Página personal de
Enrique Llorens Fuster
Catedrático de Universidad/ Professor


Biographical

Docencia: Apuntes de Análisis Funcional

Some pictures:
Istanbul 2015
Valencia 2012
Cluj-Napoca 2012


Publications

1. Llorens Fuster, E.,
Caracterizaciones de la estructura asintótico-normal en Espacios de Banach.
Rev. Real Acad. Ciencias Exactas Fís. Nat., 81 (1987), 131-135. (MR 89f: 46034).

   2. Jiménez Melado, A.; Llorens-Fuster, E.,
Some relations between certain problems on nonexpansive mappings.
Radovi Matematicki, 1986, n.1. 45-49. (MR 88f: 47050).

3. Jiménez Melado, A.; Llorens-Fuster, E.,
Stability of the fixed point property for nonexpansive mappings.
Houston J. Math. 18 (1992), 251--257. (MR 93d:47097).

4. García-Falset, J.; Jiménez Melado, A.; Llorens-Fuster, E.,
A characterization of normal structure in Banach spaces, 
in Fixed Point Theory and Applications, K.K. Tan Ed. 1992, World Scientific Publ. (MR 93j: 46019). 

5. García-Falset, J.; Llorens-Fuster, E.,
A geometric property of Banach spaces related to the Fixed Point property.
J. of Math. Analysis and Appl. 172 (1993), 39--52. (MR 93m: 46009).

6. Jiménez Melado, A.; Llorens-Fuster, E.,
A sufficient condition for the fixed point property.
Nonlinear Anal. TMA 20 (1993), 849--853. (MR 94a: 47097).

7. García-Falset, J.; Jiménez Melado, A.; Llorens-Fuster, E.,
Measures of noncompactness and normal structure in Banach spaces.
Studia Math. 110 (1994), 1--8. (MR94a 47097).

8. García-Falset, J.; Llorens-Fuster, E.,
Normal structure and fixed point property.
Glasgow Math. Journal 38 (1996), 29--37.  (MR: 97d:46014).

9. Jiménez Melado, A.; Llorens-Fuster, E.;
The fixed point property in uniformly nonsquare Banach spaces.
Bolletino U.M.I.10-A (1996), no. 7-8, 587--595. (MR: 97m: 47080). 

10. García-Falset, J.; Jiménez Melado, A.; Llorens-Fuster, E.,
Isomorphically expansive mappings in l2.
Proceedings of A.M.S. 125 (1997), 2633--2636. (MR: 97j: 47079). 

  11. García Falset, J.; E. Llorens Fuster, Sims, B.,
Fixed point theory for almost convex functions.
Nonlinear Analysis TMA., 32 (1998),  601-608.  (MR: 99b: 47083).

  12. Llorens Fuster, E.; Sims, B.,
The fixed point property in c0.

Canad. Math. Bull., 41 (1998),  413-422.  (MR: 99i: 47097).

13. Llorens Fuster, E.,
Set valued alpha-almost convex mappings.
Journal of Math. Ann. and Appl., 233 (1999), 698-712.  (MR: 2000b: 47124).

14. Jiménez Melado, A.; Llorens Fuster, E.,
Opial modulus and stability of the fixed point property.
Nonlinear Analysis, 39 (2000), 341-349.(MR.  2001e: 47090).

15. García-Falset, J.; Llorens-Fuster, E.; Mazcuñán-Navarro, Eva M.,
The fixed point property and normal structure for some B-convex Banach spaces.
Bull. Austral. Math. Soc. 63 (2001), 75--81.  (MR.1.812.310).

  16. Llorens Fuster, E.,
Renormings and minimal Lipschitz constants,
Nonlinear Anal. 47 (2001), 2719--2730.(MR.1 972 395).

  17. Llorens Fuster, E.,
Semigroups of mappings with rigid Lipschitz constant,
Proc. Amer. Math. Soc., 130 (2002), 1407--1412. (MR. 2002k:47112 ).

 18. Llorens Fuster, E. ,
Some moduli and constants related to Metric Fixed Point Theory,
in Handbook of Metric Fixed Point Theory, W.A. Kirk and B. Sims eds.
Kluwer, 2002. 133--175. (MR.2003j:46019 ). (Zbl. 1021. 47030).
This is a list of some of the main moduli and constants of the Banach spaces which
are in some ways related to Metric Fixed Point Theory.
For a updated version (04-12-2006) click here .

19. García Falset, J.; Jiménez Melado, J.; Llorens Fuster, E.,
Stability of the fixed point property for nonexpansive maps,
in Handbook of Metric Fixed Point Theory, W.A. Kirk and B. Sims eds.
Kluwer, 2002. 201--238. (MR. 2003j:46017). 

20.  García-Falset, J.; Llorens-Fuster, E.; Mazcuñán-Navarro, Eva M.,
Banach spaces which are r-uniformly noncreasy.
Nonlinear Anal. 53 (2003), 957--975. 

21. Jiménez-Melado, A.; Llorens-Fuster, E.,
A renorming of l2, rare but with the fixed- point property. 
International J. Math. Math. Sci. 2003 No. 65 (2003), 4115--4129. (Zbl pre02012668), (MR2276960).

22. Llorens-Fuster, E.,
Some remarks about the Goebel-Kirk-Thele mapping.
Annales Univ. Mariae Curie-Sklodowska, LVIII, (2004), 99-- 116. (MR2199594).

23. García Falset, J.; Llorens Fuster, E.; Sims, B., Eds.
International Conference on Fixed Point Theory and Applications. Proceedings of the conference held in Valencia, July 13--19, 2003.
Yokohama Publishers, Yokohama, 2004. viii+292 pp. ISBN: 4-946552-13-8. (MR 2144144).

24. Jiménez-Melado, Antonio; Llorens-Fuster, E., Saejung, S.
The von Newman-Jordan constant, weak orthogonality and normal structure in Banach spaces.
Proc. Amer. Math. Soc., 134 (2006), no. 2, 355--364.(MR2176002).

25. García-Falset, J.; Llorens-Fuster, E.; Mazcuñán Navarro, E.,
Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings.
Journal of Functional Analysis, 233 (2006) 494 – 514. (MR 2214585).

26. Llorens-Fuster, E.,
The fixed point property for renormings of l2.
Seminar of Mathematical Analysis, 121--159, Univ. Sevilla Secr. Publ., Seville, 2006. (MR 2276960).

27. García-Falset, J.; Llorens-Fuster, E.; Prus, S.,
Fixed point theory for mappings admitting centers.
Nonlinear Analysis, 66 (2007), 1257-1274. (MR 2294437).

28. Alonso, J.; Llorens- Fuster, E.,
Geometric mean and triangles inscribed in a semicircle in Banach spaces.
Journal of Math. An. and Appl. 340 (2008), 1271-1283.

29. Jiménez Melado, A.; Llorens-Fuster, E.; Mazcuñán Navarro E.,
The Dunkl–Williams constant, convexity, smoothness and normal structure,
Journal of Math. An. and Appl. 342 (2008) 298–310.

30. Llorens- Fuster, E.,
Zbaganu constant and normal structure. .
Fixed Point Theory, 9 (2008), 159-172.

31. Llorens- Fuster, E; Petrusel, A.; Yao, J.C.,
Iterated function systems and well-posedness.
Chaos, Solitons & Fractals, 41 (2009), 1561--1568.

32. González, C.; Jiménez-Melado, A.; Llorens-Fuster, E.
A Mönch type fixed point theorem under the interior condition .
Journal of Mathematical Analysis and Applications 352 (2009) 816--821.

33. Domínguez Benavides, T.; García Falset, J.; Llorens-Fuster, E.; Lorenzo Ramírez, P.
Fixed point properties and proximinality in Banach spaces.
Nonlinear Anal. 71 (2009), 1562--1571.

34. García Falset, J.; Guran, L.; Llorens-Fuster, E.,
Fixed points for multivalued contractions with respect to a w- distance.
Scientae Mathematicae Japonicae, 22 (2009), 611--619.

35. García Falset, J.; Llorens-Fuster, E.
Fixed Points for Pseudocontractive Mappings on Unbounded Domains.
Fixed Point Theory and Applications, Volume 2010 (2010), Article ID 769858, 17 pages.

36. Llorens Fuster, E. ; Mazcuñán Navarro, E.; Reich, S.,
The Ptolemy and Zbaganu constants of normed spaces.
Nonlinear Analysis, 72 (2010), 3984--3993.

37. García Falset, J.; Llorens Fuster, E.; Suzuki, Tomonari,
Fixed point theory for a class of generalized nonexpansive mappings.
Journal of Mathematical Analysis and Applications, 375 (2011) 185–195.

38. Llorens Fuster, E.; Moreno Gálvez, Elena,
The Fixed point theory for some generalized nonexpansive mappings
Abstract and Applied Analysis, Volume 2011 (2011), Article ID 435686, 15 pages

39. Hernández Linares, C.A.; Japón Pineda, M. Ángeles.; Llorens Fuster, E.,
On the structure of the set of equivalent norms on ℓ1  with the fixed point property.
Journal of Mathematical Analysis and Applications 387 (2012), 645–654.

40 Llorens Fuster, E.,
The fixed point property for renormings of l2 ,
Arabian Journal of Mathematics, 1 (2012), 511--528.

41. Fetter Nathansky, H.; Llorens Fuster, E.;
A product space with the fixed point property.
Fixed Point Theory and Applications, 2012, 2012:91.

42. Fetter Nathansky, H.; Llorens Fuster, E.,
Comparison of P-convexity, O-convexity and other geometrical properties.
Journal of Mathematical Analysis and Applications, 396 (2012), 749--758.

43. J. García Falset; Llorens Fuster, E.;  Moreno Gálvez, Elena,
Fixed point theory for multivalued generalized nonexpansive mappings.
Applicable Analysis and Discrete Mathematics,6 (2012), 265–286.

44. Jiménez-Melado, A.; Llorens-Fuster, E.,
A class of renormings of l2 with the fixed point property. 
Journal of Nonlinear and Convex Analysis, 14 (2013), 351--362.

45. Llorens Fuster, E.; Moreno Gálvez, E.,
The fixed point property for some generalized nonexpansive mappings in a nonreflexive Banach space. 
Fixed Point Theory, 14 (2013), 141–150.

46. Llorens Fuster, E.; Muñiz-Pérez, O.,
Some relationships between sufficient conditions for the fixed point property.
Fixed Point Theory, 14 (2013), 125–140.

47. Llorens-Fuster, E.; Mazcuñán Navarro E.,
Comparison between several conditions implying weak normal structure and the weak fixed point property.
Journal of Nonlinear and Convex Analysys, 15 (2014), 463–475.

48. Hernández-Linares, C.A.; Llorens-Fuster, E.; Mazcuñán Navarro E.; Muñiz-Pérez, O.,
An overview on the Prus-Szczepanik condition.
Fixed Point Theory and Applications, (2014), 2014-37.

49. Llorens-Fuster, E.; Urs, C.,
Fixed point results for multivalued operators with respect to a c - distance.
Carpathian J. Math., 31 (2015), No. 2, 221 - 232.

50. Garcia-Falset, J.; Llorens-Fuster, E.; Moreno Gálvez, E.,
Generalized nonexpansive mappings and a Krasnosel'skii theorem for the de Blasi noncompactness measure. 
Journal of Nonlinear and Convex Analysis, 16 (2015), 1041--1053.

51. Llorens-Fuster, E.,
Multivalued nonexpansive mappings with an almost convex displacement function. 
Journal of Nonlinear and Convex Analysis, 16 (2015), 1835--1845.

52 Llorens Fuster, E.,
Orbitally nonexpansive mappings
Bull. Aust. Math. Soc. (First published online 2015), 7 pages.

53. Jiménez Melado, A.; Llorens-Fuster, E.,
James quasireflexive space is orthogonally convex,
Journal of Mathematical Analysis and Applications, 434 (2016), 1789--1800.

54. Ariza-Ruiz, D. Hernández Linares, C.;Llorens-Fuster, E.; Moreno-Gálvez, E.,
On alpha nonexpansive mappings in Banach spaces,
Carpathian Journal of Mathematics, 32 (2016), 13--28.

55. García Falset, J; ;Llorens-Fuster, E.; Marino, G.; Rugiano, A.,
On Strong Convergence of Halpern's Method for Quasi-Nonexpansive Mappings in Hilbert Spaces,
Mathematical Modelling and Analysis, 21 (2016), 63--82.

56. García-Falset, J.; Llorens-Fuster, E.,
Diametrically contractive mappings with respect to a w-distance. 
Journal of Nonlinear and Convex Analysis, 17 (2016), 1975--1984.

57. Jiménez-Melado, A.; Llorens-Fuster, E.,
Orthogonal convexity versus orthogonal uniform convexity. 
Journal of Nonlinear and Convex Analysis, 17 (2016), 2225--2235.

58. Jiménez Melado, A.; Llorens-Fuster, E.,
Orthogonally convex Banach sequence spaces. 
Journal of Nonlinear and Convex Analysis, 18 (2017),95--103.

59. Ferrer, J.; Llorens-Fuster, E.,
On a class of maps which cannot be made nonexpansive after renormings . 
Journal of Nonlinear and Convex Analysis, 18 (2017),197--214.

60. Fetter Nathansky, H.; Llorens Fuster, E.,
Jaggi nonexpansive mappings revisited.
Journal of Nonlinear and Convex Analysis, 18 (2017), 1771--1779.

61. Ferrer, J.; Llorens-Fuster, E.,
Lower bounds for the Lipschitz constants of some classical fixed point free maps. 
Journal of Mathematical Analysis and Applications, 465 (2018),297--308.

62. Ferrer, J.; Llorens-Fuster, E.,
Remarks about a P.K. Lin fixed-point free map. 
Fixed Point Theory, 19 (2018), 557--570.

63. . Domínguez Benavides, T.; Llorens-Fuster, E.,
Iterated nonexpansive mappings.
J. Fixed Point Theory Appl. (2018) 20:104

64. Ferrer, J.; Llorens-Fuster, E.,
On never nonexpansive mappings in reflexive Banach spaces. 
Banach Journal of Mathematical Analysis, 14 (2020), 78--97.

65. Ferrer, J.; Llorens-Fuster, E.,
A Short Proof that Some Mappings of the Unit Ball of l2 Are Never Nonexpansive. 
The American Mathematical Monthly, 127:4 (2020), 354 -- 358.

Information at Google Scholar