ideal  solutions 
(NIS), 

{ } ( ) ( ){ }1 ,..., max , min , ' 1,2,...,n i ij i ijA v v v j J v j J i m+ + += = ∈ ∈ =  

{ } ( ) ( ){ }1 ,..., min , max , ' 1,2,...,n i ij i ijA v v v j J v j J i m− − −= = ∈ ∈ =  

where J  is associated with “the more, the better” criteria and J’ is associated 
with “the less, the better” criteria. 

STEP 5. Calculate the separation measures with respect to the PIS and NIS, 

( )
1 2

2

1
,

n

i ij j
j

S v v+ +

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ 	
  	
  	
  	
  	
   ( )

1 2
2

1
,

n

i ij j
j

S v v− −

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ 	
  	
  	
  	
  	
  	
  1 .i m≤ ≤  

STEP 6. Calculate the relative proximity to the ideal solution using the relative 
index 

. 

STEP 7. Rank the best alternatives according to Ri in descending order. 

 
The classical TOPSIS method solves problems in which both, data and decision 
processes are precisely represented by exact numerical values. However, most real-
world problems, especially those involving human judgements, have a more 
complicated structure. As previously mentioned, human decision making processes are 
characterized by fuzziness, high complexity and uncertainty. In these situations Fuzzy 
Sets Theory becomes a useful tool and therefore, based on the original TOPSIS method, 
many other extensions have been proposed, providing support for fuzzy data or decision 
processes to model imprecision, uncertainty, lack of information or vagueness (see 
Dymova et al, 2013, Wang, 2014, Cables et al, 2016 for recent reviews on Fuzzy 
TOPSIS). 
The main idea of Fuzzy Sets Theory is quite intuitive and natural: instead of 
determining the exact boundaries as in an ordinary set, a fuzzy set allows for no sharply 

( )ij mxn
X x= ijx

, 1,..., , 1,...,ij j ijv w r i m j n= = =

A+ A−

1,...,i
i

i i

SR i m
S S

−

+ −
= =

+
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defined boundaries because of the generalization of a characteristic function to a 
membership function. By letting X denote a universal set, a fuzzy set A  of X can be 
characterized as a set of ordered pairs of element x and the grade of membership of x in 
A , µ A x( ) , and it is often written as  

A = x ,µ A x( )( ) / x ∈ X{ }     (1) 

Note that the membership function is an obvious extension of the idea of a characteristic 
function of an ordinary set because it takes values between 0 and 1, not only 0 and 1. A 
membership level equal to zero means no membership, a membership value equal to 
one means Boolean membership and intermediate numbers reflect intermediate 
membership degrees (see Kaufmann and Gupta, 1988 and Zimmermann, 1996). 

A fuzzy number is one of the most common forms of fuzzy set application (Kaufmann 
and Gupta, 1988); it is defined as a fuzzy set defined on the real line with a convex, 
continuous and normalized membership function. 

Dubois and Prade define a LR-fuzzy number M as follows (Dubois and Prade, 1978): 

M = mL ,mR ,δ L ,δ R( )LR     (2) 

if its membership function has the following form: 

µ M x( ) =

L m L − x
δ L

"

#
$

%

&
' if x ≤mL

1                    if m L ≤ x ≤mR

R x −mR

δ R
"

#
$

%

&
' if x ≥mR

*

+

,
,
,

-

,
,
,

   (3) 

where [ [ [ ], : 0, 0,1L R +∞ →  are strictly decreasing in supp( M ) = x ∈ X / µ M (x ) > 0{ }  

and upper semi-continuous functions such that (0) (0) 1L R= = . 

If the support of M is a bounded set, being L Lm δ− the infimum and R Rm δ+  the 
supremum in that set, then functions L and R are defined on [ ]0,1  and they satisfy that 

(1) (1) 0L R= = . When { }( ) ( ) max 0,1L z R z z= = − , M is said to be a fuzzy trapezoidal 

number with support ,L Rm m⎡ ⎤⎣ ⎦  and core ,L RM M⎡ ⎤⎣ ⎦ . If the core of the fuzzy number is 

a unique number, L RM M M⎡ ⎤= =⎣ ⎦ , the fuzzy number is said to be triangular.  

 
 

4. Ideal Similarity TOPSIS: IS-TOPSIS 

In this section we will propose a new approach for the TOPSIS, which constitutes a 
generalization of the method proposed by Cables et al. (2016), the Reference Ideal 
Method, RIM. This method relies on the idea that the ideal solution, instead of being an 
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optimal solution, can take any value between the minimum and maximum values of the 
range of the criteria. The proposal by Cables et al. (2016), the Reference Ideal Method 
based on TOPSIS (RIM-TOPSIS) does not present rank reversal given that, as we will 
see in what follows, the PIS solution will be the unitary vector and the NIS will be the 
null vector. 

RIM-TOPSIS is based on the concepts of range (any interval, labels set or simple set of 
values belonging to a domain) and reference ideal (an interval, labels set or simple 
values representing the maximum importance or relevance in a given range). This 
procedure not only allows the simultaneous consideration of data of different nature 
known with different precision degrees but, it smooths the idea from TOPSIS requiring 
all the criteria to be monotonically increasing or decreasing. The important question is 
to attain the maximum similarity to the ideal, not to reach a maximum or minimum 
value for the criteria.  

Cables et al. (2016) configure the range and ideal as intervals, with independence of the 
nature of the data. For example, if the range is {Very Good, Good, Fair, Bad, Very 
Bad}, they first transform the linguistic variables into numbers {5, 4, 3, 2, 1}, and then, 
the range is expressed as [A, B]=[1, 5]. In this context, an ideal [C, D] = [3, 4], will 
mean that the ideal is {Fair, Good}.   
With this notation, let us consider, [A, B] the range of a decision criterion that belongs 
to a universe of discourse; [C, D] representing the reference ideal for that criterion, with  
[ ] [ ], ,C D A B⊆

	
  
and [ , ]x A B∈  the valuation of an alternative with regards to the 

considered criterion. Cables et al. (2016) proposed a normalization process based on the 
distance to the reference ideal  

[ ]( ) ( )min , , min ,d x C D x C x D= − − 	
   	
    (4)
 
 

The authors define a function, [ ]:[ , ] 0,1f A B → , that provides a value that belongs to 
the unitary interval (i.e. if it is equal to 1, then it coincides with the reference ideal and 
the more distant it is from 1, the more distant from the reference ideal) 

[ ]

[ ]

[ ]

1

( ) 1

1

                   if x C,D
C xf x     if x A,C A C
C A
x D     if x D,B D B
B D

⎧
∈⎪

⎪
−⎪

= − ∈ ∧ ≠⎨
−⎪
−⎪

− ∈ ∧ ≠⎪⎩ −

	
  	
   	
   	
   (5)

 Obviously, if [A,B] and [C,D] are intervals on the real line, (5) describes the 
membership function of a trapezoidal fuzzy number T =(C, D, C-A, B-D) (see the 
graphical representation on the left in Figure 1). 
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Figure 1. Membership functions reflecting similarity with the ideal solution 

 
 
Bearing in mind this normalization procedure, Cables et al. (2016) proposed a 
replacement of step 2 in Table 1 by  

( ),     1  ,   1  ij ijr f x i m j n= ≤ ≤ ≤ ≤ 	
   	
   	
   	
   (6)
 

By its own construction, (6) makes the positive ideal to be A+=(1, 1, …, 1) and the 
negative ideal to be A-=(0,0, …0). Notice that, regardless the initial optimization 
direction, with the new proposed normalization, the interest is to maximize all the 
criteria.  
The function f given in (5) is designed to work with real numbers	
   [ , ]x A B∈ , because 
the original data are real numbers or because they have been transformed into real 
numbers. In what follows we will generalize the proposed procedure to the case in 
which valuations are given by intervals.  
The first step consists of re-interpreting the meaning of f(x), obtained with (5), as the 
similarity of x with the nearest point of the ideal [C, D]. By construction, any point in 
the ideal interval will have the maximum similarity (that is, 1), whereas for any other 
point not belonging to the ideal interval, the similarity will be smaller the farther to the 
interval [C, D] (Zeng and Guo, 2008). In fact, this idea can be stated for two any fuzzy 
sets A ,  B.Given the normalized distance between these two sets, d ( A , B )  (Dubois and 
Prade, 1978), according to Zeng and Guo (2008), a similarity measure between 𝐴 and 
𝐵can be defined as 

Sim( A , B ) =1−d ( A , B )∈ [0,1]      (7) 

Let us consider a valuation of an alternative with respect to a given criterion described 
by an interval [ , ] [ , ]a b A B⊆ .	
  We will propose a normalization process based on the 
normalized distance between this valuation and the reference ideal, 

( )[ , ],[ , ]d a b C D 	
   	
      (8) 

where d is any adequate distance between intervals. 
From (7), we can construct a generalization of function (5) in the following way  

( )
[ ]

( ) [ ]
1                                   if [ , ] ,

[ , ]
1 [ , ],[ , ]      if [ , ] ,

x y C D
F x y

d x y C D x y C D

⎧ ⊆⎪
= ⎨

− ⊄⎪⎩
	
   	
   	
  	
  	
  (9) 

Given a range [A, B], a reference ideal [C,D]	
   ⊆  [A,B] and valuation of an alternative 
[x,y]	
  ⊆  [A,B], this function provides a value that belongs to the unitary interval.  
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Using function F defined in (9) to normalize the data, we propose a TOPSIS approach, 
based on the concept of ideal similarity, IS-TOPSIS (see Table 2). 

Table 2. Main steps of the IS-TOPSIS approach 

STEP 1. Define the working context: type of data, number of decision makers, criteria 
range, reference ideal [Cj, Dj] and weights [0,1]jw ∈  with w1+…+wn=1, associated to 

each criterion	
    1  .j n≤ ≤  

STEP 2. Obtain the valuation matrix  being the valuation of 

alternative j with regards to criterion i expressed as an interval. In case of group decision 
making this matrix will be a consensual matrix based on the individual valuations of the 
decision makers. 
STEP 3. Normalize the matrix X using function F given in (9), ( ) .ij m n

Y y
×

=   

STEP 4. Calculate the weighted normalized matrix. Given [0,1]jw ∈ 	
   we calculate 

( ) ( )' ' .ij j ijm n m n
Y y w y

× ×
= =  

STEP 5. Calculate the variation to the normalized reference ideal for each alternative i.  

( ) ( )
1 2 1 2

2 2

1 1
' , '

n n

i ij j i ij j
j j

I y y I y y+ + − −

= =

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

 

  
where  max ' , min ' , 1,...,j i ij j i ijy y y y i m+ −= = =

 
 

STEP 6. Calculate the relative index for each alternative i 

 

STEP 7. Rank the alternatives according to Ri in descending order. The alternatives that 
are the top are the best solutions. 

 
For the distance, we can use, as proposed by Canós et al. (2014), Hamming normalized 
distance for the range of data [A, B], that is,  

( ) ( )1[ , ],[ , ] | | | | ,     [ , ] [ , ]
2( )Hd a b C D a C b D a b A B
B A

= − + − ∀ ⊆
−

 (10) 

Given the function f described in (5), any interval  [a,b]	
   ⊆  [A,B] can be normalized 
either using the average of the membership degrees of the extremes of the interval  

( )1
1([ , ]) : ( ) ( )
2

f a b f a f b= + 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  (11) 

or using the membership degree of the expected value of the interval (Heilpern, 1992)	
  

2 ([ , ]) : 2
a bf a b f +⎛ ⎞= ⎜ ⎟
⎝ ⎠

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (12) 

It is clear that the values f1([a,b]) and f2([a,b]) will not be always the same (see Figure 
2). Let us see a numerical example.  

( ),L R
ij ij mxn

X c c⎡ ⎤= ⎣ ⎦ ,L R
ij ijc c⎡ ⎤⎣ ⎦

0 1, 1,...,i
i i

i i

IS where R i m
I I

−

+ −
= < < =

+
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Figure 2. Different normalization options 
 

 

 

Example: Let us consider a range [A, B]=[0, 10] and an ideal [C, D]=[7, 8]. Let us also 
consider three decision alternatives A1=[6, 9], A2=[5.5, 9.5] and A3=[5, 9]. If we 
normalize the alternatives using the previously proposed functions f1, f2 and F we obtain 

( )1 1
1( ) (6) (9) 0.678571429,
2

f A f f= + =  ( )1 2
1( ) (5.5) (9.5) 0.589285714
2

f A f f= + =  

( )1 3
1( ) (5) (9) 0.607142857.
2

f A f f= + =  

2 1 2 2 2 3
6 9 5.5 9.5 5 9( ) 1,    ( ) 1,     ( ) 1.

2 2 2
f A f f A f f A f+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
1 2

3

| 6 7 | | 9 8 | | 5.5 7 | | 9.5 8 |( ) 1 0.9,        ( ) 1 0.85,
20 20

| 5 7 | | 9 8 |( ) 1 0.85.
20

F A F A

F A

− + − − + −
= − = = − =

− + −
= − =  

Therefore, according to f1, the ranking would be A1>A3>A2, with f2 it would be 
A1=A2=A3 and with F the ranking would be A1>A3=A2.  

 
The selection of the normalizing function will depend therefore on the decision context. 
If the decision maker wants to equally penalize slack or surplus in the deviation of an 
alternative with respect to the ideal, then the suggested normalizing function would be 
F. On the contrary, if different importance is given to the deviations (for example, if the 
decision maker wants to penalize more the excess than the defect or vice versa) then 
normalizing functions f1 or f2 would be more suitable. The use of f1 is recommended for 
those situations where the decision maker needs to take into account the extreme values 
of the intervals. Otherwise, if the decision maker is satisfied with the expected value 
representing the information in the interval, f2 would be more adequate. Figure 3 
displays the different scenarios and the different advises as for the use of the 
normalizing functions. 
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Figure 3. Scenarios for the selection of the normalizing function 
 
 

 
 

 
 

 
 

 
Figure 4 summarizes the key questions to be answered in the IS-TOPSIS approach. As 
we can observe the decisions derived from these questions will mainly depend on the 
number of decision makers, on the type of the data, on the decision context and on the 
decision maker preferences, all these factors being susceptible of change depending on 
the circumstances.  

Figure 4. Key questions in the IS-TOPSIS approach 
 

 
 

 
 

 
 

 
In the next section, we will illustrate the applicability of the proposed approach by 
means of a real example where several decision makers face the problem of ranking a 
set of mathematical educational videos published in You Tube based on didactical 
criteria given both in numerical and linguistic terms.  
 

5. Application 
Godino et al. (2007) introduce the notion of didactical suitability of an instructional 
process as the coherent and systemic articulation of six components (see Pino-Fan et al. 
2015): 

• Epistemic facet, refers to specialized knowledge of the mathematical dimension. 
• Cognitive facet, refers to the knowledge about the students’ cognitive aspects. 
• Affective facet, refers to the knowledge about the students’ affective, emotional 

and behavioural aspects.  

Scenario 1. The same importance is given to both types 
of deviation from the ideal solution (slack and surplus) 

Scenario 2. Different importance is given to both types 
of deviation from the ideal solution (slack and surplus) 

 Scenario 2.a The decision maker wants to take into 
account the extreme values of the interval  

 Scenario 2.b For the decision maker the interval is well 
described by its expected value 

Use normalization process given 
by function F 

Use normalization process given by 
function f1 

Use normalization process given by 
function f2 

 

Is there one or more decision makers? If there is more than one decision maker, 
how are the consensual valuations going to be obtained? 

 What types of data are available? Are they real numbers? Are they given by 
intervals? Are they given by linguistic variables? 

 Does the decision maker want to penalize different types of deviation of the 
alternatives from the ideal solution (i.e. slack or surplus)? Does the decision 
maker want to take into account the extreme values of the interval or is he 
satisfied with their expected values? 

 Which is the importance given by the decision maker to each criterion? 

 

Decision Makers 

 
Type of data 

 
Normalization 

 
Weighting scheme 
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• Interactional facet, refers to the knowledge of the interactions that occur within 
a classroom. 

• Mediational facet, refers to the knowledge of resources and means which might 
foster the students’ learning process.  

• Ecological facet, refers to the knowledge of curricular, contextual, social, 
political and economic aspects that have an influence on the management of the 
students’ learning.  

A good performance in one of these dimensions might not correspond to a good 
performance in the other dimensions. Therefore, the assessment of the didactical 
suitability of an instructional process is clearly a multiple criteria decision making 
problem. Moreover, each of these dimensions is a matter of degree (Godino et al. 
2007), thus being characterized by a high degree of ambiguity, uncertainty and 
imprecision and even, subjectivity based on the expertize level and experience of the 
instructors. In order to try to reflect this potential subjectivity and the ambiguity, 
uncertainty and imprecision of the assessment of the didactical suitability of the videos, 
we have asked three experts  (mathematical instructors) from three higher education 
institutions from different countries to assess the didactical performance of 12 
mathematical educational videos available in You Tube with respect to the didactical 
criteria. The three experts were given the same importance as we have considered their 
level of expertice and experience to be the same. However, other situations could be 
considered depending on the decisional context. 

Table 3 describes the considered decision criteria and the questions used to obtain 
evaluations from the three experts. The questions were proposed by Santos-Mellado et 
al. (2017). Both positive and negative attitude statements have been used as a "positive" 
or "negative" set of statements might influence respondents' answers to the statements 
(i.e. a set of positive statements might produce higher agreement than the level of 
disagreement for a set of negative statements), (Gendall and Hoek, 1990). 

We have chosen a mathematical concept, basis of a vector space, and we have 
conducted a search of You Tube videos in Google. We have searched educational 
videos introducing the concept of basis of a vector space. The selected videos are those 
appearing in the first 12 positions when using as key words “basis” and “vector space”. 
Table 4 displays a description of our decision alternatives.  

Table 3. Decision Criteria 
Criteria Description Question 

Z1 Epistemic facet To what extent are the treated mathematical concepts correct? 
Z2 Cognitive To what extent does the author mention all the elements in a fluid way? 
Z3 Affective facet To what extent do the contents of the video attract the attention of the 

user? 
Z4 Mediational facet  To what extent time and resources are wasted in the explanation? 
Z5 Ecological facet To what extent is the video adapted to the concrete educational context? 
Z6 Interactional facet To what extent is it difficult to understand the author? 

Table 4. Decision alternatives 
Video Title Web References 

V1 Basis for a set of vectors [1] 
V2 Basis for a vector space [2]	
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V3 Basis and dimension of a vector space [3]	
  
V4 Linear algebra - basis of a vector space [4]	
  
V5 Basis of a vector space [5]	
  
V6 Vector space, basis, dimension [6]	
  
V7 Basis, vectors and coordinates [7]	
  
V8 Basis and dimension [8]	
  
V9 Linear combinations, span, and basis vectors  [9]	
  
V10 Basis and dimension [10] 
V11 Linear algebra example problems [11]	
  
V12 Concepts of basis and dimension [12]	
  

The experts were asked to score the videos with respect to each criterion using both, a 
numerical scale [0-10] and the following linguistic labels: 

{Very Poor, Poor, Fair, Good, Very Good} 
Once individual scores and linguistic labels were obtained for each video in each 
dimension, we obtained a consensual assessment for each dimension, i, and video, j, in 
the form of intervals. For the case of numerical scores we obtained the following 
intervals: ,L R

ij ijz z⎡ ⎤⎣ ⎦where { }min , 1,2,3L k
ij ijz z k= =  and { }max , 1,2,3R k

ij ijz z k= = being	
   k
ijz 	
  

the score given by expert k to the video i with regards to criterion j.  

Table 5 displays the obtained individual scores from each expert and the consensual 
intervals for the affective criterion. All the individual scores for all the considered 
criteria are displayed in Table 1A in the appendix. We can observe how for dimensions 
3 and 6, the intervals have an amplitude equal or greater than 3 in more than 50% of the 
cases (values highlighted in Table 1A in the appendix).  

Table 5. Example of the individual scores and consensual intervals 
Video Expert 1 Expert 2 Expert 3 [ , ]L R

ij ijz z  
V1 8 9 7 [7, 9] 
V2 6 0 5 [0, 6] 
V3 6 9 6 [6, 9] 
V4 5 1 1 [1, 5] 
V5 5 0 1 [0, 5] 
V6 5 5 6 [5, 6] 
V7 7 3 2 [2, 7] 
V8 6 5 5 [5, 6] 
V9 9 10 10 [9, 10] 
V10 4 3 2 [2, 4] 
V11 7 5 8 [5, 8] 
V12 6 9 8 [6, 9] 

For the linguistic case, the consensual assessment is expressed as the union set of the 
individual linguistic rates. Table 6 displays the obtained individual and consensual 
ratings for the affective criterion using linguistic variables (see Table 2A in the 
appendix for all the assessments).  
Table 6. Example of the individual rates with linguistic labels and consensual intervals 

Video Expert 1 Expert 2 Expert 3 Consensual 
V1 G VG G {G,VG} 
V2 F VP F {VP,F} 
V3 F G F {F,G} 
V4 F VP VP {VP, F} 
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V5 F VP VP {P,F} 
V6 F F F {F,F} 
V7 G P P {VP,G} 
V8 F F F {F,F} 
V9 VG VG VG {VG,VG} 
V10 P P P {P,P} 
V11 G F G {F,G} 
V12 F VG VG {G,VG} 

From Table 2A, we can observe how from a linguistic perspective, those dimensions 
valued using negative statements are the ones presenting more difficulties (and therefore 
a greater disparity). However, the assessments obtained with linguistic labels are more 
similar than the ones obtained when the experts were asked to score the videos from 0 
to 10. 
Once the videos have been scored and rated in all the dimensions by the experts and 
consensual intervals have been obtained, a different expert is asked to provide the ideal 
scores and rates for each criterion (see Table 7). This expert belongs to the Ibero-
American Laboratory for the Assessment of Education Processes (LABIPE, 
https://www.uv.es/liern/LABIPE). 

Table 7. Ideal solutions for the numerical and linguistic cases 
Criteria Types of statement Numerical Ideal Linguistic Ideal 

Z1 Positive [9, 10] {VG} 
Z2 Positive [8, 10] {G,VG} 
Z3 Positive [8, 9] {G} 
Z4 Negative [1 ,2] {P} 
Z5 Positive [7, 9] {F,G} 
Z6 Negative [0, 1] {VP} 

 

Based on the ideal solution and following the steps of the IS-TOPSIS described in the 
previous section (see Table 2), the rankings displayed in Table 8 were obtained. We first 
normalized the data (see STEP 2 in Table 2). For this, we considered Scenario 1 (see 
Figure 3) in which the same importance is given to both types of deviation from the 
ideal solution (slack and surplus). With regards to the weighting scheme, following the 
expert’s advice, we considered equal weights for all the criteria (see Figure 4). 
Normalized weighted values were then calculated (see STEP 3 in Table 2).  
In order to handle the linguistic rates and ideals, following the procedure proposed by 
Cables et al. (2016) the linguistic rates have been transformed into numerical values 
using the following scale (see Table 3A in the appendix): 

{VP=1, P=2, F=3, G=4, VG=5} 

Tables 8, 9 and 10 show the obtained rankings for three different situations regarding 
the type of data: numerical interval data, linguistic variables and a mixed case in which, 
those criteria for which the relative ranges were higher were handled by means of 
linguistic variables and those with more stability (lower relatives ranges) were handled 
using numerical intervals. As mentioned in the preceding section, the decision maker(s) 
will have to determine the type data to be collected depending on the characteristics of 
the available information (see Figure 4). In this example with illustration purposes, we 
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have included the three possible situations: only numerical valuations, only linguistic 
valuations and mixed valuations depending on the characteristics of the data. 

The first two columns in Table 8 display the video ranking and the relative index values 
corresponding to the numerical valuation (see STEP 5, STEP 6 and STEP 7 in Table 2). 
Next two columns show the ranking and relative index values for the linguistic case 
and, finally, the last two columns display the results for a mixed case in which criteria 
Z1, Z2, Z4 and Z5 are measured with numerical scores and criteria Z3 and Z6 are 
measured using linguistic terms.  

Table 8. IS-TOPSIS: obtained rankings with equal weights 

NUMERICAL LINGUISTIC MIXED 
Video Rank Ri Video Rank Ri Video Rank Ri 

9 0.93297 9 0.86954 1 0.92012 
1 0.92266 1 0.84518 9 0.89099 
3 0.87236 6 0.81452 3 0.83289 
6 0.80047 3 0.81392 6 0.82087 

11 0.74579 11 0.80481 11 0.77291 
7 0.72070 8 0.76014 7 0.75221 

10 0.71769 10 0.75000 10 0.74340 
4 0.70973 7 0.74330 4 0.71641 

12 0.70613 4 0.71059 12 0.70154 
8 0.66261 12 0.70660 8 0.68399 
5 0.64328 5 0.64446 5 0.66084 
2 0.59383 2 0.62743 2 0.61132 

When different importance is given to both types of deviation from the ideal solution 
(slack and surplus) the obtained rankings are the ones displayed in Tables 9 and 10. 
Concretely, Table 9 shows results for normalization in Scenario 2.a, that is, when the 
decision maker wants to take into account the extreme values of the interval. On the 
other hand, Table 10 shows results for normalization in Scenario 2.b, when for the 
decision maker the interval is well described by its expected value (see Figure 3).  

 Table 9. RIM-TOPSIS ranks with the average of the membership degrees 
NUMERICAL LINGUISTIC MIXED 

Video Rank Ri Video Rank Ri Video Rank Ri 

1 0.95793 11 0.78757 3 0.82784 
3 0.81895 3 0.75032 1 0.81800 
9 0.81741 6 0.74739 11 0.78239 

11 0.76260 8 0.70160 7 0.72471 
4 0.71083 7 0.65808 10 0.71013 

10 0.70819 10 0.65661 9 0.68745 
7 0.70321 9 0.64837 4 0.68358 
6 0.68174 12 0.63644 6 0.68225 

12 0.65993 4 0.62098 8 0.66548 
8 0.65639 1 0.60436 12 0.63825 
2 0.58392 2 0.59917 2 0.58567 
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5 0.57065 5 0.57061 5 0.57403 

 

Table 10. RIM-TOPSIS ranks with the membership degree of the expected value 

NUMERICAL LINGUISTIC MIXED 
Video Rank Ri Video Rank Ri Video Rank Ri 

1 0.96636 8 0.75211 3 0.83698 
3 0.89720 3 0.75032 1 0.81800 
9 0.82087 6 0.74739 6 0.81150 
6 0.81090 4 0.74138 4 0.78912 

11 0.77189 11 0.72350 7 0.73847 
7 0.71698 7 0.68096 9 0.69098 

10 0.71651 2 0.67279 11 0.68902 
4 0.70765 10 0.65469 8 0.66307 

12 0.70587 9 0.64837 5 0.66254 
8 0.65403 12 0.64471 12 0.65201 
5 0.62988 1 0.60436 10 0.64649 
2 0.58392 8 0.75211 3 0.83698 

We can observe how for the RIM-TOPSIS approach, when linguistic valuations are 
used, video number 1 ranking the first in the numerical and mixed cases, ranks in one of 
the last positions. Video number 8 not performing well in the numerical and mixed 
cases performs quite well in the case of linguistic valuations. Video number 4 
performing in the fifth position with numerical valuation, ranks in the ninth position in 
the case of linguistic valuations and in the seventh position in the case of mixed 
valuations. These variations in the rankings depending on the nature of the data are 
quite mitigated in the case of the IS-TOPSIS using the normalization approach proposed 
in this paper. As we can see the three rankings are quite similar regardless the type or 
nature of the data (see Table 8).  

6. Conclusions 

In this paper we have proposed a generalization of the TOPSIS approach based on the 
proposal by Cables et al. (2016), the so-called Reference Ideal Method based on 
TOPSIS (RIM-TOPSIS). Our method, based on the similarity of the alternatives with 
respect to the criteria with the ideal solution, Ideal Similarity TOPSIS (IS-TOPSIS) 
allows working with one or several decision makers and with different types of data 
simultaneously (numerical intervals, linguistic variables or mixed data). This last 
feature, the simultaneous different nature of the data, can lead to a situation where the 
classical normalization processes give rise to very unstable rankings. In order to solve 
this problem a new normalization process has been proposed which transforms the 
original data into new data reflecting the similarity of each alternative with respect to 
each decision criterion with an ideal solution taken as a reference. This ideal solution, as 
in the case of the approach proposed by Cables et al. (2016), does not need to be an 
optimum solution. On the contrary, it can be given by any interval in the range of the 
decision criteria, considered as satisfactory by the decision maker(s).  



Operational	
  Research	
  an	
  International	
  Journal	
  –	
  Springer	
  –	
  2018	
  
https://doi.org/10.1007/s12351-­‐018-­‐0405-­‐2	
  	
  
	
  
	
  
	
  

18	
  
	
  

The proposed method has been completed with a decision aid tool intended to guide the 
decision maker(s) into the different steps of the ranking process. Several key decisions 
have to be taken regarding the attainment of consensual valuations in the case of several 
decision makers: the type of data given the available information; the type of 
normalization process given the characteristics of each decision context and the 
selection of a weighting scheme representing the preferences with regards to the 
different criteria. 

A real decision example has been included to illustrate the potential of the IS-TOPSIS 
approach for the ranking of a set of discrete alternatives in different decision contexts. 
In particular, we have addressed the ranking of mathematical educational videos based 
on six didactical dimensions. A set of 12 videos from You Tube has been considered 
explaining the concept of basis of a vector space. The videos have been evaluated in 
those didactical criteria by three educational experts using numerical intervals and 
linguistic variables. An additional expert has fixed the ideal intervals for each criterion 
and different rankings have been attained depending on the type of data and the 
normalization process. The normalization process reflects, in the context of similarity 
with the ideal solution, the importance given by the decision maker to the deviations 
with respect to the ideal (slack or surplus) and his desire to take into account or not the 
extreme values of the intervals. 

The ranking of educational videos based on multiple didactical criteria could be of great 
interest for practitioners in the education field. It is important to rate educational videos 
available in Internet platforms as You Tube because they could constitute a very useful 
and attractive tool for educators for its use both, in the classroom and outside it. Internet 
gives the students access to a high number of learning resources with different 
methodologies and procedures and with several degrees of success. The educational 
videos could give the students, academic support both in the short-term and the long-
term, solving in-time particular questions or providing assistance in long-term learning 
processes. If the educational institutions have a wide repertory of mathematical 
educational videos rated from the previously described didactical criteria, then they 
would be able to build a historical memory of “best practices” in the teaching of specific 
mathematical contents.  

One of the main features of the proposed ranking in this paper is that by construction 
the ranking is not sensible to changes in the positive ideal or negative ideal solutions. It 
has also very low sensitivity to changes on the data as ambiguity, imprecision and 
uncertainty have been taken into account from the first step of the method. The main 
fact potentially affecting the obtained ranking is the weighting scheme. In future works 
we will try to determine the criteria weights in an objective way directly from the 
available data. This will solve one of the main criticism of the TOPSIS ranking method. 
More dimensions will be also included in the decision problem in order to take into 
account the quality of the videos in terms of image, sound, interaction level with users 
and the authority principle. This would enrich the assessment of the free-online videos 
available in platforms as YouTube. The proposed normalization method will be also 
integrated into a VIKOR-based approach in order to rank videos following other 
didactical points of view, as commented previously. 
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Appendix 
Table 1A. Individual scores and consensual intervals 

 Scores from expert 1 Scores from expert 2 Scores from expert 3 
Video Z1 Z2 Z3 Z4 Z5 Z6 Z1 Z2 Z3 Z4 Z5 Z6 Z1 Z2 Z3 Z4 Z5 Z6 

V1 9 7 8 2 8 2 10 7 9 1 8 1 10 8 7 2 9 2 
V2 7 6 6 3 6 4 5 3 0 4 2 7 8 7 5 3 4 8 
V3 9 6 6 4 7 4 10 10 9 2 9 2 10 10 6 3 8 4 
V4 8 7 5 4 6 3 10 7 1 7 9 5 10 6 1 2 9 5 
V5 9 6 5 3 7 3 10 4 0 8 9 7 10 6 1 4 10 8 
V6 9 7 5 3 7 2 10 8 5 5 9 5 10 8 6 5 9 4 
V7 8 9 7 3 6 3 10 3 3 8 7 6 9 3 2 1 8 4 
V8 6 8 6 4 7 2 9 2 5 7 5 8 9 9 5 3 2 2 
V9 9 9 9 2 8 1 10 10 10 2 6 1 10 10 10 2 7 1 
V10 8 7 4 5 6 4 9 9 3 5 9 5 9 9 2 2 8 6 
V11 7 7 7 4 7 3 7 4 5 2 6 7 8 9 8 5 6 6 
V12 5 7 6 7 6 3 3 10 9 7 2 0 4 10 8 4 6 0 

Consensual intervals 
 

1 1,
L R
i iz z⎡ ⎤⎣ ⎦  2 2,

L R
i iz z⎡ ⎤⎣ ⎦  3 3,

L R
i iz z⎡ ⎤⎣ ⎦  4 4,

L R
i iz z⎡ ⎤⎣ ⎦  5 5,

L R
i iz z⎡ ⎤⎣ ⎦  6 6,

L R
i iz z⎡ ⎤⎣ ⎦  

V1 [9, 10] [7, 8] [7, 9] [1, 2] [8, 9] [1, 2] 
V2 [5, 8] [3, 7] [0, 6] [3, 4] [2, 6] [4, 8] 
V3 [9, 10] [6, 10] [6, 9] [2, 4] [7, 9] [2, 4] 
V4 [8, 10] [6, 7] [1, 5] [2, 7] [6, 9] [3, 5] 
V5 [9, 10] [4, 6] [0, 5] [3, 8] [7, 10] [3, 8] 
V6 [9, 10] [7, 8] [5, 6] [3, 5] [7, 9] [2, 5] 
V7 [8, 10] [3, 9] [2, 7] [1, 8] [6, 8] [3, 6] 
V8 [6, 9] [2, 9] [5, 6] [3, 7] [2, 7] [2, 8] 
V9 [9, 10] [9, 10] [9, 10] [2, 2] [6, 8] [1, 1] 
V10 [8, 9] [7, 9] [2, 4] [2, 5] [6, 9] [4, 6] 
V11 [7, 8] [4, 9] [5, 8] [2, 5] [6, 7] [3, 7] 
V12 [3, 5] [7, 10] [6, 9] [4, 7] [2, 6] [0, 3] 

       
 

 

Table 2A. Individual linguistic rates and consensual rates 
 Scores from expert 1 Scores from expert 2 Scores from expert 3 

Video Z1 Z2 Z3 Z4 Z5 Z6 Z1 Z2 Z3 Z4 Z5 Z6 Z1 Z2 Z3 Z4 Z5 Z6 
V1 VG G G VP G VP VG G VG VP G VP VG G G VP VG VP 
V2 G F F P F P F P VP P P G G F F P P G 
V3 VG F F P G P VG VG G P VG P VG VG F P VG F 
V4 G G F P F P VG G VP G VG F VG F VP P VG F 
V5 VG F F P G P VG P VP G VG G VG F VP P VG G 
V6 VG G F P G VP VG G F F VG F VG G F F VG P 
V7 G VG G P G P VG P P G G F VG P P P VG VP 
V8 G G F P G VP VG P F G F G VG VG F P P VP 
V9 VG VG VG VP G VP VG VG VG P G VP VG VG VG P G P 
V10 G G P F F P VG VG P F VG F VG VG P P VG F 
V11 G G G P G P G P F P G F G VG G F G F 
V12 F G F G F P P G VG G P VP F VG VG F F VP 
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Table 2A. Individual linguistic rates and consensual rates (continuing) 
Consensual sets 

 
 {Z1} {Z2} {Z3} {Z4} {Z5} {Z6} 
       

V1 {VG} {G} {G, VG} {VP} {G, VG} {VP} 
V2 {F, G} {P, F} {VP, F} {P} {P, F} {P, G} 
V3 {VG} {F, VG} {F, G} {P} {G, VG} {P, F} 
V4 {G, VG} {F, G} {VP, F} {P, G} {F, VG} {P, F} 
V5 {VG} {P, F} {VP, F} {P, G} {G, VG} {P, G} 
V6 {VG} {G} {F} {P, F} {G, VG} {VP, P, F} 
V7 {G, VG} {P, VG} {P, G} {P, G} {G, VG} {P, F} 
V8 {G, VG} {P, G, VG} {F} {P, G} {P, F, G} {VP, G} 
V9 {VG} {VG} {VG} {VP, P} {G} {P,VP} 
V10 {G, VG} {G, VG} {P} {P, F} {F, VG} {P, F} 
V11 {G} {P, G, VG} {F, G} {P, F} {G} {P, F} 
V12 {P, F} {G, VG} {G, VG} {F, G} {P, F} {VP, P} 

       
 

 
Table 3A. Numerical transformation of linguistic labels 

 Scores from expert 1 Scores from expert 2 Scores from expert 3 
Video Z1 Z2 Z3 Z4 Z5 Z6 Z1 Z2 Z3 Z4 Z5 Z6 Z1 Z2 Z3 Z4 Z5 Z6 

V1 5 4 4 1 4 1 5 4 5 1 4 1 5 4 4 1 5 1 
V2 4 3 3 2 3 2 3 2 1 2 2 4 4 3 3 2 2 4 
V3 5 3 3 2 4 2 5 5 4 2 5 2 5 5 3 2 5 3 
V4 4 4 3 2 3 2 5 4 1 4 5 3 5 3 1 2 5 3 
V5 5 3 3 2 4 2 5 2 1 4 5 4 5 3 1 2 5 4 
V6 5 4 3 2 4 1 5 4 3 3 5 3 5 4 3 3 5 2 
V7 4 5 4 2 4 2 5 2 2 4 4 3 5 2 2 2 5 2 
V8 4 4 3 2 4 1 5 2 3 4 3 4 5 5 3 2 2 1 
V9 5 5 5 1 4 1 5 5 5 2 4 1 5 5 5 2 4 1 
V10 4 4 2 3 3 2 5 5 3 3 5 3 5 5 2 2 5 3 
V11 4 4 4 2 4 2 4 2 3 2 4 3 4 5 4 3 4 3 
V12 3 4 4 4 3 2 2 4 5 4 2 1 3 5 5 3 3 1 

Consensual sets 
 Z1 Z2 Z3 Z4 Z5 Z6 
       

V1 5 4 [4, 5] 1 [4, 5] 1 
V2 [3, 4] [2, 3] [1, 3] 2 [2, 3] [2, 4] 
V3 5 [3, 5] [3, 4] 2 [4, 5] [2, 3] 
V4 [4, 5] [3, 4] [1, 3] [2, 4] [3, 5] [2, 3] 
V5 5 [2, 3] [1, 3] [2, 4] [4, 5] [2, 4] 
V6 5 4 3 [2, 3] [4, 5] [1, 3] 
V7 [4, 5] [2, 5] [2, 4] [2, 4] [4, 5] [2, 3] 
V8 [4, 5] [2, 5] 3 [2, 4] [2, 4] [1, 4] 
V9 5 5 5 [1, 2] 4 1 
V10 [4, 5] [4, 5] 2 [2, 3] [3, 5] [2, 3] 
V11 5 [2, 5] [3, 4] [2, 3] 4 [2, 3] 
V12 [2, 3] [4, 5] [4, 5] [3, 4] [2, 3] [1, 2] 

       
 

 


