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Mathematics and soft computing in music

Teresa León and Vicente Liern

22.1 Introduction

Nowadays, emphasizing the strong relationship between music and mathematics
seems unnecessary. Mathematics is the fundamental tool for dealing with the physi-
cal processes that explain music but it is also in the very essence of this art. How to
choose the musical notes, the tonalities, the tempos and even some methods of com-
position is pure mathematics. In the sixth century B.C. the Pythagoreans completed
and transmitted the Chaldean practice of selecting musical notes from the proportions
between tight strings. They created a link between music and mathematics which has
still not been broken. An example of this relationship is the use, sometimes intuitive,
of the golden ratio in the sonatas of Mozart, Beethoven’s Fifth Symphony or more
recently in pieces by Bartok, Messiaen and Stockhausen. Besides, mathematicians
throughout time have made music their object of study and now, both in musical and
mathematical journals and in the Internet, many documents can be found in which
mathematics is used in a practical way in the creation or analysis of musical pieces.

One question is to explore the common ground between these disciplines and
quite another is the use that musicians make of the models and the solutions pro-
vided by mathematics. For example, the musical notes, the first elements which mu-
sic works with, are defined for each tuning system as very specific frequencies, but
the instrumentalist knows that a small change in these values does not have serious
consequences. In fact, sometimes consensus is only reached if the entire orches-
tra alters the theoretical pitches. Does this mean that musicians must restrict their
use of mathematics to the theoretical aspects? In our opinion, what happens is that
musicians implicitly handle very complex mathematical processes involving some
uncertainty in the concepts and this is better explained in terms of fuzzy logic (see
[12]). Another example: why do two different orchestras and two directors offer such
different versions of the same work? Our answer to this question is that a musical
score is a very fuzzy system. Composers invent sound structures, they are creators.
If they develop such musical ideas and notate them in a musical score, the expert
re-creators (instrumentalists) interpret the notation and transform it into sound. The
creator and the instrumentalist are not usually the same person and different types of
uncertainty may be present at many stages of this process. One example of a fuzzy
approach to music and art is provided by J.S. Bach, who did not prescribe the tempo,
tuning or even the instrumentation of some of his compositions in the corresponding
scores.
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Fig. 22.1. Excerpt from “El jove jardí de Joanot” by Llorenç Barber.

El jove jardí de Joanot, a piece for dolçaina and drums by the Valencian composer
Llorenç Barber (1948-), is an ideal example of the unconventional notation practices
and performance expectations found in contemporary pieces. Figure 1 displays sev-
eral bars from the piece in which the composer uses non-traditional notation. For in-
stance, we can read the instruction “NOCTURNO FANTASIOSO E IRREGULAR,
QUASI LAMENTUOSO”.

Finally, we would like to cite a paper by J. Haluska [14] where a “type of un-
certainty related to the creativity and psyche of the interpreter and listener of the
composition” is mentioned. “Perhaps, the idea is best visible on Indian ragas when
the same raga is played in different pitch systems depending on the mood, year sea-
son, occasion, place, etc.”

If we perform a search in a database entering the keywords “music” and “fuzzy”
we do not obtain so many retrievals as could be expected. This may be surprising
due to the essentially subjective characteristics of music.

We do not intend to make an exhaustive review of the literature but to offer some
insights into the use of soft computing techniques in music. In our search we find
out that, in comparison to other areas, fuzzy logic has seldom been used in the artis-
tic and creative fields. Only a few applications related to creative activities, such as
musical composition and sound synthesis, have been reported in the literature. Some
papers are related to the creative manipulation and transformation of digital sound. In
[7], two applications of fuzzy logic in music are presented: a fuzzy logic-based map-
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ping strategy for audiovisual composition and an audio synthesis technique based on
sound particles and fuzzy logic. An extension of an existing performance system,
capable of generating expressive musical performances based on case-based reason-
ing techniques (called SaxEx) is presented in [2] where the authors model the degree
of different expressive parameters by means of fuzzy sets. Elsea [10] also applies
concepts of fuzzy logic to problems in music analysis and composition.

Several digital audio processing applications based on fuzzy logic have been pro-
posed. Some of them are mainly focused on technical questions such as digital signal
restoration [8] or the design of adaptive filters in acoustic echo cancelation [6]. One
of the most cited references describes an algorithm for the classification, search, and
retrieval of audio files [21]. This paper presents a general paradigm and specific tech-
niques for analyzing audio signals in a way that facilitates content-based retrieval. A
recent paper [5] presents a soft computing procedure which automatically generates
sequences of songs. Starting from a given seed song, a sequence is generated while
listening to the music because the user can express his or her dislike for the song
being played by pressing a skip button.

Some other references related to audio retrieval and soft computing techniques
can be found in the literature (see for instance [16] and [18]), and other interesting
references are reviewed in [22] and [7].

After this brief review of the literature, let us focus on our main concern. We are
interested in a conceptual problem in music theory: What do we mean by a well-
tuned note or passage? And we also deal with the apparently conflictive coexistence
of multiple tuning systems in an orchestra.

In 1948, N. A. Garbuzov published a paper entitled “The zonal nature of the hu-
man aural perception”, where twelve bars of the aria from the suite in D by J. S.
Bach played by three famous violinists: Oistrakh, Elman and Cimbalist were ana-
lyzed (see [15]). This article showed that, to an accuracy of five cents, most of the
notes played by those violinists did not belong to the tuning system in which the
musicians thought they were tuned, the twelve-tone equal temperament. Some of
these notes correspond to other tuning systems but the rest of them did not belong
to any system. However, when hearing the passage, the feeling was not only pleas-
ant, but even persons endowed with a very sensitive ear rated their performance as
well-tuned. Thus, a question arises that we believe deserves to be analyzed in greater
detail. We could think that the result of Garbuzov’s experience was forced as it was
performed with violins which have no frets and where the pitch depends largely on
the instrumentalist. Certainly, such an experiment could not have been carried out
with fixed tuning instruments. But what happens with most wind or fretless string
instruments? Or maybe we should reformulate our question: What do we mean
when we accept that a note or a passage is finely-tuned? This question has been and
continues to be a matter for discussion among many researchers in Musical Acous-
tics. Actually in the late 20th century we can observe a revival of interest in tone
systems among musicians and in the industry in connection with the development of
computer music and the production of electronic musical instruments with computer
control.
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Different criteria have been used to select the sounds that music uses. A set con-
taining these sounds (musical notes) is called a tuning system. Most of them have
been obtained through mathematical arguments (see [3], [4], [11], [17]). The nu-
merical nature of these systems facilitates their transmission and the manufacture of
instruments. However, the harshness of the mathematical arguments relegated these
tuning systems to theoretical studies while in practice musicians tuned in a more
flexible way. Because of this, many musicians feel that the mathematical arguments
that justify tuning systems are impractical.

Modelling the notes as fuzzy sets and extending the concept of tuning systems
allows us to connect theory and practice, and understand how musicians work in
real-life. The notes offered by a musician during a performance should be compat-
ible with the theoretical ones, but not necessarily equal. A numerical experiment
conducted with the help of a saxophonist illustrates our approach and also highlights
the need for considering the sequential uncertainty previously studied by Garbuzov.

22.2 Some Concepts and Notation

The word “tone” is used with different meanings in music. In [1] we can read that a
tone is “a sound of definite pitch and duration, as distinct from noise and from less
definite phenomena, such as the violin portamento.” In this dictionary we find that
notes are “the signs with which music is written on a staff. In British usage the term
also means the sound indicated by a note”. A pure tone can be defined as the sound
of only one frequency, such as that given by an electronic signal generator. The fun-
damental frequency of a tone has the greatest amplitude. The other frequencies are
called overtones or harmonics and they determine the quality of the sound. Loud-
ness is a physiological sensation. It mainly depends on sound pressure but also on
the spectrum of harmonics and physical duration. Although timbre and loudness are
very important, we are focusing on pitch. Pitch is a psychological concept depending
on the frequency of the tone. A higher frequency is perceived as a higher pitch.

In music only a small choice of possible sounds is used and a tuning system is
the system used to define which tones to use when playing music; these tones are the
tuned notes.

We will identify each note with the frequency of its fundamental harmonic (the
frequency that chromatic tuners measure). The usual way to relate two frequencies
is through their ratio; this number is called the interval. Actually, some authors (see
[13]) identify the note with its relative frequency to the frequency of a fundamental,
fixed tone (conventionally, such a tone is usually taken as A=440 Hz)

It is well known that in the middle zone of the audible field, the “pitch sensation”
changes somewhat according to the logarithm of the frequency, so the distance be-
tween two sounds whose frequencies are f1 and f2 can be estimated by means of the
expression

d( f1, f2) = 1200×
∣∣∣∣log2

(
f1

f2

)∣∣∣∣ . (22.1)
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where the logarithm in base 2 and the factor 1200 have been used in order to express
d in cents.

Let us define the well-known concept of an octave mathematically: given two
sounds with frequencies f1 and f2, we say that f2 is one octave higher than f1 if f2
is twice f1.

Two notes one octave apart from each other have the same letter-names. This
naming corresponds to the fact that notes which are one octave apart sound like the
same note produced at different pitches and not like entirely different notes. Based
on this idea, we can define in R+ (the subset of all the frequencies of all the sounds)
a binary equivalence relation, denoted by R, as follows:

f1R f2 if and only if ∃n ∈ Z such that f1 = 2n× f2.

Therefore, instead of dealing with R+, we can analyze the quotient set R+/R, which
for a given fixed note f0 (diapason) can be identified with the interval [ f0,2 f0[. For
the sake of simplicity, we can assume that f0 = 1 and work in the interval [1,2[.
Octave equivalence has been an assumption in tonal music; however, the terminology
used in atonal theory is much more specific.

Let us offer an outline of the main tuning systems used in Western music. For an
overview of the topic, including historical aspects we recommend interested readers
the book by Benson [3]. The Pythagorean system is so named because it was actually
discussed by Pythagoras, who in the sixth century B.C. already recognized the simple
arithmetical relationship involved in the intervals of octaves, fifths, and fourths. He
and his followers believed that numbers were the ruling principle of the universe,
and that musical harmonies were a basic expression of the mathematical laws of
the universe. Pythagorean tuning was widely used in Medieval and Renaissance
times. All tuning is based on the interval of the pure fifth: the notes of the scale
are determined by stacking perfect fifths without alterations. The Just Intonation
(Zarlinean version) can be viewed as an adaptation of the Pythagorean system to
diminish the thirds; it can be obtained by replacing some fifths of the Pythagorean
system 3:2, by syntonic fifths 40:27 (see [20]). For these two tuning systems the
circle of fifths is not closed, hence to establish an appropriate number of notes in an
octave, some additional criteria are necessary. In order to avoid this question and
also to permit transposing, the temperaments were introduced. If every element in
the tuning system is a rational number, we say that it is a tuned system, whereas if
some element is an irrational number then the system is a temperament. The most-
used temperaments are the equal cyclic temperaments that divide the octave into
equal parts. Hölder’s temperament divides the octave into 53 parts, providing a good
approximation to the Pythagorean system. The Twelve-Tone Equal Temperament
12-TET is today’s standard on virtually all western instruments. This temperament
divides the octave into twelve equal half steps. Tuning systems based on a unique
interval (like the Pythagorean) admit a direct mathematical construction. However,
the definition of systems generated by more than one interval requires specifying
when and how many times each interval appears. Next, we give a general definition
of a tuning system (see [19])
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Definition 32. (tuning system) Let Λ = {λi}k
i=1 ⊂ [0,1[ be a family of functions F =

{hi : Z→ Z}k
i=1. We call the tuning system generated by the intervals

{
2λi
}k

i=1 and
F the set

SF
Λ =

{
2cn : cn =

k

∑
i=1

λihi(n)−

⌊
k

∑
i=1

λihi(n)

⌋
,n ∈ Z

}

where bxc is the integer part of x (which is added to gain octave equivalence).

The advantage of expressing the tuned notes as 2cn is that if our reference note
is 20, in accordance with (1), the exponent cn provides the pitch sensation. Let us
mention that the family of integer-valued functions F marks the “interval locations”.
For those systems generated by one interval (for instance the Pythagorean) they are
not really necessary, while they are for the other systems. For instance, in the Just
Intonation h1(n) and h2(n) indicate the position of the fifths and the thirds considered
as tuned. Table 22.2 displays some examples of tuning systems.
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Pythagorean   
 
12-TET  

 
 

 
 

 
Zarlinean 
(Just Intonation) 

 
 
 

 
 

 

 
Neidhart’s temperament  
 (1/2 & 1/6 comma) 

 
 

 

 

 
 

 

 

Fig. 22.2. Table 1. Examples of generators of some tuning systems.

Although we only analyze Pythagorean, Zarlinean and 12-TET systems, the
study of other tuning systems would be similar.

22.3 Notes as fuzzy sets

If we take the note A = 440Hz (diapason) as our fixed note, then a note offered with
a frequency of 442Hz would be out of tune from the point of view of Boolean logic.
However, anybody that hears it would consider it to be in tune.
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While not trying to delve into psychoacoustic issues, we need to make some brief
remarks about hearing sensitivity.

According to J. Piles (1982) (see [20]), there is no unanimity among musicolo-
gists about aural perception. Roughly speaking, we could distinguish between two
great tendencies: those who, following the work of Hermann von Helmholtz (1821
- 1894), consider that a privileged and educated ear can distinguish a difference of
two cents, and those who fix the minimum distance of perception at 5 or 6 cents. For
instance, Haluska states that the accuracy of an instrumentalist is not better than 5or
6 cents and that this accuracy is between 10 and 20 cents for non-trained listeners.

Nonetheless, this threshold of the human aural perception depends on many fac-
tors: the sensitivity of the ear, the listener’s age, education, practice and mood, the
intensity and duration of the sounds, etcetera. As the human ear is not “perfect”,
a musical note should be understood as a band of frequencies around a central fre-
quency and it is appropriate to express it as a fuzzy number.

Therefore the modal interval corresponding to the pitch sensation of a tone with
frequency f should be expressed as [log2( f )− ε, log2( f )+ ε], where ε = 3/1200
(for instrumentalists) or ε ∈ [5/1200,10/1200] for non-trained listeners (see [20],
[14]).

Accordingly, we define the band of unison as: [ f 2−ε , f 2ε ], where ε > 0, and
where 1200ε expresses, in cents, the accuracy of the human ear to the perception of
the unison.

Next, let us focus on its support. If the number of notes per octave is q, the octave
can be divided into q intervals of widths 1200/q cents. So, if we represent it as a
segment, the (crisp) central pitch would be in the middle, and the extremes would
be obtained by adding and subtracting 1200/(2×q) cents. In fact, chromatic tuners
assign q = 12 divisions per octave, suggesting that a tolerance of δ = 50/1200 =
1/24 is appropriate. Therefore, the support of the pitch sensation should be expressed
as [log2( f )− δ , log2( f )+ δ ], where δ = 1/(2× q). Therefore, we can express the
interval of the note f as: [ f 2−δ , f 2δ ].

Notice that the quantity ∆ = 1200δ expresses, in cents, the tolerance that we
admit for every note, and for q = 12, we have ∆ = 1200 1

2×12 = 50 cents.
These arguments justify the expression of a musical note as a trapezoidal fuzzy

number with peak [ f 2−ε , f 2ε ] and support [ f 2−δ , f 2δ ].
For notational purposes let us recall the definition of a LR-fuzzy number (see

[9]).

Definition 33. (LR-fuzzy number) M̃ is said to be a LR-fuzzy number, M̃ = (mL,mR,
αL,αR)LR if its membership function has the following form:

µM̃ =


L
(

mL−x
αL

)
,x < mL

1,mL ≤ x≤ mR

R
(

x−mR

αR

)
,x > mR

where L and R are reference functions, i.e. L,R : [0,+∞[→ [0,1] are strictly de-
creasing in suppM̃ = x : µM̃(x)>= and upper semi-continuous functions such that
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L(0) = R(0) = 1. If suppM̃ is a bounded set, L and R are defined on [0,1] and satisfy
L(1) = R(1) = 0.

Moreover, if L and R are linear functions, the fuzzy number is called trapezoidal,
and is defined by four real numbers, Ã = (aL,aR,αL,αR).

As notes are expressed as powers of two, it is not only more practical to express
the fuzzy musical notes using their exponent but it also makes more sense, because
as we have already mentioned, the exponent reflects the pitch sensation. Therefore
we represent the pitch sensation of a note 2t̃ as the trapezoidal fuzzy number t̃ =
(t− ε, t + ε,δ − ε,δ − ε).

Now that notes are modelled as fuzzy numbers, the concept of fuzzy tuning sys-
tem arises naturally:

Definition 34. (fuzzy tuning system) Let δ ∈ [0,1],Λ = {λi}k
i=1 ⊂ [0,1[, and a family

of functions F = hi : Z→ Zk
i=1. A fuzzy tuning system generated by the intervals

2λi
k
i=1 and F is the set:

S̃F
Λ (δ ) =

{
2c̃n : c̃n =

(
k

∑
i=1

λihi(n)−

⌊
k

∑
i=1

λihi(n)

⌋
,δ

)
n ∈ Z

}

In [19] the compatibility between two fuzzy notes is defined as the Zadeh con-
sistency index between their pitch sensations. Figure 22.3 illustrates the definition
of ?compatibility.

Definition 35. (compatibility) Let 2t̃ and 2s̃ be two musical notes, where t̃ = (t −
ε, t +ε,δ −ε,δ −ε) and s̃ = (s−ε,s+ε,δ −ε,δ −ε). The degree of compatibility
between 2t̃ and 2s̃ is defined as

comp[2t̃ ,2s̃] = maxxµs̃∩t̃(x),

and we say that 2t̃ and 2s̃ are �-compatible, α ∈ [0,1], if comp[2t̃ ,2s̃]≥ α .

Fig. 22.3. Graph illustrating the concept of?compatibility between two notes.
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By a direct calculus we can obtain the formula which allows us to calculate the
compatibility between two notes.

comp[2t̃ ,2s̃] =


1, i f |t− s|< 2ε

1− |t−s|−2ε

2δ−ε
, i f 2ε ≤ |t− s|< 2δ

0i f |t− s| ≥ 2δ

Moreover, the concept of compatibility is also extended for fuzzy tuning systems.
The definition of compatibility between two tuning systems reflects both the idea of
proximity between their notes and also whether their configuration is similar.

Definition 36. (compatibility between two tuning systems) Let S̃q(δ ) and T̃q(δ ) be
two tuning systems with q notes. We say that S̃q(δ ) and T̃q(δ ) are �-compatible, if
for each 2s̃i ∈ S̃q(δ ) there is a unique 2t̃i ∈ T̃q(δ ) such that

comp[2s̃i ,2t̃ j ]≥ α .

The quantity α is the degree of interchangeability between S̃q(δ ) and T̃q(δ ) and
the uniqueness required in the definition guarantees that these systems have a similar
distribution in the cycle of fifths.

Note that the α-compatibility does not define a binary relation of equivalence in
the set of tuning systems because the transitive property is not verified.
Example
Let us analyze the compatibility between the 12-TET and the Pythagorean system
with 21 notes. Our data are the exact (crisp) frequencies, displayed in Table 22.4.
The following pairs of notes are said to be enharmonic: (C#?,D#),(D#,E#),(F#,G#),
(G#,A#)and(A#,B#) because although they have different names they sound the
same in the 12-TET. For a better visualization, instead of the exact compatibilities
between the notes, we show their graphical representation in Figure 22.5. We have
set δ = 50/1200 and ε = 3/1200 (suitable for trained listeners).

The minimum compatibility between the notes is equal to 0.84, however the
systems are not 0.84-compatible because the uniqueness property does not hold.
Nonetheless, if we consider the 12-TET and the Pythagorean system with 12 notes,
C, C#, D, Eb, E, F , F [#, G, G[#, A, Bb, B, they are α-compatible for α ≤ 0.84.

22.4 A numerical experiment and sequential uncertainty

The purpose of the experiment described in this section is to study the different vari-
ations of a note that usually occur in a wind instrument (a baritone saxophone) where
the pitch may be subject to the interpretation of the performer or the characteristics
of the instrument.

In order to set one of the parameters of the experiment, the same saxophonist
performed five interpretations of the excerpt represented in Figure 22.6. The record-
ings took place on the same day without changing the location of the recording or its
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Note Pythagorean 12-TET 
C 260,74074 261,6265 
B# 264,29809 261,6265 
Db 274,68983 277,1826 
C# 278,4375 277,1826 
D 293,33333 293,6648 
Eb 309,02606 311,127 
D# 313,24219 311,127 
Fb 325,55832 329,6275 
E 330 329,6275 
F 347,65432 349,2282 
E# 352,39746 349,2282 
Gb 366,25311 369,9944 
F# 371,25 369,9944 
G 391,11111 391,9954 
Ab 412,03475 415,3047 
G# 417,65625 415,3047 
A 440 440 
Bb 463,5391 466,1638 
A# 469,86328 466,1638 
Cb 488,33748 493,8833 
B 495 493,8833 

 

Fig. 22.4. Table 2. Exact frequencies of the notes.

physical characteristics such as temperature and humidity. The measurements were
made with the free software Audacity R©. The saxophone brand name is Studio. We
considered two possible conceptual frameworks: “static tuning”, in which each note
is treated separately, and "dynamic tuning" where notes are studied in their context.
In this section we will describe our results for the second approach, which seems
more relevant for this study.

Firstly we obtained the compatibility between the notes recorded and the notes
tuned in the fuzzy 12-TET. We fixed δ = 50/1200 and ε = 6/1200. Figure 22.6
is a graphic representation of the compatibility values. We can observe that the
worst compatibilities with the theoretical notes occur for the notes D#4, C#4, G4,
D#4. A first conclusion is that the saxophonist should make an effort to improve his
interpretation of these notes. However, our analysis should be completed by taking
“sequential uncertainty” into account.

We have already mentioned the musicologist N. A. Garbuzov in the introduction.
According to J. Haluska [15], “. . . (he) revolutionized the study of musical intervals
suggesting a concept of musical “zones” in the 1940s. This theory can be character-
ized in the present scientific language as an information granulation in the sense of
Zadeh”. Table 22.9 was obtained by Garbuzov from hundreds of measurements. We
are taking it as a reference, although bearing in mind that it should be recomputed
to take into account the higher precision of the present measurement instruments.
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Fig. 22.5. Compatibility between the 12-TET and the Pythagorean tuning system.

Fig. 22.6. Score for the excerpt interpreted by the musician.

How should we interpret Table 22.9? As an example we will comment on the second
row, as the reasoning is similar for all of them. For the 12-TET, two notes which
differ by a semitone are exactly 100 cents apart. However, according to Garbuzov’s
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Note Rep1 Rep2 Rep3 Rep4 Rep5 
C#3 139.7 138.77 139.3 137.75 137.12 
F#3 185.12 184.19 185.38 184.84 183.14 
B3 247.36 249.17 247.83 247.48 244.55 
F3 174.34 175.52 175 174.8 174.84 
A3 218.26 218.38 218.86 218.73 217.41 
D#3 156.49 156.64 157.27 156.61 155.93 
B3 247.41 248.65 246.99 245.28 242.06 
D#4 323.38 324.19 323.33 321.43 322.31 
C#4 284.48 284.75 284.57 283.43 284.49 
G4 401.2 401.1 401 399.31 399.79 
D#4 322.08 322.03 320.03 319.9 320.01 
A#3 234.48 234.14 234.11 233.56 233.56 
A3 219.11 219.19 219.12 219.06 218.75 
F3 175.46 175.8 175.21 174.97 174.82 
E3 164.3 164.46 164.61 165.05 165.15 
D#3 156.13 156.11 155.65 156.42 156.74 

 

Fig. 22.7. Table 3. Exact (crisp) frequencies of the notes offered.

experiments if two notes differ between 48 and 124 cents and they are played consec-
utively, the human ear perceives them to be a semitone apart. When these two notes
are played simultaneously (for instance two instrumentalists are playing together)
and they differ between 66 and 130 cents, they are perceived to be a semitone apart.
Clearly, for our experiment we should only take into account the second column be-
cause our saxophonist is playing “a solo”. Column 1 in Table 5 contains the “low
compatibility notes”, the second column the corresponding Garbuzov zones, Column
3 the distance in semitones from an offered note to its previous one and Colums 4-8
the distances in cents from an offered note to its previous one.

We can see that the distances are out of the Garbuzov zone for only two notes.
In the other cases, the saxophonist and those listening to his interpretation would
probably perceive them as correct.

22.5 Conclusions

Defining tuning systems as comprised of fuzzy notes allows us to include the daily
reality of musicians and their theoretical instruction in a mathematical structure. We
can justify that the adjustments the musicians make to play together constitute a
method for increasing the compatibility level among systems. Complex tuners indi-
cating precisely the difference between the note offered and the desired pitch could
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Fig. 22.8. Compatibility between the theoretical notes and those offered by the musician.

Granule Melodic Harmonic 
Unison (octave) 
Minor second 
Major second 
Minor third 
Major third 
Fourth 
Tritone 
Fifth 
Minor sixth 
Major sixth 
Minor seventh 
Major seventh 

(-12, 12) 
(48, 124) 
(160, 230) 

(272, 330) 
(372, 430) 
(472, 530) 
(566,630) 
(672,730) 
(766, 830) 
(866, 930) 
(966, 1024) 
(1066, 1136) 

(-30,30) 
(66, 130) 
(166, 230) 
(266, 330) 
(372, 430) 
(466, 524) 
(566, 630) 
(672, 730) 
(766, 830) 
(866, 924) 
(966, 1024) 
(1066, 1136) 

 

Fig. 22.9. Table 4. Garbuzov zones in cents: sequential and simultaneous uncertainty (source
[15]).

suggest to musicians that they should aspire to achieving “perfect tuning”; however,
getting a high degree of compatibility or similarity with the score is a more achiev-
able and reasonable goal. On the other hand, knowing the compatibility between
notes allows musicians to improve their performance by choosing between different
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Note Zone semitones Rep1 Rep2 Rep3 Rep4 Rep5 

D#4 [372,430] 2 463.59 459.27 466.27 468.09 495.7 
C#4 [160,230] 1 221.88 224.57 221.07 217.815 216.09 
G4 [566,630] 3 595.19 593.12 593.78 593.42 589.04 
D#4 [372,430] 2 380.28 380.12 390.47 383.866 385.35 
A#3 [472,530] 2.5 549.55 551.79 541.22 544.593 545.19 
 

Fig. 22.10. Table 5. Low compatibility notes (5 repetitions).

tuning positions, increasing lip pressure, etcetera. The numerical example that we
have presented causes us to reflect: it is not only important to consider compatibility
with the theoretical notes (allowing the coexistence of different instruments in an
orchestra), but also that a new concept of sequential compatibility should be con-
sidered to better explain instrumentalists’ performances. In addition, we should not
forget “simultaneous uncertainty”. We intend to define the concepts of sequential
compatibility and simultaneous compatibility in order to aggregate them with the
compatibility between the theoretical notes and the notes offered. The weights of
these quantities in the aggregation should depend on whether a musician is playing
a solo, a duet or playing with the orchestra.
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