MODULI OF HOLOMORPHIC ISOMETRIC EMBEDDINGS OF $\mathbb{C P}{ }^{1}$ INTO QUADRICS

Oscar Macia (U. Valencia)

(joint work with Y. Nagatomo \& M. Takahashi)

Valencia
September 4, 2017

1 Geometry of Grassmannians

W :
$\operatorname{Gr}_{p}(W)$:
\mathbb{R} or \mathbb{C} vector space of dimension N Grassmannian of p-planes in W

Exact sequence of bundles

$$
0 \longrightarrow S \xrightarrow{i_{S}} \underline{W} \xrightarrow{\pi_{Q}} Q \longrightarrow 0
$$

$\underline{W} \rightarrow \operatorname{Gr}_{p}(W):$
$S \rightarrow \operatorname{Gr}_{p}(W):$
$Q \rightarrow \operatorname{Gr}_{p}(W):$
$\operatorname{Gr}_{p}(W) \times W \rightarrow \operatorname{Gr}_{p}(W)$
Tautological bundle over $\operatorname{Gr}_{p}(W)$.
Universal quotient bundle.

2 Induced fibre metrics

Fix an inner product (\mathbb{R}) or a Hermitian product (\mathbb{C}) on W.

$$
0 \longrightarrow S \underset{\pi_{S}}{\stackrel{i_{S}}{\rightleftarrows}} \underline{W} \underset{i_{Q}}{\stackrel{\pi_{Q}}{\rightleftarrows}} Q \longrightarrow 0
$$

$$
\begin{aligned}
& S \rightarrow \operatorname{Gr}_{p}(W): \\
& Q \rightarrow \operatorname{Gr}_{p}(W):
\end{aligned}
$$

fibre metric g_{S}. fibre metric g_{Q}.

${ }_{3}$ Connections and Second Fundamental Forms

$$
\begin{gathered}
s \in \Gamma(S) \Rightarrow i_{S}(s) \in \Gamma(\underline{W}) \Rightarrow d i_{S}(s) \in \Omega^{1}(\underline{W}) \\
d i_{S}(s)=\pi_{S} d i_{S}(s)+\pi_{Q} d i_{S}(s)=\nabla^{S} s+H s
\end{gathered}
$$

Connection on $S \rightarrow \operatorname{Gr}_{p}(W)$

$$
\nabla^{S}=\pi_{S} d i_{S} \in \Omega^{1}(\operatorname{Hom}(S, S))
$$

2nd fundamental form of $S \rightarrow \operatorname{Gr}_{p}(W)$

$$
H=\pi_{Q} d i_{S} \in \Omega^{1}(\operatorname{Hom}(S, Q))
$$

$\ldots \nabla^{Q}, K \ldots$

4 Pull-backs

$$
\begin{aligned}
& \begin{array}{l}
(M, g) \\
\left(\operatorname{Gr}_{p}(W), g_{G r}\right)
\end{array} \\
& \text { Riemannian manifold (RM) } \\
& \text { Grassmannian as RM. } \\
& f: M \longrightarrow \operatorname{Gr}_{p}(W) \\
& 0 \longrightarrow U \xrightarrow{i_{U}} \underline{W}^{\prime} \xrightarrow{\pi_{V}} V \longrightarrow 0 \\
& f^{*} \uparrow \quad f \downarrow \quad f^{*} \uparrow \\
& 0 \longrightarrow S \xrightarrow[i_{S}]{ } \underline{W}^{\prime \prime} \xrightarrow[\pi_{Q}]{ } Q \longrightarrow 0 \\
& \begin{array}{l}
\underline{W^{\prime}} \rightarrow M \\
\underline{W^{\prime \prime}} \rightarrow \operatorname{Gr}_{p}(W)
\end{array} \\
& \operatorname{Gr}_{p}(W) \times \stackrel{M}{W} \xrightarrow{\rightarrow} \underset{\operatorname{Gr}_{p}(W)}{\rightarrow M}
\end{aligned}
$$

5 Mean curvature operator

Definition

The bundle homomorphism $A \in \Gamma(\operatorname{Hom} V)$ defined as

$$
A:=\sum_{i=1}^{n} H_{e_{i}}^{U} \circ K_{e_{i}}^{V},
$$

where e_{1}, \cdots, e_{n} is an orthonormal basis of $T_{x} M$ is called the mean curvature operator of f.
(EH) Einstein-Hermitian condition

$$
A=-\mu \operatorname{id}_{V}, \quad \mu \in \mathbb{R}_{+}
$$

6 Evaluation \& globally generated vector bundles

```
V->M
W\subset\Gamma(V)
W
```

finite-dimensional vector space

$$
M \times W \rightarrow M
$$

Evaluation homomorphism

$$
\begin{gathered}
\mathrm{ev}: \underline{W} \longrightarrow V \\
\operatorname{ev}_{x}(t)=t(x) \in V_{x}, t \in W, x \in M
\end{gathered}
$$

Definition
The vector bundle $V \rightarrow M$ is said to be globally generated by W if ev : $\underline{W} \rightarrow V$ is surjective.

7 Map to a Grassmannian induced by a VB

$V \rightarrow M \quad$ VB globally generated by $W(\operatorname{dim} W=N)$
Induced map by $(V \rightarrow M, W)$

$$
\begin{gathered}
f: M \longrightarrow \operatorname{Gr}_{p}(W) \\
f(x):=\operatorname{ker} \operatorname{ev}_{x}
\end{gathered}
$$

where

$$
p=N-\operatorname{rnk} V
$$

Lemma
$V \rightarrow M$ can be naturally identified with $f^{*} Q \rightarrow M$
(G) Gauge condition

$$
\nabla^{V} \stackrel{\underline{\mathrm{G}}}{\equiv} f^{*} \nabla^{Q}
$$

8 Standard maps

(M, g)
$\left(V \rightarrow M, h_{V}, \nabla\right)$
compact RM
$\mathrm{VB}+$ fibre metric + connection
Eigenspaces of the Laplacian (acting on sections)

$$
\Gamma(V)=\bigoplus W_{\mu}, \quad W_{\mu}:=\{t \in \Gamma(V) \mid \Delta t=\mu t\} .
$$

Standard induced map by W_{μ}
Suppose $V \rightarrow M$ globally generated by W_{μ}

$$
\begin{gathered}
f_{0}: M \longrightarrow \operatorname{Gr}_{p}\left(W_{\mu}\right) \\
f_{0}(x)=\text { ker ev } x \mid W_{\mu}
\end{gathered}
$$

9 Image equivalence of maps

$f_{1}, f_{2}: M \rightarrow \operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right) \quad$ mappings
Image equivalence of maps
f_{1} is image equivalent to f_{2}, if \exists isometry ϕ of $\operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right)$ such that the diagram commutes

$$
f_{2}=\phi \circ f_{1}
$$

10 Gauge equivalence of maps
$V \rightarrow M$
VB
$f_{i}: M \rightarrow \operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right) \quad$ mappings
$\phi_{i}: V \rightarrow f_{i}^{*} Q$
VB isomorphisms
Gauge equivalence of maps
Two couples $\left(f_{i}, \phi_{i}\right),(i=1,2)$ are called gauge equivalent, if \exists isometry ϕ of $\operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right)$ such that

$$
f_{2}=\phi \circ f_{1}, \quad \phi_{2}=\tilde{\phi} \circ \phi_{1}
$$

where $\tilde{\phi}$ is the bundle automorphism of $Q \rightarrow \operatorname{Gr}_{p}\left(\mathbb{K}^{m}\right)$ covering ϕ.

11 Generalisation of the do Carmo - Wallach theory (Holomorphic case)

$$
\begin{aligned}
& M=G / K \\
& V \rightarrow M \\
& \nabla
\end{aligned}
$$

$$
f: M \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)
$$

$$
\nabla \stackrel{\mathrm{G}}{\equiv} f^{*} \nabla^{Q}
$$

$$
A=-\mu \mathrm{id}_{V}, \mu \in \mathbb{R}_{+}
$$

Cpct. irr. Hermitian symm. space Complex (*) homogeneous line bundle canonical connection

Full holomorphic map

Gauge condition Einstein-Hermitian condition

12 Properties of the space of holomorphic sections
Theorem 1A
The space of holomorphic sections $H^{0}(V) \subset \Gamma(V)$ is eigenspace of Laplacian with eigenvalue μ.
$W:=H^{0}(V)$
Regard W as real $W_{\mathbb{R}}+L^{2}$-inner product.
Theorem 1B

$$
\iota: \mathbb{R}^{n+2} \longrightarrow W_{\mathbb{R}}
$$

$\mathbb{R}^{n+2} \subset W_{\mathbb{R}}$, and $V \rightarrow M$ is globally generated by \mathbb{R}^{n+2}.

13 The symmetric operator T
$\exists T \in S\left(W_{\mathbb{R}}\right) \in \operatorname{End}\left(W_{\mathbb{R}}\right)$ positive semi-definite
Theorem 2A
$\mathbb{R}^{n+2}=(\text { ker } T)^{\perp}$, and $\left.T\right|_{\mathbb{R}^{n+2}}$ is positive definite.
Theorem 2B

$$
\begin{aligned}
\left(T^{2}-\mathrm{id}_{W}, \operatorname{GS}\left(V_{0}, V_{0}\right)\right)_{S} & =0 \\
\left(T^{2}, \operatorname{GS}\left(\mathfrak{m} V_{0}, V_{0}\right)\right)_{S} & =0
\end{aligned}
$$

Theorem 2C
T provides holomorphic embedding

$$
\operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right) \longrightarrow \operatorname{Gr}_{n^{\prime}}(W) \quad n^{\prime}=n+\operatorname{dim} \operatorname{ker} T
$$

and a bundle isomorphism $\phi: V \rightarrow f^{*} Q$

14 Moduli theorems

Theorem 3A
$f: M \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$ can be expressed as

$$
f([g])=\left(\iota^{*} \mathrm{~T} \iota\right)^{-1}\left(f_{0}([g]) \cap(\operatorname{ker} T)^{\perp}\right)
$$

where $f_{0}([g])$ is the standard map.
Theorem 3B

$$
[f]_{\text {gauge }} \stackrel{1: 1}{\longleftrightarrow} T
$$

where $[f]_{g a u g e}$ is represented by $\iota^{*} \mathrm{~T} \iota$ and ϕ.

15 Holomorphic isometric embeddings of degree k

Holo.emb.

$$
f: \mathbb{C P}^{1} \hookrightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right) \subset \mathbb{C P}^{n+1}
$$

Iso. of $\operatorname{deg} k$

$$
f^{*} \omega_{Q}=k \omega_{0}, \quad k \in \mathbb{N}
$$

Lemma

$f: \mathbb{C P}^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$ holo.emb. is k-holo.iso.emb. iff

$$
\begin{array}{r}
\mathcal{O}(k) \stackrel{(\mathrm{G})}{\longleftrightarrow} f^{*} Q \stackrel{f^{*}}{\longleftrightarrow} Q \\
\underset{\mathbb{C P}^{1} \xrightarrow[f]{\longleftrightarrow}}{ } \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)
\end{array}
$$

Lemma

$f: \mathbb{C P}{ }^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$ holo.emb. + iso. degree k, then (EH) $\quad A=-\mu \mathrm{id}, \quad \mu \in \mathbb{R}_{>0}$
${ }^{16} \mathbb{C}$ vs \mathbb{R} representations

$$
\mathcal{O}(k) \rightarrow \mathbb{C P}^{1} \quad \mathrm{SU}(2) \times_{\mathrm{U}(1)} V_{0} \rightarrow \mathrm{SU}(2) / \mathrm{U}(1)
$$

Holomorphic sections + Borel-Weil Thm.

$$
\begin{aligned}
W:=H^{0}(\mathcal{O}(k)) & =S^{k} \mathbb{C}^{2} \quad \mathrm{SU}(2)-\operatorname{IRREP} \\
\operatorname{dim}_{\mathbb{C}} W & =k+1
\end{aligned}
$$

$$
\mathrm{SU}(2) \cong \operatorname{Spin}(3)
$$

$$
S_{0}^{l} \mathbb{R}^{3}(\operatorname{dim}=2 l+1) \quad \mathrm{SO}(3)-\operatorname{IRREP}
$$

$$
\omega^{k=2 l} W_{\mathbb{R}}=\left(S^{2 l} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+2}=2 S_{0}^{2 l} \mathbb{R}^{3}
$$

$\int_{k}=2 l+1$

$$
W_{\mathbb{R}}=\left(S^{2 l+1} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+4}
$$

17 Spectral formulae

$$
\mathrm{H}(W) \subset \mathrm{S}\left(W_{\mathbb{R}}\right) \subset \operatorname{End}\left(W_{\mathbb{R}}\right)
$$

Lemma

$$
\left[\begin{array}{l}
W_{\mathbb{R}}=\left(S^{2 l} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+2} \\
\quad S^{2} \mathbb{R}^{4 l+2}=3 \bigoplus_{r=0}^{l} S_{0}^{2 l-2 r} \mathbb{R}^{3} \oplus \bigoplus_{r=0}^{l-1} S_{0}^{(2 l-1)-2 r} \mathbb{R}^{3}
\end{array}\right.
$$

$$
W_{\mathbb{R}}=\left(S^{2 l+1} \mathbb{C}^{2}\right)_{\mathbb{R}}=\mathbb{R}^{4 l+4}
$$

$$
S^{2} \mathbb{R}^{4 l+4}=3 \bigoplus_{r=0}^{l} S_{0}^{(2 l+1)-2 r} \mathbb{R}^{3} \oplus \bigoplus_{r=0}^{l-1} S_{0}^{2 l-2 r} \mathbb{R}^{3}
$$

Lemma

$$
\mathrm{S}\left(W_{\mathbb{R}}\right)=\mathrm{H}_{+}(W) \oplus \mathrm{H}_{-}(W) \oplus \sigma \mathrm{H}_{+}(W) \oplus J \sigma \mathrm{H}_{+}(W)
$$

18 Spaces of Hermitian operators

$$
\begin{aligned}
& \text { Proposition } \\
& \int S^{2 l} \mathbb{C}^{2} \\
& \begin{aligned}
\mathrm{H}_{+}\left(S^{2 l} \mathbb{C}^{2}\right) & =\bigoplus_{r=0}^{l} S_{0}^{2 l-2 r} \mathbb{R}^{3} \\
\mathrm{H}_{-}\left(S^{2 l} \mathbb{C}^{2}\right) & =\bigoplus_{r=0}^{l-1} S_{0}^{(2 l-1)-2 r} \mathbb{R}^{3}
\end{aligned} \\
& \left(S^{2 l+1} \mathbb{C}^{2}\right. \\
& H_{+}\left(S^{2 l+1} \mathbb{C}^{2}\right)=\stackrel{l}{\bigoplus} S_{0}^{(2 l+1)-2 r} \mathbb{R}^{3} \\
& r=0 \\
& H_{-}\left(S^{2 l+1} \mathbb{C}^{2}\right)=\stackrel{l}{\bigoplus} S_{0}^{2 l-2 r} \mathbb{R}^{3} \\
& r=0
\end{aligned}
$$

19 Finding T via orthogonality relations

$$
\left.S^{k} \mathbb{C}^{2}\right|_{\mathrm{U}(1)} ^{\mathrm{SU}(2)}=\mathbb{C}_{-k} \oplus \mathbb{C}_{-k+2} \oplus \cdots=V_{0} \oplus \mathfrak{m} V_{0} \oplus \ldots
$$

Lemma
(a) $\mathrm{H}(W) \subset \mathrm{GS}\left(\mathfrak{m} V_{0}, V_{0}\right)$
(b) $\operatorname{GS}\left(\mathfrak{m} V_{0}, V_{0}\right) \cap\left(\sigma H_{+}(W) \oplus J \sigma H_{+}(W)\right) \neq \emptyset$

$$
\mathrm{GS}\left(\mathfrak{m} V_{0}, V_{0}\right)=\mathrm{H}(W) \oplus S_{0}^{k} \mathbb{R}^{3} \oplus S_{0}^{k} \mathbb{R}^{3}
$$

Corollary

$$
\begin{gathered}
\mathcal{M}_{k} \cong\left(\mathrm{GS}\left(\mathfrak{m} V_{0}, V_{0}\right) \oplus \mathbb{R} \mathbf{i d}\right)^{\perp} \in \mathrm{S}\left(W_{\mathbb{R}}\right) \\
\mathcal{M}_{k} \cong 2 \bigoplus_{k \geq 2 r} S_{0}^{k-2 r_{\mathbb{R}}}, \quad \operatorname{dim}_{\mathbb{R}} \mathcal{M}_{k}=k(k-1)
\end{gathered}
$$

20 Main Results about Moduli Spaces

$f: \mathbf{C} P^{1} \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{n+2}\right)$
\mathcal{M}_{k}
Full Holo.lso.Emb of deg k
Moduli by gauge equivalence.

$$
n \leqq 2 k
$$

Theorem 2
If $n=2 k\left(\operatorname{target} \mathrm{Gr}_{2 k}\left(\mathbb{R}^{2 k+2}\right)\right)$ then \mathcal{M}_{k} can be regarded as an open convex body in

$$
2 \bigoplus_{r=1}^{k \geq 2 r} S_{0}^{k-2 r} \mathbb{R}^{3}
$$

$\overline{\mathcal{M}_{k}}$
Compactification of \mathcal{M}_{k}
Theorem 3
Boundary points correspond to maps whose images are included in totally geodesic submanifolds

$$
\operatorname{Gr}_{p}\left(\mathbb{R}^{p+2}\right) \subset \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 k+2}\right), \quad p<2 k
$$

\mathbf{M}_{k}
Moduli space by image equivalence
Theorem 4
If $n=2 k\left(\operatorname{target} \mathrm{Gr}_{2 k}\left(\mathbb{R}^{2 k+2}\right)\right)$

$$
\mathbf{M}_{k}=\mathcal{M}_{k} / S^{1}
$$

MUCHAS GRACIAS

