HOLOMORPHIC ISOMETRIC EMBEDDINGS FROM $\mathbb{C P}^{1}$ TO COMPLEX QUADRICS

Oscar Macia (U. Valencia)

(joint work with Y. Nagatomo \& M. Takahashi)

Murcia
June 20, 2016

Based on:

[MNT] Macia, Nagatomo, Takahashi
" Holomorphic isometric embeddings from the projective line into quadrics"
[N] Nagatomo
"Harmonic maps into Grassmannians"
[MN] Macia, Nagatomo,
"Einstein-Hermitian harmonic maps from the projective line into quadrics"

1 Planning: 3 things

Characterisation of harmonic maps to Grassmannians in terms of vector bundles

Characterisation of the moduli space (holomorphic case)

Description of the moduli space of holomorphic isometric embeddings $\mathbb{C P}^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$

2 Planning: 1/3

Characterisation of harmonic maps to Grassmannians in terms of vector bundles
${ }_{3}$ Minimal immersions of Riemannian manifolds
Theorem (Takahashi, J. Math. Soc. Japan, 1966)
$f: M \rightarrow S^{N-1} \subset \mathbb{R}^{N}$
$x^{k} \quad(k=1, \ldots, N)$
Mapping
Coordinates
The following conditions are equivalent:
1.

$$
f \text { is a harmonic map. }
$$

2.

$$
\exists h \in C^{\infty}(M): \Delta x^{k}=h \cdot x^{k}
$$

Then,

$$
|d f|^{2}=\sum_{i=1}^{m}\left|d f\left(e_{i}\right)\right|^{2}=h .
$$

4 Geometry of Grassmannians

W:
$\operatorname{Gr}_{p}(W)$:
\mathbb{R} or \mathbb{C} vector space of dimension N Grassmannian of p-planes in W

Exact sequence of bundles

$$
0 \longrightarrow S \xrightarrow{i_{S}} \underline{W} \xrightarrow{\pi_{Q}} Q \longrightarrow 0
$$

$\underline{W} \rightarrow \operatorname{Gr}_{p}(W):$
$S \rightarrow \operatorname{Gr}_{p}(W):$
$Q \rightarrow \operatorname{Gr}_{p}(W):$
$\operatorname{Gr}_{p}(W) \times W \rightarrow \operatorname{Gr}_{p}(W)$
Tautological bundle over $\operatorname{Gr}_{p}(W)$. Universal quotient bundle.

5 Induced fibre metrics

Fix an inner product (\mathbb{R}) or a Hermitian product (\mathbb{C}) on W.

$$
0 \longrightarrow S \underset{\pi_{S}}{\stackrel{i_{S}}{\rightleftarrows}} \underline{W} \stackrel{\pi_{Q}}{\stackrel{i_{Q}}{\rightleftarrows}} Q \longrightarrow 0
$$

$$
\begin{aligned}
& S \rightarrow \operatorname{Gr}_{p}(W): \\
& Q \rightarrow \operatorname{Gr}_{p}(W):
\end{aligned}
$$

fibre metric g_{S}. fibre metric g_{Q}.

6 Connections and Second Fundamental Forms

$$
\begin{gathered}
s \in \Gamma(S) \Rightarrow i_{S}(s) \in \Gamma(\underline{W}) \Rightarrow d i_{S}(s) \in \Omega^{1}(\underline{W}) \\
d i_{S}(s)=\pi_{S} d i_{S}(s)+\pi_{Q} d i_{S}(s)=\nabla^{S} s+H s
\end{gathered}
$$

Connection on $S \rightarrow \operatorname{Gr}_{p}(W)$

$$
\nabla^{S}=\pi_{S} d i_{S} \in \Omega^{1}(\operatorname{Hom}(S, S))
$$

2nd fundamental form of $S \rightarrow \operatorname{Gr}_{p}(W)$

$$
H=\pi_{Q} d i_{S} \in \Omega^{1}(\operatorname{Hom}(S, Q))
$$

$$
\begin{gathered}
t \in \Gamma(Q) \Rightarrow i_{Q}(t) \in \Gamma(\underline{W}) \Rightarrow d i_{Q}(t) \in \Omega^{1}(\underline{W}) \\
d i_{Q}(t)=\pi_{S} d i_{Q}(t)+\pi_{Q} d i_{Q}(t)=K t+\nabla^{Q_{t}}
\end{gathered}
$$

Connection on $Q \rightarrow \operatorname{Gr}_{p}(W)$

$$
\nabla^{Q}=\pi_{Q} d i_{Q} \in \Omega^{1}(\operatorname{Hom}(Q, Q))
$$

2nd fundamental form of $Q \rightarrow \operatorname{Gr}_{p}(W)$

$$
K:=\pi_{S} d i_{Q} \in \Omega^{1}(\operatorname{Hom}(Q, S))
$$

7 Pull-backs

(M, g)
$\left(\operatorname{Gr}_{p}(W), g_{G r}\right)$
Riemannian manifold (RM) Grassmannian as RM.

$$
f: M \longrightarrow \operatorname{Gr}_{p}(W)
$$

$\underline{W^{\prime}} \rightarrow M$
$\underline{W^{\prime \prime}} \rightarrow \operatorname{Gr}_{p}(W)$

$$
\begin{array}{r}
M \times W \rightarrow M \\
\operatorname{Gr}_{p}(W) \times W \xrightarrow{M} \operatorname{Gr}_{p}(W)
\end{array}
$$

8 Fullness

a. Grassmannian case

$$
W \hookrightarrow \Gamma(Q): w \mapsto \pi_{Q}(w)
$$

$$
W \subset \Gamma(Q)
$$

b. Riemannian manifold case

$$
W \rightarrow \Gamma(V): w \mapsto \pi_{V}(w)
$$

Definition
A map $f: M \rightarrow \operatorname{Gr}_{p}(W)$ is called full if $W \subset \Gamma(V)$.

9 Mean curvature operator

Definition

The bundle homomorphism $A \in \Gamma(\operatorname{Hom} V)$ defined as

$$
A:=\sum_{i=1}^{n} H_{e_{i}}^{U} \circ K_{e_{i}}^{V},
$$

where e_{1}, \cdots, e_{n} is an orthonormal basis of $T_{x} M$ is called the mean curvature operator of f.

Lemma
The mean curvature operator A is a non-positive Hermitian operator and we have

$$
|d f|^{2}=-\operatorname{trace} A
$$

10 Laplacian acting on sections
Laplace operator acting on $\Gamma(V)$

$$
\Delta t=\nabla^{V^{*}} \nabla^{V} t=-\sum_{i=1}^{n} \nabla_{e_{i}}^{V}\left(\nabla^{V} t\right)\left(e_{i}\right), t \in \Gamma(V)
$$

11 Generalisations of Takahashi's Theorem

$$
\begin{aligned}
& \text { Theorem } \\
& (M, g) \\
& f: M \rightarrow \operatorname{Gr}_{p}(W) \quad \text { Rmooth map between RM's } \\
& \text { The following conditions are equivalent: } \\
& f \text { is a harmonic. } \\
& 1 . \square \Delta t=-A t, \quad \forall t \in W \subset \Gamma(V)
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& (M, g): \\
& f: M \rightarrow \operatorname{Gr}_{p}(W)
\end{aligned}
$$

Smooth map between RM's

The following conditions are equivalent:
1.
f is harmonic and $\exists h \in C^{\infty}(M)$:

$$
A_{x}=-h(x) I d_{V} \quad \forall x \in M
$$

2.

$\exists h \in C^{\infty}(M)$:

$$
\Delta t=h t \quad \forall t \in W \subset \Gamma(V)
$$

Moreover,

$$
|d f|^{2}=q h, \quad q:=\operatorname{rnk} V
$$

12 Recovering the original Takahashi's theorem

$$
\begin{aligned}
& M \xrightarrow[f]{\longrightarrow} \operatorname{Gr}_{N-1}\left(\mathbb{R}^{N}\right) \\
& \operatorname{Gr}_{N-1}\left(\mathbb{R}^{N}\right)=\frac{S O(N)}{S O(N-1)}=S^{N-1}
\end{aligned}
$$

$$
A \in \Gamma(\operatorname{Hom}(V)) \quad+\quad\{\operatorname{rnk} V=\operatorname{rnk} Q=1\} \quad \Rightarrow \quad A=-h I d_{V}
$$

13 Planning: 2/3

Characterisation of harmonic maps to Grassmannians in terms of vector bundles

Characterisation of the moduli space (holomorphic case)

14 Evaluation \& globally generated vector bundles
$V \rightarrow M \quad$ VB
$W \subset \Gamma(V) \quad$ finite-dimensional vector space
\underline{W}

$$
M \times W \rightarrow M
$$

Evaluation homomorphism

$$
\begin{gathered}
\mathrm{ev}: \underline{W} \longrightarrow V \\
\mathrm{ev}_{x}(t)=t(x) \in V_{x}, t \in W, x \in M
\end{gathered}
$$

Definition
The vector bundle $V \rightarrow M$ is said to be globally generated by W if ev : $\underline{W} \rightarrow V$ is surjective.

15 Map to a Grassmannian induced by a VB
$V \rightarrow M \quad$ VB globally generated by W $\operatorname{dim} W=N$

Induced map by $(V \rightarrow M, W)$

$$
\begin{gathered}
f: M \longrightarrow \operatorname{Gr}_{p}(W) \\
f(x):=\operatorname{ker} \operatorname{ev}_{x}
\end{gathered}
$$

where

$$
p=N-\operatorname{rnk} V
$$

Lemma
$V \rightarrow M$ can be naturally identified with $f^{*} Q \rightarrow M$
$\underline{W}^{\prime} \rightarrow M$

$$
\begin{array}{r}
M \times W \rightarrow M \\
\operatorname{Gr}_{p}(W) \times W \rightarrow \operatorname{Gr}_{p}(W)
\end{array}
$$

Natural identification ϕ

16 Standard maps

(M, g)
compact RM
$\left(V \rightarrow M, h_{V}, \nabla\right) \quad$ VB + fibre metric + connection
Eigenspaces of the Laplacian (acting on sections)

$$
\Gamma(V)=\bigoplus W_{\mu}, \quad W_{\mu}:=\{t \in \Gamma(V) \mid \Delta t=\mu t\} .
$$

Standard induced map by W_{μ}
Suppose $V \rightarrow M$ globally generated by W_{μ}

$$
\begin{gathered}
f_{0}: M \longrightarrow \operatorname{Gr}_{p}\left(W_{\mu}\right) \\
f_{0}(x)=\text { ker ev } x \mid W_{\mu}
\end{gathered}
$$

17 Homogeneous VBs

$$
\begin{array}{lr}
M=G / K & \text { Compact reductive homogeneous space. } \\
V_{0} & q \text {-dimensional } K \text {-module }
\end{array}
$$

$$
\begin{aligned}
& V \rightarrow M \text { homogeneous VB, standard fibre } V_{0} \text { - } \\
& \qquad G \times_{K} V_{0} \longrightarrow G / K
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{k}+\mathfrak{m} \\
& \nabla \\
& \mathcal{H}_{g}=\left\{\left(L_{g}\right)_{*} \mathfrak{m} \mid g \in G\right\} \subset T_{g} G
\end{aligned}
$$

Lie algebra decomposition
Canonical connection
Horizontal distribution

18 Consquences of homogeneity
$V \rightarrow M$
Homogeneous VB.
Lemma
$W \subset W_{\mu}$ globally generates $V \rightarrow M$.
Then

$$
V_{0} \subset W
$$

$U_{0}:=V_{0}^{\perp} \subset W \quad$ Orthogonal complement to V_{0}
Lemma

$$
f^{*} \nabla^{Q} \stackrel{\underline{\underline{G}}}{=} \nabla \longleftrightarrow \mathfrak{m} V_{0} \subset U_{0}
$$

19 Image equivalence of maps

$$
f_{1}, f_{2}: M \rightarrow \operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right) \quad \text { mappings }
$$

Image equivalence of maps
f_{1} is image equivalent to f_{2}, if \exists isometry ϕ of $\operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right)$ such that the diagram commutes

20 Gauge equivalence of maps

$V \rightarrow M$
VB
$f_{i}: M \rightarrow \operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right) \quad$ mappings
$\phi_{i}: V \rightarrow f_{i}^{*} Q$
VB isomorphisms
Gauge equivalence of maps
Two couples $\left(f_{i}, \phi_{i}\right),(i=1,2)$ are called gauge equivalent, if \exists isometry ϕ of $\operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right)$ such that

$$
f_{2}=\phi \circ f_{1}, \quad \phi_{2}=\tilde{\phi} \circ \phi_{1}
$$

where $\tilde{\phi}$ is the bundle automorphism of $Q \rightarrow \operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right)$ covering ϕ.

21 Generalisation of the do Carmo - Wallach theory (Holomorphic case)

Theorem Hypothesis
$M=G / K \quad$ Cpct. irr. Hermitian symm. space $V \rightarrow M \quad$ Complex $\left({ }^{*}\right)$ homogeneous line bundle
$\{h, \nabla, J\}$
$f: M \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$ metric, can. connection, CS
Full holomorphic map satisfying
Gauge condition

$$
\left(f^{*} Q \rightarrow M, f^{*} g_{Q}, f^{*} \nabla^{Q}, J^{Q}\right) \stackrel{\mathrm{G}}{\equiv}(V \rightarrow M, h, \nabla, J)
$$

Einstein-Hermitian condition

$$
A=-\mu I d_{V}, \quad \mu \in \mathbb{R}_{+}
$$

$$
e(f)=2 \mu
$$

```
Theorem Thesis (I)
0.
\(W:=H^{0}(V) \subset \Gamma(V)\) space of holomorphic sections
is eigenspace of Laplacian with eigenvalue \(\mu\).
Regard \(W\) as real \(W_{\mathbb{R}}+L_{2}\)-inner product.
1.
\[
\iota: \mathbb{R}^{n+2} \longrightarrow W_{\mathbb{R}}
\]
\[
\mathbb{R}^{n+2} \subset W_{\mathbb{R}} \text {, and } V \rightarrow M \text { is globally generated by }
\]
\[
\mathbb{R}^{n+2}
\]
```

Theorem Thesis (II)
$\exists T \in S\left(W_{\mathbb{R}}\right) \in \operatorname{End}\left(W_{\mathbb{R}}\right)$ positive semi-definite
2.
$\mathbb{R}^{n+2}=(\operatorname{ker} T)^{\perp}$, and $\left.T\right|_{\mathbb{R}^{n+2}}$ is positive definite.
3. (Orthogonality conditions)
$\left(T^{2}-I d_{W}, \operatorname{GS}\left(V_{0}, V_{0}\right)\right)_{S}=\left(T^{2}, \operatorname{GS}\left(\mathfrak{m} V_{0}, V_{0}\right)\right)_{S}=0$
4.
T provides holomorphic embedding

$$
\begin{gathered}
\operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right) \longrightarrow \operatorname{Gr}_{n^{\prime}}(W) \\
n^{\prime}=n+\operatorname{dim} \operatorname{ker} T
\end{gathered}
$$

and a bundle isomorphism

$$
\phi: V \rightarrow f^{*} Q
$$

Theorem Thesis (III)
$f: M \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$ can be expressed as

$$
f([g])=\left(\iota^{*} \mathrm{~T} \iota\right)^{-1}\left(f_{0}([g]) \cap(\operatorname{ker} T)^{\perp}\right)
$$

where

$$
f_{0}([g])=g U_{0} \subset W_{\mathbb{R}}
$$

is the standard map.
b.

The correspondence

$$
[f] \longleftrightarrow T
$$

is one-to-one, where $[f]$ is the gauge equivalence class of maps represented by $\iota^{*} \mathrm{~T} \iota$ and ϕ.

22 Planning: 3/3

Characterisation of harmonic maps in terms of vector bundles

Characterisation of the moduli space (holomorphic case)

Description of the moduli space of holomorphic isometric embeddings $\mathbb{C P}^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$

23 Holomorphic isometric embeddings of degree k
$\mathbb{C P}^{1}$
$\operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$
Complex projective line $+g+J \sim \omega_{0}$
Grassmannian $+g+J \sim \omega_{Q}$

Holo.emb.

$$
f: \mathbb{C P}{ }^{1} \hookrightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right) \subset \mathbb{C P}{ }^{n+1}
$$

Iso. of $\operatorname{deg} k$

$$
f^{*} \omega_{Q}=k \omega_{0}, \quad k \in \mathbb{N}
$$

24 Holo.iso.emb. of deg k \& Gauge condition $\mathcal{O}(1) \rightarrow \mathbb{C} P^{1}$ Hyperplane section bundle

$$
\mathcal{O}(k)=\mathcal{O}(1) \otimes . \underline{k} . \otimes \mathcal{O}(1)
$$

Lemma
$f: \mathbb{C P}^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$ holo.emb. is k-holo.iso.emb. iff

25 Holo.iso.emb. of $\operatorname{deg} k$ \& EH condition

$$
\left\{\begin{aligned}
& \text { Lemma } \\
& f: \mathbb{C P}^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right) k \text {-holo.iso.emb., then } \\
&(\mathrm{EH}) \quad A=-\mu I d, \quad \mu \in \mathbb{R}_{>0}
\end{aligned}\right.
$$

Remark
a. Holo.emb.

$$
(\mathrm{G}) \rightarrow(\mathrm{EH})
$$

b. Harmonic maps, minimal immersions

$$
(\mathrm{G}) \nrightarrow(\mathrm{EH})
$$

26 Complex representations
$\mathcal{O}(k) \rightarrow \mathbb{C P}{ }^{1}$
V_{0}

$$
\begin{aligned}
& \mathrm{SU}(2) \times_{\mathrm{U}(1)} V_{0} \rightarrow \mathrm{SU}(2) / \mathrm{U}(1) \\
& \mathrm{U}(1) \text {-module }
\end{aligned}
$$

Holomorphic sections + Borel-Weil Thm.

$$
\begin{aligned}
W:=H^{0}(\mathcal{O}(k)) & =S^{k} \mathbb{C}^{2} \quad \mathrm{SU}(2)-\operatorname{IRREP} \\
\operatorname{dim}_{\mathbb{C}} W & =k+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{SU}(2) \mid \mathrm{U}(1)- \\
& S^{k} \mathbb{C}^{2}=\mathbb{C}_{-k} \oplus \mathbb{C}_{-k+2} \oplus \cdots \oplus \mathbb{C}_{k} \quad \mathrm{U}(1)-\operatorname{IRREPs}
\end{aligned}
$$

$$
V_{0}=\mathbb{C}_{-k} \quad \mathfrak{m} V_{0}=\mathbb{C}_{-k+2} \subset U_{0}
$$

27 Real representations

$$
\begin{aligned}
& \mathrm{SU}(2) \xrightarrow{2: 1} \mathrm{SO}(3) \\
& S_{0}^{l} \mathbb{R}^{3}(\operatorname{dim}=2 l+1) \quad \mathrm{SO}(3)-\operatorname{IRREP} \\
& \int^{k=2 l} W_{\mathbb{R}}=\left(S^{2 l} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+2}=2 S_{0}^{2 l} \mathbb{R}^{3} \\
& k=2 l+1 \\
& W_{\mathbb{R}}=\left(S^{2 l+1} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+4} \\
& \mathrm{H}(W) \subset \mathrm{S}\left(W_{\mathbb{R}}\right) \subset \operatorname{End}\left(W_{\mathbb{R}}\right) \\
& \text { Lemma } \\
& \mathrm{S}\left(W_{\mathbb{R}}\right)=\mathrm{H}_{+}(W) \oplus \mathrm{H}_{-}(W) \oplus \sigma \mathrm{H}_{+}(W) \oplus J \sigma \mathrm{H}_{+}(W)
\end{aligned}
$$

28 Spectral formulae

$$
\begin{aligned}
& \text { Lemma } \\
& W_{\mathbb{R}}=\left(S^{2 l} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+2} \\
& S^{2} \mathbb{R}^{4 l+2}=3\left(\bigoplus_{r=0}^{l} S_{0}^{2 l-2 r} \mathbb{R}^{3}\right) \oplus\left(\bigoplus_{r=0}^{l-1} S_{0}^{(2 l-1)-2 r} \mathbb{R}^{3}\right) \\
& S^{2} \mathbb{R}^{4 l+4}=3\left(\bigoplus_{r=0}^{l} S_{0}^{(2 l+1)-2 r} \mathbb{R}^{3}\right) \oplus\left(S_{r=0}^{l-1} S_{0}^{2 l-2 r} \mathbb{R}^{3}\right)
\end{aligned}
$$

29 Spaces of Hermitian operators
Proposition

$$
\left\{\begin{aligned}
S^{2 l} \mathbb{C}^{2}
\end{aligned} \quad \begin{array}{rl}
\mathrm{H}_{+}\left(S^{2 l} \mathbb{C}^{2}\right) & =\bigoplus_{\substack{r=0 \\
l-1}}^{l} S_{0}^{2 l-2 r} \mathbb{R}^{3} \\
\mathrm{H}_{-}\left(S^{2 l} \mathbb{C}^{2}\right) & =\bigoplus_{r=0}^{l-1} S_{0}^{(2 l-1)-2 r} \mathbb{R}^{3}
\end{array}\right.
$$

$S^{2 l+1} \mathbb{C}^{2}$

$$
\begin{aligned}
& \mathrm{H}_{+}\left(S^{2 l+1} \mathbb{C}^{2}\right)=\bigoplus_{r=0}^{l} S_{0}^{(2 l+1)-2 r} \mathbb{R}^{3} \\
& \mathrm{H}_{-}\left(S^{2 l+1} \mathbb{C}^{2}\right)=\bigoplus_{r=0}^{l} S_{0}^{2 l-2 r} \mathbb{R}^{3}
\end{aligned}
$$

30 Finding T via orthogonality relations

Lemma
(a) $\mathrm{H}(W) \subset \mathrm{GS}\left(\mathfrak{m} V_{0}, V_{0}\right)$
(b) $\operatorname{GS}\left(\mathfrak{m} V_{0}, V_{0}\right) \cap\left(\sigma H_{+}(W) \oplus J \sigma H_{+}(W)\right)$ is the highest-weight representation.

$$
\mathrm{GS}\left(\mathfrak{m} V_{0}, V_{0}\right)=\mathrm{H}(W) \oplus S_{0}^{k} \mathbb{R}^{3} \oplus S_{0}^{k} \mathbb{R}^{3}
$$

Corollary

$$
\begin{gathered}
\mathcal{M}_{k} \cong\left(\operatorname{GS}\left(\mathfrak{m} V_{0}, V_{0}\right) \oplus \mathbb{R} I d\right)^{\perp} \in S\left(W_{\mathbb{R}}\right) \\
\mathcal{M}_{k} \cong 2 \bigoplus_{r=1}^{k \geq 2 r} S_{0}^{k-2 r} \mathbb{R}^{3}, \quad \operatorname{dim}_{\mathbb{R}} \mathcal{M}_{k}=k(k-1)
\end{gathered}
$$

31 Main Results about Moduli Spaces

$f: \mathbf{C} P^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$
\mathcal{M}_{k}
Full Holo.lso.Emb of deg k
Moduli by gauge equivalence.

$$
n \leqq 2 k
$$

Theorem 2
If $n=2 k\left(\operatorname{target} \mathrm{Gr}_{2 k}\left(\mathbb{R}^{2 k+2}\right)\right)$ then \mathcal{M}_{k} can be regarded as an open convex body in

$$
\bigoplus_{l=1}^{k \geqq 2 l} S^{2 k-4 l} \mathbb{C}^{2}
$$

$\overline{\mathcal{M}_{k}}$
Compactification of \mathcal{M}_{k}
Theorem 3
Boundary points correspond to maps whose images are included in totally geodesic submanifolds

$$
\operatorname{Gr}_{p}\left(\mathbb{R}^{p+2}\right) \subset \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 k+2}\right), \quad p<2 k
$$

\mathbf{M}_{k}
Moduli space by image equivalence
Theorem 4
If $n=2 k\left(\operatorname{target} \mathrm{Gr}_{2 k}\left(\mathbb{R}^{2 k+2}\right)\right)$

$$
\mathbf{M}_{k}=\mathcal{M}_{k} / S^{1}
$$

MUCHAS GRACIAS

