Elementary

 Deforma－ tions HK／QKOscar
MACIA

Introduction ［0］

Physics［8］
Twist［20］
Example
［42］

Elementary deformations and the HyperKaehler/Quaternionic Kaehler correspondence.

(Joint work with Prof. A.F. SWANN)

Oscar MACIA

Dept. Geometry Topology
University of Valencia (Spain)

June 26, 2014

What do we have

Elementary
Deforma-
tions
HK/QK
Oscar
MACIA
1 Introduction [0]

2 Physics [8]

3 Twist [20]

4 Example [42]

Berger's list

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

Theorem

(Berger, 1955)
Let M be a oriented symply-connected n-dimensional
Riemannian manifold which is neither locally a product nor symmetric. Then its holonomy group belongs to the following list.

Kaehler manifolds

Kaehler manifolds are Riemannian $2 m$-dimensional manifold with holonomy group $\mathrm{Hol} \subseteq \mathrm{U}(m)$.

- They admit mutually compatible Riemannian, Complex and Symplectic structures.

1 acs: $I \in \operatorname{End}(T M): I^{2}=-I d$
2 Hermitian metric: $g(I X, I Y)=g(X, Y)$
3 Kaehler 2-form: $\omega(X, Y)=g(I X, Y)$ non-degenerate.

- Kaehler condition:

$$
\nabla^{L C} I=0 \quad \text { or } \quad d \omega=0
$$

Hyperkaehler manifolds

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

HyperKaehler manifolds are $4 k$-dimensional Riemannian manifolds with holonomy group $\subseteq \operatorname{Sp}(k)$.

■ $H=K \cap Q$

- $H \Rightarrow\{r=0, s=0\}$.

■ $H \Rightarrow\{I, J, K\}: I^{2}=J^{2}=K^{2}=I J K=-I d$

$$
\begin{array}{r}
\nabla^{L C} I=\nabla^{L C} J=\nabla^{L C} K=0 \\
\mathrm{~d} \omega_{I}=\mathrm{d} \omega_{J}=\mathrm{d} \omega_{K}=0
\end{array}
$$

■ eg., 4D Kaehler \& Ricci flat, K3-surfaces, Beauville's $S^{[r]}$ manifolds.

Quaternionic Kaehler manifolds

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]

Quaternionic Kaehler manifolds are $4 k$-dimensional Riemannian manifolds with holonomy group $H o l \subseteq \operatorname{Sp}(k) \operatorname{Sp}(1)$.

- $Q \not \subset K$
- $s=$ constant .

■ $Q \Rightarrow\{I, J, K\}: I^{2}=J^{2}=K^{2}=I J K=-I d$

$$
\begin{array}{r}
\Omega=\omega_{I}^{2}+\omega_{J}^{2}+\omega_{K}^{2} \\
\nabla^{L C} \Omega=0
\end{array}
$$

■ eg., Wolf spaces (compact,positive,symmetric), Alekseevsky spaces (non-compact, homogeneous not necessarily symmetric).

(First) motivating problem

```
Elementary
    Deforma-
        tions
    HK/QK
        Oscar
    MACIA
```


■ FIND EXPLICIT METRICS WITH SPECIAL HOLONOMY

(First) motivating problem

```
Elementary
    Deforma-
        tions
    HK/QK
        Oscar
    MACIA
```

\llbracket FIND EXPLICIT METRICS WITH SPECIAL HOLONOMY
2 HK and QK, in particular

Hint

"The mathematical problems that have been solved or techniques that have arisen out of physics in the past have been the lifeblood of mathematics."

Sir Michael F. Atiyah
Collected Works Vol. 1 (1988), 19, p. 13

c-map as Superstring theory T-duality

Elementary
Deforma-
tions HK/QK

Oscar

MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

c-map as Superstring theory T-duality

Elementary
Deforma-
tions HK / QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

■ (Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal, 1990)

$$
S^{2 n} \xrightarrow{c} Q^{4(n+1)}
$$

c-map as Superstring theory T-duality

Elementary
Deforma-
tions HK / QK

Oscar

MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

■ (Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal, 1990)

$$
S^{2 n} \xrightarrow{c} Q^{4(n+1)}
$$

■ In the simplest $S U S Y$ case

$$
C^{2 n} \xrightarrow{c} H^{4 n}
$$

Historic relevance of the c-map for homogeneous QK

Elementary
Deformations HK/QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

■ (Alekseevsky, 1975)
1 Completely solvable Lie groups admitting QK metrics.

Historic relevance of the c-map for homogeneous QK

Elementary
Deforma-
tions HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

■ (Alekseevsky, 1975)
1 Completely solvable Lie groups admitting QK metrics.
2 All known homogeneous non-symmetric QK manifolds.

Historic relevance of the c-map for homogeneous QK

Elementary
Deformations HK/QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

■ (Alekseevsky, 1975)
1 Completely solvable Lie groups admitting QK metrics.
2 All known homogeneous non-symmetric QK manifolds.

- (Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal, 1990)

$$
S^{2 n} \xrightarrow{c} Q^{4(n+1)}
$$

Historic relevance of the c-map for homogeneous QK

Elementary

Deformations HK/QK

Oscar MACIA

■ (Alekseevsky, 1975)
1 Completely solvable Lie groups admitting QK metrics.
2 All known homogeneous non-symmetric QK manifolds.

- (Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal, 1990)

$$
S^{2 n} \xrightarrow{c} Q^{4(n+1)}
$$

■ (de Witt, Van Proeyen, 1992)
Use c-map to complete Alekseevsky's classification.

Historic relevance of the c-map for homogeneous QK

■ (Alekseevsky, 1975)
1 Completely solvable Lie groups admitting QK metrics.
2 All known homogeneous non-symmetric QK manifolds.
■ (Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal, 1990)

$$
S^{2 n} \xrightarrow{c} Q^{4(n+1)}
$$

■ (de Witt, Van Proeyen, 1992)
Use c-map to complete Alekseevsky's classification.

- (Cortes, 1996)

Complete classification (without c-map).

Special Kaehler manifolds I

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example
[42]

■ A Special Kaehler manifold is a K manifold (M, g, I, ω) together with a secondary connection ∇ (the special connection):
$\mathrm{R}(\nabla)=\mathrm{T}(\nabla)=0, \quad \nabla \omega_{I}=0, \quad \nabla_{X} I Y=-\nabla_{Y} I X$.

Special Kaehler manifolds I

Elementary

Deformations HK/QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]

■ A Special Kaehler manifold is a K manifold (M, g, I, ω) together with a secondary connection ∇ (the special connection):
$\mathrm{R}(\nabla)=\mathrm{T}(\nabla)=0, \quad \nabla \omega_{I}=0, \quad \nabla_{X} I Y=-\nabla_{Y} I X$.
■ A conic special Kaehler manifold C is a SK manifold $(M, g, I, \omega, \nabla)$ together with a distinguished vector field X (the conic isometry) satisfying:
$1 g(X, X)$ is nowhere vanishing;
$2 \nabla X=-I=\nabla^{L C} X$.
The conic structure is periodic or quasiregular if it exponentiates to a circle action, regular if the circle action is free.

Special Kaehler manifolds II

Elementary

Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- A projective special Kaehler manifold S is a Kaehler quotient $S=C / /{ }_{c} X=\mu^{-1}(c) / X$ of a conic SK manifold by a conic isometry X at some level $c \in \mathbf{R}$, together with the data necessary to reconstrut C up to equivalence.

$$
\begin{gathered}
C_{0}=\mu^{-1}(c) \longrightarrow C \\
\downarrow \\
\qquad /{ }_{c} X=S
\end{gathered}
$$

$N=2, D=4$ SIMPLE SUPERGRAVITY

Elementary
Deforma-
tions
HK/QK
Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

■ The field content of $N=2, D=4$ SUGRA:
$1 n$-vector multiplets $\left(A_{\hat{\mu}}^{i}, \lambda^{i \Lambda}, \phi^{i}\right)$
2 the gravity multiplet $\left(V_{\hat{\mu}}^{a}, \psi^{\Lambda}, A_{\hat{\mu}}^{0}\right)$.
■ $i=1, \ldots, n$ and $\hat{\mu}=0,1,2,3$.
■ In the σ-model apprach, the scalar fields are interpreted as coordintes of some differentiable manifold.

1 The manifold defined by the vector multiplet has n complex coordinates ϕ^{i} is projective special Kaehler.

Kaluza-Klein compactification of the metric field

Elementary

Deformations HK/QK

Oscar
MACIA

■ When we reduce from $D=4$ to $D=3$ by Kaluza-Klein compactification the space-time metric (a $4 D$-tensor $\left.g_{\hat{\mu} \hat{\nu}}^{(4)}\right)$ splits as

$$
g_{\hat{\mu} \hat{\nu}}^{(4)}=\left(\begin{array}{c|c}
e^{i \sigma} g_{\mu \nu}^{(3)}+e^{2 \sigma} A_{\mu} A_{\nu} & e^{2 \sigma} A_{\mu} \\
\hline e^{2 \sigma} A_{\nu} & e^{2 \sigma}
\end{array}\right)
$$

increasing the numer of independent fields:
1 the $3 D$-metric tensor $g_{\mu \nu}^{(3)}$;
2 a $3 D$-vector field A_{μ};
3 a new scalar field $\phi=e^{2 \sigma}$.

- $\mu, \nu=0,1,2$.

Kaluza-Klein compactification on vector fields

Elementary
Deformations HK/QK

Oscar
MACIA
■ The $n 4 D$-vector fields $A_{\hat{\mu}}^{i}$ (in vector mulitplets) and the graviphoton $A_{\hat{\mu}}^{0}$ also split into $(n+1) 3 D$-vectors and $(n+1)$ scalars, called axions.

$$
\left(A_{\hat{\mu}}^{i}, A_{\hat{\mu}}^{0}\right)=\left(A_{\mu}^{i}, A_{3}^{i}, A_{\mu}^{0}, A_{3}^{0}\right)
$$

1 Axions $\zeta^{\Lambda}=A_{3}^{i}, A_{3}^{0}, \Lambda=0, \ldots, n$.
2 Nevertheless, $3 D$-vectors in $3 D$ are T-dual to scalars therefore each A_{μ}^{i}, A_{μ}^{0} gives an extra scalar $\widetilde{\zeta}_{\Lambda}, n+1$ in total.

■ The $3 D$-gravitational vector A_{μ} also by T-duality gives rise to an extra scalar a.

Scalar fields in $D=3$.

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

After the Kaluza-Klein compactification we have the following list of scalar fields:

	SUGRA	SUSY
ϕ^{i}	$2 n$	$2 n$
ϕ	1	
ζ^{Λ}	$n+1$	n
$\widetilde{\zeta}_{\Lambda}$	$n+1$	n
a	1	
TOTAL	$4(n+1)$	$4 n$
	Q	H

The general picture arising from physics

Elementary
Deforma-
tions
HK/QK
Oscar
MACIA

Introduction

$$
C^{2(n+1)} \xrightarrow{c} H^{4(n+1)}
$$

The Twist Construction (sketch)

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

■ The Twist Construction associates to a manifolds M with a S^{1}-action (generated by X) a new space W of the same dimension with distinguished vector field Y. This construction fits in to a double fibration
Physics [8]
Twist [20]
Example [42]

so W is M TWISTED by the S^{1}-bndle P.

Twists \& HK/QK correspondence

Elementary
Deformations HK/QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

- (Joyce, 1992; Grantcharov, Poon, 2001) Instanton twists (Hypercomplex, quaternionic, HKT).

Twists \& HK/QK correspondence

Elementary
Deformations HK/QK

Oscar MACIA

- (Joyce, 1992; Grantcharov, Poon, 2001) Instanton twists (Hypercomplex, quaternionic, HKT).
■ (Swann, 2007,2010)
General twists (T-duality, HKT, KT, SKT,...)

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

Twists \& HK/QK correspondence

Elementary
Deformations HK / QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

- (Joyce, 1992; Grantcharov, Poon, 2001)

Instanton twists (Hypercomplex, quaternionic, HKT).

- (Swann, 2007,2010)

General twists (T-duality, HKT, KT, SKT,...)

- (Haydys, 2008)

HK/QK correspondence

$$
\left\{\begin{array}{c}
H K \\
\text { symmetry fixing one } \omega
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
Q K \\
\text { cirlce action }
\end{array}\right\}
$$

Twists \& HK/QK correspondence

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

- (Joyce, 1992; Grantcharov, Poon, 2001)

Instanton twists (Hypercomplex, quaternionic, HKT).
■ (Swann, 2007,2010)
General twists (T-duality, HKT, KT, SKT,...)

- (Haydys, 2008)

HK/QK correspondence

$$
\left\{\begin{array}{c}
H K \\
\text { symmetry fixing one } \omega
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
Q K \\
\text { cirlce action }
\end{array}\right\}
$$

■ (Hitchin, 2013)
Twistor interpretation.

Twists \& HK/QK correspondence

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- (Joyce, 1992; Grantcharov, Poon, 2001)

Instanton twists (Hypercomplex, quaternionic, HKT).
■ (Swann, 2007,2010)
General twists (T-duality, HKT, KT, SKT,...)

- (Haydys, 2008)

HK/QK correspondence

$$
\left\{\begin{array}{c}
H K \\
\text { symmetry fixing one } \omega
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
Q K \\
\text { cirlce action }
\end{array}\right\}
$$

- (Hitchin, 2013)

Twistor interpretation.
■ (Alekseevsky, Cortes, Dyckmanns, Mohaupt, 2013)

$$
\text { c-map } Q K^{4(n+1)} \subset H K / Q K \text { correspondence }
$$

Objective

Elementary
Deformations HK/QK

Oscar

 MACIATo give an explanation to the HK/QK correspondence arising in the c-map ...

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

Objective

Elementary
Deformations HK/QK

Oscar MACIA

To give an explanation to the HK/QK correspondence arising in the c-map ...

Introduction
[0]
Physics [8]
Twist [20]
Example [42]
$C^{2(n+1)} \xrightarrow{c} H^{4(n+1)}$

... using the Twist Construction.

The Twist Construction in detail

Elementary
Deformations HK / QK

Oscar MACIA

Introduction

[0]
Physics [8]
Twist [20]
Example [42]
(Swann, 2007,2010)

$1 P \rightarrow M$ a principal S^{1}-bundle, with a symmetry Y, connection 1-form θ, curvature $\pi_{M}^{*} F=d \theta$.

The Twist Construction in detail

Elementary
Deformations HK / QK

Oscar MACIA

Introduction

[0]
Physics [8]
Twist [20]
Example [42]
(Swann, 2007,2010)

$1 P \rightarrow M$ a principal S^{1}-bundle, with a symmetry Y, connection 1-form θ, curvature $\pi_{M}^{*} F=d \theta$.
2 $X \in \mathfrak{X}_{M}$ generating a S^{1}-action preserving F, $L_{X} F=0$

The Twist Construction in detail

Elementary
Deformations HK/QK

Oscar MACIA

Physics [8]
Twist [20]
Example [42]
(Swann, 2007,2010)

$1 P \rightarrow M$ a principal S^{1}-bundle, with a symmetry Y, connection 1-form θ, curvature $\pi_{M}^{*} F=d \theta$.
2 $X \in \mathfrak{X}_{M}$ generating a S^{1}-action preserving F, $L_{X} F=0$
$3 X^{\prime}=\hat{X}+a Y \in \mathfrak{X}_{P}$ preserving θ and Y :
$\hat{X} \in \mathcal{H}=\operatorname{ker} \theta, \pi_{M_{*}} \hat{X}=X$ and $\left.d a=-X\right\lrcorner F$.

The Twist Construction in detail

Elementary
Deformations HK / QK

Oscar MACIA

Physics [8]
Twist [20]
Example [42]
(Swann, 2007,2010)

$1 P \rightarrow M$ a principal S^{1}-bundle, with a symmetry Y, connection 1-form θ, curvature $\pi_{M}^{*} F=d \theta$.
2 $X \in \mathfrak{X}_{M}$ generating a S^{1}-action preserving F, $L_{X} F=0$
$3 X^{\prime}=\hat{X}+a Y \in \mathfrak{X}_{P}$ preserving θ and Y :
$\hat{X} \in \mathcal{H}=\operatorname{ker} \theta, \pi_{M_{*}} \hat{X}=X$ and $\left.d a=-X\right\lrcorner F$.
$4 W=P / X^{\prime}$ has an action induced by Y.

Twist data

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

- M manifold;

■ $X \in \mathfrak{X}_{M}$, circle action;
■ $F \in \Omega_{M}^{2}$ closed, X-invariant, with integral periods;
■ $a \in C_{M}^{\infty}$ with $\left.d a=-X\right\lrcorner F$.

\mathcal{H}-related tensors.

Elementary
Deforma-
tions HK / QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

■ Horizontal distribution: $\mathcal{H}=\operatorname{ker} \theta \subset T P$

- α tensor on M is \mathcal{H}-related to α_{W} on W if

$$
\pi_{M}^{*} \alpha=\pi_{W}^{*} \alpha_{W} \quad \text { on } \mathcal{H}=\operatorname{ker} \theta
$$

Write $\alpha \sim_{\mathcal{H}} \alpha_{W}$.

Lemma

(Swann, 2010) Each X-invariant p-form $\alpha \in \Omega_{M}^{p}$ is \mathcal{H}-related to a unique p-form $\alpha_{W} \in \Omega_{W}^{p}$ given by

$$
\left.\pi_{W}^{*} \alpha_{W}=\pi_{M}^{*} \alpha-\theta \wedge \pi^{*}\left(a^{-1} X\right\lrcorner \alpha\right)
$$

Twist computations

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Lemma

(S'10) If $\alpha \in \Omega_{M}^{p}$ is a X-invariant p-form on M with exterior differential d α, and $\alpha \sim_{\mathcal{H}} \alpha_{W}$ then

$$
\left.d \alpha_{W} \sim_{\mathcal{H}} d \alpha-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)
$$

Physics [8]
Twist [20]
Example [42]

$$
\alpha_{W} \sim_{\mathcal{H}} \alpha, \quad d \alpha_{W} \sim_{\mathcal{H}} d_{W} \alpha
$$

where

$$
\left.d_{W}:=d-\frac{1}{a} F \wedge X\right\lrcorner
$$

is the twisted exterior differential.
■

$$
\left(\Lambda_{W}, d\right) \sim_{\mathcal{H}}\left(\Lambda_{M}^{X}, d_{W}\right)
$$

Twist and complex structures

In general, twisting do not preserve integrability.

Proposition

(S'10) For an invariant complex structure I on M that is \mathcal{H}-related to an almost complex structure I_{W} on W we have that I_{W} is integrable iff $F \in \Omega_{I}^{1,1}(M)$.

$$
F(I A, I B)=F(A, B), \quad \forall A, B \in T M
$$

Basic example

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- $M=\mathbb{C P}^{n} \times T^{2}$ (Kaehler product)

Basic example

Elementary
Deformations HK/QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

$$
\mathbf{C P}^{n} \times T^{2} \quad S^{2 n+1} \times S^{1}
$$

- $M=\mathbb{C} P^{n} \times T^{2}$ (Kaehler product)

■ X generates one of the circle factors of $T^{2}=S^{1} \times S^{1}$.

Basic example

Elementary
Deformations HK / QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

- $M=\mathbb{C} P^{n} \times T^{2}$ (Kaehler product)

■ X generates one of the circle factors of $T^{2}=S^{1} \times S^{1}$.
■ Twist data: $F=\omega_{F S}$ Fubini-Study on $\mathbb{C P}^{n}$. twisting function: $a=1$.

Basic example

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- $M=\mathbb{C P}^{n} \times T^{2}$ (Kaehler product)

■ X generates one of the circle factors of $T^{2}=S^{1} \times S^{1}$.
■ Twist data: $F=\omega_{F S}$ Fubini-Study on $\mathbb{C P}^{n}$. twisting function: $a=1$.

- Double bundle fibration: $P=S^{2 n+1} \times T^{2}$.

Basic example

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- $M=\mathbb{C P}^{n} \times T^{2}$ (Kaehler product)

■ X generates one of the circle factors of $T^{2}=S^{1} \times S^{1}$.
■ Twist data: $F=\omega_{F S}$ Fubini-Study on $\mathbb{C P}^{n}$. twisting function: $a=1$.

- Double bundle fibration: $P=S^{2 n+1} \times T^{2}$.
- Twist $W=S^{2 n+1} \times S^{1}$. (Complex Non-Kaehler)

Basic example

Elementary
Deformations HK/QK

Oscar MACIA

Physics [8]
Twist [20]

- $M=\mathbb{C} P^{n} \times T^{2}$ (Kaehler product)

■ X generates one of the circle factors of $T^{2}=S^{1} \times S^{1}$.
■ Twist data: $F=\omega_{F S}$ Fubini-Study on $\mathbb{C P}^{n}$. twisting function: $a=1$.

- Double bundle fibration: $P=S^{2 n+1} \times T^{2}$.
- Twist $W=S^{2 n+1} \times S^{1}$. (Complex Non-Kaehler)
$1 F \in \Omega_{I}^{1,1}\left(\mathbf{C} P^{n}\right)$, comlex;

Basic example

Elementary
Deformations HK/QK

Oscar MACIA

Physics [8]
Twist [20]

- $M=\mathbb{C} P^{n} \times T^{2}$ (Kaehler product)

■ X generates one of the circle factors of $T^{2}=S^{1} \times S^{1}$.
■ Twist data: $F=\omega_{F S}$ Fubini-Study on $\mathbb{C P}{ }^{n}$. twisting function: $a=1$.

- Double bundle fibration: $P=S^{2 n+1} \times T^{2}$.
- Twist $W=S^{2 n+1} \times S^{1}$. (Complex Non-Kaehler)
$1 F \in \Omega_{I}^{1,1}\left(\mathbf{C} P^{n}\right)$, comlex;
$2 b_{2}(W)=0$, non-Kaehler.

(Second) motivating problem

```
Elementary
    Deforma-
        tions
    HK/QK
        Oscar
    MACIA
```

Introduction
[0]

- HOW CAN WE GET HYPERKAEHLER, QUATERNIONIC KAEHLER TWISTS?

(Second) motivating problem

```
Elementary
    Deforma-
        tions
    HK/QK
        Oscar
    MACIA
```

- HOW CAN WE GET HYPERKAEHLER, QUATERNIONIC KAEHLER TWISTS?
■ Which TWIST DATA determines W to be HK, QK?

Need of deformation

Elementary
Deforma－ tions HK／QK

Oscar MACIA

$$
d \alpha=0
$$

Introduction ［0］

Physics［8］
Twist［20］
Example ［42］

Need of deformation

Elementary
Deforma-
tions
HK/QK

$$
d \alpha=0
$$

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

$$
\left.\left.d \alpha_{W} \sim d_{W} \alpha=d \alpha-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)=-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)
$$

Need of deformation

Elementary

Deformations HK / QK

Oscar MACIA

$$
d \alpha=0
$$

$$
\left.\left.d \alpha_{W} \sim d_{W} \alpha=d \alpha-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)=-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)
$$

■ In order to get $d \alpha_{W}=0$ we may need to start not from α but from some deformation α^{N}.

Need of deformation

Elementary
Deformations HK/QK

Oscar MACIA

Physics [8]
Twist [20]
Example [42]

$$
d \alpha=0
$$

■

$$
\left.\left.d \alpha_{W} \sim d_{W} \alpha=d \alpha-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)=-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)
$$

■ In order to get $d \alpha_{W}=0$ we may need to start not from α but from some deformation α^{N}.

■ We will exploit the symmetries of M to get the deformation α^{N} (defining the same structure on M.)

Symmetries of the HK structure

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

■ We say that $X \in \mathfrak{X}_{M}$ is a symmetry of a HK manifold (M, g, I, J, K) iff
$1 X$ is an isometry of the HK metric: $L_{X}(g)=0$.
$2 X$ preserves the linear span $\langle I, J, K\rangle \in E n d T M$, ie.,

$$
L_{X}(I)=\langle I, J, K\rangle \quad \text { etc. }
$$

Symmetries of the HK structure

Elementary

Deforma-
tions HK / QK

Oscar
MACIA

Introduction [0]

■ We say that $X \in \mathfrak{X}_{M}$ is a symmetry of a HK manifold (M, g, I, J, K) iff
$1 X$ is an isometry of the HK metric: $L_{X}(g)=0$.
$2 X$ preserves the linear span $\langle I, J, K\rangle \in E n d T M$, ie.,
Physics [8]
Twist [20]
Example
[42]

$$
L_{X}(I)=\langle I, J, K\rangle \quad \text { etc. }
$$

- We will say that the symmetry X is rotating if

$$
L_{X}(I)=0, \quad L_{X}(J)=K
$$

Elementary deformations

Elementary

Deformations HK / QK

Oscar

MACIA

Introduction [0]

Physics [8]
Twist [20]

■ Define one-forms $\left(\alpha_{0}, \alpha_{A}\right): A=\mathrm{I}, \mathrm{J}, \mathrm{K}$:

$$
\alpha_{0}=g(X, \cdot), \quad \alpha_{A}=-g(A X, \cdot), A=\mathrm{I}, \mathrm{~J}, \mathrm{~K} .
$$

Then,

$$
g_{\alpha}:=\alpha_{0}^{2}+\sum_{A} \alpha_{A}^{2}
$$

is definite semi-positive and proportional to the restriction $g \mid \mathbf{H} X$ where $\mathbf{H} X=\langle X, I X, J X, K X\rangle$.

- An elementary deformation g^{N} of a HK mertric g wrt a symmetry X is a new metric of the form

$$
g^{N}=f g+h g_{\alpha}
$$

where $f, h \in C_{M}^{\infty}$.

Main theorem

Elementary

Deformations HK/QK

Oscar
MACIA

Physics [8]
Twist [20]
Example [42]

Theorem

Let (M, g, I, J, K) be a hyperKaehler manifold with non-null rotating symmetry X and Kaehler moment map μ. If $\operatorname{dim} M \geq 8$, then up to homothety, the only twists of elementary deformations $g^{N}=f g+h g_{\alpha}$ of g that are quaternion-Kaehler have

$$
g^{N}=\frac{1}{(\mu-c)^{2}} g_{\alpha}-\frac{1}{\mu-c} g
$$

for some constant c. The corresponding twist data is given by

$$
F=k\left(d \alpha_{0}+\omega_{I}\right), \quad a=k(g(X, X)-\mu+c)
$$

Meaning

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]

■ The unicity statement is particularly important, since it shows that previous constructions using different methods by Haydys, Hitchin, Alekseevsky et al, agree.

- The constant k changes the curvature form: ie., affects the topology of the twist.

■ Constant c affects the local properties of the QK metric.

Sketch of proof

Elementary

Deforma-
tions HK/QK

Oscar
MACIA

Physics [8]
Twist [20]

- From g^{N} and (I, J, K) construct Ω^{N}, and impose that an arbitrary twist Ω_{W} of Ω^{N} is QK.
■ Decompose these equations in type components relative to $\mathbf{H} X$ and its orthogonal complement.
- This computation leads eventually to

$$
f=f(\mu), \quad h=h(\mu), \quad h=f^{\prime}
$$

where μ is the moment map for X.

- First consider the relation $-X F$ and determine the twist function a.
■ Investigate the condition $d F=0$ which lads to a ODE to determine f.

The hyperbolic plane

Elementary
Deformations HK/QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

- Step I.- Define indefinite PSK structures on open subsets S of the hyperbolic plane $\mathbf{R H}(2)$.

The hyperbolic plane

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

■ Step I.- Define indefinite PSK structures on open subsets S of the hyperbolic plane $\mathbf{R H}(2)$.
■ Real hyperbolic space $\mathbf{R H}(2)$: 2-dimensional solvable Lie group with Kaehler metric of constant curvature.
■ Local basis of one forms $\{a, b\} \in \Omega_{S}^{1}$:

$$
d a=0, \quad d b=-\lambda a \wedge b
$$

The hyperbolic plane

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]
Physics [8]
Twist [20]

- Step I.- Define indefinite PSK structures on open subsets S of the hyperbolic plane $\mathbf{R H}(2)$.
■ Real hyperbolic space $\mathbf{R H}(2)$: 2-dimensional solvable Lie group with Kaehler metric of constant curvature.
■ Local basis of one forms $\{a, b\} \in \Omega_{S}^{1}$:

$$
d a=0, \quad d b=-\lambda a \wedge b
$$

1 Metric:

$$
g_{S}=a^{2}+b^{2}
$$

The hyperbolic plane

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]
Physics [8]
Twist [20]

- Step I.- Define indefinite PSK structures on open subsets S of the hyperbolic plane $\mathbf{R H}(2)$.
■ Real hyperbolic space $\mathbf{R H}(2)$: 2-dimensional solvable Lie group with Kaehler metric of constant curvature.
■ Local basis of one forms $\{a, b\} \in \Omega_{S}^{1}$:

$$
d a=0, \quad d b=-\lambda a \wedge b
$$

1 Metric:

$$
g_{S}=a^{2}+b^{2}
$$

The hyperbolic plane

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]
Physics [8]
Twist [20]

- Step I.- Define indefinite PSK structures on open subsets S of the hyperbolic plane $\mathbf{R H}(2)$.
■ Real hyperbolic space $\mathbf{R H}(2)$: 2-dimensional solvable Lie group with Kaehler metric of constant curvature.
■ Local basis of one forms $\{a, b\} \in \Omega_{S}^{1}$:

$$
d a=0, \quad d b=-\lambda a \wedge b
$$

1 Metric:

$$
g_{S}=a^{2}+b^{2}
$$

2 Almost complex structure:

$$
I a=b
$$

The hyperbolic plane

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]

- Step I.- Define indefinite PSK structures on open subsets S of the hyperbolic plane $\mathbf{R H}(2)$.
■ Real hyperbolic space $\mathbf{R H}(2)$: 2-dimensional solvable Lie group with Kaehler metric of constant curvature.
■ Local basis of one forms $\{a, b\} \in \Omega_{S}^{1}$:

$$
d a=0, \quad d b=-\lambda a \wedge b
$$

1 Metric:

$$
g_{S}=a^{2}+b^{2}
$$

2 Almost complex structure:

$$
I a=b
$$

3 Kaehler 2-form:

$$
\omega_{S}=a \wedge b
$$

Local cone structure

Elementary
Deformations HK/QK

■ The PSK manifold S is the Kaehler quotient of a conic SK manifold $C \equiv(C, g, \omega, \nabla, X)$

$$
\begin{aligned}
& C_{0} \xrightarrow{i} C \\
& \text { IT } \quad S=C / / c X \\
& \text { S }
\end{aligned}
$$

Local cone structure

Elementary
Deformations HK/QK

■ The PSK manifold S is the Kaehler quotient of a conic SK manifold $C \equiv(C, g, \omega, \nabla, X)$

$$
\begin{array}{ll}
C_{0} \xrightarrow{i} C \\
\left.\right|_{\substack{ \\
\\
S}} & S=C / / c X \\
&
\end{array}
$$

- Locally $C=\mathbf{R}_{>0} \times C_{0}$.

Local cone structure

Elementary
Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]
Example
[42]

■ The PSK manifold S is the Kaehler quotient of a conic SK manifold $C \equiv(C, g, \omega, \nabla, X)$

$$
\begin{array}{ll}
C_{0} \xrightarrow{i} C & \\
\downarrow_{\pi} & S=C / / c X
\end{array}
$$

- Locally $C=\mathbf{R}_{>0} \times C_{0}$.
- C_{0} is the level set $\mu^{-1}(c)$ for the moment map of X.

■ $C_{0} \rightarrow S$ is a bundle with connection 1-form φ :

$$
d \varphi=2 \pi^{*} \omega_{S}=i^{*} \omega
$$

Metric and Kaehler form on C

Elementary

Deformations HK/QK

MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- Write t for the standard coordinate on $\mathbf{R}_{>0}$ and $\hat{\psi}=d t$.
- Write $\hat{a}=t \pi^{*} a, \hat{b}=t \pi^{*} b, \hat{\varphi}=t \varphi$

Lemma

The $(2,2)$ pseudo-Riemannian metric and the Kaehler form of $C=\mathbf{R}_{>0} \times C_{0}$ are

$$
\begin{gathered}
g_{C}=\hat{a}^{2}+\hat{b}^{2}-\hat{\varphi}^{2}-\hat{\psi}^{2}=-d t^{2}+t^{2} g_{C_{0}} \\
\omega_{C}=\hat{a} \wedge \hat{b}-\hat{\varphi} \wedge \hat{\psi}
\end{gathered}
$$

The conic isometry satisfies

$$
I X=t \frac{\partial}{\partial t}
$$

LC connection

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

■ Coframe $s^{*} \theta$:

$$
(\hat{a}, \hat{b}, \hat{\varphi}, \hat{\psi})
$$

- Exterior differential $d\left(s^{*} \theta\right)$:

$$
\begin{aligned}
d \hat{a}=\frac{1}{t} d t \wedge \hat{a} & d \hat{b}=\frac{1}{t}(d t \wedge \hat{b}-\lambda \hat{a} \wedge \hat{b}) \\
d \hat{\varphi}=\frac{1}{t}(d t \wedge \hat{\varphi}+2 \hat{a} \wedge \hat{b}) & d \hat{\psi}=0
\end{aligned}
$$

- LC connection $s^{*} \omega_{L C}$

$$
s^{*} \omega_{L C}=\frac{1}{t}\left(\begin{array}{cccc}
0 & \hat{\varphi}+\lambda \hat{b} & \hat{b} & \hat{a} \\
-\hat{\varphi}-\lambda \hat{b} & 0 & -\hat{a} & \hat{b} \\
\hat{b} & -\hat{a} & 0 & \hat{\varphi} \\
\hat{a} & \hat{b} & -\hat{\varphi} & 0
\end{array}\right)
$$

Curvature 2-form

Elementary
Deforma-
tions HK/QK

Oscar MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

■ Curvature 2-form $s^{*} \Omega_{L C}$:

$$
s^{*} \Omega_{L C}=\frac{4-\lambda^{2}}{t^{2}}\left(\begin{array}{cccc}
0 & \hat{a} \wedge \hat{b} & 0 & 0 \\
-\hat{a} \wedge \hat{b} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Lemma

The pseudo-Riemannian metric g_{C} is flat iff $\lambda^{2}=4$.

Conic special Kaehler condition

Elementary

Deformations HK/QK

- Symplectic connection in terms of LC connection:

$$
s^{*} \omega_{\nabla}=s^{*} \omega_{L C}+\eta .
$$

- Conditions on η.
$1 \eta \wedge s^{*} \theta$ (from the special condition);
$2 \mathbf{i} \eta=-\eta \mathbf{i}$ (anti-complex condition);
$3{ }^{t} \eta \mathbf{s}=-\mathbf{s} \eta$ (special connection is symplectic)
$4 X\lrcorner \eta=I X\lrcorner \eta=0$ (η is $\{3,0\}$ totally symmetric).

Proposition

The cone $\left(C, g_{C}, \omega_{C}\right)$ over $S \subset \mathbf{R H}(2)$ is conic special Kaehler iff $\lambda^{2}=\frac{4}{3}$ or $\lambda^{4}=4$.

Elementary

Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

Step II.- HK metric on $T^{*} C$.

- Hyperkaehler metric:

$$
g_{H}=\left(\hat{a}^{2}+\hat{b}^{2}-\hat{\varphi}^{2}-\hat{\psi}^{2}\right)+\left(\hat{A}^{2}+\hat{B}^{2}-\hat{\Phi}^{2}-\hat{\Psi}^{2}\right)
$$

for $(\hat{A}, \hat{B}, \hat{\Phi}, \hat{\Psi})=s^{*} \alpha=d x-x s^{*} \omega_{L C}$.

- Hyperkaehler structure:

$$
\begin{aligned}
\omega_{I} & =\hat{a} \wedge \hat{b}-\hat{\varphi} \wedge \hat{\psi}-\hat{A} \wedge \hat{B}+\Phi \wedge \hat{\Psi} \\
\omega_{J} & =\hat{A} \wedge \hat{a}+\hat{B} \wedge \hat{b}+\hat{\Phi} \wedge \hat{\varphi}+\hat{\Psi} \wedge \hat{\psi} \\
\omega_{K} & =\hat{A} \wedge \hat{b}-\hat{B} \wedge \hat{a}+\hat{\Phi} \wedge \hat{\psi}-\hat{\Psi} \wedge \hat{\varphi}
\end{aligned}
$$

Elementary deformation of g_{H}

Elementary Deformations HK/QK

Oscar
MACIA

Introduction [0]

Physics [8] Twist [20]

Step III.- Elementary deformations, twist data, etc.

- Deformation elements $\alpha_{0}, \ldots \alpha_{K}$:

$$
\begin{array}{ll}
\left.\alpha_{I}=I \widetilde{X}\right\lrcorner g_{H}=-t \hat{\psi}, & \alpha_{0}=-I \alpha_{I}=-t \hat{\varphi} \\
\left.\alpha_{J}=I \widetilde{X}\right\lrcorner g_{H}=-t \hat{\Phi}, & \alpha_{K}=I \alpha_{J}=-t \hat{\Psi}
\end{array}
$$

- Moment map:

$$
\mu=\frac{1}{2}\|\widetilde{X}\|^{2}=-\frac{t^{2}}{2}
$$

■ Deformed metric on $H=T^{*} C$:

$$
\begin{aligned}
g_{N} & =-\frac{1}{\mu} g_{H}+\frac{1}{\mu^{2}}\left(\alpha_{0}^{2}+\alpha_{I}^{2}+\alpha_{J}^{2}+\alpha_{K}^{2}\right) \\
& =\frac{2}{t^{2}}\left(\hat{a}^{2}+\hat{b}^{2}+\hat{\varphi}^{2}+\hat{\psi}^{2}+\hat{A}^{2}+\hat{B}^{2}+\hat{\Phi}^{2}+\hat{\Psi}^{2}\right)
\end{aligned}
$$

Twist data

Elementary
Deforma-
tions
HK/QK
Oscar
MACIA
■ Twisting (curvature) 2-form:

$$
F=-\hat{a} \wedge \hat{b}+\wedge \wedge \hat{\psi}-\hat{A} \wedge \hat{B}+\hat{\Phi} \wedge \hat{\Psi}
$$

Physics [8]
Twist [20]

- Twisting function

$$
a=\mu=-\frac{t^{2}}{2}
$$

Flat case $\lambda^{2}=4$.

```
Elementary
    Deforma-
        tions
    HK/QK
Oscar MACIA
Introduction
[0]
Physics [8]
Twist [20]
Example
[42]
```

Step IV.- Computing d_{W}

- The LC and the special connection coincide.

Flat case $\lambda^{2}=4$.

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

Step IV.- Computing d_{W}

- The LC and the special connection coincide.
- X-invariant coframe on C

$$
\gamma=s^{*} \theta / t=(\tilde{a}, \tilde{b}, \varphi, \tilde{\psi})
$$

(we can compute the twisted differentials immediatelly)

$$
\begin{aligned}
d_{W} \tilde{a}=0 & d_{W} \tilde{b}=2 \tilde{b} \wedge \tilde{a} \\
d_{W} \varphi=2 \tilde{a} \wedge \tilde{b}+\frac{2}{t^{2}} F & d_{W} \tilde{\psi}=0
\end{aligned}
$$

Elementary

Deformations HK/QK

Oscar MACIA

Introduction [0]
Physics [8]
Twist [20]
Example [42]

Step IV.- Computing d_{W}

- The LC and the special connection coincide.
- X-invariant coframe on C

$$
\gamma=s^{*} \theta / t=(\tilde{a}, \tilde{b}, \varphi, \tilde{\psi})
$$

(we can compute the twisted differentials immediatelly)

$$
\begin{aligned}
d_{W} \tilde{a}=0 & d_{W} \tilde{b}=2 \tilde{b} \wedge \tilde{a} \\
d_{W} \varphi=2 \tilde{a} \wedge \tilde{b}+\frac{2}{t^{2}} F & d_{W} \tilde{\psi}=0
\end{aligned}
$$

- In the vertical directions

$$
\tilde{\delta}=\left(s^{*} \alpha\right) / t=(\tilde{A}, \tilde{B}, \tilde{\Phi}, \tilde{\Psi})
$$

is NOT \tilde{X}-invariant.

Elementary
Deforma-
tions HK/QK

Oscar
MACIA

Introduction
[0]
Physics [8]
Twist [20]
Example [42]

$$
\begin{gathered}
\delta=\tilde{\delta} e^{\mathbf{i} \tau} \\
\epsilon=\frac{1}{2}\left(\delta_{1}+\delta_{4}, \delta_{2}-\delta_{3},-\delta_{2}-\delta_{3},-\delta_{1}+\delta_{4}\right) \\
d_{W} \epsilon=\epsilon \wedge\left(\begin{array}{cccc}
\psi-\tilde{a} & 0 & 2 \tilde{b} & 0 \\
0 & \tilde{\psi}-\tilde{a} & 0 & -2 \tilde{b} \\
0 & 0 & \tilde{\psi}-\tilde{a} & 0 \\
0 & 0 & 0 & \tilde{\psi}+\tilde{a}
\end{array}\right) \\
d_{W} \varphi=2\left(\varphi \wedge \tilde{\psi}+\epsilon_{13}+\epsilon_{4} \wedge \epsilon_{2}\right)
\end{gathered}
$$

The resulting Lie algebra is isomorphic to the solvable algebra corresponding to the non-compact symmetric space

$$
G r_{2}^{+}\left(\mathbf{C}^{2,2}\right)=\frac{U(2,2)}{U(2) \times U(2)}
$$

non-flat case $\lambda^{2}=\frac{4}{3}$

Elementary
Deforma-
tions
HK/QK
Oscar
MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

■ Write

$$
(\hat{A}, \hat{B}, \hat{\Phi}, \hat{\Psi})=d x-x s^{*} \omega_{L C}-x \eta
$$

■ Then, g_{H}, g_{N} and the twist data F, a are the same.

- Twisted differentials for $\gamma=(\tilde{a}, \tilde{b}, \varphi, \tilde{\psi})$:

$$
\begin{gathered}
d_{W} \tilde{a}=0 \quad d_{W} \tilde{b}=-\frac{2}{3} \tilde{a} \wedge \tilde{b} \quad d_{W} \tilde{\psi}=0 \\
d_{W} \varphi=2(\varphi \wedge \tilde{\psi}-\tilde{A} \wedge \tilde{B}+\tilde{\Phi} \wedge \tilde{\Psi})
\end{gathered}
$$

Elementary Deformations HK/QK
Oscar MACIA
Introduction [0]
Physics [8]
Twist [20]
Example [42]

Elementary
Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]
Example [42]

- Adjusting the vertical directionss we arrive to

$$
\begin{aligned}
d_{W} \epsilon= & \epsilon \wedge \tilde{\psi} \mathbf{I} \mathbf{d}_{4}+\frac{1}{\sqrt{3}} \epsilon \wedge \tilde{a}\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) \\
& +\frac{2}{\sqrt{3}} \epsilon \wedge \tilde{b}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

■ We see the structure of solvable algebra associated to

$$
\frac{G_{2}^{*}}{S O(4)}
$$

Bibliography

Elementary

Deformations HK/QK

Oscar MACIA

Introduction [0]

Physics [8]
Twist [20]

- This talk is based on:

1 -, Swann, A.F.,Elementary deformations and the hyperKaehler-quaterninic Kaehler correspondence, (2014).

2 -, Swann, A.F., Twist geometry of the c-map, (2014).

- The general theory can be consulted in:

1 Swann, A.F., T is for twist.
2 Swann, A.F., Twisting Hermitian and hypercomplex geometries, Duke Math. J. 155(2),403-431(2010)

