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Berger’s list

Theorem

(Berger, 1955)
Let M be a oriented symply-connected n-dimensional
Riemannian manifold which is neither locally a product nor
symmetric. Then its holonomy group belongs to the
following list.
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Kaehler manifolds

Kaehler manifolds are Riemannian 2m-dimensional manifold
with holonomy group Hol ⊆ U(m).

They admit mutually compatible Riemannian, Complex
and Symplectic structures.

1 acs: I ∈ End(TM) : I2 = −Id
2 Hermitian metric: g(IX, IY ) = g(X,Y )
3 Kaehler 2-form: ω(X,Y ) = g(IX, Y ) non-degenerate.

Kaehler condition:

∇LCI = 0 or dω = 0.
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Hyperkaehler manifolds

HyperKaehler manifolds are 4k-dimensional Riemannian
manifolds with holonomy group ⊆ Sp(k).

H = K ∩Q
H ⇒ {r = 0, s = 0}.
H ⇒ {I, J,K} : I2 = J2 = K2 = IJK = −Id

∇LCI = ∇LCJ = ∇LCK = 0,

dωI = dωJ = dωK = 0.

eg., 4D Kaehler & Ricci flat, K3-surfaces, Beauville’s
S[r] manifolds.
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Quaternionic Kaehler manifolds

Quaternionic Kaehler manifolds are 4k-dimensional
Riemannian manifolds with holonomy group
Hol ⊆ Sp(k)Sp(1).

Q 6⊂ K
s = constant.

Q⇒ {I, J,K} : I2 = J2 = K2 = IJK = −Id

Ω = ω2
I + ω2

J + ω2
K

∇LCΩ = 0

eg., Wolf spaces (compact,positive,symmetric),
Alekseevsky spaces (non-compact, homogeneous not
necessarily symmetric).
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(First) motivating problem

1 FIND EXPLICIT METRICS WITH
SPECIAL HOLONOMY

2 HK and QK, in particular
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Hint

“The
mathematical
problems that have
been solved or
techniques that have
arisen out of physics
in the past have been
the lifeblood of
mathematics.”

Sir Michael F.
Atiyah

Collected Works Vol.
1 (1988), 19, p.13
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c-map as Superstring theory T -duality

(Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal,
1990)

S2n c−→ Q4(n+1)

In the simplest SUSY case

C2n c−→ H4n
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Historic relevance of the c-map for homogeneous
QK

(Alekseevsky, 1975)

1 Completely solvable Lie groups admitting QK metrics.

2 All known homogeneous non-symmetric QK manifolds.

(Cecotti, Ferrara, Girardello, 1989; Ferrara, Sabharwal,
1990)

S2n c−→ Q4(n+1)

(de Witt, Van Proeyen, 1992)
Use c-map to complete Alekseevsky’s classification.

(Cortes, 1996)
Complete classification (without c-map).
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Special Kaehler manifolds I

A Special Kaehler manifold is a K manifold (M, g, I, ω)
together with a secondary connection ∇ (the special
connection):

R(∇) = T(∇) = 0, ∇ωI = 0, ∇XIY = −∇Y IX.

A conic special Kaehler manifold C is a SK manifold
(M, g, I, ω,∇) together with a distinguished vector field
X (the conic isometry) satisfying:

1 g(X,X) is nowhere vanishing;
2 ∇X = −I = ∇LCX.

The conic structure is periodic or quasiregular if it
exponentiates to a circle action, regular if the circle
action is free.
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Special Kaehler manifolds II

A projective special Kaehler manifold S is a Kaehler
quotient S = C//cX = µ−1(c)/X of a conic SK
manifold by a conic isometry X at some level c ∈ R,
together with the data necessary to reconstrut C up to
equivalence.

C0 = µ−1(c) C

C//cX = S
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N = 2, D = 4 SIMPLE SUPERGRAVITY

The field content of N = 2, D = 4 SUGRA:

1 n-vector multiplets (Aiµ̂, λ
iΛ, φi)

2 the gravity multiplet (V aµ̂ , ψ
Λ, A0

µ̂).

i = 1, . . . , n and µ̂ = 0, 1, 2, 3.

In the σ-model apprach, the scalar fields are
interpreted as coordintes of some differentiable
manifold.

1 The manifold defined by the vector multiplet has n
complex coordinates φi is projective special Kaehler.
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Kaluza–Klein compactification of the metric field

When we reduce from D = 4 to D = 3 by Kaluza–Klein
compactification the space-time metric (a 4D-tensor

g
(4)
µ̂ν̂ ) splits as

g
(4)
µ̂ν̂ =

(
eiσg

(3)
µν + e2σAµAν e2σAµ
e2σAν e2σ

)

increasing the numer of independent fields:

1 the 3D-metric tensor g
(3)
µν ;

2 a 3D-vector field Aµ;
3 a new scalar field φ = e2σ.

µ, ν = 0, 1, 2.
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Kaluza-Klein compactification on vector fields

The n 4D-vector fields Aiµ̂ (in vector mulitplets) and

the graviphoton A0
µ̂ also split into (n+ 1) 3D-vectors

and (n+ 1) scalars, called axions.

(Aiµ̂, A
0
µ̂) = (Aiµ, A

i
3, A

0
µ, A

0
3)

1 Axions ζΛ = Ai3, A
0
3, Λ = 0, . . . , n.

2 Nevertheless, 3D-vectors in 3D are T-dual to scalars
therefore each Aiµ, A

0
µ gives an extra scalar ζ̃Λ, n+ 1 in

total.

The 3D-gravitational vector Aµ also by T -duality gives
rise to an extra scalar a.
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Scalar fields in D = 3.

After the Kaluza–Klein compactification we have the
following list of scalar fields:

SUGRA SUSY

φi 2n 2n
φ 1
ζΛ n+ 1 n

ζ̃Λ n+ 1 n
a 1

TOTAL 4(n+ 1) 4n

Q H
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The general picture arising from physics

C2(n+1) H4(n+1)

S2n Q4(n+1)

c

//cX ?

c
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The Twist Construction (sketch)

The Twist Construction associates to a manifolds M
with a S1-action (generated by X) a new space W of
the same dimension with distinguished vector field Y.
This construction fits in to a double fibration

P

M W

π

Y

πW

X
twist

so W is M TWISTED by the S1-bndle P.
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Twists & HK/QK correspondence

(Joyce, 1992; Grantcharov, Poon, 2001)
Instanton twists (Hypercomplex, quaternionic, HKT).

(Swann,2007,2010)
General twists (T-duality, HKT, KT, SKT,...)

(Haydys, 2008)
HK/QK correspondence{

HK
symmetry fixing one ω

}
⇔
{

QK
cirlce action

}
(Hitchin, 2013)
Twistor interpretation.

(Alekseevsky, Cortes, Dyckmanns, Mohaupt, 2013)

c-map QK4(n+1) ⊂ HK/QK correspondence
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Objective

To give an explanation to the HK/QK
correspondence arising in the c-map ...

C2(n+1) H4(n+1)

S2n Q4(n+1)

c

//cX ?

c
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Objective

To give an explanation to the HK/QK
correspondence arising in the c-map ...

C2(n+1) H4(n+1)

P

S2n Q4(n+1)

c

//cX twist

πM

πW

c

... using the Twist Construction.
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The Twist Construction in detail

(Swann, 2007,2010)

P

M W

πM πW

1 P →M a principal S1-bundle, with a symmetry Y,
connection 1-form θ, curvature π∗MF = dθ.

2 X ∈ XM generating a S1-action preserving F,
LXF = 0

3 X ′ = X̂ + aY ∈ XP preserving θ and Y :
X̂ ∈ H = ker θ, πM ∗X̂ = X and da = −XyF .

4 W = P/X ′ has an action induced by Y.
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Twist data

P

M W

πM πW

M manifold;

X ∈ XM , circle action;

F ∈ Ω2
M closed, X-invariant, with integral periods;

a ∈ C∞M with da = −XyF.
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H-related tensors.

P

M W

πM πW

Horizontal distribution: H = ker θ ⊂ TP
α tensor on M is H–related to αW on W if

π∗
M
α = π∗

W
αW on H = ker θ

Write α ∼H αW .

Lemma

(Swann, 2010) Each X-invariant p-form α ∈ Ωp
M is

H-related to a unique p-form αW ∈ Ωp
W given by

π∗
W
αW = π∗

M
α− θ ∧ π∗(a−1Xyα)



Elementary
Deforma-

tions
HK/QK

Oscar
MACIA

Introduction
[0]

Physics [8]

Twist [20]

Example
[42]

Twist computations

Lemma

(S’10) If α ∈ Ωp
M is a X-invariant p-form on M with

exterior differential dα, and α ∼H αW then

dαW ∼H dα− 1

a
F ∧ (Xyα) .

αW ∼H α, dαW ∼H dWα

where

dW := d− 1

a
F ∧Xy

is the twisted exterior differential.

(ΛW , d) ∼H

(
ΛX

M
, dW

)
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Twist and complex structures

In general, twisting do not preserve integrability.

Proposition

(S’10) For an invariant complex structure I on M that is
H-related to an almost complex structure IW on W we have
that IW is integrable iff F ∈ Ω1,1

I (M).

F (IA, IB) = F (A,B), ∀A,B ∈ TM.
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Basic example

S2n+1 × T 2

CPn × T 2 S2n+1 × S1

πM πW

M = CPn × T 2 (Kaehler product)

X generates one of the circle factors of T 2 = S1 × S1.

Twist data: F = ωFS Fubini–Study on CPn. twisting
function: a = 1.

Double bundle fibration: P = S2n+1 × T 2.

Twist W = S2n+1 × S1. (Complex Non-Kaehler)

1 F ∈ Ω1,1
I (CPn), comlex;

2 b2(W ) = 0, non-Kaehler.
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Twist data: F = ωFS Fubini–Study on CPn. twisting
function: a = 1.

Double bundle fibration: P = S2n+1 × T 2.

Twist W = S2n+1 × S1. (Complex Non-Kaehler)

1 F ∈ Ω1,1
I (CPn), comlex;

2 b2(W ) = 0, non-Kaehler.
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(Second) motivating problem

HOW CAN WE GET HYPERKAEHLER,
QUATERNIONIC KAEHLER TWISTS?

Which TWIST DATA determines W to be HK, QK?
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Need of deformation

dα = 0

dαW ∼ dWα = dα− 1

a
F ∧ (Xyα) = −1

a
F ∧ (Xyα)

In order to get dαW = 0 we may need to start not from
α but from some deformation αN .

We will exploit the symmetries of M to get the
deformation αN (defining the same structure on M.)
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Symmetries of the HK structure

We say that X ∈ XM is a symmetry of a HK manifold
(M, g, I, J,K) iff

1 X is an isometry of the HK metric: LX(g) = 0.
2 X preserves the linear span 〈I, J,K〉 ∈ EndTM, ie.,

LX(I) = 〈I, J,K〉 etc.

We will say that the symmetry X is rotating if

LX(I) = 0, LX(J) = K.
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Elementary deformations

Define one-forms (α0, αA) : A = I, J,K :

α0 = g(X, ·), αA = −g(AX, ·), A = I, J,K.

Then,

gα := α2
0 +

∑
A

α2
A

is definite semi-positive and proportional to the
restriction g|HX where HX = 〈X, IX, JX,KX〉.
An elementary deformation gN of a HK mertric g wrt a
symmetry X is a new metric of the form

gN = fg + hgα

where f, h ∈ C∞M .
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Main theorem

Theorem

Let (M, g, I, J,K) be a hyperKaehler manifold with non-null
rotating symmetry X and Kaehler moment map µ. If
dimM ≥ 8, then up to homothety, the only twists of
elementary deformations gN = fg + hgα of g that are
quaternion-Kaehler have

gN =
1

(µ− c)2
gα −

1

µ− c
g

for some constant c. The corresponding twist data is given by

F = k(dα0 + ωI), a = k(g(X,X)− µ+ c).
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Meaning

The unicity statement is particularly important, since it
shows that previous constructions using different
methods by Haydys, Hitchin, Alekseevsky et al, agree.

The constant k changes the curvature form: ie., affects
the topology of the twist.

Constant c affects the local properties of the QK metric.
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Sketch of proof

From gN and (I, J,K) construct ΩN , and impose that
an arbitrary twist ΩW of ΩN is QK.

Decompose these equations in type components relative
to HX and its orthogonal complement.

This computation leads eventually to

f = f(µ), h = h(µ), h = f ′

where µ is the moment map for X.

First consider the relation −XF and determine the
twist function a.

Investigate the condition dF = 0 which lads to a ODE
to determine f.
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The hyperbolic plane

Step I.– Define indefinite PSK structures on open
subsets S of the hyperbolic plane RH(2).

Real hyperbolic space RH(2) : 2-dimensional solvable
Lie group with Kaehler metric of constant curvature.

Local basis of one forms {a, b} ∈ Ω1
S :

da = 0, db = −λa ∧ b

1 Metric:
g
S

= a2 + b2

2 Almost complex structure:

Ia = b

3 Kaehler 2-form:
ω

S
= a ∧ b.
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Local cone structure

The PSK manifold S is the Kaehler quotient of a conic
SK manifold C ≡ (C, g, ω,∇, X)

C0 C

S

i

π S = C//cX

Locally C = R>0 × C0.

C0 is the level set µ−1(c) for the moment map of X.

C0 → S is a bundle with connection 1-form ϕ :

dϕ = 2π∗ωS = i∗ω
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Metric and Kaehler form on C

Write t for the standard coordinate on R>0 and ψ̂ = dt.

Write â = tπ∗a, b̂ = tπ∗b, ϕ̂ = tϕ

Lemma

The (2, 2) pseudo–Riemannian metric and the Kaehler form
of C = R>0 × C0 are

gC = â2 + b̂2 − ϕ̂2 − ψ̂2 = −dt2 + t2gC0

ωC = â ∧ b̂− ϕ̂ ∧ ψ̂.

The conic isometry satisfies

IX = t
∂

∂t
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LC connection

Coframe s∗θ:
(â, b̂, ϕ̂, ψ̂)

Exterior differential d(s∗θ) :

dâ =
1

t
dt ∧ â db̂ =

1

t
(dt ∧ b̂− λâ ∧ b̂)

dϕ̂ =
1

t
(dt ∧ ϕ̂+ 2â ∧ b̂) dψ̂ = 0

LC connection s∗ωLC

s∗ωLC =
1

t


0 ϕ̂+ λb̂ b̂ â

−ϕ̂− λb̂ 0 −â b̂

b̂ −â 0 ϕ̂

â b̂ −ϕ̂ 0


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Curvature 2-form

Curvature 2-form s∗ΩLC :

s∗ΩLC =
4− λ2

t2


0 â ∧ b̂ 0 0

−â ∧ b̂ 0 0 0
0 0 0 0
0 0 0 0


Lemma

The pseudo–Riemannian metric gC is flat iff λ2 = 4.
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Conic special Kaehler condition

Symplectic connection in terms of LC connection:

s∗ω∇ = s∗ωLC + η.

Conditions on η.

1 η ∧ s∗θ (from the special condition);
2 i η = −η i (anti-complex condition);c
3 tη s = −s η (special connection is symplectic)
4 X y η = IX y η = 0 (η is {3, 0} totally symmetric).

Proposition

The cone (C, gC , ωC ) over S ⊂ RH(2) is conic special
Kaehler iff λ2 = 4

3 or λ4 = 4.
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Hyperkaehler structure on H = T ∗C from the
RIGID c-map

Step II.– HK metric on T ∗C.

Hyperkaehler metric:

gH =
(
â2 + b̂2 − ϕ̂2 − ψ̂2

)
+
(
Â2 + B̂2 − Φ̂2 − Ψ̂2

)
for (Â, B̂, Φ̂, Ψ̂) = s∗α = dx− xs∗ωLC .
Hyperkaehler structure:

ωI = â ∧ b̂− ϕ̂ ∧ ψ̂ − Â ∧ B̂ + Φ ∧ Ψ̂

ωJ = Â ∧ â+ B̂ ∧ b̂+ Φ̂ ∧ ϕ̂+ Ψ̂ ∧ ψ̂
ωK = Â ∧ b̂− B̂ ∧ â+ Φ̂ ∧ ψ̂ − Ψ̂ ∧ ϕ̂.
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Elementary deformation of g
H

Step III.– Elementary deformations, twist data, etc.

Deformation elements α0, . . . αK :

αI = IX̃ygH = −tψ̂, α0 = −IαI = −tϕ̂
αJ = IX̃ygH = −tΦ̂, αK = IαJ = −tΨ̂

Moment map:

µ =
1

2
||X̃||2 = − t

2

2

Deformed metric on H = T ∗C :

gN = − 1

µ
gH +

1

µ2
(α2

0 + α2
I + α2

J + α2
K)

=
2

t2
(â2 + b̂2 + ϕ̂2 + ψ̂2 + Â2 + B̂2 + Φ̂2 + Ψ̂2)
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Twist data

Twisting (curvature) 2-form:

F = −â ∧ b̂+ˆ∧ ψ̂ − Â ∧ B̂ + Φ̂ ∧ Ψ̂

Twisting function

a = µ = − t
2

2
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Flat case λ2 = 4.

Step IV.– Computing dW

The LC and the special connection coincide.

X-invariant coframe on C

γ = s∗θ/t = (ã, b̃, ϕ, ψ̃)

(we can compute the twisted differentials immediatelly)

dW ã = 0 dW b̃ = 2b̃ ∧ ã

dWϕ = 2ã ∧ b̃+
2

t2
F dW ψ̃ = 0

In the vertical directions

δ̃ = (s∗α)/t = (Ã, B̃, Φ̃, Ψ̃)

is NOT X̃-invariant.
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δ = δ̃eiτ

ε =
1

2
(δ1 + δ4, δ2 − δ3,−δ2 − δ3,−δ1 + δ4)

dW ε = ε ∧


ψ − ã 0 2b̃ 0

0 ψ̃ − ã 0 −2b̃

0 0 ψ̃ − ã 0

0 0 0 ψ̃ + ã


dWϕ = 2(ϕ ∧ ψ̃ + ε13 + ε4 ∧ ε2)

The resulting Lie algebra is isomorphic to the solvable
algebra corresponding to the non-compact symmetric
space

Gr+
2 (C2,2) =

U(2, 2)

U(2)× U(2)
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non-flat case λ2 = 4
3

Write
(Â, B̂, Φ̂, Ψ̂) = dx− xs∗ωLC−xη.

Then, gH , gN and the twist data F, a are the same.

Twisted differentials for γ = (ã, b̃, ϕ, ψ̃) :

dW ã = 0 dW b̃ = −2

3
ã ∧ b̃ dW ψ̃ = 0

dWϕ = 2(ϕ ∧ ψ̃ − Ã ∧ B̃ + Φ̃ ∧ Ψ̃)
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Adjusting the vertical directionss we arrive to

dW ε = ε ∧ ψ̃Id4 +
1√
3
ε ∧ ã


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3



+
2√
3
ε ∧ b̃


0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0


We see the structure of solvable algebra associated to

G∗2
SO(4)
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Thank you.
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