MODULI OF HOLOMORPHIC ISOMETRIC EMBEDDINGS OF $\mathbb{C}\mathrm{P}^1$ INTO QUADRICS

Oscar Macia (U. Valencia)

(joint work with Y. Nagatomo & M. Takahashi)

Valencia September 4, 2017

1 Geometry of Grassmannians

- Exact sequence of bundles $\longrightarrow 0 \longrightarrow S \xrightarrow{i_S} \underline{W} \xrightarrow{\pi_Q} Q \longrightarrow 0$

 $\frac{W}{S} \to \operatorname{Gr}_p(W) :$ $Q \to \operatorname{Gr}_p(W) :$ $\operatorname{Gr}_p(W) \times W \to \operatorname{Gr}_p(W)$ Tautological bundle over $\operatorname{Gr}_p(W)$. Universal quotient bundle.

2 Induced fibre metrics

Fix an inner product (\mathbb{R}) or a Hermitian product (\mathbb{C}) on W.

$$0 \longrightarrow S \xrightarrow[]{i_S} \overline{\underset{\pi_S}{\longleftarrow}} \underline{W} \xrightarrow[]{i_Q} Q \longrightarrow 0$$

 $S \to \operatorname{Gr}_p(W) :$ $Q \to \operatorname{Gr}_p(W) :$

fibre metric g_S . fibre metric g_Q .

3 Connections and Second Fundamental Forms

$$s \in \Gamma(S) \Rightarrow i_S(s) \in \Gamma(\underline{W}) \Rightarrow di_S(s) \in \Omega^1(\underline{W})$$
$$di_S(s) = \pi_S di_S(s) + \pi_Q di_S(s) = \nabla^S s + Hs$$

- Connection on
$$S \to \operatorname{Gr}_p(W)$$

 $\nabla^S = \pi_S di_S \in \Omega^1(\operatorname{Hom}(S,S))$

 $\begin{array}{c} \text{2nd fundamental form of } S \to \operatorname{Gr}_p(W) \\ H = \pi_Q di_S \in \Omega^1(\operatorname{Hom}(S,Q)) \\ \dots \nabla^Q, \ K \dots \end{array}$

4 Pull-backs (M, g) $(Gr_p(W), g_{Gr})$

Riemannian manifold (RM) Grassmannian as RM.

$$f: M \longrightarrow \operatorname{Gr}_p(W)$$

5 Mean curvature operator

Definition –

The bundle homomorphism $A\in \Gamma(\mathrm{Hom}\;V)$ defined as

$$A := \sum_{i=1}^{n} H_{e_i}^U \circ K_{e_i}^V,$$

where e_1, \dots, e_n is an orthonormal basis of $T_x M$ is called the *mean curvature operator of* f.

(EH) Einstein–Hermitian condition $A = -\mu \operatorname{id}_V, \quad \mu \in \mathbb{R}_+$

6 Evaluation & globally generated vector bundles

 $\begin{array}{ll} V \to M & & \mathsf{VB} \\ W \subset \Gamma(V) & \text{finite-dimensional vector space} \\ \underline{W} & & & M \times W \to M \end{array}$

- Evaluation homomorphism $ev: \underline{W} \longrightarrow V$ $ev_x(t) = t(x) \in V_x, \ t \in W, \ x \in M$

Constraint \neg Definition \neg The vector bundle $V \rightarrow M$ is said to be globally generated by W if $ev : \underline{W} \rightarrow V$ is surjective.

7 Map to a Grassmannian induced by a VB

 $V \to M$ VB globally generated by $W \ (\dim W = N)$

- Induced map by
$$(V \to M, W)$$

 $f: M \longrightarrow \operatorname{Gr}_p(W)$
 $f(x) := \ker \operatorname{ev}_x$

where

$$p = N - \operatorname{rnk} V$$

- Lemma $\longrightarrow V \to M$ can be naturally identified with $f^*Q \to M$

- (G) Gauge condition $\overline{\nabla^V \stackrel{\mathrm{G}}{\equiv} f^* \nabla^Q}$

8 Standard maps

 $\begin{array}{ll} (M,g) & \text{compact RM} \\ (V \to M, \ h_V, \ \nabla) & \text{VB + fibre metric + connection} \\ \\ \hline \text{Eigenspaces of the Laplacian (acting on sections)} & \hline \\ \Gamma(V) = \bigoplus_{\mu} W_{\mu}, \quad W_{\mu} \coloneqq \{t \in \Gamma(V) \ | \ \Delta t = \mu t\} \,. \end{array}$

Suppose $V \to M$ globally generated by W_{μ} $f_0: M \longrightarrow \operatorname{Gr}_p(W_{\mu})$ $f_0(x) = \ker \operatorname{ev}_x | W_{\mu}$

10 Gauge equivalence of maps

$$V \to M$$
VB $f_i : M \to \operatorname{Gr}_p(\mathbb{K}^m)$ mappings $\phi_i : V \to f_i^* Q$ VB isomorphisms

Gauge equivalence of maps Two couples $(f_i, \phi_i), (i = 1, 2)$ are called *gauge equivalent*, if \exists isometry ϕ of $\operatorname{Gr}_p(\mathbb{K}^m)$ such that $f_2 = \phi \circ f_1, \quad \phi_2 = \tilde{\phi} \circ \phi_1$ where $\tilde{\phi}$ is the bundle automorphism of $Q \to \operatorname{Gr}_p(\mathbb{K}^m)$ covering ϕ .

- ¹¹ Generalisation of the do Carmo Wallach theory (Holomorphic case)
- $\begin{array}{ll} M = G/K & \mbox{Cpct. irr. Hermitian symm. space} \\ V \rightarrow M & \mbox{Complex(*) homogeneous line bundle} \\ \nabla & \mbox{canonical connection} \end{array}$

$$f: M \to \operatorname{Gr}_n(\mathbb{R}^{n+2})$$

Full holomorphic map

$$\nabla \stackrel{\mathrm{G}}{\equiv} f^* \nabla^Q \\ A = -\mu \operatorname{id}_V, \ \mu \in \mathbb{R}_+$$

Gauge condition Einstein-Hermitian condition

12 **Properties of the space of holomorphic sections**

Theorem 1A The space of holomorphic sections $H^0(V) \subset \Gamma(V)$ is eigenspace of Laplacian with eigenvalue μ .

$$W := H^0(V)$$

Regard W as real $W_{\mathbb{R}} + L^2$ -inner product.

13 The symmetric operator T

 $\exists T \in S(W_{\mathbb{R}}) \in \operatorname{End}(W_{\mathbb{R}})$ positive semi-definite

Theorem 2A

 $\mathbb{R}^{n+2} = (\ker T)^{\perp}$, and $T|_{\mathbb{R}^{n+2}}$ is positive definite.

Theorem 2B
$$\frac{}{(T^2 - \mathrm{id}_W, \mathrm{GS}(V_0, V_0))_S = 0}{(T^2, \mathrm{GS}(\mathfrak{m}V_0, V_0))_S = 0}$$

Theorem 2C T provides holomorphic embedding $\operatorname{Gr}_n(\mathbb{R}^{n+2}) \longrightarrow \operatorname{Gr}_{n'}(W) \qquad n' = n + \dim \ker T$ and a bundle isomorphism $\phi: V \to f^*Q$

14 Moduli theorems

- Theorem 3A

$$f: M \to \operatorname{Gr}_n(\mathbb{R}^{n+2}) \text{ can be expressed as}$$

 $f([g]) = (\iota^* \operatorname{T} \iota)^{-1} \left(f_0([g]) \cap (\ker T)^{\perp} \right)$
where $f_0([g])$ is the standard map.

- Theorem 3B

$$[f]_{gauge} \xleftarrow{1:1} T$$
where $[f]_{gauge}$ is represented by $\iota^* T\iota$ and ϕ .

15 Holomorphic isometric embeddings of degree k

Holo.emb.

$$f: \mathbb{C}\mathrm{P}^1 \hookrightarrow \mathrm{Gr}_n(\mathbb{R}^{n+2}) \subset \mathbb{C}\mathrm{P}^{n+1}$$

/ Iso. of deg
$$k$$
 —
$$f^*\omega_Q = k\omega_0, \qquad k \in \mathbb{N}$$

16
$$\mathbb{C}$$
 vs \mathbb{R} representations
 $\mathcal{O}(k) \to \mathbb{C}P^1$ SU(2) ×_{U(1)} $V_0 \to$ SU(2)/U(1)
Holomorphic sections + Borel–Weil Thm.
 $W := H^0(\mathcal{O}(k)) = S^k \mathbb{C}^2$ SU(2) – IRREP
 $\dim_{\mathbb{C}} W = k + 1$
SU(2) \cong Spin(3)
 $S_0^l \mathbb{R}^3 (\dim = 2l + 1)$ SO(3) – IRREP
 $k = 2l$
 $W_{\mathbb{R}} = (S^{2l} \mathbb{C}^2)_{\mathbb{R}} = \mathbb{R}^{4l+2} = 2S_0^{2l} \mathbb{R}^3$
 $k = 2l + 1$
 $W_{\mathbb{R}} = (S^{2l+1} \mathbb{C}^2)_{\mathbb{R}} = \mathbb{R}^{4l+4}$

17 Spectral formulae $H(W) \subset S(W_{\mathbb{R}}) \subset End(W_{\mathbb{R}})$

Lemma $S(W_{\mathbb{R}}) = H_{+}(W) \oplus H_{-}(W) \oplus \sigma H_{+}(W) \oplus J\sigma H_{+}(W)$

¹⁹ Finding T via orthogonality relations

$$S^k \mathbb{C}^2 |_{\mathrm{U}(1)}^{\mathrm{SU}(2)} = \mathbb{C}_{-k} \oplus \mathbb{C}_{-k+2} \oplus \cdots = V_0 \oplus \mathfrak{m} V_0 \oplus \cdots$$

Lemma
(a)
$$H(W) \subset GS(\mathfrak{m}V_0, V_0)$$

(b) $GS(\mathfrak{m}V_0, V_0) \cap (\sigma H_+(W) \oplus J\sigma H_+(W)) \neq \emptyset$
 $GS(\mathfrak{m}V_0, V_0) = H(W) \oplus S_0^k \mathbb{R}^3 \oplus S_0^k \mathbb{R}^3$

- Corollary

$$\mathcal{M}_{k} \cong (\mathrm{GS}(\mathfrak{m}V_{0}, V_{0}) \oplus \mathbb{R} \operatorname{id})^{\perp} \in \mathrm{S}(W_{\mathbb{R}})$$

$$k \ge 2r$$

$$\mathcal{M}_{k} \cong 2 \bigoplus_{r=1}^{k \ge 2r} S_{0}^{k-2r} \mathbb{R}^{3}, \quad \dim_{\mathbb{R}} \mathcal{M}_{k} = k(k-1)$$

20 Main Results about Moduli Spaces

$$\begin{split} f: \mathbf{C}P^1 \to \operatorname{Gr}_n(\mathbb{R}^{n+2}) & \text{Full Holo.Iso.Emb of deg } k \\ \mathcal{M}_k & \text{Moduli by gauge equivalence.} \\ \hline \text{Theorem 1} & \\ \hline n &\leq 2k. \\ \hline \text{Theorem 2} & \\ \hline \text{If } n = 2k \text{ (target } \operatorname{Gr}_{2k}(\mathbb{R}^{2k+2})\text{) then } \mathcal{M}_k \text{ can be regarded} \\ \text{as an open convex body in} & \\ 2 & \bigoplus_{r=1}^{k \geq 2r} S_0^{k-2r} \mathbb{R}^3 \end{split}$$

 $\begin{array}{ll} \overline{\mathcal{M}_k} & \mbox{Compactification of } \mathcal{M}_k \\ \hline \mbox{Theorem 3} \\ \mbox{Boundary points correspond to maps whose images are included in totally geodesic submanifolds} \\ \mbox{Gr}_p(\mathbb{R}^{p+2}) \subset \mbox{Gr}_{2k}(\mathbb{R}^{2k+2}), \qquad p < 2k. \end{array}$

$$\begin{array}{ll} \mathbf{M}_k & \mbox{Moduli space by image equivalence} \\ \hline \mbox{Theorem 4} & & \\ \mbox{If } n = 2k \mbox{ (target } \mathrm{Gr}_{2k}(\mathbb{R}^{2k+2})) \\ & & \mathbf{M}_k = \mathcal{M}_k/S^1. \end{array}$$

MUCHAS GRACIAS