$S O(3), 8$-MANIFOLDS AND QUATERNIONIC GEOMETRY

O. Macia
University of Valencia \& Politecnico di Torino
http://www.uv.es/majuanos

New Trends in Differential Geometry,
L'Aquila, 2011 September, $8^{\text {th }}$.

1. -, A Nearly Quaternionic Structure on $S U(3)$, J. Geom. Phys., 60 (2010), no. 5, 791-798.
2. Chiossi, S.G., -, $S O$ (3)-structures on 8-manifolds, math.DG/1105.1746 (2011).

CONTENTS

1. $S O$ (3)-Structures
2. \mathscr{G}-Structures in 8 dimensions
3. Subordinate G-structures
4. Some topology
5. Triple twofold intersection
6. Intrinsic torsion
7. Relative intrinsic torsion
8. Relative intrinsic torsion II
9. \mathscr{G}-Invariant torsion
10. Type-I: Nearly quaternionic example

1. $S O$ (3)-STRUCTURES

- A (linear) G-structure is a subbundle of the (linear) frame bundle $L(M)$ with structure group G.
- A Riemannian metric g on an n-manifold M^{n} determines a $S O(n)$-structure, where the tangent space $T_{p} M^{n}$ behaves as a representation for $S O(n)$.
Subgroups $G \subset S O(n)$ determine more restricted Riemannian G structures; $T_{p} M^{n}$ must behave as a representation for G.
- Usually, $T_{p} M^{n}$ is regarded as an irreducible representation of G. For $G=S O(3)$ this has been the case in 5 -dimensions by (Bobienski \& Nurowski, 2007), (Chiossi \& Fino, 2007) and (Agricola, Becker-Bender \& Friedrich, 2011).

2. \mathscr{G}-STRUCTURES IN 8-DIMENSIONS

- We will consider $S O$ (3)-structures in Riemannian 8-manifolds $\left\{M^{8}, g\right\}$ for which $T_{p} M^{8}$ behaves as a REDUCIBLE $S O$ (3)module:
Fix a homomorphism $\rho: S O(3) \longrightarrow S O(8)$ whose image will be called $\mathscr{G} \equiv S O(3)_{\rho} \equiv\{S O(3), \rho\}$ such that

$$
\begin{gathered}
T_{p} M=V \oplus S_{0}^{2} V=V \oplus W \\
V \cong \mathbf{R}^{3}, \quad W=S_{0}^{2} V \cong \mathbf{R}^{5}
\end{gathered}
$$

- By notational convenience we use notation of representations of $S p(1)$, thus

$$
V=r\left(S^{2} \mathbf{H}\right), \quad W=r\left(S^{4} \mathbf{H}\right)
$$

In what follows $S^{k}:=r\left(S^{k} \mathbf{H}\right)$.

3. SUBORDINATE G-STRUCTURES

This particular embedding of $S O$ (3) (or \mathscr{G}-structure) factors through other Lie groups G,

1. $G=S p(2) S p(1)$ defines an almost quaternion-Hermitian structure on M^{8}. In the integrable case leads to quaternion-Kähler geometry (Salamon 1982,1986, Swann 1989).
2. $G=S O(3) \times S O(5)$ defines an almost product structure (Naveira, 1983).
3. $G=\operatorname{PSU}(3)$-structure (Hitchin 2001, Witt 2008).

Example. $\mathscr{G} \subset S p(2) S p(1) \subset S O(8)$

- Consider the homomorphism

$$
\phi: S p(1) \rightarrow S p(2) \times S p(1): g \mapsto(i(g), g)
$$

where

$$
i: S p(1) \hookrightarrow S p(2)
$$

is the inclusion whereby $S p(1)$ acts irreducibly on $\mathbf{E}=\mathbf{C}_{(1,0)}^{4}$, the fundamental representation of $S p(2)$.

- By definition

$$
S p(2) S p(1):=S p(2) \times_{\mathbf{Z}_{2}} S p(1) .
$$

Therefore ϕ induces an inclusion

$$
S O(3)=S p(1) / \mathrm{Z}_{2} \longrightarrow S p(2) S p(1) \subset S O(8)
$$

- The representation space for $S p(2) S p(1)$ is $\mathbf{E} \otimes \mathbf{H}=\mathbf{C}_{(1,0)}^{4} \otimes$
$\mathrm{C}_{(1)}^{2}$. From the point of view of $S p(1)$-representations

$$
\mathbf{E} \cong S^{3} \mathbf{H}, \quad \mathbf{H} \cong S^{1} \mathbf{H}
$$

Using Clebsch-Gordan

$$
S^{3} \mathbf{H} \otimes S^{1} \mathbf{H} \cong S^{2} H \oplus S^{4} \mathbf{H}
$$

Then, passing to real representations

$$
r\left(S^{2} \mathbf{H}\right) \oplus r\left(S^{4} \mathbf{H}\right)=S^{2} \oplus S^{4} \equiv V \oplus W
$$

Proposition 1. A \mathscr{G}-structure on a Riemannian 8-manifold $\left\{M^{8}, g\right\}$ induces altogether an almost-product structure, a $P S U(3)$ structure and an almost quaternion-Hermitian structure.

4. SOME TOPOLOGY

- An oriented \mathscr{G}-manifold M^{8} is spin. The $2^{n d}$ Stiefel-Whitney class

$$
w_{2}\left(M^{8}\right) \in H^{2}\left(M^{8}, \mathbf{Z}_{2}\right)
$$

of a $S p(n) S p(1)$-structures satisfies

$$
w_{2}\left(M^{4 n}\right)=n \epsilon(n)
$$

where ϵ represents the Marchiafava-Romani class(1975-76). For $n=2$

$$
w_{2}\left(M^{8}\right)=2 \epsilon(2)=0 \bmod 2
$$

- From $\mathscr{G} \subset \operatorname{PSU}(3)$ and the work by Witt, 2008

$$
w_{1}(M)=w_{2}(M)=w_{3}(M)=w_{4}(M)^{2}=0
$$

- The integral Pontrjagin classes $p_{i} \in H^{4 i}(M, \mathbf{Z}), i=1,2$ of a \mathscr{G}-manifold $\left\{M^{8}, g\right\}$ are related by

$$
\begin{gathered}
4 p_{2}(M)=p_{1}(M) \smile p_{1}(M) \\
p_{1}^{2} \in 8640 \mathrm{Z}
\end{gathered}
$$

- A compact \mathscr{G}-manifold $\left\{M^{8}, g\right\}$ has vanishing Euler class

$$
e\left(T M^{8}\right)=0 .
$$

Example: This rules out:

$$
G r_{3}\left(\mathbf{R}^{8}\right), \quad G_{2} / S O(4) ;
$$

But is not enough to rule out the product of odd-dimensional spheres

$$
S^{3} \times S^{5}
$$

which does not admit $S O$ (3)-structures (Friedrich, 2003)

5. TRIPLE TWOFOLD INTERSECTION

Proposition 2. Let $\mathscr{G}=S O$ (3) be the subgroup of $S O$ (8) acting infinitesimally on a Riemannian 8-manifold $\left\{M^{8}, g\right\}$ by decomposing the tangent spaces as in 1 ., where $V \cong \mathbf{R}^{3}$ is the fundamental representation. Then,

1. $\mathscr{G}=(S O(3) \times S O(5)) \cap P S U(3)$;
2. $\mathscr{G}=P S U(3) \cap S p(2) S p(1)$;
3. $\mathscr{G}=S p(2) S p(1) \cap(S O(3) \times S O(5))$.

Proposition 3. Let $\mathfrak{g}_{i}, i=1,2,3$, denote the Lie algebras of the groups $S O(3) \times S O(5), \operatorname{PSU}(3), S p(2) S p(1), \mathfrak{g}_{i}^{\perp}$ the complements in $\mathfrak{s o}(8)$ and \mathfrak{g} the Lie algebra of $\mathscr{G}=S O(3)$. Then

$$
\begin{aligned}
\mathfrak{g}_{i}^{\perp} & =\left(\mathfrak{g}_{j} / \mathfrak{g}\right) \oplus\left(\mathfrak{g}_{k} / \mathfrak{g}\right), \quad i \neq j \neq k=1,2,3 \\
\mathfrak{g}^{\perp} & =\bigoplus_{i=1}^{3}\left(\mathfrak{g}_{i} / \mathfrak{g}\right) .
\end{aligned}
$$

Example

$$
\begin{gathered}
(\mathfrak{s p}(2)+\mathfrak{s p}(1))^{\perp}=\left(\frac{\mathfrak{s o}(3)+\mathfrak{s o}(5)}{\mathfrak{g}}\right) \oplus\left(\frac{\mathfrak{p s u}(3)}{\mathfrak{g}}\right) \\
\mathfrak{g}^{\perp}=\left(\frac{\mathfrak{s o}(3)+\mathfrak{s o}(5)}{\mathfrak{g}}\right) \oplus\left(\frac{\mathfrak{p s u}(3)}{\mathfrak{g}}\right) \oplus\left(\frac{\mathfrak{s p}(2)+\mathfrak{s p}(1)}{\mathfrak{g}}\right)
\end{gathered}
$$

6. INTRINSIC TORSION

- Let $\left\{M^{n}, g\right\}$ be a Riemannian n-manifold (thus a $S O(n)$-structure). For some $G \subset S O(n)$ consider the associated G-structure. Then, the intrinsic torsion of the G-structure is a tensor τ belonging to

$$
T_{p} M^{n} \otimes \mathfrak{g}^{\perp} .
$$

- The intrinsic torsion is the obstruction for a G-structure to reduce the holonomy group of the Levi-Civita connection form $S O(n)$ to G.

Example. $S p(2) S p(1)$-structure in 8-dimensions, (Salamon 1982,1986; Swann, 1989)

$$
\begin{gathered}
T_{p} M^{8} \cong \mathbf{E} \otimes \mathbf{H} \cong \mathbf{C}_{(1,0)}^{4} \otimes \mathbf{C}_{(1)}^{2} \\
(\mathfrak{s p}(2)+\mathfrak{s p}(1))^{\perp} \cong \wedge_{0}^{2} \mathbf{E} \otimes S^{2} \mathbf{H} \cong \mathbf{C}_{(1,1)}^{5} \otimes \mathbf{C}_{(2)}^{3} \\
\tau \in\left(\mathbf{C}_{(1,0)}^{4} \otimes \mathbf{C}_{(1,1)}^{5}\right) \otimes\left(\mathbf{C}_{(1)}^{2} \otimes \mathbf{C}_{(2)}^{3}\right)
\end{gathered}
$$

Simplifying, using Clebsch-Gordan,

$$
\tau \in(\underbrace{\mathbf{C}_{(1,0)}^{4}}_{\mathbf{E}} \oplus \underbrace{\mathbf{C}_{(2,1)}^{16}}_{\mathbf{K}}) \otimes(\underbrace{\mathbf{C}_{(1)}^{2}}_{\mathbf{H}} \oplus \underbrace{\mathbf{C}_{(3)}^{4}}_{S^{3} \mathbf{H}})
$$

Hence, the space of intrinsic torsion tensors of the $S p(2) S p(1)$ structure has $4 S p(2) S p(1)$-irreducible components:

$$
\tau_{S p(2) S p(1)} \in \underbrace{\mathbf{E} S^{3} \mathbf{H}}_{(1)} \oplus \underbrace{\mathbf{K} S^{3} \mathbf{H}}_{(2)} \oplus \underbrace{\mathbf{K H}}_{(3)} \oplus \underbrace{\mathbf{E H}}_{(4)}
$$

- This method (Gray \& Hervella, 1980) gives rise to the 16 classes of almost quaternion-Hermitian manifolds (Swann, 1991; MartínCabrera \& Swann, 2007).
- For the intrinsic torsion of a \mathscr{G}-structure

$$
\begin{gathered}
T_{p} M^{8} \cong S^{2} \oplus S^{4} \\
\mathfrak{g}^{\perp} \cong 2 S^{6} \oplus S^{4} \oplus 2 S^{2} .
\end{gathered}
$$

Proposition 4. The intrinsic torsion of the \mathscr{G}-structure is a tensor belonging to

$$
2 S^{10} \oplus 5 S^{8} \oplus 8 S^{6} \oplus 10 S^{4} \oplus 8 S^{2} \oplus 3 \mathbf{R}
$$

This space is 200-dimensional and contains a 3-dimensional subspace of \mathscr{G}-invariant tensors.

7. RELATIVE INTRINSIC TORSION

Definition 1. For any given Lie group G containing \mathscr{G} we denote $\tau_{\mathscr{G}}^{G}$ or $\tau(G, \mathscr{G})$ the intrinsic torsion of a G-structure decomposed under the action of \mathscr{G}, and call it the G-torsion relative to \mathscr{G} or just the relative G-torsion, \mathscr{G} being implicit.

Example $S p(2) S p(1)$-torsion relative to \mathscr{G}.

$$
\begin{gathered}
T_{p} M^{8} \cong \underbrace{\mathrm{EH}}_{S p(2) S p(1)} \cong \underbrace{S^{2} \oplus S^{4}}_{\mathscr{G}} \\
(\mathfrak{s p}(2)+\mathfrak{s p}(1))^{\perp} \cong \underbrace{\wedge_{0}^{2} \mathbf{E} S^{2} \mathbf{H}}_{S p(2) S p(1)} \cong \underbrace{S^{6} \oplus S^{4} \oplus S^{2}}_{\mathscr{G}}
\end{gathered}
$$

$$
\begin{aligned}
\tau_{\mathscr{G}}^{S p(2) S p(1)} & \in\left(S^{2} \oplus S^{4}\right) \otimes\left(S^{6} \oplus S^{4} \oplus S^{2}\right) \\
& =S^{10} \oplus 3 S^{8} \oplus 5 S^{6} \oplus 6 S^{4} \oplus 5 S^{2} \oplus 2 \mathbf{R} .
\end{aligned}
$$

Proposition 5. Let $G=S O(3) \times S O(5), \operatorname{PSU}(3), S p(2) S p(1)$. The relative G-torsion $\tau_{G G}^{G}$ of $\{M, g\}$ lives in the direct sum of the following modules:

	S^{10}	S^{8}	S^{6}	S^{4}	S^{2}	\mathbf{R}	$\operatorname{dim}_{\mathbf{R}}$
$\tau_{\mathscr{G}}^{S O(3) \times S O(5)}$	1	3	5	6	5	2	120
$\tau_{\mathscr{G}}^{P S U(3)}$	2	4	6	8	6	2	158
$\tau_{\mathscr{G}}^{S p(2) S p(1)}$	1	3	5	6	5	2	120

8. RELATIVE INTRINSIC TORSION II

- Let P, Q, R denote any of the groups $S O(3) \times S O(5), P S U(3)$, $S p(2) S p(1)$, and denote by
$\tau_{\mathscr{G}}^{P}(Q)$ the colmponent of $\tau_{\mathscr{G}}^{P}$ appearing also in $\tau_{\mathscr{G}}^{Q}$ but
not in $\tau_{\mathscr{G}}^{R}$.

Algebraically,

$$
\begin{aligned}
& \tau_{\mathscr{G}}^{P} \in T_{p} M^{8} \otimes\left(\mathfrak{p}^{\perp}\right)=T_{p} M^{8} \otimes\left(\frac{\mathfrak{q}}{\mathfrak{g}} \oplus \frac{\mathfrak{r}}{\mathfrak{g}}\right) \\
& \tau_{\mathscr{G}}^{Q} \in T_{p} M^{8} \otimes\left(\mathfrak{q}^{\perp}\right)=T_{p} M^{8} \otimes\left(\frac{\mathfrak{p}}{\mathfrak{g}} \oplus \frac{\mathfrak{r}}{\mathfrak{g}}\right) \\
& \tau_{\mathscr{G}}^{R} \in T_{p} M^{8} \otimes\left(\mathfrak{r}^{\perp}\right)=T_{p} M^{8} \otimes\left(\frac{\mathfrak{p}}{\mathfrak{g}} \oplus \frac{\mathfrak{q}}{\mathfrak{g}}\right)
\end{aligned}
$$

Hence

$$
\begin{gathered}
\tau_{\mathscr{G}}^{P}(Q) \in T_{p} M^{8} \otimes \frac{\mathfrak{r}}{\mathfrak{g}} \quad \tau_{\mathscr{G}}^{Q}(R) \in T_{p} M^{8} \otimes \frac{\mathfrak{p}}{\mathfrak{g}} \\
\tau_{\mathscr{G}}^{R}(P) \in T_{p} M^{8} \otimes \frac{\mathfrak{q}}{\mathfrak{g}}
\end{gathered}
$$

Then,

Proposition 6. The tensor $\tau_{\mathscr{G}}$ of $\{M, g\}$ determines P_{-}, Q_{-}, R-structures whose relative torsion tensors $\tau_{\mathscr{G}}^{P}, \tau_{\mathscr{G}}^{Q}, \tau_{\mathscr{G}}^{R}$ satisfy the cyclic conditions

$$
\begin{array}{r}
\tau_{\mathscr{G}}^{P}(R)=\tau_{\mathscr{G}}^{R}(P), \\
\tau_{\mathscr{G}}^{P}=\tau_{\mathscr{G}}^{P}(R) \oplus \tau_{\mathscr{G}}^{P}(Q), \\
\tau_{\mathscr{G}}=\tau_{\mathscr{G}}^{P}(R) \oplus \tau_{\mathscr{G}}^{R}(Q) \oplus \tau_{\mathscr{G}}^{Q}(P) .
\end{array}
$$

In particular, any two yield the third.

5. \mathscr{G}-INVARIANT TORSION

- From now on, let us consider the case $\tau_{\mathscr{G}} \in 3 \mathrm{R}$, ie., \mathscr{G}-invariant intrinsic torsion.
- \mathscr{G} stabilises certain differential forms

$$
\begin{gathered}
\{\alpha, \beta\} \in \Lambda^{3} \cong S^{8} \oplus 3 S^{6} \oplus 3 S^{4} \oplus 3 S^{2} \oplus 2 \mathbf{R} \cong \Lambda^{5} \ni\{* \alpha, * \beta\} \\
\{\gamma, * \gamma\} \in \Lambda^{4} \cong 2 S^{8} \oplus 2 S^{6} \oplus 6 S^{4} \oplus 2 S^{2} \oplus 2 \mathbf{R}
\end{gathered}
$$

The \mathscr{G}-invariant forms are two 3 -forms, one 4 -form and their duals in 8-dimensions, satisfying

$$
\uparrow_{\wedge^{3}\left(\mathrm{~T}^{*} \mathrm{M}\right)^{\mathscr{G}} \xrightarrow{d} \Lambda^{4}\left(\mathrm{~T}^{*} \mathrm{M}\right)^{\mathscr{G}} \xrightarrow{d} \Lambda^{5}\left(\mathrm{~T}^{*} \mathrm{M}\right)^{\mathscr{G}}}^{\operatorname{Span}_{\mathbf{R}}\{\alpha, \beta\} \xrightarrow{A} \operatorname{Span}_{\mathbf{R}}\{\gamma, * \gamma\} \xrightarrow{B} \operatorname{Span}_{\mathbf{R}}\{* \alpha, * \beta\}}
$$

- A, B are 2×2 matrices encoding the \mathscr{G}-invariant intrinsic torsion, such that

$$
B A=0 \quad \leftrightarrow \quad d^{2} \Phi=0, \forall \Phi \in \Lambda^{k}\left(T^{*} M\right)
$$

Proposition 7. Let $\{M, g\}$ be a \mathscr{G}-manifold equipped with the six \mathscr{G}-invariant forms. If the intrinsic torsion is \mathscr{G}-invariant, the differential forms satisfy one of the following sets of differential equations

	$d \alpha$	$d \beta$	$d \gamma$	$d(* \gamma)$
I	$a_{1}^{1} \gamma$	$a_{2}^{1} \gamma$	0	$m a_{1}^{1}(* \alpha)+b_{2}^{2}(* \beta)$
II	0	$a_{2}^{1} \gamma+a_{2}^{2}(* \gamma)$	$b_{1}^{2}(* \beta)$	$-\left(\left(a_{2}^{1} b_{1}^{2}\right) / a_{2}^{2}\right)(* \beta)$
III	0	$a_{2}^{1} \gamma$	0	$b_{2}^{2}(* \beta)$
IV	0	0	$b_{1}^{2}(* \beta)$	$b_{2}^{2}(* \beta)$

with the remaining two 5 -forms always closed.

10. TYPE-I: NQ EXAMPLE

- $S U(3)$, where $T_{p}(S U(3)) \cong \mathfrak{s u}(3)=\mathfrak{s o}(3)+\mathfrak{b}^{5}$, together with a 1-parameter infinitesimal action of $S O(3)$ in which the basis of $\mathfrak{s o}(3),\left\{e_{6}, e_{7}, e_{8}\right\}$ behaves as the imaginary quaternions induces a 1 -parameter family of almost quaternionic structures on $S U(3)$.
$A \cdot X=\lambda_{1}\left[A, X^{a}\right]+i \lambda_{2}\left(\left\{A, X^{a}\right\}-\frac{2}{3}\left(A X^{a}\right) 1\right)+i \lambda_{3}\left\{A, X^{s}\right\}+\lambda_{4}\left[A, X^{s}\right]$
$\lambda_{1}=\frac{1}{2}, \quad \lambda_{3}=-\frac{3}{4}\left(\lambda_{2}\right)^{-1}, \quad \lambda_{4}=-\frac{1}{2}, \quad \lambda:=\lambda_{2}$.
- The metric

$$
g_{\lambda}=\sum_{i=1}^{5} e^{i} \otimes e^{i}+\frac{4 \lambda^{2}}{3} \sum_{i=6}^{8} e^{i} \otimes e^{i}
$$

is compatible with the almost quaternionic structure. Thus, together with the associated Kähler 2-forms,

$$
\begin{aligned}
& \omega_{1}=\frac{1}{2}(15+\sqrt{3} \cdot 25+34)+\lambda\left(\frac{1}{\sqrt{3}} 28-46+37-18\right)-\frac{2 \lambda^{2}}{3} 67 \\
& \omega_{2}=-14-\frac{1}{2} 35+\lambda\left(\frac{2}{\sqrt{3}} 27-38-56\right)-\frac{2 \lambda^{2}}{3} 68 \\
& \omega_{3}=\frac{1}{2}(13-\sqrt{3} \cdot 23+45)+\lambda\left(\frac{1}{\sqrt{3}} 26-48+57+16\right)-\frac{2 \lambda^{2}}{3} 78
\end{aligned}
$$

induces an almost quaternion-Hermitian structure.

- With the parameter

$$
\lambda^{2}=\frac{3}{20}
$$

is nearly-quaternionic: the Kähler 2-forms expand a differential ideal but the fundamental 4 -form is not closed $\left(b_{4}(S U(3))=0\right)$

$$
d \omega_{i}=\sum_{j=1}^{3} \beta_{i}^{j} \wedge \omega_{j}, \quad \beta_{i}^{j} \in \wedge^{1}\left(T^{*} M\right)
$$

$$
\beta=\left(\beta_{i}^{j}\right)=\left(\begin{array}{ccc}
s\left(1-\frac{1}{\sqrt{3}} 2\right) & s 3+a 6 & s 4+a 7 \\
s 3-a 6 & \frac{2}{\sqrt{3}} s 2 & s 5+a 8 \\
s 4-a 7 & s 5-a 8 & -s\left(1+\frac{1}{\sqrt{3}} 2\right)
\end{array}\right)
$$

β being not antisymmetric, $S U(3)$ with the given almost quaternionHermitian structure is not quaternion-Kähler.

- By Swann's theorem (1989): An almost quaternion-Hermitian $4 n$ manifold, $n \geq 3$ is quaternion-Kähler if and only if $d \Omega=0$. For $n=2$ the following two conditions are required:

1. $d \Omega=0$;
2. $d \omega_{j}=\sum_{i} \beta_{j}^{i} \wedge \omega_{i}$.

- This is the only example (known to the author) of a complete*, almost quaternion-Hermitian 8-manifold of type $W_{1} \subset W_{1+4}$ (ie., satisfying condition 2., not 1.) This implies

$$
\tau_{S p(2) S p(1)} \in \mathbf{E} S^{\mathbf{3}} \mathbf{H} \subset \mathbf{E} S^{3} \mathbf{H} \oplus \mathbf{E H}
$$

- Examples of manifolds satisfying condition 1., not 2., where found by Salamon 2001, Giovannini 2006.

BIBLIOGRAPHY

- Agricola, I., Becker-Bender, J., Friedrich, Th., On the topology and the geometry of $S O(3)$-manifolds (2011).
- Bobieński, B., Nurowski, P., Irreducible SO(3)-geometries in dimension five (2007).
- Chiossi, S.G., Fino, A., Nearly integrable $S O$ (3)-structures on 5-dimensional Lie groups (2007)
- Friedrich, Th., On types of non-integrable geometries (2003).
- Gray, A., Hervella, L., The sixteen classes of almost Hermitian manifolds (1980).
- Hitchin, N., Stable forms and special metrics (2001).
- Marchiafava, S., Romani, G., Sui fibrati con struttura quaternionale generalizzata (1975).
- Martín-Cabrera, F., Swann, A.F., The intrinsic torsion of almost quaternion-Hermitian manifolds (2008).
- Naveira, A.M., A classification of Riemannian almost-product manifolds (1983).
- Salamon, S.M., Almost parallel structures (2001).
- Salamon, S.M., Differential geometry of quaternionic manifolds (1982).
- Salamon, S.M., Quaternionic Kähler manifolds (1986).
- Swann, A.F., Aspects symplectiques de la géométrie quaternionique (1989).
- Swann, A.F. Hyper-Kähler and quaternionic Kähler geometry (1991).
- Witt, F., Special metrics and triality,(2008).

