SO(3)-structures on AQH 8-manifolds

Óscar Maciá

Polytechnic University of Turin
oscarmacia@calvino.polito.it
Valencia, December 18, 2009

References

固 O.M., A nearly quaternionic structure on SU(3), math.DG 0908.4183 (2009).
S.Chiossi, O.M., SO(3)-structures on 8-manifolds, to appear.

SO(3)-structures on AQH 8-manifolds

(1) INTRODUCTION: QK GEOMETRY AQH GEOMETRY
(2) INTRINSIC TORSION AND IDEAL GEOMETRY
(3) NEARLY QUATERNIONIC STRUCTURE

RIEMANNIAN HOLONOMY

Let $\{M, g\}$ be a Riemannian manifold.
Let $c:[0,1] \rightarrow M$ a smooth curve on M from x to y. The Levi-Civita connection determines horizontal transport of vectors on TM along the curve c

Transport.png

Berger's List

Theorem

(Berger, 1955) Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list list ($n=2 m=4 k$) :

```
SO}(n),\textrm{U}(m),\textrm{SU}(m),\operatorname{Sp}(k),\mp@subsup{G}{2}{},\operatorname{Spin}(7),Spin(9)+,Sp(k)Sp(1
```


Berger's List

Theorem

(Berger, 1955) Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list list ($n=2 m=4 k)$:

```
\(\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \operatorname{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Spin}(9)^{\dagger}, \operatorname{Sp}(k) \operatorname{Sp}(1)\)
```

- $\mathrm{SO}(n)$: Generic Riemannian geometry

Berger's List

Theorem

(Berger, 1955) Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list list ($n=2 m=4 k$) :

$$
\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Spin}(9)^{\dagger}, \mathrm{Sp}(k) \operatorname{Sp}(1)
$$

- $\operatorname{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).

Berger's List

Theorem

(Berger, 1955) Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list list ($n=2 m=4 k$):

$$
\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Spin}(9)^{+}, \mathrm{Sp}(k) \mathrm{Sp}(1)
$$

- $\operatorname{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).
- $\mathrm{G}_{2}, \operatorname{Spin}(7)$: Exceptional holonomy. Exist only in dimension 7 and 8.

Berger's List

Theorem

(Berger, 1955) Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list list ($n=2 m=4 k$) :

$$
\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \operatorname{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Spin}(9)^{\dagger}, \operatorname{Sp}(k) \operatorname{Sp}(1)
$$

- $\mathrm{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).
- $\mathrm{G}_{2}, \operatorname{Spin}(7)$: Exceptional holonomy. Exist only in dimension 7 and 8.
- $\operatorname{Sp}(k) \operatorname{Sp}(1):=\operatorname{Sp}(k) \times_{\mathbb{Z}_{2}} \operatorname{Sp}(1)$ Quaternionic-Kähler geometry.

Berger's List

Theorem

(Berger, 1955) Let M^{n} be Riemannian n-manifold non locally symmetric, non locally reducible. Then, its holonomy group Φ is contained in the following list list $(n=2 m=4 k)$:
$\mathrm{SO}(n), \mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k), \mathrm{G}_{2}, \operatorname{Spin}(7), \operatorname{Spin}(9)^{\dagger}, \mathrm{Sp}(k) \mathrm{Sp}(1)$

- $\operatorname{SO}(n)$: Generic Riemannian geometry
- $\mathrm{U}(m), \mathrm{SU}(m), \mathrm{Sp}(k)$: Kähler manifolds of different degrees of specialisation (Generic Kähler, Calabi-Yau (CY), Hyperkähler (HK)).
- $\mathrm{G}_{2}, \operatorname{Spin}(7)$: Exceptional holonomy. Exist only in dimension 7 and 8.
- $\operatorname{Sp}(k) \operatorname{Sp}(1):=\operatorname{Sp}(k) \times_{\mathbb{Z}_{2}} \operatorname{Sp}(1)$ Quaternionic-Kähler geometry.
- Spin $(9)^{+}: D=16$. ALWAYS SYMMETRIC (ruled out from the list).

QK manifolds and geometry in Berger's list

BERGERLIST.png

QK manifolds and geometry in Berger's list

BERGERLIST.png

QK manifolds and geometry in Berger's list

BERGERLIST.png

QK manifolds and geometry in Berger's list

BERGERLIST.png

QK manifolds and geometry in Berger's list

BERGERLIST.png

QK manifolds and geometry in Berger's list

BERGERLIST.png

QK manifolds and geometry in Berger's list

- HK manifolds are Kähler

$$
\mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)
$$

QK manifolds and geometry in Berger's list

- HK manifolds are Kähler $\quad \mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)$
- QK manifolds are not Kähler $\operatorname{Sp}(k) \operatorname{Sp}(1) \not \subset \mathrm{U}(m)$

QK manifolds and geometry in Berger's list

- HK manifolds are Kähler $\quad \mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)$
- QK manifolds are not Kähler $\operatorname{Sp}(k) \operatorname{Sp}(1) \not \subset \mathrm{U}(m)$
- Indeed, QK manifolds are not 'quaternionic' - they do not in general admit quaternionic coordinates.

QK manifolds and geometry in Berger's list

- HK manifolds are Kähler $\quad \mathrm{Sp}(k) \subset \mathrm{SU}(m) \subset \mathrm{U}(m) \subset \mathrm{SO}(n)$
- QK manifolds are not Kähler $\operatorname{Sp}(k) \operatorname{Sp}(1) \not \subset \mathrm{U}(m)$
- Indeed, QK manifolds are not 'quaternionic' - they do not in general admit quaternionic coordinates.
- NICE NAME...

Operational definitions for QK

In the following, when referring to QK manifolds we mean $\lambda \neq 0$.

Definition

A QK manifold is a Riemannian 4n-manifold $\left\{M^{4 n}, g\right\}$ equipped with a family of three compatible almost complex structures $\mathcal{J}=\left\{J_{i}\right\}_{1}^{3}$

$$
g\left(J_{i} \cdot, J_{i} \cdot\right)=g(\cdot, \cdot), \quad i=1,2,3
$$

satisfying the algebra of imaginary quaternions

$$
J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=J_{1} J_{2} J_{3}=-\mathbf{1}
$$

such that it is preserved by the Levi-Civita connection

$$
\nabla_{X}^{L C} J_{i}=\alpha_{k}(X) J_{j}-\alpha_{j}(X) J_{k}
$$

for certain 1-forms $\alpha_{i}, \alpha_{j}, \alpha_{k}$.

G-Structures

The theory of G-structures allows to work with general (non necessarily torsion-free) connections on Riemannian manifolds.

Definition

A G-structure is a reduction of the bundle of linear frames $L(M)$ to a subbundle with structure group G.

- A G-structure is defined through a distinguished G-invariant tensor η.

G-Structures

The theory of G-structures allows to work with general (non necessarily torsion-free) connections on Riemannian manifolds.

Definition

A G-structure is a reduction of the bundle of linear frames $L(M)$ to a subbundle with structure group G.

- A G-structure is defined through a distinguished G-invariant tensor η.
- Example 1: A n-manifold M with $\mathrm{SO}(n)$-structure is equivalent to define a metric on M.

$$
\{\mathrm{SO}(n) \text { - structure on } M\} \longleftrightarrow \text { Riemannian manifold }\{M, g\}
$$

G-Structures

The theory of G-structures allows to work with general (non necessarily torsion-free) connections on Riemannian manifolds.

Definition

A G-structure is a reduction of the bundle of linear frames $L(M)$ to a subbundle with structure group G.

- A G-structure is defined through a distinguished G-invariant tensor η.
- Example 1: A n-manifold M with $\mathrm{SO}(n)$-structure is equivalent to define a metric on M.

$$
\{\mathrm{SO}(n) \text { - structure on } M\} \longleftrightarrow \text { Riemannian manifold }\{M, g\}
$$

- Example 2: A Riemannian $2 n$-manifold $\{2 n\}$ with $\mathrm{U}(n)$-structure is equivalent to define a compatible almost complex structure J

$$
\{\mathrm{U}(n) \text { - structure on } M\} \longleftrightarrow \text { Almost Hermitian manifold }\{M, g, J\}
$$

Connections on Riemannian G-structures

Theorem

$$
\nabla^{L C} \eta=0 \longleftrightarrow \Phi \subseteq \mathrm{G}
$$

Connections on Riemannian G-structures

Theorem

$$
\nabla^{L C} \eta=0 \longleftrightarrow \Phi \subseteq \mathrm{G}
$$

$$
\xi:=\nabla^{L C} \eta \subset T^{*} M \otimes \mathfrak{g}^{\perp}
$$

measures the failiure of the holonomy group to reduce to the prescribed G. It is called intrinsic torsion of the G-structutre.

Connections on Riemannian G-structures

Theorem

$$
\nabla^{L C} \eta=0 \longleftrightarrow \Phi \subseteq \mathrm{G}
$$

$$
\xi:=\nabla^{L C} \eta \subset T^{*} M \otimes \mathfrak{g}^{\perp}
$$

measures the failiure of the holonomy group to reduce to the prescribed G . It is called intrinsic torsion of the G-structutre.

Theorem

If G is a closed and connected subgroup of $\mathrm{SO}(n)$ there is a unique (non-torsion free) metric G-connection (minimal G-connection) satisfying

$$
\nabla^{\mathrm{G}}=\nabla^{L C}+\xi
$$

Connections on Riemannian G-structures

Theorem

$$
\nabla^{L C} \eta=0 \longleftrightarrow \Phi \subseteq \mathrm{G}
$$

$$
\xi:=\nabla^{L C} \eta \subset T^{*} M \otimes \mathfrak{g}^{\perp}
$$

measures the failiure of the holonomy group to reduce to the prescribed G . It is called intrinsic torsion of the G-structutre.

Theorem

If G is a closed and connected subgroup of $\mathrm{SO}(n)$ there is a unique (non-torsion free) metric G-connection (minimal G-connection) satisfying

$$
\nabla^{\mathrm{G}}=\nabla^{L C}+\xi
$$

- The decomposition of ξ in irreducible components w.r.t. the action of G classifies all possible minimal G-connections.

Almost Quaternionic Hermitian (AQH) manifolds

Definition

A Riemannian 4n-manifold with $\operatorname{Sp}(n) \operatorname{Sp}(1)$-structure is called Almost Quaternionic Hermitian (AQH).

Definition

An AQH manifold is a Riemannian 4n-manifold $\{M, g\}$ equipped with a family three compatible almost complex structures $\left\{J_{i}\right\}_{1}^{3}$

$$
g\left(J_{i \cdot} \cdot J_{i} \cdot\right)=g(\cdot, \cdot), \quad i=1,2,3
$$

satisfying the algebra of imaginary quaternions

$$
J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=J_{1} J_{2} J_{3}=-\mathbf{1}
$$

- The difference between AQH and QK definitions involves the relations between tensors $\left\{J_{i}\right\}$ and the connection.

The fundamental 4-form Ω

- The AQH structure is defined by the distinguished $\operatorname{Sp}(k) \operatorname{Sp}(1)$ invariant 4-form $\Omega \in \Lambda^{4} M$.

The fundamental 4-form Ω

- The AQH structure is defined by the distinguished $\operatorname{Sp}(k) \operatorname{Sp}(1)$ invariant 4-form $\Omega \in \Lambda^{4} M$.
- Ω can be written in terms of the Kähler 2-forms associated to J

$$
\Omega=\sum_{i} \omega_{i}^{2}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}
$$

The fundamental 4-form Ω

- The AQH structure is defined by the distinguished $\operatorname{Sp}(k) \operatorname{Sp}(1)$ invariant 4-form $\Omega \in \Lambda^{4} M$.
- Ω can be written in terms of the Kähler 2-forms associated to J

$$
\Omega=\sum_{i} \omega_{i}^{2}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}
$$

- The intrinsic torsion of the $\operatorname{Sp}(k) \operatorname{Sp}(1)$-structure is measured by $\nabla^{L C} \Omega$

The fundamental 4-form Ω

- The AQH structure is defined by the distinguished $\operatorname{Sp}(k) \operatorname{Sp}(1)$ invariant 4-form $\Omega \in \Lambda^{4} M$.
- Ω can be written in terms of the Kähler 2-forms associated to J

$$
\Omega=\sum_{i} \omega_{i}^{2}=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}
$$

- The intrinsic torsion of the $\operatorname{Sp}(k) \operatorname{Sp}(1)$-structure is measured by $\nabla^{L C} \Omega$

Theorem

An $A Q H$ manifold is $Q K$ if and only if $\nabla^{L C} \Omega=0$.

SO(3)-structures on AQH 8-manifolds

(1) INTRODUCTION: QK GEOMETRY AQH GEOMETRY

(2) INTRINSIC TORSION AND IDEAL GEOMETRY

(3) NEARLY QUATERNIONIC STRUCTURE

EH-Formalism

Representation theory notation

- $E \simeq \mathbb{C}^{4}$ irreducible basic complex representation of $\operatorname{Sp}(2)$. (Highest weight $[1,0]$).
- $H \simeq \mathbb{C}^{2} \simeq \mathbb{H}$ irreducible basic complex represtentation of $\operatorname{Sp}(1)$. (Highest weight [1]).

Locally

$$
\mathbb{C} \otimes T M=E \otimes H
$$

Other important $\mathrm{Sp}(2)$ representations

- $K \simeq \mathbb{C}^{16}$ irreducible complex representation of $\operatorname{Sp}(2)$. (Highest weight $[2,1]$ in the basis of roots).
- $\Lambda_{0}^{3} E \simeq \mathbb{C}^{3}$ irreducible complex representation of $\mathrm{Sp}(2)$. (Highest weight $[3,3]$ in the basis of roots).

$$
\Lambda_{0}^{n} E=\operatorname{Coker}\left\{L: \Lambda^{n-2} E \rightarrow \Lambda^{n} E: \alpha \mapsto \omega_{E} \wedge \alpha\right\}
$$

Intrinsic Torsion of AQH manifolds

Theorem

(Swann, 1989) The intrinsic torsion of an $4 n$-manifold, $n \geq 2$ can be identified with an element $\nabla \Omega$ in the space

$$
\left(\Lambda_{0}^{3} E \oplus K \oplus E\right) \otimes\left(H \oplus S^{3} H\right) \quad \begin{array}{|c|c|c|}
\hline E S^{3} H & \Lambda_{0}^{3} E S^{3} H & K S^{3} H \\
\hline E H & \Lambda_{0}^{3} E H & K H \\
\hline
\end{array}
$$

For $n=2$, the intrinsic torsion belongs to

$E S^{3} H \oplus K S^{3} H \oplus K H \oplus E H \quad$| $E S^{3} H$ | $K S^{3} H$ |
| :---: | :---: |
| $E H$ | $K H$ |

AQH8 $\xrightarrow{?}$ QK8

Corollary

The fundamental 4-form Ω of an 8 -manifold is closed $d \Omega=0$, i.e., M is almost parallel if and only if $\nabla \Omega \in K S^{3} H$.

$$
d \Omega=0 \longleftrightarrow \begin{array}{|c|c|}
\hline \bullet & K S^{3} H \\
\hline \bullet & \bullet \\
\hline
\end{array}
$$

Corollary

The Kähler 2-forms $\left\{\omega_{i}\right\}$ of an 8-manifold generate a differential ideal if and only if $\nabla \Omega \in E S^{3} H \oplus E H$,

$$
d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M \longleftrightarrow \begin{array}{|c|c|}
\hline E S^{3} H & \bullet \\
\hline E H & \bullet \\
\hline
\end{array}
$$

$A Q H(4 n) \xrightarrow{?} Q K(4 n)$

Theorem

(Swann, 1989)
An AQH 4n-manifol, $4 n \geq 12$ is $Q K$ if and only if
(1) $d \Omega=0$

An AQH 8-manifold is QK if and only if
(1) $d \Omega=0$
(2) $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?
Theorem
(Salamon, 2001)
There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \operatorname{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

(Salamon, 2001)
There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \operatorname{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.

- NON-QK AQH8: $d \Omega=0$
(Satisfies condition 1, not 2)

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

(Salamon, 2001)
There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \operatorname{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.

- NON-QK AQH8 : $d \Omega=0 \quad$ (Satisfies condition 1, not 2)

\Longrightarrow Relation between AQH \& QK geometry in 8 dimensions is special.

Existence question

Do actually exist non-QK AQH 8-manifolds satisfying (1) or (2) only?

Theorem

(Salamon, 2001)
There exists a closed 4-form Ω with stabilizer $\operatorname{Sp}(2) \operatorname{Sp}(1)$ on a compact nilmanifold of the form $M^{6} \times T^{2}$. The associated Riemannian metric g is reducible and is not therefore quaternionic Kähler.

- NON-QK AQH8 : $d \Omega=0 \quad$ (Satisfies condition 1, not 2)

\Longrightarrow Relation between AQH \& QK geometry in 8 dimensions is special.
- NON-QK AQH8 : $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ (Satisfies condition 2, not 1) ?

Ideal condition

$$
\mathrm{d} \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M
$$

CHANGE OF BASE: $\left\{\omega_{i}\right\} \mapsto\left\{\widetilde{\omega}_{i}\right\}$

$$
\widetilde{\omega}_{i}=\sum_{j=1}^{3} A_{i}^{j} \omega_{j}, \quad A=\left(A_{i}^{j}\right) \in \mathrm{SO}(3)
$$

- The matrix β transforms as a connection

$$
d \widetilde{\omega}_{i}=\sum_{j=1}^{3} \widetilde{\beta}_{i}^{j} \wedge \widetilde{\omega}_{j} \quad: \quad \widetilde{\beta}=A^{-1} d A+\operatorname{Ad}\left(A^{-1}\right) \beta
$$

Ideal condition

$$
\mathrm{d} \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M
$$

CHANGE OF BASE: $\left\{\omega_{i}\right\} \mapsto\left\{\widetilde{\omega}_{i}\right\}$

$$
\widetilde{\omega}_{i}=\sum_{j=1}^{3} A_{i}^{j} \omega_{j}, \quad A=\left(A_{i}^{j}\right) \in \mathrm{SO}(3)
$$

- The matrix β transforms as a connection

$$
d \widetilde{\omega}_{i}=\sum_{j=1}^{3} \widetilde{\beta}_{i}^{j} \wedge \widetilde{\omega}_{j} \quad: \quad \widetilde{\beta}=A^{-1} d A+\operatorname{Ad}\left(A^{-1}\right) \beta
$$

- However, this connection does not reduce to $\mathrm{SO}(3)$ unless β is anti-symmetric.

Ideal condition

$$
\mathrm{d} \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}: \beta_{i}^{j} \in \Lambda^{1} M
$$

CHANGE OF BASE: $\left\{\omega_{i}\right\} \mapsto\left\{\widetilde{\omega}_{i}\right\}$

$$
\widetilde{\omega}_{i}=\sum_{j=1}^{3} A_{i}^{j} \omega_{j}, \quad A=\left(A_{i}^{j}\right) \in \mathrm{SO}(3)
$$

- The matrix β transforms as a connection

$$
d \widetilde{\omega}_{i}=\sum_{j=1}^{3} \widetilde{\beta}_{i}^{j} \wedge \widetilde{\omega}_{j} \quad: \quad \widetilde{\beta}=A^{-1} d A+\operatorname{Ad}\left(A^{-1}\right) \beta
$$

- However, this connection does not reduce to $\mathrm{SO}(3)$ unless β is anti-symmetric.
- Consider the decomposition

$$
\beta=\alpha+\sigma, \quad \alpha_{i}^{j}=\frac{1}{2}\left(\beta_{i}^{j}-\beta_{j}^{i}\right) \quad \sigma_{i}^{j}=\frac{1}{2}\left(\beta_{i}^{j}+\beta_{j}^{i}\right)
$$

- The symmetric part σ transforms as a tensor:

$$
\widetilde{\sigma}=\operatorname{Ad}\left(A^{-1}\right) \sigma=A^{-1} \sigma A .
$$

- The tensor σ can be identified with the remaining non-zero components of intrinsic torsion

$$
\begin{gathered}
E S^{3} H \oplus E H \\
d \Omega=2 \sum_{i=1}^{3} d \omega_{i} \wedge \omega_{i}=2 \sum_{i, j=1}^{3} \sigma_{i}^{j} \wedge \omega_{i} \wedge \omega_{j} .
\end{gathered}
$$

- The symmetric part σ transforms as a tensor:

$$
\widetilde{\sigma}=\operatorname{Ad}\left(A^{-1}\right) \sigma=A^{-1} \sigma A
$$

- The tensor σ can be identified with the remaining non-zero components of intrinsic torsion
\bullet

$$
\begin{gathered}
E S^{3} H \oplus E H \\
d \Omega=2 \sum_{i=1}^{3} d \omega_{i} \wedge \omega_{i}=2 \sum_{i, j=1}^{3} \sigma_{i}^{j} \wedge \omega_{i} \wedge \omega_{j}
\end{gathered}
$$

Lemma

If an $\mathrm{Sp}(2) \mathrm{Sp}(1)$-structure satisfies the ideal condition then its intrinsic torsion belongs to $E S^{3} H$ if and only if $\operatorname{tr}(\beta)=\beta_{1}^{1}+\beta_{2}^{2}+\beta_{3}^{3}=0$.

- The symmetric part σ transforms as a tensor:

$$
\widetilde{\sigma}=\operatorname{Ad}\left(A^{-1}\right) \sigma=A^{-1} \sigma A
$$

- The tensor σ can be identified with the remaining non-zero components of intrinsic torsion

$$
\begin{gathered}
E S^{3} H \oplus E H \\
d \Omega=2 \sum_{i=1}^{3} d \omega_{i} \wedge \omega_{i}=2 \sum_{i, j=1}^{3} \sigma_{i}^{j} \wedge \omega_{i} \wedge \omega_{j}
\end{gathered}
$$

Lemma

If an $\mathrm{Sp}(2) \mathrm{Sp}(1)$-structure satisfies the ideal condition then its intrinsic torsion belongs to $E S^{3} H$ if and only if $\operatorname{tr}(\beta)=\beta_{1}^{1}+\beta_{2}^{2}+\beta_{3}^{3}=0$.

Corollary

Let $\{M, g, \mathcal{J}\}$ be an $A Q H$ 8-manifold. It is $Q K$ if and only if generates a differential ideal with $\sigma=0$, so that the ideal condition applies with $\beta_{i}^{j}=-\beta_{j}^{i}$.

Geometry of the ideal condition

Consider the matrix $B=\left(B_{i}^{j}\right)$ of curvature 2-forms associated to the connection defined through β.

$$
0=d^{2} \omega_{i}=\sum_{j}\left(d \beta_{i}^{j}-{ }_{k} \beta_{i}^{k} \wedge \beta_{k}^{j}\right) \wedge \omega_{k}=\sum_{j} B_{i}^{j} \wedge \omega_{j}
$$

Geometry of the ideal condition

Consider the matrix $B=\left(B_{i}^{j}\right)$ of curvature 2-forms associated to the connection defined through β.

$$
0=d^{2} \omega_{i}=\sum_{j}\left(d \beta_{i}^{j}-{ }_{k} \beta_{i}^{k} \wedge \beta_{k}^{j}\right) \wedge \omega_{k}=\sum_{j} B_{i}^{j} \wedge \omega_{j}
$$

- In particular, they have no $S^{2} E$ component, because

$$
S^{2} E S^{2} H \subset \Lambda^{4} T^{*} M
$$

thus

$$
B_{i}^{j} \in S^{2} H \oplus \Lambda_{0}^{2} E S^{2} H \subset \Lambda^{2} T^{*} M
$$

Geometry of the ideal condition

Consider the matrix $B=\left(B_{i}^{j}\right)$ of curvature 2-forms associated to the connection defined through β.

$$
0=d^{2} \omega_{i}=\sum_{j}\left(d \beta_{i}^{j}-{ }_{k} \beta_{i}^{k} \wedge \beta_{k}^{j}\right) \wedge \omega_{k}=\sum_{j} B_{i}^{j} \wedge \omega_{j}
$$

- In particular, they have no $S^{2} E$ component, because

$$
S^{2} E S^{2} H \subset \Lambda^{4} T^{*} M
$$

thus

$$
B_{i}^{j} \in S^{2} H \oplus \Lambda_{0}^{2} E S^{2} H \subset \Lambda^{2} T^{*} M
$$

- In contrast to the QK case, there will in general be a component of B_{i}^{j} in $\Lambda_{0}^{2} E S^{2} H$.

SO(3)-structures on AQH 8-manifolds

(1) INTRODUCTION: QK GEOMETRY AQH GEOMETRY

(2) INTRINSIC TORSION AND IDEAL GEOMETRY
(3) NEARLY QUATERNIONIC STRUCTURE

Factorisation of $\mathrm{SO}(3) \subset \mathrm{SO}(8)$

$\mathrm{SO}(3) \subset \mathrm{SO}(8)$ factors through $\operatorname{Sp}(2) \mathrm{Sp}(1) \equiv \operatorname{Sp}(2) \times_{\mathbb{Z}_{2}} \operatorname{Sp}(1)$ in a unique way.

$$
\begin{gathered}
\mathrm{SO}(3) \longrightarrow \mathrm{SO}(8) \\
{[\rho, \mathbf{1}] \downarrow} \\
\mathrm{Sp}(2) \mathrm{Sp}(1) \longrightarrow \mathrm{SO}(8) \\
\mathbf{1}: \mathrm{SO}(3) \simeq \mathrm{SU}(2) \simeq \operatorname{Sp}(1) \\
\rho: \mathrm{SO}(3) \simeq \operatorname{Sp}(1) \\
X \in \mathrm{SO}(3) \longmapsto(\rho(X), \mathbf{1}(X)) \in \mathrm{Sp}(2) \times \mathrm{Sp}(1) \\
{[\rho(X), \mathbf{1}(x)] \in \mathrm{Sp}(2) \mathrm{Sp}(1)}
\end{gathered}
$$

SO (3) Intrinsic torsion from $\mathrm{Sp}(2) \mathrm{Sp}(1)$

- Let H denote the basic representation of $\mathrm{SO}(3)$ identified with $\operatorname{Sp}(1)$, the irreducible action ρ of $\operatorname{Sp}(1)$ embedded on $\operatorname{Sp}(2)$ gives the identification

$$
E=S^{3} H
$$

- The $\operatorname{Sp}(2)$-modules are reducible with respect to the action of $\mathrm{SO}(3)$.

$$
E H \oplus K H \oplus E S^{3} H \oplus K S^{3} H
$$

$$
\begin{aligned}
E H & \longrightarrow S^{4} \oplus S^{2} \\
K H & \longrightarrow S^{8} \oplus 2 S^{6} \oplus S^{4} \oplus S^{2} \oplus S^{0} \\
E S^{3} H & \longrightarrow S^{6} \oplus S^{4} \oplus S^{2} \oplus S^{0} \\
K S^{3} H & \longrightarrow S^{10} \oplus 2 S^{8} \oplus 2 S^{6} \oplus 3 S^{4} \oplus 2 S^{2}
\end{aligned}
$$

- The $\mathrm{SO}(3)$-structure described has intrinsic torsion obstructions on

$$
K H \oplus E S^{3} H
$$

Action of SO(3) on SU(3)

- If $S O(3) \rightarrow \mathrm{Sp}(2) \mathrm{Sp}(1) \rightarrow \mathrm{SO}(8)$ then,

$$
\mathbb{C} \otimes T M=E \otimes H=S^{3} H \otimes H=S^{4} H \oplus S^{2} H
$$

- The $\mathrm{SO}(3)$ action leads to a $\mathfrak{s o}$ (3) family of endomorphisms

$$
\mathfrak{s o}(3) \simeq S^{2} H \subset \operatorname{End}(T)
$$

- Take the manifold

$$
\begin{gathered}
M=S U(3) \rightarrow T_{x} M \simeq \mathfrak{s u}(3) \\
\mathfrak{s u}(3)=\mathfrak{b} \oplus \mathfrak{p}:\left\{\begin{array}{l}
\mathfrak{b} \simeq \mathfrak{s o}(3) \subset \mathfrak{s u}(3), \quad \mathfrak{b} \simeq S^{2} H \\
\mathfrak{p} \simeq \operatorname{Span}\left\{i S: S=S^{t}, \operatorname{Tr}(S)=0\right\} \simeq S^{4} H .
\end{array}\right.
\end{gathered}
$$

- Then the action of $\mathrm{SO}(3)$ on $\mathrm{SU}(3)$ is given on tangent space as the action of $S^{2} H \simeq \mathfrak{s o}(3) \subset E n d(T)$ on $\mathfrak{s u}(3)=S^{4} H \oplus S^{2} H$

$$
\phi: S^{2} H \otimes(\mathfrak{b} \oplus \mathfrak{p}) \rightarrow \mathfrak{b} \oplus \mathfrak{p}
$$

The mapping ϕ

$$
\phi=\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}
$$

$$
\begin{aligned}
\phi_{1}:\left(S^{2} H \otimes \mathfrak{b}\right)=S^{4} H \otimes S^{2} H \otimes S^{0} H & \longrightarrow S^{2} H=\mathfrak{b} \\
(A, B) & \longmapsto[A, B]
\end{aligned}
$$

$$
\phi_{2}:\left(S^{2} H \otimes \mathfrak{b}\right)=S^{4} H \otimes S^{2} H \otimes S^{0} H \quad \longrightarrow \quad S^{4} H=\mathfrak{p}
$$

$$
(A, B) \longmapsto i\left(\{A, B\}-\frac{2}{3} \operatorname{Tr}(A B) \mathbf{1}\right)
$$

$$
\begin{aligned}
\phi_{3}:\left(S^{2} H \otimes \mathfrak{p}\right)=S^{6} H \otimes S^{4} H \otimes S^{2} H & \longrightarrow S^{2} H=\mathfrak{b} \\
(A, C) & \longmapsto i\{A, C\}
\end{aligned}
$$

$$
\begin{aligned}
\phi_{4}:\left(S^{2} H \otimes \mathfrak{p}\right)=S^{6} H \otimes S^{4} H \otimes S^{2} H & \longrightarrow S^{4} H=\mathfrak{p} \\
(A, C) & \longmapsto[A, C]
\end{aligned}
$$

AQ Action of $\mathrm{SO}(3)$ on $\mathrm{SU}(3)$

- Denote the action defined by ϕ with the dot-product
$A \cdot X=\lambda_{1}\left[A, X^{a}\right]+i \lambda_{2}\left(\left\{A, X^{a}\right\}-\frac{2}{3} \operatorname{Tr}\left(A X^{a}\right)\right)+i \lambda_{3}\left\{A, X^{s}\right\}+\lambda_{4}\left[A, X^{s}\right]$. for $A \in \mathfrak{s o}(3), X \in \mathfrak{s u}(3)$.
- Taking $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}\right\} \in S^{2} H$ and asking the previous equation to satisfy

$$
J_{i} \cdot\left(J_{i} \cdot X\right)=-X \quad J_{1} \cdot\left(J_{2} \cdot X\right)=J_{3} \cdot X
$$

one obtains

$$
\lambda_{1}=\frac{1}{2}, \quad \lambda_{3}=-\frac{3}{4} \lambda^{-1}, \quad \lambda_{4}=-\frac{1}{2}
$$

where $\lambda=\lambda_{2}$ is a real parameter. This is a 1-parameter family of almost quaternionic actions of $\mathrm{SO}(3)$ on $\mathrm{SU}(3)$.

AQH structure on SU(3)

- Let $\left\{e_{i}\right\}_{1}^{8}$ be a base for $\mathfrak{s u}(3)$, orthonormal for a multiple of the Killing metric.
- $\mathfrak{b}=\mathfrak{s o}(3)=\operatorname{Span}\left\{e_{6}, e_{7}, e_{8}\right\}$.
- Identify $\mathcal{J}_{\lambda}=\left\{e_{6}, e_{7}, e_{8}\right\}$ acting through the 1-parameter family of AQ SO(3) actions defined by ϕ.
- Define a new metric by rescaling the \mathfrak{b} subspace

$$
g_{\lambda}=\sum_{i=1}^{i=5} e^{i} \otimes e^{i}+\frac{4 \lambda}{3} \sum_{i=6}^{i=8} e^{i} \otimes e^{i}
$$

Theorem

\mathcal{J}_{λ} is compatible with g_{λ}

- $\left\{\mathrm{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is a 1-parameter family of AQH 8-manifolds

Ideal AQH structure on SU(3)

Theorem

A set of λ-dependent Kähler 2-forms $\left\{\omega_{i}\right\}_{\lambda}$ associated to the $A Q H$ 8 -manifold $\left\{\mathrm{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is given by
$\omega_{1}=\frac{1}{2}\left(e^{15}+\sqrt{3} e^{25}+e^{34}\right)+\lambda\left(\frac{1}{\sqrt{3}} e^{28}-e^{46}+e^{37}-e^{18}\right)-\frac{2}{3} \lambda^{2} e^{67}$,
$\omega_{2}=-e^{14}-\frac{1}{2} e^{35}+\lambda\left(\frac{2}{\sqrt{3}} e^{27}-e^{38}-e^{56}\right)-\frac{2}{3} \lambda^{2} e^{68}$,
$\omega_{3}=\frac{1}{2}\left(e^{13}-\sqrt{3} e^{23}+e^{45}\right)+\lambda\left(\frac{1}{\sqrt{3}} e^{26}-e^{48}+e^{57}+e^{16}\right)-\frac{2}{3} \lambda^{2} e^{78}$

Theorem

$A Q H\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ satisfies the ideal condition $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ if and only if

$$
\lambda^{2}=\frac{3}{20}
$$

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\mathrm{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\operatorname{SU}(3)$,

$$
b_{4}(\mathrm{SU}(3))=0 .
$$

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
b_{4}(\operatorname{SU}(3))=0 .
$$

Hence, for $\lambda^{2}=\frac{3}{20},\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$

- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ (Satisfies condition 2, not 1) \square

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
b_{4}(\mathrm{SU}(3))=0 .
$$

Hence, for $\lambda^{2}=\frac{3}{20},\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$

- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ (Satisfies condition 2, not 1) \qquad

$$
\operatorname{Tr}(\beta)=0 \longrightarrow \nabla \Omega \in E S^{3} H \quad \begin{array}{|c|c|}
\hline E S^{3} H & \bullet \\
\hline \bullet & \bullet \\
\hline
\end{array}
$$

Nearly quaternionic structure on $\mathrm{SU}(3)$

Corollary

$\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$ is not $Q K$ for any choice of λ.
Due to the topology of $\mathrm{SU}(3)$,

$$
b_{4}(\mathrm{SU}(3))=0 .
$$

Hence, for $\lambda^{2}=\frac{3}{20},\left\{\operatorname{SU}(3), \mathcal{J}_{\lambda}, g_{\lambda}\right\}$

- NON-QK AQH8: $d \omega_{i}=\sum_{j} \beta_{i}^{j} \wedge \omega_{j}$ (Satisfies condition 2, not 1) \qquad

$$
\operatorname{Tr}(\beta)=0 \longrightarrow \nabla \Omega \in E S^{3} H \quad \begin{array}{|c|c|}
\hline E S^{3} H & \bullet \\
\hline \bullet & \bullet \\
\hline
\end{array}
$$

THANK YOU.

