Nearly Quaternionic Manifold(s)

Óscar Maciá
University of Valencia \& Polytechnic University of Turin oscarmacia@calvino.polito.it

Turin, June 23, 2010

References

O.M., A nearly quaternionic structure on $\operatorname{SU}(3)$, J. Geom. Phys. 60 (2010), no. 5, 791-798.

目 S.Chiossi, O.M., SO(3)-structures on 8-manifolds, to appear.

Nearly Quaternionic Manifold(s)

(1) INTRODUCTION: QK GEOMETRY AQH GEOMETRY
(2) INTRINSIC TORSION AND IDEAL GEOMETRY
(3) NEARLY QUATERNIONIC STRUCTURE

Riemannian Holonomy

Let $\{M, g\}$ be a Riemannian manifold and let $c:[0,1] \rightarrow M$ a smooth curve on M from x to y. The Levi-Civita connection determines horizontal transport of vectors on TM along the curve c. This defines a linear isometry $\left(T_{x} M, g_{x}\right) \rightarrow\left(T_{y} M, g_{y}\right)$.
For $x=y$ these transformations determine a group that is independent of x for M connected.

Definition

Holonomy Group (Φ): Group of transformations of the fibres of a bundle induced by parallel translation over closed loops in the base manifold.

Berger's List

Theorem

Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list $(n=2 m=4 k):$
$\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \mathrm{Sp}(k) \operatorname{Sp}(1)$

固 M.Berger (1955).

Berger's List

Theorem

Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list $(n=2 m=4 k)$:
$\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \mathrm{Sp}(k) \operatorname{Sp}(1)$

目 M.Berger (1955).

- $\mathrm{SO}(n)$: Generic Riemannian geometry

Berger's List

Theorem

Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list $(n=2 m=4 k)$:

```
SO}(n),\textrm{U}(m),\textrm{SU}(m),\operatorname{Sp}(k),\mp@subsup{G}{2}{},\operatorname{Spin}(7),\textrm{Sp}(k)\operatorname{Sp}(1
```

固 M.Berger (1955).

- $\mathrm{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).

Berger's List

Theorem

Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list $(n=2 m=4 k)$:
$\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Sp}(k) \operatorname{Sp}(1)$

围 M.Berger (1955).

- $\mathrm{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).
- G_{2}, Spin(7) : Exceptional holonomy. Exist only in dimension 7 and 8.

Berger's List

Theorem

Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list $(n=2 m=4 k)$:

$$
\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Sp}(k) \operatorname{Sp}(1)
$$

國 M.Berger, (1955).

- $\mathrm{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).
- G_{2}, Spin(7) : Exceptional holonomy. Exist only in dimension 7 and 8.
- $\operatorname{Sp}(k) \operatorname{Sp}(1):=\operatorname{Sp}(k) \times_{\mathbb{Z}_{2}} \operatorname{Sp}(1)$ Quaternionic-Kähler geometry.

QK Geometry

- $\Phi \subseteq \operatorname{Sp}(k) \operatorname{Sp}(1) \rightarrow R i c=\lambda g$. EINSTEIN
$\left(\mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}\right.$ and $\operatorname{Spin}(7)$ cases are all Ricci-flat).

QK Geometry

- $\Phi \subseteq \operatorname{Sp}(k) \operatorname{Sp}(1) \rightarrow R i c=\lambda g$. EINSTEIN
$\left(\mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}\right.$ and $\operatorname{Spin}(7)$ cases are all Ricci-flat).
- $\lambda>0$ QK Wolf Spaces, LeBrun-Salamon conjecture.

$$
\begin{gathered}
\frac{\mathrm{Sp}(k+1)}{\mathrm{Sp}(k) \times \mathrm{Sp}(1)}, \quad \frac{\mathrm{SU}(m+2)}{\mathrm{S}(\mathrm{U}(m) \times \mathrm{U}(2))}, \quad \frac{\mathrm{SO}(n+4)}{\mathrm{S}(\mathrm{O}(n) \times \mathrm{O}(4))}, \\
\frac{\mathrm{E}_{6}}{} \\
\frac{\mathrm{E}_{8}}{\mathrm{SU}(6) \mathrm{SU}(2)}, \quad \frac{\mathrm{E}_{7}}{\mathrm{Sppin}(12) \mathrm{Sp}(1)}, \quad \frac{\mathrm{E}_{8}}{\mathrm{E}_{7} \mathrm{Sp}(1)}, \quad \frac{\mathrm{F}_{4}}{\mathrm{Sp}(3) \mathrm{Sp}(1)} \quad \frac{\mathrm{G}_{2}}{\mathrm{SO}(4)}
\end{gathered}
$$

R. Wolf (1965), S. Salamon (1982), C. LeBrun \& S. Salamon (1994).

QK Geometry

- $\Phi \subseteq \operatorname{Sp}(k) \operatorname{Sp}(1) \rightarrow R i c=\lambda g$. EINSTEIN
$\left(\mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}\right.$ and $\operatorname{Spin}(7)$ cases are all Ricci-flat).
- $\lambda>0$ QK+ Wolf Spaces, LeBrun-Salamon conjecture.

$$
\begin{gathered}
\frac{\mathrm{Sp}(k+1)}{\mathrm{Sp}(k) \times \mathrm{Sp}(1)}, \quad \frac{\mathrm{SU}(m+2)}{\mathrm{S}(\mathrm{U}(m) \times \mathrm{U}(2))}, \quad \frac{\mathrm{SO}(n+4)}{\mathrm{S}(\mathrm{O}(n) \times \mathrm{O}(4))}, \\
\frac{\mathrm{E}_{6}}{} \\
\frac{\mathrm{E}_{8}}{\mathrm{SU}(6) \mathrm{SU}(2)}, \quad \frac{\mathrm{E}_{7}}{\mathrm{Sppin}(12) \mathrm{Sp}(1)}, \quad \frac{\mathrm{E}_{8}}{\mathrm{E}_{7} \mathrm{Sp}(1)}, \quad \frac{\mathrm{F}_{4}}{\mathrm{Sp}(3) \mathrm{Sp}(1)} \quad \frac{\mathrm{G}_{2}}{\mathrm{SO}(4)}
\end{gathered}
$$

R. Wolf (1965), S. Salamon (1982), C. LeBrun \& S. Salamon (1994).

- $\lambda=0 \quad \mathrm{HK} \quad \Phi \subseteq \mathrm{Sp}(k) \subset \mathrm{Sp}(k) \mathrm{Sp}(1) \subset \mathrm{SO}(n)$.

HK manifolds are Kähler $\quad \mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)$.
Geneeral QK manifolds are not Kähler $\quad \operatorname{Sp}(k) \operatorname{Sp}(1) \not \subset \mathrm{U}(m)$.

QK Geometry

- $\Phi \subseteq \operatorname{Sp}(k) \operatorname{Sp}(1) \rightarrow R i c=\lambda g$. EINSTEIN
$\left(\mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}\right.$ and $\operatorname{Spin}(7)$ cases are all Ricci-flat).
- $\lambda>0$ QK Wolf Spaces, LeBrun-Salamon conjecture.

$$
\begin{gathered}
\frac{\mathrm{Sp}(k+1)}{\mathrm{Sp}(k) \times \mathrm{Sp}(1)}, \quad \frac{\mathrm{SU}(m+2)}{\mathrm{S}(\mathrm{U}(m) \times \mathrm{U}(2))}, \quad \frac{\mathrm{SO}(n+4)}{\mathrm{S}(\mathrm{O}(n) \times \mathrm{O}(4))}, \\
\frac{\mathrm{E}_{6}}{} \\
\frac{\mathrm{E}_{8}}{\mathrm{SU}(6) \mathrm{SU}(2)}, \quad \frac{\mathrm{E}_{7}}{\mathrm{Spin}(12) \mathrm{Sp}(1)}, \quad \frac{\mathrm{E}_{8}}{\mathrm{E}_{7} \mathrm{Sp}(1)}, \quad \frac{\mathrm{F}_{4}}{\mathrm{Sp}(3) \mathrm{Sp}(1)} \quad \frac{\mathrm{G}_{2}}{\mathrm{SO}(4)}
\end{gathered}
$$

R. Wolf (1965), S. Salamon (1982), C. LeBrun \& S. Salamon (1994).

- $\lambda=0 \quad \mathrm{HK} \quad \Phi \subseteq \mathrm{Sp}(k) \subset \mathrm{Sp}(k) \mathrm{Sp}(1) \subset \mathrm{SO}(n)$.

HK manifolds are Kähler $\quad \mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)$.
Geneeral QK manifolds are not Kähler $\operatorname{Sp}(k) \operatorname{Sp}(1) \not \subset \mathrm{U}(m)$.

- $\lambda<0$ QK- Alekseevskii Spaces (Homogeneous)
D. Alekseevskii (1975), V. Cortes (1996), A. Van Proeyen.

QK Geometry

- $\Phi \subseteq \operatorname{Sp}(k) \operatorname{Sp}(1) \rightarrow R i c=\lambda g$. EINSTEIN
$\left(\mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}\right.$ and $\operatorname{Spin}(7)$ cases are all Ricci-flat).
- $\lambda>0$ QK Wolf Spaces, LeBrun-Salamon conjecture.

$$
\begin{gathered}
\frac{\mathrm{Sp}(k+1)}{\mathrm{Sp}(k) \times \mathrm{Sp}(1)}, \quad \frac{\mathrm{SU}(m+2)}{\mathrm{S}(\mathrm{U}(m) \times \mathrm{U}(2))}, \quad \frac{\mathrm{SO}(n+4)}{\mathrm{S}(\mathrm{O}(n) \times \mathrm{O}(4))}, \\
\frac{\mathrm{E}_{6}}{} \\
\frac{\mathrm{E}_{7}}{\mathrm{SU}(6) \mathrm{SU}(2)}, \quad \frac{\mathrm{E}_{8}}{\mathrm{Spin}(12) \mathrm{Sp}(1)}, \quad \frac{\mathrm{E}_{4}}{\mathrm{E}_{7} \mathrm{Sp}(1)}, \quad \frac{\mathrm{F}_{4}}{\mathrm{Sp}(3) \mathrm{Sp}(1)} \quad \frac{\mathrm{G}_{2}}{\mathrm{SO}(4)}
\end{gathered}
$$

R. Wolf (1965), S. Salamon (1982), C. LeBrun \& S. Salamon (1994).

- $\lambda=0 \quad \mathrm{HK} \quad \Phi \subseteq \operatorname{Sp}(k) \subset \operatorname{Sp}(k) \operatorname{Sp}(1) \subset \mathrm{SO}(n)$.

HK manifolds are Kähler $\quad \mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)$.
Geneeral QK manifolds are not Kähler $\operatorname{Sp}(k) \operatorname{Sp}(1) \not \subset \mathrm{U}(m)$.

- $\lambda<0$ QK- Alekseevskii Spaces (Homogeneous)
D. Alekseevskii (1975), V. Cortes (1996), A. Van Proeyen.
- In the following, when referring to QK manifolds we mean $\lambda \neq 0$.

Operational definitions for QK

Definition

A QK manifold is a Riemannian 4k-manifold $\left\{M^{4 k}, g\right\}$ equipped with a family of three compatible almost complex structures $\mathcal{J}=\left\{J_{i}\right\}_{1}^{3}$

$$
g\left(J_{i} \cdot, J_{i} \cdot\right)=g(\cdot, \cdot), \quad i=1,2,3
$$

satisfying the algebra of imaginary quaternions

$$
J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=J_{1} J_{2} J_{3}=-\mathbf{1}
$$

such that \mathcal{J} is preserved by the Levi-Civita connection

$$
\nabla_{X}^{L C} J_{i}=\alpha_{k}(X) J_{j}-\alpha_{j}(X) J_{k} \quad(i, j, k \text { cyclic })
$$

for certain 1-forms $\alpha_{i}, \alpha_{j}, \alpha_{k}$.

Non-integrable geometries

Definition

A G-structure is a reduction of the bundle of linear frames $L(M)$ to a subbundle with (prescribed) structure group G.

- A G-structure is defined by the existence of some globally-defined G-invariant tensors $\eta_{1}, \eta_{2}, \ldots$.

Non-integrable geometries

Definition

A G-structure is a reduction of the bundle of linear frames $L(M)$ to a subbundle with (prescribed) structure group G.

- A G-structure is defined by the existence of some globally-defined G-invariant tensors $\eta_{1}, \eta_{2}, \ldots$
- In general, $\Phi \nsubseteq G$ (non-integrable case), however

Theorem

$$
\nabla^{L C} \eta=0 \longleftrightarrow \Phi \subseteq G
$$

Non-integrable geometries

Definition

A G-structure is a reduction of the bundle of linear frames $L(M)$ to a subbundle with (prescribed) structure group G.

- A G-structure is defined by the existence of some globally-defined G-invariant tensors $\eta_{1}, \eta_{2}, \ldots$.
- In general, $\Phi \nsubseteq G$ (non-integrable case), however

Theorem

$$
\nabla^{L C} \eta=0 \longleftrightarrow \Phi \subseteq G
$$

- Each G-irreducible component of the tensor $\nabla^{L C} \eta$ characterises a family of non-integrable geometries which bare some particular resemblance with the integrable case $\Phi \subseteq G$.

Example: Almost Hermitian (AH) Manifolds

- Let $\left\{M^{2 m}, g, J\right\}$ be an AH manifold, i.e. a Riemannian $2 m$-manifold $\left\{M^{2 m}, g\right\}$ together with a compatible almost complex structure

$$
g(J \cdot, J \cdot)=g(\cdot, \cdot)
$$

目 A. Gray \& L. Hervella (1980).

Example: Almost Hermitian (AH) Manifolds

- Let $\left\{M^{2 m}, g, J\right\}$ be an AH manifold, i.e. a Riemannian 2m-manifold $\left\{M^{2 m}, g\right\}$ together with a compatible almost complex structure

$$
g(J \cdot, J \cdot)=g(\cdot, \cdot)
$$

- The group leaving invariant the metric g and the almost-complex structure J is $U(m)$. The Kähler 2-form ω is the $U(m)$-invariant tensor defining the $U(m)$-structure.
A. Gray \& L. Hervella (1980).

Example: Almost Hermitian (AH) Manifolds

- Let $\left\{M^{2 m}, g, J\right\}$ be an AH manifold, i.e. a Riemannian 2m-manifold $\left\{M^{2 m}, g\right\}$ together with a compatible almost complex structure

$$
g(J \cdot, J \cdot)=g(\cdot, \cdot)
$$

- The group leaving invariant the metric g and the almost-complex structure J is $U(m)$. The Kähler 2-form ω is the $U(m)$-invariant tensor defining the $U(m)$-structure.
- Integrable Case: $\nabla^{L C} \omega=0 \Rightarrow \Phi \subseteq U(m)$, i.e., Kähler manifold.

固 A. Gray \& L. Hervella (1980).

Example: Almost Hermitian (AH) Manifolds

- Let $\left\{M^{2 m}, g, J\right\}$ be an AH manifold, i.e. a Riemannian $2 m$-manifold $\left\{M^{2 m}, g\right\}$ together with a compatible almost complex structure

$$
g(J \cdot, J \cdot)=g(\cdot, \cdot) .
$$

- The group leaving invariant the metric g and the almost-complex structure J is $U(m)$. The Kähler 2-form ω is the $U(m)$-invariant tensor defining the $U(m)$-structure.
- Integrable Case: $\nabla^{L C} \omega=0 \Rightarrow \Phi \subseteq U(m)$, i.e., Kähler manifold.
- Non-integrable Case: $\nabla^{L C} \omega \neq 0$. The tensor $\nabla^{L C} \omega$ decomposes with respect to the action of $U(m)$ in 4 components usually denoted by

$$
\nabla^{L C} \omega=\llbracket T \rrbracket \oplus \llbracket \Lambda^{3,0} \rrbracket \oplus \llbracket \Lambda_{0}^{2,1} \rrbracket \oplus \llbracket \Lambda^{1,0} \rrbracket
$$

固 A. Gray \& L. Hervella (1980).

Example: Almost Hermitian (AH) Manifolds

- Let $\left\{M^{2 m}, g, J\right\}$ be an AH manifold, i.e. a Riemannian $2 m$-manifold $\left\{M^{2 m}, g\right\}$ together with a compatible almost complex structure

$$
g(J \cdot, J \cdot)=g(\cdot, \cdot)
$$

- The group leaving invariant the metric g and the almost-complex structure J is $U(m)$. The Kähler 2-form ω is the $U(m)$-invariant tensor defining the $U(m)$-structure.
- Integrable Case: $\nabla^{L C} \omega=0 \Rightarrow \Phi \subseteq U(m)$, i.e., Kähler manifold.
- Non-integrable Case: $\nabla^{L C} \omega \neq 0$. The tensor $\nabla^{L C} \omega$ decomposes with respect to the action of $U(m)$ in 4 components usually denoted by

$$
\nabla^{L C} \omega=\llbracket T \rrbracket \oplus \llbracket \Lambda^{3,0} \rrbracket \oplus \llbracket \Lambda_{0}^{2,1} \rrbracket \oplus \llbracket \Lambda^{1,0} \rrbracket
$$

- $2^{4}=16$ posiblities (Kähler, nearly Kähler, almost Kähler, locally conformal to Kähler, quasi Kähler, semi-Kähler, etc...)

固 A. Gray \& L. Hervella (1980).

Almost Quaternionic Hermitian (AQH) manifolds

Definition

A Riemannian $4 k$-manifold with $\operatorname{Sp}(k) \operatorname{Sp}(1)$-structure is called Almost Quaternionic Hermitian (AQH).

- The AQH structure is defined by the global $\operatorname{Sp}(k) \operatorname{Sp}(1)$-invariant 4-form Ω

Almost Quaternionic Hermitian (AQH) manifolds

Definition

A Riemannian $4 k$-manifold with $\operatorname{Sp}(k) \operatorname{Sp}(1)$-structure is called Almost Quaternionic Hermitian (AQH).

- The AQH structure is defined by the global $\operatorname{Sp}(k) \operatorname{Sp}(1)$-invariant 4-form Ω
- Ω can be written in terms of the (local) Kähler 2-forms ω_{i} associated to the J_{i}

$$
\Omega=\sum_{i} \omega_{i}^{2}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}
$$

Almost Quaternionic Hermitian (AQH) manifolds

Definition

A Riemannian $4 k$-manifold with $\operatorname{Sp}(k) \operatorname{Sp}(1)$-structure is called Almost Quaternionic Hermitian (AQH).

- The AQH structure is defined by the global $\operatorname{Sp}(k) \operatorname{Sp}(1)$-invariant 4-form Ω
- Ω can be written in terms of the (local) Kähler 2-forms ω_{i} associated to the J_{i}

$$
\Omega=\sum_{i} \omega_{i}^{2}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}
$$

Theorem

An $A Q H$ manifold is $Q K$ if and only if $\nabla^{L C} \Omega=0$.

Operational definition of AQH manifold

Definition

An AQH manifold is a Riemannian $4 k$-manifold $\left\{M^{4 k}, g\right\}$ equipped with a family of three compatible almost complex structures $\mathcal{J}=\left\{J_{i}\right\}_{1}^{3}$

$$
g\left(J_{i} \cdot, J_{i} \cdot\right)=g(\cdot, \cdot), \quad i=1,2,3
$$

satisfying the algebra of imaginary quaternions

$$
J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=J_{1} J_{2} J_{3}=-\mathbf{1}
$$

Nearly Quaternionic Manifold(s)

(1) INTRODUCTION: QK GEOMETRY AQH GEOMETRY

(2) INTRINSIC TORSION AND IDEAL GEOMETRY

(3) NEARLY QUATERNIONIC STRUCTURE

EH-Formalism

Representation theory notation for $\operatorname{Sp}(k) \operatorname{Sp}(1)$

EH-Formalism

Representation theory notation for $\operatorname{Sp}(k) \operatorname{Sp}(1)$

- $E \simeq \mathbb{C}^{2 k}$ irreducible basic complex representation of $\operatorname{Sp}(k)$. (For $k=2$ equivalent to highest weight module $[1,0]$ of $\mathrm{Sp}(2)$).

EH-Formalism

Representation theory notation for $\operatorname{Sp}(k) \operatorname{Sp}(1)$

- $E \simeq \mathbb{C}^{2 k}$ irreducible basic complex representation of $\operatorname{Sp}(k)$. (For $k=2$ equivalent to highest weight module $[1,0]$ of $\operatorname{Sp}(2)$).
- Other important $\operatorname{Sp}(k)$-representations will be

EH-Formalism

Representation theory notation for $\operatorname{Sp}(k) \operatorname{Sp}(1)$

- $E \simeq \mathbb{C}^{2 k}$ irreducible basic complex representation of $\operatorname{Sp}(k)$. (For $k=2$ equivalent to highest weight module $[1,0]$ of $\mathrm{Sp}(2)$).
- Other important $\operatorname{Sp}(k)$-representations will be
- K : Irreducible complex representation with highest weight [2, 1, $0, \ldots$. (For $\mathrm{Sp}(2)$, the highest weight module $[2,1], \quad K \cong \mathbb{C}^{16}$).

EH-Formalism

Representation theory notation for $\operatorname{Sp}(k) \operatorname{Sp}(1)$

- $E \simeq \mathbb{C}^{2 k}$ irreducible basic complex representation of $\operatorname{Sp}(k)$. (For $k=2$ equivalent to highest weight module $[1,0]$ of $\mathrm{Sp}(2)$).
- Other important $\operatorname{Sp}(k)$-representations will be
- K : Irreducible complex representation with highest weight [2, 1, $0, \ldots$. (For $\mathrm{Sp}(2)$, the highest weight module $[2,1], \quad K \cong \mathbb{C}^{16}$).
- $\Lambda_{0}^{3} E$: irreducible complex representation with highest weight
$[3,3,0, \ldots]$.

$$
\Lambda_{0}^{n} E=\operatorname{Coker}\left\{L: \Lambda^{n-2} E \rightarrow \Lambda^{n} E: \alpha \mapsto \omega_{E} \wedge \alpha\right\}
$$

EH-Formalism

Representation theory notation for $\operatorname{Sp}(k) \operatorname{Sp}(1)$

- $E \simeq \mathbb{C}^{2 k}$ irreducible basic complex representation of $\operatorname{Sp}(k)$. (For $k=2$ equivalent to highest weight module $[1,0]$ of $\mathrm{Sp}(2)$).
- Other important $\operatorname{Sp}(k)$-representations will be
- K : Irreducible complex representation with highest weight [2, 1, $0, \ldots$. (For $\mathrm{Sp}(2)$, the highest weight module $[2,1], \quad K \cong \mathbb{C}^{16}$).
- $\Lambda_{0}^{3} E$: irreducible complex representation with highest weight
$[3,3,0, \ldots]$.

$$
\Lambda_{0}^{n} E=\operatorname{Coker}\left\{L: \Lambda^{n-2} E \rightarrow \Lambda^{n} E: \alpha \mapsto \omega_{E} \wedge \alpha\right\}
$$

- $\mathrm{H} \simeq \mathbb{C}^{2} \simeq \mathbb{H}$ irreducible basic complex represtentation of $\operatorname{Sp}(1)$. (Highest weight [1]).

EH-Formalism

Representation theory notation for $\mathrm{Sp}(k) \mathrm{Sp}(1)$

- $E \simeq \mathbb{C}^{2 k}$ irreducible basic complex representation of $\operatorname{Sp}(k)$. (For $k=2$ equivalent to highest weight module $[1,0]$ of $\mathrm{Sp}(2)$).
- Other important $\operatorname{Sp}(k)$-representations will be
- K : Irreducible complex representation with highest weight [2, 1, $0, \ldots$. (For $\mathrm{Sp}(2)$, the highest weight module $[2,1], \quad K \cong \mathbb{C}^{16}$).
- $\Lambda_{0}^{3} E$: irreducible complex representation with highest weight
$[3,3,0, \ldots]$.

$$
\Lambda_{0}^{n} E=\operatorname{Coker}\left\{L: \Lambda^{n-2} E \rightarrow \Lambda^{n} E: \alpha \mapsto \omega_{E} \wedge \alpha\right\}
$$

- $H \simeq \mathbb{C}^{2} \simeq \mathbb{H}$ irreducible basic complex represtentation of $\operatorname{Sp}(1)$. (Highest weight [1]).
Locally

$$
\mathbb{C} \otimes T M=E \otimes H
$$

Intrinsic Torsion of AQH manifolds

Theorem

The intrinsic torsion of an $4 k$-manifold, $k \geq 2$ can be identified with an element $\nabla^{\llcorner C} \Omega$ in the space

$$
\left(\Lambda_{0}^{3} E \oplus K \oplus E\right) \otimes\left(H \oplus S^{3} H\right) \quad \begin{array}{|c|c|c|}
\hline E S^{3} H & \Lambda_{0}^{3} E S^{3} H & K S^{3} H \\
\hline E H & \Lambda_{0}^{3} E H & K H \\
\hline
\end{array}
$$

For $k=2$, the intrinsic torsion belongs to

$$
E S^{3} H \oplus K S^{3} H \oplus K H \oplus E H \quad \begin{array}{|c|c|}
\hline E S^{3} H & K S^{3} H \\
\hline E H & K H \\
\hline
\end{array}
$$

A. Swann, (1989).

$d \Omega=0$

Theorem

An AQH 4k-manifold, $4 k \geq 12$ is $Q K$ if and only if $d \Omega=0$

$$
d \Omega=0 \longleftrightarrow \nabla^{L C} \Omega \in \begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
\hline
\end{array}
$$

$d \Omega=0$

Theorem

An AQH 4k-manifold, $4 k \geq 12$ is $Q K$ if and only if $d \Omega=0$

$$
d \Omega=0 \longleftrightarrow \nabla^{L C} \Omega \in \begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
\hline
\end{array}
$$

For an AQH 8-manifold, $k=2$,

$$
d \Omega=0 \longleftrightarrow \nabla^{L C} \Omega \in \begin{array}{|l|l|}
\hline & K S^{3} H \\
\hline & \\
\hline
\end{array}
$$

E A. Swann (1989).

$A Q H 8 \xrightarrow{?}$ QK8

Theorem

The Kähler 2-forms $\left\{\omega_{i}\right\}$ of an AQH 8-manifold generate a differential ideal if and only if $\nabla^{L C} \Omega \in E S^{3} H \oplus E H$,

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M \longleftrightarrow \begin{array}{|c|c|}
\hline E S^{3} H & \\
\hline E H & \\
\hline
\end{array}
$$

AQH8 $\xrightarrow{?}$ QK8

Theorem

The Kähler 2-forms $\left\{\omega_{i}\right\}$ of an AQH 8-manifold generate a differential ideal if and only if $\nabla^{L C} \Omega \in E S^{3} H \oplus E H$,

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M \longleftrightarrow \begin{array}{|c|c|}
\hline E S^{3} H & \\
\hline E H & \\
\hline
\end{array}
$$

An AQH 8-manifold is QK iff
(1) $d \Omega=0$
(2) $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$

	$K S^{3} H$

E A. Swann (1991).

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \operatorname{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.
囯 S. Salamon (2001).

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \mathrm{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.
E S. Salamon (2001).

- NON-QK AQH8: $d \Omega=0$
(Satisfies condition 1, not 2)

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \mathrm{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.

囯 S. Salamon (2001).

- NON-QK AQH8 : $d \Omega=0 \quad$ (Satisfies condition 1, not 2)
\Longrightarrow Relation between AQH \& QK geometry in 8 dimensions is special.

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \mathrm{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.
S. Salamon (2001).

- NON-QK AQH8 : $d \Omega=0 \quad$ (Satisfies condition 1, not 2)
\Longrightarrow Relation between AQH \& QK geometry in 8 dimensions is special.
- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}($ Satisfies condition 2, not 1) ?

Ideal condition

$$
\mathrm{d} \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M
$$

CHANGE OF BASE: $\left\{\omega_{i}\right\} \mapsto\left\{\widetilde{\omega}_{i}\right\}$

$$
\widetilde{\omega}_{i}=\sum_{j=1}^{3} A_{i}^{j} \omega_{j}, \quad A=\left(A_{i}^{j}\right) \in \mathrm{SO}(3)
$$

- The matrix β transforms as a connection

$$
d \widetilde{\omega}_{i}=\sum_{j=1}^{3} \widetilde{\beta}_{i}^{j} \wedge \widetilde{\omega}_{j} \quad: \quad \widetilde{\beta}=A^{-1} d A+\operatorname{Ad}\left(A^{-1}\right) \beta
$$

Ideal condition

$$
\mathrm{d} \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M
$$

CHANGE OF BASE: $\left\{\omega_{i}\right\} \mapsto\left\{\widetilde{\omega}_{i}\right\}$

$$
\widetilde{\omega}_{i}=\sum_{j=1}^{3} A_{i}^{j} \omega_{j}, \quad A=\left(A_{i}^{j}\right) \in \mathrm{SO}(3)
$$

- The matrix β transforms as a connection

$$
d \widetilde{\omega}_{i}=\sum_{j=1}^{3} \widetilde{\beta}_{i}^{j} \wedge \widetilde{\omega}_{j} \quad: \quad \widetilde{\beta}=A^{-1} d A+\operatorname{Ad}\left(A^{-1}\right) \beta
$$

- However, this connection does not reduce to $\mathrm{SO}(3)$ unless β is anti-symmetric.

Ideal condition

$$
\mathrm{d} \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M
$$

CHANGE OF BASE: $\left\{\omega_{i}\right\} \mapsto\left\{\widetilde{\omega}_{i}\right\}$

$$
\widetilde{\omega}_{i}=\sum_{j=1}^{3} A_{i}^{j} \omega_{j}, \quad A=\left(A_{i}^{j}\right) \in \mathrm{SO}(3)
$$

- The matrix β transforms as a connection

$$
d \widetilde{\omega}_{i}=\sum_{j=1}^{3} \widetilde{\beta}_{i}^{j} \wedge \widetilde{\omega}_{j} \quad: \quad \widetilde{\beta}=A^{-1} d A+\operatorname{Ad}\left(A^{-1}\right) \beta
$$

- However, this connection does not reduce to $\mathrm{SO}(3)$ unless β is anti-symmetric.
- Consider the decomposition

$$
\beta=\alpha+\sigma, \quad \alpha_{i}^{j}=\frac{1}{2}\left(\beta_{i}^{j}-\beta_{j}^{i}\right) \quad \sigma_{i}^{j}=\frac{1}{2}\left(\beta_{i}^{j}+\beta_{j}^{i}\right)
$$

- The symmetric part σ transforms as a tensor:

$$
\widetilde{\sigma}=\operatorname{Ad}\left(A^{-1}\right) \sigma=A^{-1} \sigma A .
$$

- The tensor σ can be identified with the remaining non-zero components of intrinsic torsion

$$
\begin{gathered}
E S^{3} H \oplus E H \\
d \Omega=2 \sum_{i=1}^{3} d \omega_{i} \wedge \omega_{i}=2 \sum_{i, j=1}^{3} \sigma_{i}^{j} \wedge \omega_{i} \wedge \omega_{j} .
\end{gathered}
$$

- The symmetric part σ transforms as a tensor:

$$
\widetilde{\sigma}=\operatorname{Ad}\left(A^{-1}\right) \sigma=A^{-1} \sigma A
$$

- The tensor σ can be identified with the remaining non-zero components of intrinsic torsion

$$
\begin{gathered}
E S^{3} H \oplus E H \\
d \Omega=2 \sum_{i=1}^{3} d \omega_{i} \wedge \omega_{i}=2 \sum_{i, j=1}^{3} \sigma_{i}^{j} \wedge \omega_{i} \wedge \omega_{j}
\end{gathered}
$$

Lemma

If an $\mathrm{Sp}(2) \mathrm{Sp}(1)$-structure satisfies the ideal condition then its intrinsic torsion belongs to $E S^{3} H$ if and only if $\operatorname{tr}(\beta)=\beta_{1}^{1}+\beta_{2}^{2}+\beta_{3}^{3}=0$.

- The symmetric part σ transforms as a tensor:

$$
\widetilde{\sigma}=\operatorname{Ad}\left(A^{-1}\right) \sigma=A^{-1} \sigma A
$$

- The tensor σ can be identified with the remaining non-zero components of intrinsic torsion

$$
\begin{gathered}
E S^{3} H \oplus E H \\
d \Omega=2 \sum_{i=1}^{3} d \omega_{i} \wedge \omega_{i}=2 \sum_{i, j=1}^{3} \sigma_{i}^{j} \wedge \omega_{i} \wedge \omega_{j}
\end{gathered}
$$

Lemma

If an $\mathrm{Sp}(2) \mathrm{Sp}(1)$-structure satisfies the ideal condition then its intrinsic torsion belongs to $E S^{3} H$ if and only if $\operatorname{tr}(\beta)=\beta_{1}^{1}+\beta_{2}^{2}+\beta_{3}^{3}=0$.

Corollary

Let $\{M, g, \mathcal{J}\}$ be an $A Q H$ 8-manifold. It is $Q K$ if and only if generates a differential ideal with $\sigma=0$, so that the ideal condition applies with $\beta_{i}^{j}=-\beta_{j}^{i}$.

Geometry of the ideal condition

Consider the matrix $B=\left(B_{i}^{j}\right)$ of curvature 2-forms associated to the connection defined through β.

$$
0=d^{2} \omega_{i}=\sum_{j}\left(d \beta_{i}^{j}-{ }_{k} \beta_{i}^{k} \wedge \beta_{k}^{j}\right) \wedge \omega_{k}=\sum_{j} B_{i}^{j} \wedge \omega_{j}
$$

Geometry of the ideal condition

Consider the matrix $B=\left(B_{i}^{j}\right)$ of curvature 2-forms associated to the connection defined through β.

$$
0=d^{2} \omega_{i}=\sum_{j}\left(d \beta_{i}^{j}-{ }_{k} \beta_{i}^{k} \wedge \beta_{k}^{j}\right) \wedge \omega_{k}=\sum_{j} B_{i}^{j} \wedge \omega_{j}
$$

- In particular, they have no $S^{2} E$ component, thus

$$
B_{i}^{j} \in S^{2} H \oplus \Lambda_{0}^{2} E S^{2} H \subset \Lambda^{2} T^{*} M
$$

Geometry of the ideal condition

Consider the matrix $B=\left(B_{i}^{j}\right)$ of curvature 2-forms associated to the connection defined through β.

$$
0=d^{2} \omega_{i}=\sum_{j}\left(d \beta_{i}^{j}-{ }_{k} \beta_{i}^{k} \wedge \beta_{k}^{j}\right) \wedge \omega_{k}=\sum_{j} B_{i}^{j} \wedge \omega_{j}
$$

- In particular, they have no $S^{2} E$ component, thus

$$
B_{i}^{j} \in S^{2} H \oplus \Lambda_{0}^{2} E S^{2} H \subset \Lambda^{2} T^{*} M
$$

- In contrast to the QK case, there will in general be a component of B_{i}^{j} in $\Lambda_{0}^{2} E S^{2} H$.

Nearly Quaternionic Manifold(s)

(1) INTRODUCTION: QK GEOMETRY AQH GEOMETRY

(2) INTRINSIC TORSION AND IDEAL GEOMETRY
(3) NEARLY QUATERNIONIC STRUCTURE

Factorisation of $\mathrm{SO}(3) \subset \mathrm{SO}(8)$

$\mathrm{SO}(3) \subset \mathrm{SO}(8)$ factors through $\operatorname{Sp}(2) \mathrm{Sp}(1) \equiv \operatorname{Sp}(2) \times_{\mathbb{Z}_{2}} \operatorname{Sp}(1)$ in a unique way.

$$
\begin{gathered}
\mathrm{SO}(3) \longrightarrow \mathrm{SO}(8) \\
{[\rho, \mathbf{1}] \downarrow} \\
\mathrm{Sp}(2) \mathrm{Sp}(1) \longrightarrow \mathrm{SO}(8) \\
\mathbf{1}: \mathrm{SO}(3) \simeq \mathrm{SU}(2) \simeq \operatorname{Sp}(1) \\
\rho: \mathrm{SO}(3) \simeq \operatorname{Sp}(1) \\
X \in \mathrm{SO}(3) \longmapsto(\rho(X), \mathbf{1}(X)) \in \mathrm{Sp}(2) \times \mathrm{Sp}(1) \\
{[\rho(X), \mathbf{1}(x)] \in \mathrm{Sp}(2) \mathrm{Sp}(1)}
\end{gathered}
$$

SO (3) Intrinsic torsion from $\mathrm{Sp}(2) \mathrm{Sp}(1)$

- Let H denote the basic representation of $\mathrm{SO}(3)$ identified with $\mathrm{Sp}(1)$, the irreducible action ρ of $\operatorname{Sp}(1)$ embedded on $\operatorname{Sp}(2)$ gives the identification

$$
E=S^{3} H
$$

- The $\operatorname{Sp}(2)$-modules are reducible with respect to the action of $\mathrm{SO}(3)$. $E H \oplus K H \oplus E S^{3} H \oplus K S^{3} H$

$$
\begin{aligned}
& W_{1}:=E S^{3} H \longrightarrow S^{6} H \oplus S^{4} H \oplus S^{2} H \oplus \mathbb{R} \\
& W_{2}:=K S^{3} H \longrightarrow S^{10} H \oplus 2 S^{8} H \oplus 2 S^{6} H \oplus 3 S^{4} H \oplus 2 S^{2} H \\
& W_{3}:=K H \longrightarrow S^{8} H \oplus 2 S^{6} H \oplus S^{4} H \oplus S^{2} H \oplus \mathbb{R} \\
& W_{4}:=E H \longrightarrow \\
& S^{4} H \oplus S^{2} H
\end{aligned}
$$

- The $\mathrm{SO}(3)$-structure described has intrinsic torsion obstructions on

$$
K H \oplus E S^{3} H .
$$

Action of $\mathrm{SO}(3)$ on $\mathrm{SU}(3)$

- If $\mathrm{SO}(3) \rightarrow \mathrm{Sp}(2) \mathrm{Sp}(1) \rightarrow \mathrm{SO}(8)$ then,

$$
\mathbb{C} \otimes T M=E \otimes H=S^{3} H \otimes H=S^{4} H \oplus S^{2} H
$$

- The $\mathrm{SO}(3)$ action leads to a $\mathfrak{s o}(3)$ family of endomorphisms

$$
\mathfrak{s o}(3) \simeq S^{2} H \subset \operatorname{End}(T)
$$

- Take the manifold

$$
\begin{gathered}
M=S U(3) \rightarrow T_{x} M \simeq \mathfrak{s u}(3) \\
\mathfrak{s u}(3)=\mathfrak{b} \oplus \mathfrak{p}:\left\{\begin{array}{l}
\mathfrak{b} \simeq \mathfrak{s o}(3) \subset \mathfrak{s u}(3), \quad \mathfrak{b} \simeq S^{2} H \\
\mathfrak{p} \simeq \operatorname{Span}\left\{i S: S=S^{t}, \operatorname{Tr}(S)=0\right\} \simeq S^{4} H .
\end{array}\right.
\end{gathered}
$$

- Then the action of $\mathrm{SO}(3)$ on $\mathrm{SU}(3)$ is given on tangent space as the action of $S^{2} H \simeq \mathfrak{s o}(3) \subset E n d(T)$ on $\mathfrak{s u}(3)=S^{4} H \oplus S^{2} H$

$$
\phi: S^{2} H \otimes(\mathfrak{b} \oplus \mathfrak{p}) \rightarrow \mathfrak{b} \oplus \mathfrak{p}
$$

The mapping ϕ

$$
\phi=\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}
$$

$$
\begin{aligned}
\phi_{1}:\left(S^{2} H \otimes \mathfrak{b}\right)=S^{4} H \otimes S^{2} H \otimes S^{0} H & \longrightarrow S^{2} H=\mathfrak{b} \\
(A, B) & \longmapsto[A, B]
\end{aligned}
$$

$$
\phi_{2}:\left(S^{2} H \otimes \mathfrak{b}\right)=S^{4} H \otimes S^{2} H \otimes S^{0} H \quad \longrightarrow \quad S^{4} H=\mathfrak{p}
$$

$$
(A, B) \longmapsto i\left(\{A, B\}-\frac{2}{3} \operatorname{Tr}(A B) \mathbf{1}\right)
$$

$\phi_{3}:\left(S^{2} H \otimes \mathfrak{p}\right)=S^{6} H \otimes S^{4} H \otimes S^{2} H \quad \longrightarrow \quad S^{2} H=\mathfrak{b}$ $(A, C) \longmapsto i\{A, C\}$

$$
\begin{aligned}
\phi_{4}:\left(S^{2} H \otimes \mathfrak{p}\right)=S^{6} H \otimes S^{4} H \otimes S^{2} H & \longrightarrow S^{4} H=\mathfrak{p} \\
(A, C) & \longmapsto[A, C]
\end{aligned}
$$

AQ Action of SO(3) on SU(3)

- Denote the action defined by ϕ with the dot-product
$A \cdot X=\lambda_{1}\left[A, X^{a}\right]+i \lambda_{2}\left(\left\{A, X^{a}\right\}-\frac{2}{3} \operatorname{Tr}\left(A X^{a}\right)\right)+i \lambda_{3}\left\{A, X^{s}\right\}+\lambda_{4}\left[A, X^{s}\right]$. for $A \in \mathfrak{s o}(3), X \in \mathfrak{s u}(3)$.
- Taking $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}\right\} \in S^{2} H$ and asking the previous equation to satisfy

$$
J_{i} \cdot\left(J_{i} \cdot X\right)=-X \quad J_{1} \cdot\left(J_{2} \cdot X\right)=J_{3} \cdot X
$$

one obtains

$$
\lambda_{1}=\frac{1}{2}, \quad \lambda_{3}=-\frac{3}{4} \lambda^{-1}, \quad \lambda_{4}=-\frac{1}{2}
$$

where $\lambda=\lambda_{2}$ is a real parameter. This is a 1-parameter family of almost quaternionic actions of $\mathrm{SO}(3)$ on $\mathrm{SU}(3)$.

AQH structure on SU(3)

- Let $\left\{e_{i}\right\}_{1}^{8}$ be a base for $\mathfrak{s u}(3)$, orthonormal for a multiple of the Killing metric.
- $\mathfrak{b}=\mathfrak{s o}(3)=\operatorname{Span}\left\{e_{6}, e_{7}, e_{8}\right\}$.
- Identify $\mathcal{J}_{\lambda}=\left\{e_{6}, e_{7}, e_{8}\right\}$ acting through the 1-parameter family of AQ SO(3) actions defined by ϕ.
- Define a new metric by rescaling the \mathfrak{b} subspace

$$
g_{\lambda}=\sum_{i=1}^{i=5} e^{i} \otimes e^{i}+\frac{4 \lambda^{2}}{3} \sum_{i=6}^{i=8} e^{i} \otimes e^{i}
$$

Theorem

\mathcal{J}_{λ} is compatible with g_{λ}

- $\left\{\mathrm{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is a 1-parameter family of AQH 8-manifolds

Ideal AQH structure on SU(3)

Theorem

A set of λ-dependent Kähler 2-forms $\left\{\omega_{i}\right\}_{\lambda}$ associated to the $A Q H$ 8 -manifold $\left\{\mathrm{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is given by

$$
\begin{aligned}
& \omega_{1}=\frac{1}{2}\left(e^{15}+\sqrt{3} e^{25}+e^{34}\right)+\lambda\left(\frac{1}{\sqrt{3}} e^{28}-e^{46}+e^{37}-e^{18}\right)-\frac{2}{3} \lambda^{2} e^{67}, \\
& \omega_{2}=-e^{14}-\frac{1}{2} e^{35}+\lambda\left(\frac{2}{\sqrt{3}} e^{27}-e^{38}-e^{56}\right)-\frac{2}{3} \lambda^{2} e^{68}, \\
& \omega_{3}=\frac{1}{2}\left(e^{13}-\sqrt{3} e^{23}+e^{45}\right)+\lambda\left(\frac{1}{\sqrt{3}} e^{26}-e^{48}+e^{57}+e^{16}\right)-\frac{2}{3} \lambda^{2} e^{78}
\end{aligned}
$$

Theorem

$A Q H\left\{\mathrm{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ satisfies the ideal condition $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ if and only if

$$
\lambda^{2}=\frac{3}{20}
$$

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
\mathrm{b}_{4}(\mathrm{SU}(3))=0 \text {. }
$$

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
\mathrm{b}_{4}(\mathrm{SU}(3))=0 \text {. }
$$

Hence, for $\lambda^{2}=\frac{3}{20},\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$

- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ (Satisfies condition 2, not 1) \square

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
\mathrm{b}_{4}(\mathrm{SU}(3))=0 \text {. }
$$

Hence, for $\lambda^{2}=\frac{3}{20},\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$

- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}($ Satisfies condition 2, not 1$) \checkmark$.

$$
\operatorname{Tr}(\beta)=0 \longrightarrow \nabla^{L C} \Omega \in E S^{3} H \quad E S^{3} H \text { 年 } \begin{array}{|l|l|}
\hline & \\
\hline
\end{array}
$$

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
\mathrm{b}_{4}(\mathrm{SU}(3))=0 \text {. }
$$

Hence, for $\lambda^{2}=\frac{3}{20},\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$

- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}($ Satisfies condition 2, not 1$) \checkmark$.

$$
\operatorname{Tr}(\beta)=0 \longrightarrow \nabla^{L C} \Omega \in E S^{3} H \quad E S^{3} H \text { 年 } \begin{array}{|l|l|}
\hline & \\
\hline
\end{array}
$$

- We call this case Nearly Quaternionic (NQ) (by the analogy with the Nearly Kähler case).

Scarcity of Examples

- The Nearly Quaternionic condition

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}, \quad d \Omega \neq 0
$$

seems to be very restrictive.

Scarcity of Examples

- The Nearly Quaternionic condition

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}, \quad d \Omega \neq 0
$$

seems to be very restrictive.

- Conjecture(*): Let N^{8} be an AQH 8-nilmanifold satisfying the ideal condition, then N^{8} is hyperkähler (hence, NON-NQ)

Scarcity of Examples

- The Nearly Quaternionic condition

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}, \quad d \Omega \neq 0
$$

seems to be very restrictive.

- Conjecture(${ }^{*}$): Let N^{8} be an AQH 8-nilmanifold satisfying the ideal condition, then N^{8} is hyperkähler (hence, NON-NQ)
- Conjecture(*): No complex 8-solvmanifold (in the sense of Nakamura) satisfies the ideal condition (hence, NON-NQ).
圊 I. Nakamura (1975).

Scarcity of Examples

- The Nearly Quaternionic condition

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}, \quad d \Omega \neq 0
$$

seems to be very restrictive.

- Conjecture(${ }^{*}$): Let N^{8} be an AQH 8-nilmanifold satisfying the ideal condition, then N^{8} is hyperkähler (hence, NON-NQ)
- Conjecture(*): No complex 8-solvmanifold (in the sense of Nakamura) satisfies the ideal condition (hence, NON-NQ).

國 I. Nakamura (1975).

- None of the three almost complex structures of $\left\{\operatorname{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ is integrable.

Scarcity of Examples

- The Nearly Quaternionic condition

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}, \quad d \Omega \neq 0
$$

seems to be very restrictive.

- Conjecture(${ }^{*}$): Let N^{8} be an AQH 8-nilmanifold satisfying the ideal condition, then N^{8} is hyperkähler (hence, NON-NQ)
- Conjecture(*): No complex 8-solvmanifold (in the sense of Nakamura) satisfies the ideal condition (hence, NON-NQ).

囯 I. Nakamura (1975).

- None of the three almost complex structures of $\left\{\operatorname{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ is integrable.
- The noncompact version SL(3) does not admit an AQH $\mathrm{SO}(3)$-structure of the kind described above (NON-NQ).

Scarcity of Examples

- The Nearly Quaternionic condition

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}, \quad d \Omega \neq 0
$$

seems to be very restrictive.

- Conjecture(${ }^{*}$): Let N^{8} be an AQH 8-nilmanifold satisfying the ideal condition, then N^{8} is hyperkähler (hence, NON-NQ)
- Conjecture(*): No complex 8-solvmanifold (in the sense of Nakamura) satisfies the ideal condition (hence, NON-NQ).
目 I. Nakamura (1975).
- None of the three almost complex structures of $\left\{\operatorname{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ is integrable.
- The noncompact version SL(3) does not admit an AQH $\mathrm{SO}(3)$-structure of the kind described above (NON-NQ).

Is there any other case apart from $\left\{\mathrm{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$?

Invariant SO(3)-Structure

- We know that the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion belongs to $W_{1}=E S^{3} H$.

Invariant SO(3)-Structure

- We know that the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion belongs to $W_{1}=E S^{3} H$.
- From the $\mathrm{SO}(3)$-perspective, it belongs in fact to the 1 -dimensional subspace

$$
\mathbb{R} \subset S^{6} H \oplus S^{4} H \oplus S^{2} H \oplus \mathbb{R} \equiv E S^{3} H=W_{1}
$$

Thus $\left\{\mathrm{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ has INVARIANT SO(3)-torsion.

Invariant SO(3)-Structure

- We know that the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion belongs to $W_{1}=E S^{3} H$.
- From the $\mathrm{SO}(3)$-perspective, it belongs in fact to the 1 -dimensional subspace

$$
\mathbb{R} \subset S^{6} H \oplus S^{4} H \oplus S^{2} H \oplus \mathbb{R} \equiv E S^{3} H=W_{1}
$$

Thus $\left\{\mathrm{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ has INVARIANT SO(3)-torsion.

- It has been shown that $\operatorname{SU}(3)$ admits an Hypercomplex structcture arising from a different subalgebra different to \mathfrak{b} leading to an AQH structure with intrinsic torsion in $W_{3} \oplus W_{4}$.
围 Ph.Spindel, A. Servin, W. Troost \& A. Van Proeyen, (1988). D. Joyce, (1992)

Invariant SO(3)-Structure

- We know that the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion belongs to $W_{1}=E S^{3} H$.
- From the $\mathrm{SO}(3)$-perspective, it belongs in fact to the 1 -dimensional subspace

$$
\mathbb{R} \subset S^{6} H \oplus S^{4} H \oplus S^{2} H \oplus \mathbb{R} \equiv E S^{3} H=W_{1}
$$

Thus $\left\{\mathrm{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ has INVARIANT SO(3)-torsion.

- It has been shown that $\mathrm{SU}(3)$ admits an Hypercomplex structcture arising from a different subalgebra different to \mathfrak{b} leading to an AQH structure with intrinsic torsion in $W_{3} \oplus W_{4}$.
國 Ph.Spindel, A. Servin, W. Troost \& A. Van Proeyen, (1988). D. Joyce, (1992)
- In our case, $\mathrm{SU}(3)$ cannot admit an $\mathrm{SO}(3)$-invariant quaternionic structure.

SO(3)-structures with invariant torsion

- The $\mathrm{SO}(3)$-intrinsic torsion is a 200-dimensional space with 3-invariants

$$
2 S^{10} H \oplus 5 S^{8} H \oplus 8 S^{6} H \oplus 10 S^{4} H \oplus 8 S^{2} H \oplus 3 \mathbb{R}
$$

围 S.Chiossi \& O.M. (in progress)

SO(3)-structures with invariant torsion

- The $\mathrm{SO}(3)$-intrinsic torsion is a 200 -dimensional space with 3-invariants

$$
2 S^{10} H \oplus 5 S^{8} H \oplus 8 S^{6} H \oplus 10 S^{4} H \oplus 8 S^{2} H \oplus 3 \mathbb{R}
$$

- Two of these invariants appear in the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion

$$
S^{10} H \oplus 3 S^{8} H \oplus 5 S^{6} H \oplus 6 S^{4} H \oplus 5 S^{2} H \oplus 2 \mathbb{R}
$$

围 S.Chiossi \& O.M. (in progress)

SO(3)-structures with invariant torsion

- The SO(3)-intrinsic torsion is a 200-dimensional space with 3-invariants

$$
2 S^{10} H \oplus 5 S^{8} H \oplus 8 S^{6} H \oplus 10 S^{4} H \oplus 8 S^{2} H \oplus 3 \mathbb{R}
$$

- Two of these invariants appear in the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion

$$
S^{10} H \oplus 3 S^{8} H \oplus 5 S^{6} H \oplus 6 S^{4} H \oplus 5 S^{2} H \oplus 2 \mathbb{R}
$$

- The example $\left\{\mathrm{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ has one of these invariant $\mathrm{SO}(3)$-structures.

围 S.Chiossi \& O.M. (in progress)

SO(3)-structures with invariant torsion

- The SO(3)-intrinsic torsion is a 200-dimensional space with 3-invariants

$$
2 S^{10} H \oplus 5 S^{8} H \oplus 8 S^{6} H \oplus 10 S^{4} H \oplus 8 S^{2} H \oplus 3 \mathbb{R}
$$

- Two of these invariants appear in the $\operatorname{Sp}(2) \operatorname{Sp}(1)$-intrinsic torsion

$$
S^{10} H \oplus 3 S^{8} H \oplus 5 S^{6} H \oplus 6 S^{4} H \oplus 5 S^{2} H \oplus 2 \mathbb{R}
$$

- The example $\left\{\mathrm{SU}(3), \mathcal{J}_{\sqrt{3 / 20}}, g_{\sqrt{3 / 20}}\right\}$ has one of these invariant $\mathrm{SO}(3)$-structures.
- The $\mathrm{SO}(3)$-structure is determined by six forms of different degrees $\left\{\alpha^{3}, \beta^{3}, \gamma^{4}, \delta^{4}, * \alpha^{5}, * \beta^{5}\right\}$ (instead of the only 4 -form Ω) and the curvature 2 -form B of the connection β can be written in terms of these invariant forms.

圁 S.Chiossi \& O.M. (in progress)

Thank You

