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Abstract. We study existence, uniqueness and the asymptotic behaviour of the entropy solutions for the Total Variation Flow
with nonlinear boundary conditions. To prove the existence we use the nonlinear semigroup theory and for the uniqueness we
apply Kruzhkov’s method of doubling variables both in space and in time. We show that when the initial data are in L2, the
entropy solutions are strong solutions. Respect to the asymptotic behaviour, we show that entropy solutions stabilize as t → ∞
by converging to a constant function.

1. Introduction

We are interested in the problem




∂u

∂t
= div

(
Du

|Du|

)
in Q = (0,∞) × Ω,

−∂u

∂η
∈ β(u) on S = (0,∞) × ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

(1)

where Ω is an open bounded domain in R
N with a C1 boundary, ∂/∂η is the Neumann boundary operator

associated to Du/|Du|, i.e.,

∂u

∂η
:=

〈
Du

|Du| , η
〉

with η the unit outward normal on ∂Ω and β is a maximal monotone graph in R × R with 0 ∈ β(0).
These nonlinear flows on the boundary occur in some problems in Mechanics and Physics [21] (see
also [25,14,15] or [26]). Observe also that the classical Neumann and Dirichlet boundary conditions
correspond to β = R × {0} and β = {0} × R, respectively. Let us recall that this partial differential
equation appears when one uses the steepest descent method to minimize the Total Variation, a method
introduced by Rudin and Osher ([28,29]) in the context of image denoising and reconstruction. For the
classical Neumann and Dirichlet boundary conditions, existence and uniqueness of solutions of the Total
Variation Flow have been studied in [2] and [3]; the asymptotic behaviour of such solutions is analyzed
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in [5]. A similar problem, the case in which the associated variational energy has a growth at infinity of
order p with p > 1, has been studied in [6,7] and [8].

Due to the linear growth of the energy functional associated with the problem (1), the natural energy
space to study this problem is the space of functions of bounded variation. Recall that a function u ∈
L1(Ω) whose partial derivatives in the sense of distributions are measures with finite total variation in Ω
is called a function of bounded variation. The class of such functions will be denoted by BV(Ω). Thus
u ∈ BV(Ω) if and only if there are Radon measures µ1, . . . , µN defined in Ω with finite total mass in Ω
and ∫

Ω
uDiϕ dx = −

∫
Ω

ϕ dµi (2)

for all ϕ ∈ C∞
0 (Ω), i = 1, . . . , N . Thus the gradient of u is a vector valued measure with finite total

variation

|Du|(Ω) = sup
{∫

Ω
u div(ϕ) dx: ϕ ∈ C∞

0

(
Ω, RN)

,
∣∣ϕ(x)

∣∣ � 1 for x ∈ Ω

}
.

The space BV(Ω) is a Banach space endowed with the norm

‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω). (3)

For further information concerning functions of bounded variation we refer to [1,22] and [31].
We shall need several results from [9]. Following [9], let

X(Ω) =
{
z ∈ L∞(

Ω, RN)
: div(z) ∈ L1(Ω)

}
. (4)

If z ∈ X(Ω) and w ∈ BV(Ω) ∩ L∞(Ω) we define the functional (z, Dw) : C∞
0 (Ω) → R by the formula

〈
(z, Dw), ϕ

〉
= −

∫
Ω

wϕ div(z) dx −
∫

Ω
wz · ∇ϕ dx. (5)

Then (z, Dw) is a Radon measure in Ω,

∫
Ω

(z, Dw) =
∫

Ω
z · ∇w dx (6)

for all w ∈ W 1,1(Ω) ∩ L∞(Ω) and

∣∣∣∣
∫

B
(z, Dw)

∣∣∣∣ �
∫

B

∣∣(z, Dw)
∣∣ � ‖z‖∞

∫
B
|Dw| (7)

for any Borel set B ⊆ Ω. Moreover, (z, Dw) is absolutely continuous with respect to |Dw| with Radon–
Nikodym derivative θ(z, Dw, x) which is a |Dw| measurable function from Ω to R such that

∫
B

(z, Dw) =
∫

B
θ(z, Dw, x)|Dw| (8)
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for any Borel set B ⊆ Ω. We also have that

∥∥θ(z, Dw, ·)
∥∥

L∞(Ω,‖Dw‖) � ‖z‖L∞(Ω,RN ). (9)

In [9], a weak trace on ∂Ω of the normal component of z ∈ X(Ω) is defined. Concretely, it is proved
that there exists a linear operator γ : X(Ω) → L∞(∂Ω) such that

∥∥γ(z)
∥∥
∞ � ‖z‖∞,

γ(z)(x) = z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1(Ω, RN)
.

We shall denote γ(z)(x) by [z, ν](x). Moreover, the following Green’s formula, relating the function
[z, ν] and the measure (z, Dw), for z ∈ X(Ω) and w ∈ BV(Ω) ∩ L∞(Ω), is established:

∫
Ω

w div(z) dx +
∫

Ω
(z, Dw) =

∫
∂Ω

[z, ν]w dHN−1. (10)

This paper is organized as follows. In Section 2 we study the problem from the point of view of
nonlinear semigroup theory, showing that for initial data in L2(Ω) the semigroup solution is a strong
solution. In the next section we compute explicit solutions for a particular β, showing the different
behaviour of these explicit solutions respect to the ones corresponding to the Neumann or Dirichlet
boundary conditions. Section 4 is devoted to the existence and uniqueness of entropy solutions for initial
data in L1(Ω). Finally, in the last section we study the asymptotic behaviour of the entropy solutions.
Using the Lyapunov method for semigroups of nonlinear contractions introduced by Pazy [27], we show
that the entropy solutions stabilize as t → ∞ by converging to a constant function.

2. Strong solutions for data in L2(Ω)

Let β : D(β) ⊆ R → [−∞, +∞] a given maximal monotone graph with 0 ∈ β(0) and D(β) an
interval of extreme points a � b. We can consider that β(r) = −∞ if r � a, r /∈ D(β) and β(r) = +∞ if
r � b, r /∈ D(β). For any k > 0, we consider the truncature operator Tk(r) := [k − (k − |r|)+]sign0(r),
r ∈ R. Since |∂u/∂η| � 1, we need to truncate β in the following way: β̂(x) = {T1(y): y ∈ β(x)} for
x ∈ R. Obviously, β̂ is also a maximal monotone graph in R × R. Then, as |β̂(x)| � 1, we can find a
convex function j : R → R such that j(0) = 0, j � 0, |j(x) − j(y)| � |x − y| for all x, y ∈ R, with
β̂ = ∂j.

Our concept of solution of problem (1) when the initial datum is in L2(Ω) is the following.

Definition 1. Let u0 ∈ L2(Ω). A function u : (0, T ) × Ω → R is a strong solution of (1) in QT :=
(0, T ) × Ω if u ∈ C(0, T ; L2(Ω)), u(0) = u0, u′(t) ∈ L2(Ω), u(t) ∈ L2(Ω) ∩ BV(Ω) a.e. t ∈ [0, T ] and
there exists z(t) ∈ X(Ω), with ‖z(t)‖∞ � 1, satisfying for almost all t ∈ [0, T ]:

div
(
z(t)

)
= u′(t) in D′(Ω), (11)∫

Ω

(
z(t), Du(t)

)
=

∫
Ω

∣∣Du(t)
∣∣ (12)
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and

−
[
z(t), ν

]
∈ β̂

(
u(t)

)
HN−1-a.e. on ∂Ω. (13)

Let us remark that the above definition is consistent with the concept of solution for the Neumann and
Dirichlet problem given in [2] and [3].

The main result of this section is the following existence and uniqueness theorem.

Theorem 1. For any u0 ∈ L2(Ω), there exists a unique strong solution u(t) of problem (1) in QT for all
T > 0. Moreover, if u(t), û(t) are the strong solutions corresponding to initial data u0, û0, respectively,
then

∥∥(
u(t) − û(t)

)+∥∥
2 �

∥∥(
u0 − û0

)+∥∥
2 and

∥∥u(t) − û(t)
∥∥

2 �
∥∥u0 − û0

∥∥
2 (14)

for all t � 0.

To prove Theorem 1 we shall use the nonlinear semigroup theory associated with subdifferentials (see
[16]).

Consider the following functional defined in L2(Ω):

Φβ(u) :=




∫
Ω
|Du| +

∫
∂Ω

j(u) if u ∈ BV(Ω),

+∞ elsewhere.
(15)

By a result of Modica (Proposition 1.2 in [26]) we know that the functional Φβ is lower semicontinuous
in L2(Ω). We also have that Φβ is convex. Therefore, the subdifferential ∂Φβ of Φβ , i.e., the operator in
L2(Ω) defined by

v ∈ ∂Φβ(u) ⇔ Φβ(w) − Φβ(u) �
∫

Ω
v(w − u) dx ∀w ∈ L2(Ω),

is a maximal monotone operator in L2(Ω) (see [16]). Consequently, the existence and uniqueness of
solution of the abstract Cauchy problem

{
u′(t) + ∂Φβ

(
u(t)

)

 0, t ∈ ]0,∞[,

u(0) = u0, u0 ∈ L2(Ω)
(16)

follows immediately from the nonlinear semigroup theory (see [16]). Now, to get the full strength of the
abstract result derived from semigroup theory we need to characterize ∂Φβ . To get this characterization,
we introduce the following operator Aβ in L2(Ω).

(u, v) ∈ Aβ if and only if u, v ∈ L2(Ω), u ∈ BV(Ω) and there exists z ∈ X(Ω) with ‖z‖∞ � 1,
v = −div(z) in D′(Ω) such that∫

Ω
(w − u)v �

∫
Ω

z · ∇w −
∫

Ω
|Du| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1 (17)

for all w ∈ W 1,1(Ω) ∩ L2(Ω).
We have the following characterization of the operator Aβ .
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Lemma 1. The following assertions are equivalent:

(a) (u, v) ∈ Aβ ,
(b) u, v ∈ L2(Ω), u ∈ BV(Ω) and there exists z ∈ X(Ω) with ‖z‖∞ � 1, v = −div(z) in D′(Ω) such

that ∫
Ω

(w − u)v dx �
∫

Ω
(z, Dw) −

∫
Ω
|Du| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1 (18)

for all w ∈ BV(Ω) ∩ L2(Ω),
(c) u, v ∈ L2(Ω), u ∈ BV(Ω) and there exists z ∈ X(Ω), with ‖z‖∞ � 1, v = −div(z) in D′(Ω)

such that∫
Ω
|Du| =

∫
Ω

(z, Du), (19)

−[z, ν] ∈ β̂(u) HN−1-a.e. on ∂Ω. (20)

Proof. Let (u, v) ∈ Aβ . Then, there exists z ∈ X(Ω) with ‖z‖∞ � 1, v = −div(z) in D′(Ω), such that
∫

Ω
(w − u)v dx �

∫
Ω

z · ∇w −
∫

Ω
|Du| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1 (21)

for every w ∈ W 1,1 ∩L2(Ω). Let w ∈ BV(Ω)∩L2(Ω), applying results from [9] and [10], we know that
there exists a sequence {wn}n∈N ⊂ C∞(Ω) such that

wn → w in L2(Ω),∫
Ω
|∇wn| dx →

∫
Ω
|Dw|,

∫
Ω

z · ∇wn dx =
∫

Ω
(z, Dwn) →

∫
Ω

(z, Dw).

In particular we have that wn strictly converges to w in BV(Ω). Then, we have wn → w in LN−1(∂Ω)
(see [1]) and therefore, from the continuity of j we also obtain

lim
n→∞

∫
∂Ω

j(wn) dHN−1 =
∫

∂Ω
j(w) dHN−1.

Then, taking wn as test functions in (21) and letting n → ∞ we get that (18) holds for all w ∈ BV(Ω)∩
L2(Ω). Thus (a) and (b) are equivalent.

Let us show that (b) implies (c): Taking w = u as a test function in (18) we obtain∫
Ω
|Du| �

∫
Ω

(z, Du) �
∫

Ω
|Du|

and then (19) holds. To prove (20) we multiply the equality v = −div(z) by w − u and apply Green’s
formula to obtain∫

Ω
(w − u)v dx = −

∫
Ω

(w − u) div(z) dx =
∫

Ω

(
z, D(w − u)

)
−

∫
∂Ω

[z, ν](w − u) dHN−1
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=
∫

Ω
(z, Dw) −

∫
Ω

(z, Du) −
∫

∂Ω
[z, ν](w − u) dHN−1

�
∫

Ω
(z, Dw) −

∫
Ω
|Du| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1.

Taking into account (19) we get

−
∫

∂Ω
[z, ν](w − u) dHN−1 �

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1. (22)

Given w ∈ BV(Ω) ∩ L2(Ω) and 0 � ϕ ∈ L∞(∂Ω), let wϕ := u + ϕ
‖ϕ‖∞+1 (w − u). Taking wϕ as test

function in (22) we get

−
∫

∂Ω
[z, ν]

ϕ

‖ϕ‖∞ + 1
(w − u) dHN−1

�
∫

∂Ω
j

(
u +

ϕ

‖ϕ‖∞ + 1
(w − u)

)
dHN−1 −

∫
∂Ω

j(u) dHN−1

and, by the convexity of j,

−
∫

∂Ω
[z, ν]

ϕ

‖ϕ‖∞ + 1
(w − u) dHN−1 �

∫
∂Ω

ϕ

‖ϕ‖∞ + 1

(
j(w) − j(u)

)
dHN−1,

which implies

∫
∂Ω

ϕ
(
j(w) − j(u) + [z, ν](w − u)

)
dHN−1 � 0 ∀ϕ ∈ L∞(∂Ω) ϕ � 0,

from where we finally obtain −[z, ν] ∈ ∂j(u) = β̂(u), HN−1-a.e. on ∂Ω.
To prove (c) implies (b) we only need to apply Green’s formula. �

We have the following result.

Theorem 2. The operator ∂Φβ has dense domain in L2(Ω) and ∂Φβ = Aβ . Moreover, Aβ is
m-completely accretive in L2(Ω).

To prove this theorem we need to introduce the following operator which is related to the p-Laplacian
operator with nonlinear boundary conditions (see [6]). For p > 1 we define the operator Aβ,p in Lp(Ω)
as

(u, v) ∈ Aβ,p if and only if u ∈ W 1,p(Ω) ∩ L∞(Ω), v ∈ L1(Ω) and

∫
Ω

v(w − u) dx �
∫

Ω
|∇u|p−2∇u · ∇(w − u) dx +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1

for all w ∈ W 1,p(Ω) ∩ L∞(Ω).

We have the following result (see Theorem 2.1 in [6]).
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Theorem 3. The operator Aβ,p satisfies the following statements:

(i) Aβ,p is univalued; i.e., if (u, v) ∈ Aβ,p, then

v = −div
(
|∇u|p−2∇u

)
, in the sense of distributions.

(ii) Aβ,p is completely accretive.
(iii) L∞(Ω) ⊆ R(I + Aβ,p).

Proof of Theorem 2. Firstly, let us see that ∂Φβ is completely accretive. By Lemma 7.1 in [12], it is
enough to prove that for all u, û ∈ L2(Ω)

Φβ

(
u + p

(
û − u

))
+ Φβ

(
û − p

(
û − u

))
� Φβ(u) + Φβ

(
û
)
, (23)

holds for all p ∈ P0, where

P0 :=
{
p ∈ C∞(R): 0 � p′ � 1, supp

(
p′

)
compact and 0 /∈ supp(p)

}
.

In fact, we may assume that u, û ∈ BV(Ω)∩L2(Ω). If v = u + p(û− u) and v̂ = û− p(û− u), then by
the chain rule for BV -functions (see [1]), it is easy to see that

∫
Ω
|Dv| +

∫
Ω

∣∣Dv̂
∣∣ �

∫
Ω
|Du| +

∫
Ω

∣∣Dû
∣∣.

On the other hand, if

α = χ{u�=û}
p(û − u)
û − u

,

having in mind the convexity of j, we have

∫
∂Ω

j(v) dHN−1 +
∫

∂Ω
j
(
v̂
)

dHN−1

=
∫

∂Ω
j
(
αû + (1 − α)u

)
dHN−1 +

∫
∂Ω

j
(
αu + (1 − α)û

)
dHN−1

�
∫

∂Ω
j(u) dHN−1 +

∫
∂Ω

j
(
û
)

dHN−1.

Thus

Φβ(v) + Φβ

(
v̂
)

� Φβ(u) + Φβ

(
û
)
,

and (23) holds.
From Lemma 1, we have

Aβ ⊂ ∂Φβ. (24)
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Let us see that

L∞(Ω) ⊂ R(I + Aβ). (25)

Let v ∈ L∞(Ω). We need to find u ∈ BV(Ω) such that (u, v − u) ∈ Aβ ; i.e., there is z ∈ X(Ω) with
‖z‖∞ � 1 such that v − u = −div(z) and

∫
Ω

(w − u)(v − u) dx �
∫

Ω
z · ∇w dx −

∫
Ω
|Du| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(u) dHN−1

for every w ∈ W 1,1(Ω) ∩ L2(Ω).
For every 1 < p � 2, applying Theorem 3, there is up ∈ W 1,p(Ω) ∩ L∞(Ω) such that

∫
Ω

(w − up)(v − up) dx

�
∫

Ω
|∇up|p−2∇up · ∇(w − up) dx +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(up) dHN−1 (26)

for all w ∈ W 1,p(Ω) ∩ L∞(Ω). Moreover, since Aβ,p is completely accretive, we also get ‖up‖∞ �
‖v‖∞.

Taking w = 0 in (26) we get

−
∫

Ω
upv dx +

∫
Ω

(up)2 dx � −
∫

Ω
|∇up|p dx −

∫
∂Ω

j(up) dHN−1,

and consequently,

∫
Ω
|∇up|p dx +

∫
Ω
|up|2 dx �

∫
Ω

upv dx � C
(
Ω, ‖v‖∞

)
for every 1 < p � 2.

Thus

∫
Ω
|∇up|p dx � M1 for every 1 < p � 2, (27)

where M1 does not depend on p. Hence, applying Young’s inequality we also have the boundness of
|∇up| in L1(Ω) and so {up}p>1 is bounded in W 1,1(Ω) and then we may extract a subsequence such that
up converges in L1(Ω) and almost everywhere to some u ∈ L1(Ω) as p → 1+. From the estimates we
also get un → u in L2(Ω) and u ∈ BV(Ω) ∩ L∞(Ω).

Let us prove that {|∇up|p−2∇up}p>1 is weakly relatively compact in L1(Ω; R
N ). To do that, using

(27), we have that

∫
Ω
|∇up|p−1 dx �

( ∫
Ω
|∇up|p dx

)(p−1)/p

LN (Ω)1/p � M2,
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where M2 does not depend on p. On the other hand, for any measurable subset E ⊂ Ω such that
LN (E) < 1, we have∣∣∣∣

∫
E
|∇up|p−2∇up dx

∣∣∣∣ �
∫

E
|∇up|p−1 � M

(p−1)/p
1 LN (E)1/p � M3LN (E)1/p.

Thus, {|∇up|p−2∇up}p>1 being bounded and equiintegrable in L1(Ω, RN ), is weakly relatively compact
in L1(Ω, RN ). Hence, we may assume that

|∇up|p−2∇up ⇀ z as p → 1+, weakly in L1(Ω; R
N)

.

Given ψ ∈ C∞
0 (Ω), taking w = up ± ψ as test functions in (26) and letting p → 1+, we obtain∫

Ω
(v − u)ψ dx =

∫
Ω

z · ∇ψ dx,

that is, v − u = −div(z) in D′(Ω). Moreover, we also get ‖z‖∞ � 1 (see the proof of Lemma 1 in [2]).
For every w ∈ W 1,2(Ω), applying Young’s inequality we get

p

∫
Ω
|∇up| dx +

∫
∂Ω

j(up) dHN−1

� (p − 1)LN (Ω) −
∫

Ω
(w − up)(v − up) dx

+
∫

Ω
|∇up|p−2∇up · ∇w dx +

∫
∂Ω

j(w) dHN−1.

Then, using the semicontinuity of the functional Φβ and letting p → 1+ we obtain∫
Ω
|Du| +

∫
∂Ω

j(u) dHN−1 � −
∫

Ω
(w − u)(v − u) dx +

∫
Ω

z · ∇w dx +
∫

∂Ω
j(w) dHN−1

for every w ∈ W 1,2(Ω); from where, by approximation we can conclude that (u, v − u) ∈ Aβ and,
therefore (25) holds.

We claim now that

Aβ is closed in L2(Ω). (28)

In fact: let (un, vn) ∈ Aβ such that (un, vn) → (u, v) in L2(Ω)×L2(Ω). Then, there exists zn ∈ X(Ω)
such that ‖zn‖∞ � 1, vn = −div(zn) in D′(Ω) and∫

Ω
(w − un)vn dx �

∫
Ω

(zn, Dw) −
∫

Ω
|Dun| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j(un) dHN−1

for every w ∈ BV(Ω) ∩ L2(Ω). Now, since ‖zn‖∞ � 1 we may assume that zn ⇀ z weakly∗ in
L∞(Ω; R

N ) with ‖z‖∞ � 1. Moreover, since vn → v in L2(Ω) and vn = −div(zn), we get v = −div(z)
in D′(Ω) and

lim
n→∞

∫
Ω

(zn, Dw) =
∫

Ω
(z, Dw).
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Now, letting n → ∞ and having in mind the lower semicontinuity of Φβ we finally get that (u, v) ∈ Aβ

since

∫
Ω

(w − u)v dx �
∫

Ω
(z, Dw) −

∫
∂Ω

|Du| +
∫

Ω
j(w) dHN−1 −

∫
∂Ω

j(u) dHN−1.

From (24), (25) and (28), it follows that ∂Φβ = Aβ . Finally, since BV(Ω) ∩ L2(Ω) ⊂ D(Φβ), we get
that D(∂Φβ) is dense in L2(Ω), and the proof concludes. �

Proof of Theorem 1. Let {T (t)}t�0 be the semigroup in L2(Ω) generated by the operator ∂Φβ . Then,
by the nonlinear semigroup theory, given u0 ∈ L2(Ω), u(t) = T (t)u0 is the only strong solution of
the problem (16). Thus, by Theorem 2, we have that for almost all t ∈ [0,∞[, u(t) ∈ D(Aβ) and
−u′(t) ∈ Aβ(u(t)). �

3. Explicit solutions

In [2] and [5] explicit solutions have been obtained for the Neumann and Dirichlet problem. Let us
compute now explicit solutions for a particular β. More precisely, in the two following examples we
consider

β(r) :=



−1, r � −1,

r, |r| � 1,

1, r > 1.

(29)

Example 1. Let Ω = BR(0) and let β given by (29). We are going to calculate the solution of problem
(1) for the initial datum u0 := aχBR(0), with a > 0. We seek a solution u of the form u(t) = a(t)χBR(0).
Since u′(t) = a′(t)χBR(0) = div(z(t)) in D′(BR(0)), integrating we get

a′(t)
∣∣BR(0)

∣∣ =
∫

BR(0)
div

(
z(t)

)
dx =

∫
∂BR(0)

[
z(t), ν

]
dHN−1 = −β

(
a(t)

)
HN−1(∂BR(0)

)
.

Hence, we have

a′(t) =



−N

R
if a(t) � 1,

−N

R
a(t) if

∣∣a(t)
∣∣ � 1.

Thus, a(t) = a e−
N
R t, if |a(t)| � 1, and a(t) = (a − N

R t), if a(t) � 1. Therefore, the solution u(t) is
given by

u(t) = a e−
N
R tχBR(0), t � 0, if 0 < a � 1 (30)
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and

u(t) =




(
a − N

R
t

)
χBR(0), 0 � t � T :=

(a − 1)R
N

,

e−
N
R (t−T )χBR(0), t � T

if a � 1. (31)

To see that the function u(t) given by (30) or (31) is the solution, we only need to consider the vector

fields: z(t, x) := − x
Ra e−

N
R t, in the case 0 < a � 1, and

z(t, x) :=



− x

R
, 0 � t � T :=

(a − 1)R
N

,

− x

R
e−

N
R (t−T ), t � T ,

in the case a > 1.

Example 2. Let Ω = BR(0) and let β given by (29). Let u0 := aχBr(0) with 0 < r < R. We seek a
solution u of the form u(t) = a(t)χBR(0) + b(t)χΩR,r , with a(t) � b(t), where ΩR,r := BR(0) \ Br(0).
Then we look for a z(t) ∈ X(Ω) with ‖z(t)‖∞ � 1, ut(t, x) = div(z(t)) and such that (12) and (13)
hold. From ut(t, x) = div(z(t, x)), multiplying by u(t, x) and integrating in Ω we get

∫
Ω

ut(t, x)u(t, x) dx = −
∫

Ω

(
z(t), Du(t)

)
+

∫
∂Ω

[
z(t), ν

]
u(t) dHN−1

= −
∫

Ω

∣∣Du(t)
∣∣ − ∫

∂Ω
β

(
b(t)

)
b(t) dHN−1.

Now, from the coarea formula, if Et
s := {x ∈ BR(0): u(t, x) > s}, we have

∫
Ω
|Du(t)| =

∫ +∞

−∞
|DχEt

s
|
(
BR(0)

)
ds =

∫ a(t)

b(t)
|DχBr(0)|

(
BR(0)

)
ds =

(
a(t) − b(t)

)
Per

(
Br(0)

)
.

Consequently, we get

a(t)a′(t)
∣∣Br(0)

∣∣ + b′(t)b(t)|ΩR,r| =
(
b(t) − a(t)

)
Per

(
Br(0)

)
− b(t)β

(
b(t)

)
Per

(
BR(0)

)
,

from where it follows that

a′(t) = −N

r
,

b′(t) =
Per(Br(0)) − β(b(t))Per(BR(0))

|ΩR,r|
.

Then, since a(0) = a, we have

a(t) = a − N

r
t.
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On the other hand, assuming that |b(t)| � 1, we have

b′(t) =
Per(Br(0)) − b(t)Per(BR(0))

|ΩR,r|
.

Then, since b(0) = 0, we get

b(t) =
rN−1

RN−1

(
1 − e

−Per(BR(0))
|ΩR,r| t)

=
rN−1

RN−1

(
1 − e

− NRN−1

RN−rN t)
.

This is true until time T for which a(T ) = b(T ), that is, until time T > 0, solution of the equation

a − N

r
T =

rN−1

RN−1

(
1 − e

− NRN−1

RN−rN T )
. (32)

We need to find now the vector field z(t) ∈ X(Ω) verifying ‖z(t)‖∞ � 1, ut = div(z(t)) and (12) and
(13). As div(z(t, x)) = −N/r in Br(0) we may have z(t, x) = −x/r for x ∈ Br(0) and 0 � t � T . To
construct z(t) in ΩR,r first we suppose z(t, x) = ρ(t, ‖x‖) x

‖x‖ . Then, ρ(t, ‖x‖) will be the solution of the
following EDP:

∂ρ(t, s)
∂s

+
(N − 1)ρ(t, s)

s
=

Per(Br(0))
|ΩR,r|

e
− NRN−1

RN−rN t
(33)

coupled with the initial condition

ρ(t, R) = − rN−1

RN−1

(
1 − e

− NRN−1

RN−rN t)
.

The solution of the EDP with this initial boundary condition is:

ρ(t, s) =
rN−1

sN−1

(
e
− NRN−1

RN−rN t

RN − rN

(
sN − rN)

− 1
)

.

Then we finally have:

z(t, x) =



−x

r
if x ∈ Br(0),

rN−1

‖x‖N
x

(
e
− NRN−1

RN−rN t

RN − rN

(
‖x‖N − rN

)
− 1

)
if x ∈ ΩR,r.

(34)

We note that z(t, x) · x
r = −1, z(t, x) · x

R = −b(t) and ‖z(t)‖∞ � 1. Let us see that ut = div(z) in
D′(Ω × [0, T ]). Let φ ∈ D(Ω × [0, T ]),

〈
div(z), φ

〉
= −

∫ T

0

∫
Ω

z(t, x) · ∇φ(x, t)
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=
∫ T

0

∫
Br(0)

x

r
· ∇φ(x, t) −

∫ T

0

∫
ΩR,r

rN−1

‖x‖N
x

(
e
− NRN−1

RN−rN t

RN − rN

(
‖x‖N − rN)

− 1
)
· ∇φ(x, t)

= −
∫ T

0

∫
Br(0)

N

r
φ(x, t) +

∫ T

0

∫
∂Br(0)

φ(x, t) +
∫ T

0

∫
ΩR.r

NrN−1

(RN − rN )
e
− NRN−1

RN−rN t
φ(x, t)

+
∫ T

0

∫
∂ΩR,r

z(t, x) · x

r
φ(x, t)

= −
∫ T

0

∫
Br(0)

N

r
φ(x, t) +

∫ T

0

∫
ΩR,r

NrN−1

(RN − rN )
e
− NRN−1

RN−rN t
φ(x, t) = 〈ut, ϕ〉.

Finally, let us see that (12) holds:

∫
Ω

(
z(t), Du(t)

)
= −

∫
Ω

u(t) div
(
z(t)

)
dx +

∫
∂Ω

[
z(t), ν

]
u(t) dHN−1

= −
∫

Br(0)
a(t)a′(t) dx −

∫
ΩR,r

b(t)b′(t) dx −
∫

∂Ω
b(t)2 dHN−1

= −a(t)a′(t)
∣∣Br(0)

∣∣ − b′(t)b(t)|ΩR,r| − b(t)2Per
(
BR(0)

)
= a(t)Per

(
Br(0)

)
− Per(Br(0)) − b(t)Per(BR(0))

|ΩR,r|
b(t)|ΩR,r| − b(t)2Per

(
BR(0)

)

=
(
a(t) − b(t)

)
Per

(
Br(0)

)
=

∫
Ω

∣∣Du(t)
∣∣.

At time t = T we have that a(T ) = b(T ) = C � 1 and u(T ) = CχΩ . Then, for t � T , u(t) evolves

as in the above example, that is, u(t) = Ce−
N
R (t−T )χBR(0), for t � T . Consequently, the solution of

problem (1) for the initial datum u0 := aχBr(0) with 0 < r < R is given by

u(t) =




(
a − N

r
t

)
χBr(0) +

rN−1

RN−1

(
1 − e

− NRN−1

RN−rN t)
χΩR,r if 0 � t � T ,

Ce−
N
R (t−T )χBR(0) if t > T ,

(35)

where T is the solution of (32) and C = (a − N
r T ).

4. Solutions for data in L1(Ω)

Similarly to the case of the Dirichlet problem ([3]), to get existence and uniqueness of solutions for
initial data in L1(Ω) we need to work with the concept of entropy solution. To make precise this notion
of solution let us recall some notations and definitions given in [3]. First we need to introduce a weak
trace on ∂Ω of the normal component of certain vector fields in Ω. We define the space

Z(Ω) :=
{

(z, ξ) ∈ L∞(
Ω, RN)

× BV(Ω)∗: div(z) = ξ in D′(Ω)
}
.
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We denote R(Ω) := W 1,1(Ω) ∩ L∞(Ω) ∩ C(Ω). For (z, ξ) ∈ Z(Ω) and w ∈ R(Ω) we define

〈
(z, ξ), w

〉
∂Ω := 〈ξ, w〉BV(Ω)∗,BV(Ω) +

∫
Ω

z · ∇w dx.

Then, working as in the proof of Theorem 1.1 of [9], we obtain that if w, v ∈ R(Ω) and w = v on ∂Ω
one has

〈
(z, ξ), w

〉
∂Ω =

〈
(z, ξ), v

〉
∂Ω ∀(z, ξ) ∈ Z(Ω). (36)

As a consequence of (36), we can give the following definition: Given u ∈ BV(Ω)∩L∞(Ω) and (z, ξ) ∈
Z(Ω), we define 〈(z, ξ), u〉∂Ω by setting

〈
(z, ξ), u

〉
∂Ω :=

〈
(z, ξ), w

〉
∂Ω ,

where w is any function in R(Ω) such that w = u on ∂Ω. Again, working as in the proof of Theorem 1.1
of [9], we can prove that for every (z, ξ) ∈ Z(Ω) there exists Mz,ξ > 0 such that

∣∣〈(z, ξ), u
〉
∂Ω

∣∣ � Mz,ξ‖u‖L1(∂Ω) ∀u ∈ BV(Ω) ∩ L∞(Ω). (37)

Now, taking a fixed (z, ξ) ∈ Z(Ω), we consider the linear functional F : L∞(∂Ω) → R defined by

F (v) :=
〈
(z, ξ), w

〉
∂Ω ,

where v ∈ L∞(∂Ω) and w ∈ BV(Ω) ∩ L∞(Ω) is such that w|∂Ω = v. By estimate (37), there exists
γz,ξ ∈ L∞(∂Ω) such that

F (v) =
∫

∂Ω
γz,ξ(x)v(x) dHN−1.

Consequently there exists a linear operator γ : Z(Ω) → L∞(∂Ω), with γ(z, ξ) := γz,ξ, satisfying

〈
(z, ξ), w

〉
∂Ω=

∫
∂Ω

γz,ξ(x)w(x) dHN−1 ∀w ∈ BV(Ω) ∩ L∞(Ω).

In case z ∈ C1(Ω, RN ), we have γz(x) = z(x) · ν(x) for all x ∈ ∂Ω. Hence, the function γz,ξ(x) is the
weak trace of the normal component of (z, ξ). For simplicity of the notation, we shall denote γz,ξ(x) by
[z, ν](x).

We need to consider the space BV(Ω)2, defined as BV(Ω) ∩ L2(Ω) endowed with the norm

‖w‖BV(Ω)2 := ‖w‖L2(Ω) + |Du|(Ω).

It easy to see that L2(Ω) ⊂ BV(Ω)∗2 and

‖w‖BV(Ω)∗2
� ‖w‖L2(Ω) ∀w ∈ L2(Ω). (38)
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Now, it is well known (see for instance [30]) that the dual space (L1(0, T ; BV(Ω)2))∗ is isometric to
the space L∞(0, T ; BV(Ω)∗2, BV(Ω)2) of all weakly∗ measurable functions f : [0, T ] → BV(Ω)∗2, such
that v(f ) ∈ L∞([0, T ]), where v(f ) denotes the supremum of the set {|〈w, f〉|: ‖w‖BV(Ω)2 � 1} in the
vector lattice of measurable real functions. Moreover, the dual pairing of the isometry is defined by

〈w, f〉 =
∫ T

0
〈w(t), f (t)〉 dt,

for w ∈ L1(0, T ; BV(Ω)2) and f ∈ L∞(0, T ; BV(Ω)∗2, BV(Ω)2).
By L1

w(0, T , BV(Ω)) we denote the space of weakly measurable functions w : [0, T ] → BV(Ω) (i.e.,
t ∈ [0, T ] → 〈w(t), φ〉 is measurable for every φ ∈ BV(Ω)∗) such that

∫ T
0 ‖w(t)‖ < ∞. Observe that,

since BV(Ω) has a separable predual (see [1]), it follows easily that the map t ∈ [0, T ] → ‖w(t)‖ is
measurable.

To make precise our notion of solution we need the following definitions:

Definition 2. Let Ψ ∈ L1(0, T , BV(Ω)). We say Ψ admits a weak derivative in the space
L1

w(0, T , BV(Ω)) ∩ L∞(QT ) if there is a function Θ ∈ L1
w(0, T , BV(Ω)) ∩ L∞(QT ) such that Ψ (t) =∫ t

0 Θ(s) ds, the integral being taken as a Pettis integral.

Definition 3. Let ξ ∈ (L1(0, T , BV(Ω)2))∗. We say that ξ is the time derivative in the space
(L1(0, T , BV(Ω)2))∗ of a function u ∈ L1((0, T ) × Ω) if

∫ T

0

〈
ξ(t), Ψ (t)

〉
dt = −

∫ T

0

∫
Ω

u(t, x)Θ(t, x) dx dt

for all test functions Ψ ∈ L1(0, T , BV(Ω)) which admit a weak derivative Θ ∈ L1
w(0, T , BV(Ω)) ∩

L∞(QT ) and have compact support in time.

Observe that if w ∈ L1(0, T , BV(Ω)) ∩ L∞(QT ) and z ∈ L∞(QT , RN ) is such that there exists
ξ ∈ (L1(0, T , BV(Ω)))∗ with div(z) = ξ in D′(QT ), we can define, associated to the pair (z, ξ), the
distribution (z, Dw) in QT by

〈
(z, Dw), φ

〉
:= −

∫ T

0

〈
ξ(t), w(t)φ(t)

〉
dt −

∫ T

0

∫
Ω

z(t, x)w(t, x)∇xφ(t, x) dx dt (39)

for all φ ∈ D(QT ).

Definition 4. Let ξ ∈ (L1(0, T , BV(Ω)2))∗, z ∈ L∞(QT , RN ). We say that ξ = div(z) in
(L1(0, T , BV(Ω)2))∗ if (z, Dw) is a Radon measure in QT with normal boundary values [z, ν] ∈
L∞((0, T ) × ∂Ω), such that

∫
QT

(z, Dw) +
∫ T

0

〈
ξ(t), w(t)

〉
dt =

∫ T

0

∫
∂Ω

[
z(t, x), ν

]
w(t, x) dHN−1 dt

for all w ∈ L1(0, T , BV(Ω)) ∩ L∞(QT ).
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We need to consider the set of truncature functions:

T :=
{
Tk, T+

k , T−
k : k > 0

}
and

P :=
{
p ∈ W 1,∞(R): 0 � p′ � 1, supp

(
p′

)
compact

}
.

Our concept of solution is the following.

Definition 5. A measurable function u : (0, T )×Ω → R is an entropy solution of (1) in QT = (0, T )×Ω
if u ∈ C([0, T ]; L1(Ω)), p(u(·)) ∈ L1

w(0, T ; BV(Ω)) ∀p ∈ P and there exist (z(t), ξ(t)) ∈ Z(Ω) with
‖z(t)‖∞ � 1, and ξ ∈ (L1(0, T ; BV(Ω)2))∗ such that

(i) ξ is the time derivative of u in (L1(0, T ; BV(Ω)2))∗ in the sense of Definition 3,
(ii) ξ = div(z) in (L1(0, T ; BV(Ω))∗ in the sense of Definition 4,

(iii) for almost all t ∈ [0, T ], all w ∈ L1(0, T ; BV(Ω)) and p ∈ P ,

−
∫ T

0

∫
∂Ω

[
z(t), ν

](
p
(
w(t)

)
− p

(
u(t)

))
dHN−1 dt

�
∫ T

0

( ∫
∂Ω

j
(
w(t)

)
dHN−1 −

∫
∂Ω

j
(
p
(
u(t)

)
− p(0)

)
dHN−1

)
dt,

(iv) the following inequality is satisfied

−
∫ T

0

∫
Ω

Jp
(
u(t)

)
ηt +

∫ T

0

∫
Ω

η(t)
∣∣Dp

(
u(t)

)∣∣ +
∫ T

0

∫
∂Ω

j
(
p
(
u(t)

)
− p(0)

)
η(t)

+
∫ T

0

∫
Ω

z(t) · Dη(t)p
(
u(t)

)
�

∫ T

0

∫
∂Ω

[
z(t), ν

]
p(0)η(t) (40)

for all η ∈ C∞(QT ), with η � 0, η(t, x) = φ(t)ψ(x), being φ ∈ D(]0, T [), ψ ∈ C∞(Ω) and
p ∈ P , where Jp(r) =

∫ r
0 p(s) ds.

The main result of this section is the following one:

Theorem 4. Given u0 ∈ L1(Ω), there exists a unique entropy solution of (1) in (0, T ) × Ω for every
T > 0 such that u(0) = u0. Moreover, if u(t), û(t) are the entropy solutions corresponding to initial data
u0, û0, respectively, then

∥∥(
u(t) − û(t)

)+∥∥
1 �

∥∥(
u0 − û0

)+∥∥
1 and

∥∥u(t) − û(t)
∥∥

1 �
∥∥u0 − û0

∥∥
1 (41)

for all t � 0.
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To prove the existence part of the above theorem we shall use Crandall–Liggett’s semigroup generation
theorem. So we shall associate an m-completely accretive operator Bβ to the problem (1). In the line of
[11], to do that we need to consider the function space

TBV(Ω) :=
{
u ∈ L1(Ω): Tk(u) ∈ BV(Ω) ∀k > 0

}
.

Notice that the function space TBV(Ω) is closely related to the space GBV(Ω) of generalized functions
of bounded variation introduced by Di Giorgi and Ambrosio ([19], see also [1]), indeed TBV(Ω) ⊂
GBV(Ω). Given p ∈ P , since p(u) = p(Tk(u)) for k large enough, we have that p(u) ∈ BV(Ω) for all
u ∈ TBV(Ω) and p ∈ P .

Remark 1. Let us remark that we can define the trace on the boundary for functions in TBV(Ω). In
fact: since there is a trace on interior rectifiable sets for functions in TBV(Ω) (see the remark after
Theorem 4.34 in [1]), as for BV -functions, it is sufficient to construct an extension operator from
TBV(Ω) to TBV(RN ). Let u ∈ TBV(Ω) and consider the extension operator T defined in the proof
of Proposition 3.21 in [1]. By construction, it is clear that the property Tk(T (Tr(u))) = T (Tk(u)) holds
for r > k. As a consequence, the limr→∞ T (Tr(u)) exists (pointwise) and defines a function E(u)
in TBV(RN ) which extends u. Therefore we can define, for HN−1-almost all x ∈ ∂Ω, the trace of a
function u ∈ TBV(Ω) as E(u)+FΩ(x). Now, by Theorem 4.34 in [1], we have

E(u)+FΩ(x) = lim
k→∞

(
Tk

(
E(u)

))+
FΩ(x) = lim

k→∞

(
T

(
Tk(u)

))+
FΩ(x) = lim

k→∞

(
Tk

(
u)

)Ω
(x).

We define the following operator in L1(Ω):
(u, v) ∈ Bβ if and only if u, v ∈ L1(Ω), u ∈ TBV(Ω) and there exists z ∈ X(Ω) such that ‖z‖∞ � 1,

v = −div(z) in D′(Ω) and

∫
Ω

(
p(w) − p(u)

)
v dx

�
∫

Ω

(
z, Dp(w)

)
−

∫
Ω
|Dp(u)| +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j
(
p(u) − p(0)

)
dHN−1 (42)

for all w ∈ BV(Ω) ∩ L∞(Ω) and for all p ∈ P . We have the following characterization of Bβ:

Lemma 2. The following are equivalent:

(i) (u, v) ∈ Bβ ,
(ii) u, v ∈ L1(Ω), u ∈ TBV(Ω) and there exists z ∈ X(Ω) such that ‖z‖∞ � 1, v = −div(z) in

D′(Ω) and

∫
Ω

(
z, Dp(u)

)
=

∫
Ω

∣∣Dp(u)
∣∣ ∀p ∈ P; (43)

−
∫

∂Ω
[z, ν]

(
p(w) − p(u)

)
dHN−1 �

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j
(
p(u) − p(0)

)
dHN−1 (44)

for all w ∈ BV(Ω) ∩ L∞(Ω) and for all p ∈ P .
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Proof. (i) ⇒ (ii) If we take p = Tk and w = Tk(u) in (42), we get

0 �
∫

Ω

(
z, DTk(u)

)
−

∫
Ω

∣∣DTk(u)
∣∣,

from where (43) holds for p = Tk. Then, θ(z, DTk(u), x) = 1 |DTk(u)|-a.e., hence, using Corollary 1.6
in [9], we obtain that (43) holds for all p ∈ P .

On the other hand, multiplying the equality v = −div(z) by p(w)−p(u), integrating in Ω and applying
Green’s formula, we get

∫
Ω

(
p(w) − p(u)

)
v dx =

∫
Ω

(
z, Dp(w)

)
−

∫
Ω
|Dp(u)| −

∫
∂Ω

[z, ν]
(
p(w) − p(u)

)
dHN−1.

Then, since (u, v) ∈ Bβ we obtain that

−
∫

∂Ω
[z, ν]

(
p(w) − p(u)

)
dx

�
∫

∂Ω
j(w) dHN−1 −

∫
∂Ω

j
(
p(u) − p(0)

)
dHN−1 ∀w ∈ BV(Ω) ∩ L∞(Ω),

and (44) holds.
(ii) ⇒ (i) Let u, v ∈ L1(Ω) verifying assumptions (ii). Since v = −div(z), working as before, for

every w ∈ BV(Ω) ∩ L∞(Ω) and p ∈ P , we get
∫

Ω

(
p(w) − p(u)

)
v dx =

∫
Ω

(
z, Dp(w)

)
−

∫
Ω
|Dp(u)| −

∫
∂Ω

[z, ν]
(
p(w) − p(u)

)
dHN−1.

Then, using (44), we obtain that (u, v) ∈ Bβ . �

Remark 2. Suppose that (u, v) ∈ Bβ . Taking p ∈ T and

wϕ := p(u) +
ϕ

‖ϕ‖∞ + 1

(
p(w) − p(u)

)

as test function in (44), where 0 � ϕ ∈ L∞(∂Ω), w ∈ BV(Ω) ∩ L∞(Ω), and working as in the proof of
Lemma 1 we get

−[z, ν]
(
p(w) − p(u)

)
� j

(
p(w)

)
− j

(
p(u)

)
HN−1-a.e. on ∂Ω.

In particular,

−[z, ν]
(
Tk(w) − Tk(u)

)
� j

(
Tk(w)

)
− j

(
Tk(u)

)
HN−1-a.e. on ∂Ω.

Then having in mind Remark 1, letting k → ∞ in the above inequality, we obtain that

−[z, ν](w − u) � j(w) − j(u) HN−1-a.e. on ∂Ω, (45)

where the case u(x) = ±∞ is not excluded in the above inequality.
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Observe that if the trace of u is finite HN−1-a.e. on ∂Ω, then (45) is equivalent to

−[z, ν] ∈ β̂(u) HN−1-a.e. on ∂Ω. (46)

Similarly, if u is an entropy solution of (1), for every w ∈ L1(0, T ; BV(Ω)) and k > 0,

−[z(t), ν]
(
Tk

(
w(t)

)
− Tk

(
u(t)

))
� j

(
Tk

(
w(t)

))
− j

(
Tk

(
u(t)

))
HN−1-a.e. on ∂Ω, a.e. t > 0.

Lemma 3. We have the following inequality,

y
(
p(r) − p(x)

)
� j(r) − j

(
p(x) − p(0)

)
∀y ∈ β̂(x), r ∈ R and p ∈ P. (47)

In particular, Aβ ⊂ Bβ .

Proof. We first note that, as p ∈ P and j is increasing in ]0, +∞[ and decreasing in ]−∞, 0[, we have

j(x) � j
(
p(x) − p(0)

)
∀x ∈ R. (48)

Let y ∈ β̂(x) and r ∈ R. Suppose y � 0. Then x � 0. If r > x, we have p(r) − p(x) � r − x. Hence,
having in mind (48), we have

y
(
p(r) − p(x)

)
� y(r − x) � j(r) − j(x) � j(r) − j

(
p(x) − p(0)

)
.

Suppose now that r < x. Then, r − x � p(r) − p(x) � 0. Moreover, since p(x) − p(0) � x, if
z ∈ β̂(p(x) − p(0)), we have y � z � 0, and consequently, having in mind (48), we have

y
(
p(r) − p(x)

)
� z

(
p(r) − p(x)

)
= z

((
p(r) − p(0)

)
−

(
p(x) − p(0)

))
� j

(
p(r) − p(0)

)
− j

(
p(x) − p(0)

)
� j(r) − j

(
p(x) − p(0)

)
.

This concludes the proof of (47) in the case y � 0; the case y < 0 is similar. �

Theorem 5. The operator Bβ is m-completely accretive in L1(Ω) with dense domain.

Proof. First we are going to prove that the operator Bβ is accretive in L1(Ω). To do that we have to
show that∫

Ω

∣∣u − û
∣∣ dx �

∫
Ω

∣∣f − f̂
∣∣ dx (49)

whenever f ∈ u + Bβ(u), f̂ ∈ û + Bβ(û). In fact: there exist z, ẑ ∈ X(Ω) with ‖z‖∞ � 1, ‖ẑ‖∞ � 1,
f − u = −div(z), f̂ − û = −div(ẑ),

∫
Ω |Dp(u)| =

∫
Ω(z, Dp(u)) and

∫
Ω |Dp(û)| =

∫
Ω(ẑ, Dp(û)).

Multiplying f − u = −div(z) by Tr(Tk(û) − Tk(u)) and f̂ − û = −div(ẑ) by Tr(Tk(u) − Tk(û)) for
r, k > 0 and integrating in Ω, we get∫

Ω
Tr

(
Tk

(
û
)
− Tk(u)

)
(f − u) dx

=
∫

Ω

(
z, DTr

(
Tk

(
û
)
− Tk(u)

))
−

∫
∂Ω

[z, ν]Tr

(
Tk

(
û
)
− Tk(u)

)
dHN−1
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and

∫
Ω

Tr
(
Tk(u) − Tk

(
û
))(

f̂ − û
)

dx

=
∫

Ω

(
ẑ, DTr

(
Tk(u) − Tk

(
û
)))

−
∫

∂Ω
[ẑ, ν]Tr

(
Tk(u) − Tk

(
û
))

dHN−1.

Adding both equalities and having in mind that Tk(−r) = −Tk(r) we have

∫
Ω

Tr

(
Tk(u) − Tk

(
û
))(

f̂ − û − f + u
)

dx

=
∫

Ω

(
ẑ − z, DTr

(
Tk(u) − Tk

(
û
)))

−
∫

∂Ω

([
ẑ, ν

]
− [z, ν]

)
Tr

(
Tk(u) − Tk

(
û
))

dHN−1. (50)

As consequence of Lemma 2, θ(z, DTk(u), x) = 1 |DTk(u)|-a.e., hence, using Corollary 1.6 in [9], we
obtain that

∫
B

(
z, DTk(u)

)
=

∫
B

θ
(
z, DTk(u), x

)∣∣DTk(u)
∣∣ =

∫
B

∣∣DTk(u)
∣∣,

∣∣∣∣
∫

B

(
ẑ, DTk(u)

)∣∣∣∣ �
∫

B

∣∣DTk(u)
∣∣

for any Borel set B ⊆ Ω. Similarly,

∫
B

(
ẑ, DTk

(
û
))

=
∫

B

∣∣DTk

(
û
)∣∣, ∣∣∣∣

∫
B

(
z, DTk

(
û
))∣∣∣∣ �

∫
B

∣∣DTk

(
û
)∣∣

for any Borel set B ⊆ Ω. Thus, it follows that

∫
B

(
z − ẑ, D

(
Tk(u) − Tk

(
û
)))

� 0

for any Borel set B ⊆ Ω. This implies that

θ
(
z − ẑ, D

(
Tk(u) − Tk

(
û
))

, x
)

� 0
∣∣D(

Tk(u) − Tk

(
û
))∣∣-a.e.

Since, according to Proposition 2.8 in [9], we have that

θ
(
z − ẑ, DTr

(
Tk(u) − Tk

(
û
))

, x
)

= θ
(
z − ẑ, D

(
Tk(u) − Tk

(
û
))

, x
)

a.e. with respect to the measures |D(Tk(u) − Tk(û))| and |DTr(Tk(u) − Tk(û))|, we conclude that

θ
(
z − ẑ, DTr

(
Tk(u) − Tk

(
û
))

, x
)

� 0
∣∣DTr

(
Tk(u) − Tk

(
û
))∣∣-a.e. (51)
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From (50) and (51), it follows that

∫
Ω

Tr
(
Tk(u) − Tk

(
û
))(

f̂ − û − f + u
)

dx

= −
∫

Ω
θ
(
ẑ − z, DTr

(
Tk(u) − Tk

(
û
))

, x
)∣∣DTr

(
Tk(u) − Tk

(
û
))∣∣

−
∫

∂Ω

([
ẑ, ν

]
− [z, ν]

)
Tr

(
Tk(u) − Tk

(
û
))

dHN−1

� −
∫

∂Ω

([
ẑ, ν

]
− [z, ν]

)
Tr

(
Tk(u) − Tk

(
û
))

dHN−1.

Now, by Remark 2, we have

−[z, ν]
(
Tk

(
û
)
− Tk(u)

)
� j

(
Tk

(
û
))

− j
(
Tk(u)

)
HN−1-a.e. on ∂Ω (52)

and

−
[
ẑ, ν

](
Tk(u) − Tk

(
û
))

� j
(
Tk(u)

)
− j

(
Tk

(
û
))

HN−1-a.e. on ∂Ω. (53)

From (52) and (53) we get

([
ẑ, ν

]
− [z, ν]

)(
Tk(u) − Tk

(
û
))

� 0 HN−1-a.e. on ∂Ω, ∀k > 0.

Thus, we obtain that

1
r

∫
Ω

Tr
(
Tk(u) − Tk

(
û
))(

u − û
)

dx � 1
r

∫
Ω

Tr
(
Tk(u) − Tk

(
û
))(

f − f̂
)

dx �
∫

Ω

∣∣f − f̂
∣∣ dx.

Then, letting k → +∞, we get

1
r

∫
Ω

Tr
(
u − û

)(
u − û

)
dx �

∫
Ω

∣∣f − f̂
∣∣ dx.

Finally, letting r → 0+, we get (49) and the proof of the accretivity of the operator Bβ concludes.
In view of Theorem 2, to prove that Bβ satisfies the range condition, it is enough to prove that

Aβ
L1(Ω) ⊂ Bβ . Let (un, vn) ∈ Aβ , such that (un, vn) → (u, v) in L1(Ω) × L1(Ω). Let us see

that (u, v) ∈ Bβ . Since (un, vn) ∈ Aβ , by Lemma 3, there exists zn ∈ X(Ω), ‖zn‖∞ � 1 with
vn = −div(zn) in D′(Ω) such that

∫
Ω

(
p(w) − p(un)

)
vn dx

�
∫

Ω

(
zn, Dp(w)

)
−

∫
Ω

∣∣Dp(un)
∣∣ +

∫
∂Ω

j(w) dHN−1 −
∫

∂Ω
j
(
p(un) − p(0)

)
dHN−1 (54)



30 F. Andreu et al. / The total variation flow

for all w ∈ BV(Ω) ∩ L∞(Ω) and p ∈ P . Then, taking w = 0 and p = Tk in (54), we obtain that∫
Ω

∣∣DTk(un)
∣∣ +

∫
∂Ω

j
(
Tk(un)

)
dHN−1 �

∫
Ω

Tk(un)vn dx ∀n ∈ N and k > 0. (55)

From (55), it follows that u ∈ TBV(Ω).
Since ‖zn‖∞ � 1 we may assume that zn ⇀ z in the weak∗ topology of L∞(Ω, RN ) with ‖z‖∞ � 1.

Moreover, since vn → v in L1(Ω), we have v = −div(z) in D′(Ω), and

lim
n→∞

∫
Ω

(zn, Dw) =
∫

Ω
(z, Dw).

Then, letting n → +∞ in (54), and having in mind the lower semicontinuity of the operator Φβ , we get∫
Ω

∣∣Dp(u)
∣∣ +

∫
∂Ω

j
(
p(u) − p(0)

)
dHN−1 � lim inf

n→∞

∫
Ω

∣∣Dp(un)
∣∣ +

∫
∂Ω

j
(
p(un) − p(0)

)
dHN−1

� lim sup
n→∞

∫
Ω

∣∣Dp(un)
∣∣ +

∫
∂Ω

j
(
p(un) − p(0)

)
dHN−1

� lim
n→∞

∫
Ω

(
p(un) − p(w)

)
vn dx +

∫
Ω

(
zn, Dp(w)

)
+

∫
∂Ω

j(w) dHN−1

=
∫

Ω

(
p(u) − p(w)

)
v dx +

∫
Ω

(
z, Dp(w)

)
+

∫
∂Ω

j(w) dHN−1. (56)

Observe that from (56), we obtain that (u, v) ∈ Bβ . �

4.1. Proof of Theorem 4. Existence

Let u0 ∈ L1(Ω) and {S(t)}t�0 the contraction semigroup in L1(Ω) generated by Bβ . We shall prove
that u(t) := S(t)u0 is an entropy solution of problem (1). We divide the proof in different steps.

Step 1. Since D(Bβ) ∩ L∞(Ω) is dense in L1(Ω), given u0 ∈ L1(Ω) there exists a sequence u0,n ∈
D(Bβ) ∩ L∞(Ω) such that u0,n → u0 in L1(Ω). Then, if un(t) := S(t)u0,n, we have that un → u in
C([0, T ]; L1(Ω)) for every T > 0. As a consequence of Theorem 1, un(t), u′

n(t) ∈ L2(Ω), p(un(t)) ∈
BV(Ω) for all p ∈ P and there exist zn(t) ∈ X(Ω), ‖zn(t)‖∞ � 1 and u′

n(t) = div(zn(t)) in D′(Ω) a.e.
t ∈ [0, +∞[, satisfying

−
∫

Ω

(
p(w) − p

(
un(t)

))
u′

n(t)

�
∫

Ω

(
zn(t), Dp(w)

)
−

∫
Ω

∣∣Dp
(
un(t)

)∣∣ +
∫

∂Ω
j(w) −

∫
∂Ω

j
(
p
(
un(t)

)
− p(0)

)
(57)

for every w ∈ BV(Ω) ∩ L∞(Ω) and p ∈ P . Moreover∫
Ω

(
zn(t), Dp

(
un(t)

))
=

∫
Ω

∣∣Dp
(
un(t)

)∣∣ ∀p ∈ P (58)

and

−
[
zn(t), ν

](
p(w) − p

(
un(t)

))
� j(w) − j

(
p
(
un(t)

)
− p(0)

)
HN−1-a.e. on ∂Ω, (59)

for all w ∈ BV(Ω) ∩ L∞(Ω) and for all p ∈ P .
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Since ‖[zn(t), ν]‖∞ � ‖zn(t)‖∞ � 1, we can suppose (up to extraction of a subsequence, if neces-
sary) that

[
zn(·), ν

]
→ ρ σ

(
L∞(ST ), L1(ST )

)
.

Step 2. Convergence of the derivatives and identification of the limit. Since the map t �→ u′
n(t) is

strongly measurable from [0, T ] into L2(Ω), and by (38),

∥∥u′
n(t)

∥∥
BV(Ω)∗2

�
∥∥u′

n(t)
∥∥

L2(Ω),

it follows that this map is strongly measurable from [0, T ] into BV(Ω)∗2. Moreover, for every w ∈
BV(Ω)2, by Green’s formula we have

∫
Ω

u′
n(t)w =

∫
Ω

div
(
zn(t)

)
w = −

∫
Ω

(
zn(t), Dw

)
+

∫
∂Ω

[
zn(t), ν

]
w.

Hence∣∣∣∣
∫

Ω
u′

n(t)w
∣∣∣∣ �

∫
Ω
|Dw| +

∫
∂Ω

|w| � M‖w‖BV(Ω)2 ∀n ∈ N.

Thus,

∥∥u′
n(t)

∥∥
BV(Ω)∗2

� M ∀n ∈ N and t ∈ [0, T ].

Consequently, {u′
n}n∈N is a bounded sequence in L∞(0, T ; BV(Ω)∗2). Since L∞(0, T ; BV(Ω)∗2) is a vec-

tor subspace of the dual space (L1(0, T ; BV(Ω)2))∗, we can find a net {u′
α} such that

u′
α → ξ ∈

(
L1(0, T ; BV(Ω)2

))∗
weakly∗. (60)

Since ‖zn(t)‖∞ � 1 for all n ∈ N and a.e. t ∈ [0, T ], we can suppose that

zn → z ∈ L∞(
QT , RN)

weakly∗. (61)

Given η ∈ D(QT ), since η ∈ L1(0, T ; BV(Ω)2), we have

〈ξ, η〉 = lim
α

〈
u′

α, η
〉

= lim
α

∫ T

0

〈
u′

α(t), η(t)
〉

dt

= lim
α

∫ T

0

∫
Ω

u′
α(t)η(t) dx dt = lim

α

∫ T

0

∫
Ω

div
(
zα(t)

)
η(t) dx dt

= − lim
α

∫ T

0

∫
Ω

zα(t) · ∇η(t) dx dt = −
∫

QT

z · ∇η dx dt =
〈
divx(z), η

〉
.

Hence,

ξ = divx(z) in D′(QT ). (62)
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On the other hand, if we take η(t, x) = φ(t)ψ(x) with φ ∈ D(]0, T [) and ψ ∈ D(Ω), the same calculation
as above shows that

ξ(t) = divx

(
z(t)

)
in D′(Ω) a.e. t ∈ [0, T ]. (63)

Consequently, (z(t), ξ(t)) ∈ Z(Ω) for almost all t ∈ [0, T ], therefore we can consider [z(t), ν].

Lemma 4. ξ is the time derivative of u in the sense of the Definition 3.

Proof. Let Ψ ∈ L1(0, T , BV(Ω)) be the weak derivative of Θ ∈ L1
w(0, T , BV(Ω)) ∩ L∞(QT ), i.e.,

Ψ (t) =
∫ t

0 Θ(s) ds, the integral being taken as a Pettis integral. By (60) we have that

∫ T

0

〈
ξ(t), Ψ (t)

〉
dt = lim

α

∫ T

0

〈
u′

α(t), Ψ (t)
〉

dt.

Now,

∫ T

0

〈
u′

α(t), Ψ (t)
〉

dt = lim
h

∫ T

0

∫
Ω

Ψ (t)
uα(t + h) − uα(t)

h
dx dt

= lim
h

∫ T

0

∫
Ω

Ψ (t − h) − Ψ (t)
h

uα(t) dx dt

= − lim
h

∫ T

0

∫
Ω

1
h

∫ t

t−h
Θ(s) dsuα(t) dx dt = −

∫ T

0

∫
Ω

Θ(t, x)uα(t, x) dx dt.

Passing to the limit in α in the above expression, we obtain

∫ T

0

〈
ξ(t), Ψ (t)

〉
dt = −

∫ T

0

∫
Ω

Θ(t, x)u(t, x) dx ds. � (64)

Let see now that

ρ(t) =
[
z(t), ν

]
HN−1-a.e. on ∂Ω, a.e. t ∈ [0, T ]. (65)

In fact: If w ∈ BV(Ω) ∩ L∞(Ω), and v ∈ R(Ω) such that v|∂Ω = w|∂Ω , we have that

∫ t

0

〈
zα(s), w

〉
∂Ω ds =

∫ t

0

〈
div

(
zα(s)

)
, v

〉
ds +

∫ t

0

∫
Ω

zα(s) · ∇v dx ds.

Hence

lim
α

∫ t

0

〈
zα(s), w

〉
∂Ω ds =

∫ t

0

〈
ξ(s), v

〉
ds +

∫ t

0

∫
Ω

z(s) · ∇v dx ds

=
∫ t

0

〈
z(s), w

〉
∂Ω =

∫ t

0

∫
∂Ω

[
z(s), ν

]
w dHN−1. (66)
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On the other hand, since zα(s) ∈ X(Ω), if we apply Green’s formula we have that

∫ t

0

〈
div

(
zα(s)), v

〉
ds = −

∫ t

0

∫
Ω

zα(s) · ∇v dx ds +
∫ t

0

∫
∂Ω

[
zα(s), ν

]
w dHN−1 ds.

Consequently,

∫ t

0

〈
zα(s), w

〉
∂Ω ds =

∫ t

0

∫
∂Ω

[
zα(s), ν

]
w dHN−1 ds.

From here, taking limits in α, we get

∫ t

0

∫
∂Ω

ρ(s)w dHN−1 ds =
∫ t

0

∫
∂Ω

[
z(s), ν

]
w dHN−1 ds (67)

for all w ∈ BV(Ω) ∩L∞(Ω), and t ∈ [0, T ]. Now, if w ∈ L1(∂Ω), we take wk ∈ BV(Ω) ∩L∞(Ω) such
that wk|∂Ω = Tk(w). By (67), we have

∫ t

0

∫
∂Ω

ρ(s)wk dHN−1 ds =
∫ t

0

∫
∂Ω

[
z(s), ν

]
wk dHN−1 ds.

Letting k → ∞, it follows that

∫ t

0

∫
∂Ω

ρ(s)w dHN−1 ds =
∫ t

0

∫
∂Ω

[
z(s), ν

]
w dHN−1 ds ∀w ∈ L1(∂Ω) and t ∈ [0, T ],

and consequently (65) holds.
Step 3. Next, we prove that ξ = div(z) in (L1(0, T , BV(Ω)2))∗ in the sense of the Definition 4.

To do that let us first observe that (z, Dw), defined by (39), is a Radon measure in QT for all
w ∈ L1

w(0, T , BV(Ω)) ∩ L∞(QT ). Let φ ∈ D(QT ), then

〈
(z, Dw), φ

〉
= −

∫ T

0

〈
ξ(t) − u′

α(t), w(t)φ(t)
〉

dt −
∫

QT

w(z − zα) · ∇xφ dx dt

+
∫ T

0

〈(
zα(t), Dw(t)

)
, φ(t)

〉
dt.

Then by (60), taking limits in α, we get

〈
(z, Dw), φ

〉
= lim

α

∫ T

0

〈(
zα(t), Dw(t)

)
, φ(t)

〉
dt. (68)

Therefore

∣∣〈(z, Dw), φ
〉∣∣ � ‖φ‖∞

∫ T

0

∫
Ω

∣∣Dw(t)
∣∣ dt,
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from where it follows that (z, Dw) is a Radon measure in QT . Moreover, from (68), applying Green’s
formula we obtain that∫

QT

(z, Dw) = lim
α

∫ T

0

(
zα(t), Dw(t)

)
dt

= lim
α

(
−

∫ T

0

∫
Ω

div
(
zα(t)

)
w(t) dx dt +

∫ T

0

∫
∂Ω

[
zα(t), ν

]
w(t) dHN−1 dt

)

= −
∫ T

0

〈
ξ(t), w(t)

〉
dt +

∫ T

0

∫
∂Ω

[
z(t), ν

]
w(t) dHN−1 dt.

Consequently

∫
QT

(z, Dw) +
∫ T

0

〈
ξ(t), w(t)

〉
dt =

∫ T

0

∫
∂Ω

[
z(t), ν

]
w(t) dHN−1 dt. (69)

Step 4. The boundary condition. Taking w = 0 in (57) we get∫
Ω

∣∣Dp
(
un(t)

)∣∣ +
∫

∂Ω
j
(
p
(
un(t)

)
− p(0)

)
dHN−1 � −

∫
Ω

(
p
(
un(t)

)
− p(0)

)
u′

n(t) dx.

Then integrating from 0 to T , it follows that

∫ T

0

∫
Ω

∣∣Dp
(
un(t)

)∣∣ dt +
∫ T

0

∫
∂Ω

j
(
p
(
un(t)

)
− p(0)

)
dHN−1 dt

� −
∫ T

0

d
dt

∫
Ω

Jp
(
un(t)

)
dx +

∫ T

0

∫
Ω

p(0)u′
n(t) dx dt

=
∫

Ω

(
Jp(u0,n) − Jp(un(T )

)
dx +

∫
Ω

p(0)
(
un(T ) − u0,n

)
dx � Mp.

Since the functional Ψp : L1(Ω) → ]−∞, +∞], defined by

Ψp(w) :=




∫
Ω

∣∣Dp(w)
∣∣ +

∫
∂Ω

j
(
p(w) − p(0)

)
dHN−1 if w ∈ BV(Ω),

+∞ if w ∈ L1(Ω) \ BV(Ω)

is lower semicontinuous in L1(Ω), we have

Ψp
(
u(t)

)
� lim inf

n→∞
Ψp

(
un(t)

)
= lim inf

n→∞

(∫
Ω

∣∣Dp
(
un(t)

)∣∣ +
∫

∂Ω
j
(
p
(
un(t)

)
− p(0)

)
dHN−1

)
. (70)

On the other hand, by Fatou’s Lemma, it follows that

∫ T

0
lim inf
n→∞

( ∫
Ω

∣∣Dp
(
un(t)

)∣∣ +
∫

∂Ω
j
(
p
(
un(t)

)
− p(0)

)
dHN−1

)
dt

� lim inf
n→∞

∫ T

0

(∫
Ω

∣∣Dp
(
un(t)

)∣∣ +
∫

∂Ω
j
(
p
(
un(t)

)
− p(0)

)
dHN−1

)
dt � Mp. (71)

As a consequence of (70) and (71), we obtain that p(u(t)) ∈ BV(Ω) for almost all t ∈ [0, T ].
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By Lemma 5 in [4], it follows that the map t �→ p(u(t)) from [0, T ] into BV(Ω) is weakly measurable,
and also, if 0 � η ∈ D(]0, T [), the map t �→ p(u(t))η(t), from [0, T ] into BV(Ω) is weakly measurable.

Using the same technique that in the proofs of Lemmas 4 and 5 of [3] we obtain the following two
results.

Lemma 5. For any τ > 0, we define the function ψτ , as the Dunford integral (see [20])

ψτ (t) :=
1
τ

∫ t

t−τ
η(s)p

(
u(s)

)
ds ∈ BV(Ω)∗∗,

that is,

〈
ψτ (t), w

〉
=

1
τ

∫ t

t−τ

〈
η(s)p

(
u(s)

)
, w

〉
ds

for any w ∈ BV(Ω)∗. Then ψτ ∈ C([0, T ]; BV(Ω)). Moreover, ψτ (t) ∈ L2(Ω), and, thus, ψτ (t) ∈
BV(Ω)2.

Lemma 6. For τ > 0 small enough, we have

∫ T

0

〈
ψτ (t), ξ(t)

〉
dt � −

∫ T

0

∫
Ω

η(t − τ ) − η(t)
−τ

Jp
(
u(t)

)
dx dt. (72)

Now, we can conclude the proof of Step 4. As a consequence of (72), using Green’s formula, we have

∫ T

0

∫
Ω

η(t − τ ) − η(t)
−τ

Jp
(
u(t)

)
dx dt � −

∫ T

0

〈
ψτ (t), ξ(t)

〉
dt = − lim

α

∫ T

0

〈
ψτ (t), u′

α(t)
〉

dt

= − lim
α

∫ T

0

(
1
τ

∫ t

t−τ
η(s)

〈
p
(
u(s)

)
, u′

α(t)
〉

ds

)
dt

= − lim
α

∫ T

0

(
1
τ

∫ t

t−τ
η(s)

(∫
Ω

p
(
u(s)

)
div

(
zα(t)

))
ds

)
dt

= lim
α

[ ∫ T

0

(
1
τ

∫ t

t−τ
η(s)

(∫
Ω

(
zα(t), Dp

(
u(s)

))
ds

)
dt

−
∫ T

0

(
1
τ

∫ t

t−τ
η(s)

(∫
∂Ω

[
zα(t), ν

]
p
(
u(s)

))
ds

)
dt

]

�
∫ T

0

(
1
τ

∫ t

t−τ
η(s)

∫
Ω

∣∣Dp
(
u(s)

)∣∣ ds

)
dt −

∫ T

0

(
1
τ

∫ t

t−τ
η(s)

(∫
∂Ω

ρ(t)p
(
u(s)

))
ds

)
dt.

Then, taking limit as τ → 0+, we get

∫ T

0

∫
Ω

η′(t)Jp

(
u(t)

)
dx dt �

∫ T

0
η(t)

∫
Ω

∣∣Dp
(
u(t)

)∣∣ dt −
∫ T

0
η(t)

∫
∂Ω

ρ(t)p
(
u(t)

)
dHN−1 dt.
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Now, since this is true for all 0 � η ∈ D(]0, T [), it follows that

− d
dt

∫
Ω

Jp
(
u(t)

)
dx �

∫
Ω

∣∣Dp
(
u(t)

)∣∣ dt −
∫

∂Ω
ρ(t)p

(
u(t)

)
dHN−1 dt,

and consequently

∫
Ω

(
Jp(u0) − Jp

(
u(T )

)
dx �

∫ T

0

∫
Ω

∣∣Dp
(
u(t)

)∣∣ dt −
∫ T

0

∫
∂Ω

ρ(t)p
(
u(t)

)
dHN−1 dt. (73)

Finally, using (69), (70) and (73), if w ∈ L1(0, T ; BV(Ω)), we obtain

∫ T

0

∫
Ω

∣∣Dp
(
u(t)

)∣∣ dt +
∫ T

0

∫
∂Ω

j
(
p
(
u(t)

)
− p(0)

)
dHN−1 dt

� lim inf
n→∞

∫ T

0

∫
Ω

∣∣Dp
(
u(t)

)∣∣ dt +
∫ T

0

∫
∂Ω

j
(
p
(
un(t)

)
− p(0)

)
dHN−1 dt

� lim inf
n→∞

∫ T

0

(∫
Ω

(
p
(
w(t)

)
− p

(
un(t)

))
u′

n(t) dx +
∫

Ω

(
zn(t), Dp

(
w(t)

))
+

∫
∂Ω

j
(
w(t)

))
dt

=
∫

Ω
Jp(u0) − Jp

(
u(T )

)
dx +

∫ T

0

(〈
ξ(t), p

(
w(t)

)〉
+

∫
Ω

(
z(t), Dp

(
w(t)

))
+

∫
∂Ω

j
(
w(t)

))
dt

�
∫ T

0

∫
Ω

∣∣Dp
(
u(t)

)∣∣ dt −
∫ T

0

∫
∂Ω

[
z(t), ν

](
p
(
u(t)

)
− p

(
w(t)

))
+ j

(
w(t)

)
dHN−1 dt.

Then, it follows

−
∫ T

0

∫
∂Ω

[
z(t), ν

](
p
(
w(t)

)
− p

(
u(t)

))
dHN−1 dt

�
∫ T

0

∫
∂Ω

(
j
(
w(t)

)
− j

(
p
(
u(t)

)
− p(0)

))
dHN−1 dt.

Step 5. Conclusion. Finally, we are going to prove that u verifies (40).
Let η ∈ C∞( QT ), with η � 0, η(t, x) = φ(t)ψ(x), being φ ∈ D(]0, T [), ψ ∈ C∞( Ω ), and p ∈ P .

Let Jp(r) :=
∫ r

0 p(s) ds. Since u′
n(t) = div(zn(t)), multiplying by p(un(t))η(t), integrating and having

in mind (59), we obtain that

∫ T

0

∫
Ω

d
dt

Jp
(
un(t)

)
η(t) =

∫ T

0

∫
Ω

p
(
un(t)

)
u′

n(t)η(t) =
∫ T

0

∫
Ω

div
(
zn(t)

)
p
(
un(t)

)
η(t)

= −
∫ T

0

∫
Ω

(
zn(t), D

(
p
(
un(t)

)
η(t)

))
+

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p
(
un(t)

)
η(t)

= −
∫ T

0

∫
Ω

η(t)
∣∣Dp

(
u(t)

)∣∣ − ∫ T

0

∫
Ω

zn(t) · ∇η(t)p
(
un(t)

)
+

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p
(
un(t)

)
η(t)

� −
∫ T

0

∫
Ω

η(t)|Dp
(
un(t)

)∣∣ − ∫ T

0

∫
Ω

zn(t) · ∇η(t)p
(
un(t)

)
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−
∫ T

0

∫
∂Ω

j
(
p
(
un(t)

)
− p(0)

)
η(t) +

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p(0)η(t).

Hence, having in mind that η(0) = η(T ) = 0, we get

∫ T

0

∫
Ω

η(t)
∣∣Dp

(
u(t)

)∣∣ +
∫ T

0

∫
∂Ω

j
(
p
(
un(t)

)
− p(0)

)
η(t)

� −
∫ T

0

∫
Ω

zn(t) · ∇η(t)p
(
un(t)

)
+

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p(0)η(t) −

∫ T

0

∫
Ω

d
dt

Jp
(
un(t)

)
η(t)

= −
∫ T

0

∫
Ω

zn(t) · ∇η(t)p
(
un(t)

)
+

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p(0)η(t)

−
∫ T

0

∫
Ω

d
dt

(
Jp

(
un(t)

)
η(t)

)
+

∫ T

0

∫
Ω

Jp

(
un(t)

)
ηt

= −
∫ T

0

∫
Ω

zn(t) · ∇η(t)p
(
un(t)

)
+

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p(0)η(t) +

∫ T

0

∫
Ω

Jp
(
un(t)

)
ηt.

Letting n → ∞, it follows that

∫ T

0

∫
Ω

η(t)
∣∣Dp

(
u(t)

)∣∣ +
∫ T

0

∫
∂Ω

j
(
p(u(t)

)
− p(0)

)
η(t)

� lim inf
n→∞

[ ∫ T

0

∫
Ω

η(t)
∣∣Dp

(
u(t)

)∣∣ +
∫ T

0

∫
∂Ω

j
(
p
(
un(t)

)
− p(0)

)
η(t)

]

= lim inf
n→∞

[
−

∫ T

0

∫
Ω

zn(t) · ∇η(t)p
(
un(t)

)
+

∫ T

0

∫
∂Ω

[
zn(t), ν

]
p(0)η(t) +

∫ T

0

∫
Ω

Jp
(
un(t)

)
ηt

]

= −
∫ T

0

∫
Ω

z(t) · ∇η(t)p
(
u(t)

)
+

∫ T

0

∫
∂Ω

[
z(t), ν

]
p(0)η(t) +

∫ T

0

∫
Ω

Jp
(
u(t)

)
ηt.

We have then

−
∫ T

0

∫
Ω

Jp

(
u(t)

)
ηt +

∫ T

0

∫
Ω

η(t)
∣∣Dp

(
u(t)

)∣∣ +
∫ T

0

∫
∂Ω

j
(
p
(
u(t)

)
− p(0)

)
η(t)

+
∫ T

0

∫
Ω

z(t) · ∇η(t)p
(
u(t)

)
�

∫ T

0

∫
∂Ω

[
z(t), ν

]
p(0)η(t) (74)

and the proof of the existence is finished.

4.2. Proof of Theorem 4. Uniqueness

To prove uniqueness we shall show that the entropy solutions and semigroup solutions coincide. As a
consequence of the semigroup theory, (41) will be then satisfied. We use the same technique that the one
introduced in [3] to prove uniqueness for the Dirichlet problem. This technique is inspired by a method
introduced by Kruzhkov [24] to prove L1-contraction for entropy solutions for scalar conservation laws:
the doubling of variables (see also [17] or [23]).
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Let u(t) be an entropy solution with initial datum u0 ∈ L1(Ω) and ū(t) = S(t)ū0 the semigroup solu-
tion with initial datum ū0 ∈ L∞(Ω). Then, there exist z(t), z(t) ∈ Z(Ω) with ‖z(t)‖∞ � 1, ‖z̄(t)‖∞ � 1
and such that, if r, r̄ ∈ R

N , with ‖r‖ � 1, ‖r̄‖ � 1 and l1, l2 ∈ R, then

−
∫ T

0

∫
Ω

J+
k

(
u(t) − l1

)
ηt +

∫ T

0

∫
Ω

η(t)
∣∣DT+

k

(
u(t) − l1

)∣∣
+

∫ T

0

∫
∂Ω

j
(
T+

k

(
u(t) − l1

)
− T+

k (−l1)
)
η(t)

+
∫ T

0

∫
Ω

(
z(t) − r

)
· Dη(t)T+

k

(
u(t) − l1

)
+

∫ T

0

∫
Ω

r · Dη(t)T+
k

(
u(t) − l1

)

�
∫ T

0

∫
∂Ω

[
z(t), ν

]
T+

k

(
−l1

)
η(t), (75)

and

−
∫ T

0

∫
Ω

J−
k

(
ū(t) − l2

)
ηt +

∫ T

0

∫
Ω

η(t)
∣∣DT−

k

(
ū(t) − l2

)∣∣
+

∫ T

0

∫
∂Ω

j
(
T−

k

(
û(t) − l2

)
− T−

k

(
−l2

))
η(t)

+
∫ T

0

∫
Ω

(
z̄(t) − r̄

)
· Dη(t)T−

k

(
ū(t) − l2

)
+

∫ T

0

∫
Ω

r̄ · Dη(t)T−
k

(
ū(t) − l2

)

�
∫ T

0

∫
∂Ω

[
z̄(t), ν

]
T−

k

(
−l2

)
η(t) (76)

for all η ∈ C∞(QT ), with η � 0, η(t, x) = φ(t)ψ(x), being φ ∈ D(]0, T [), ψ ∈ C∞(Ω), J+
k (r) =∫ r

0 T+
k (s) ds and J−

k (r) =
∫ r

0 T−
k (s) ds.

We choose two different pairs of variables (t, x), (s, y) and consider u, z as functions in (t, x), ū, z̄
in (s, y). Let 0 � φ ∈ D(]0, T [), 0 � ψ ∈ D(Ω), ρn a classical sequence of mollifiers in R

N and ρ̃n a
sequence of mollifiers in R. Define

ηn(t, x, s, y) := ρn(x − y)ρ̃n(t − s)φ
(

t + s

2

)
ψ

(
x + y

2

)
.

Note that for n sufficiently large,

(t, x) �→ ηn(t, x, s, y) ∈ D
(
]0, T [×Ω

)
∀(s, y) ∈ QT ,

(s, y) �→ ηn(t, x, s, y) ∈ D
(
]0, T [×Ω

)
∀(t, x) ∈ QT .

Hence, for (s, y) fixed, if we take in (75) l1 = ū(s, y) and r = z̄(s, y), we get

−
∫ T

0

∫
Ω

J+
k

(
u(t, x) − ū(s, y)

)
(ηn)t dx dt +

∫ T

0

∫
Ω

ηn

∣∣DxT+
k

(
u(t, x) − ū(s, y)

)∣∣ dt
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+
∫ T

0

∫
Ω

(
z(t, x) − z̄(s, y)

)
· ∇xηnT+

k

(
u(t, x) − ū(s, y)

)
dx dt

+
∫ T

0

∫
Ω

z̄(s, y) · ∇xηnT+
k

(
u(t, x) − ū(s, y)

)
dx dt � 0. (77)

Similarly, for (t, x) fixed, if we take in (76) l2 = u(t, x) and r̄ = z(t, x), we get

−
∫ T

0

∫
Ω

J−
k

(
ū(s, y) − u(t, x)

)
(ηn)s dy ds +

∫ T

0

∫
Ω

ηn

∣∣DyT
−
k

(
ū(s, y) − u(t, x)

)∣∣ ds

+
∫ T

0

∫
Ω

(
z̄(s, y) − z(t, x)

)
· ∇yηnT−

k

(
ū(s, y) − u(t, x)

)
dy ds

+
∫ T

0

∫
Ω

z(t, x) · ∇yηnT−
k

(
ū(s, y) − u(t, x)

)
dy ds � 0. (78)

Now, since T−
k (r) = −T+

k (−r) and J−
k (r) = J+

k (−r), we can rewrite (78) as

−
∫ T

0

∫
Ω

J+
k

(
u(t, x) − ū(s, y)

)
(ηn)s dy ds +

∫ T

0

∫
Ω

ηn

∣∣DyT
+
k

(
u(t, x) − ū(s, y)

)∣∣ ds

+
∫ T

0

∫
Ω

(
z(t, x) − z̄(s, y)

)
· ∇yηnT+

k

(
u(t, x) − ū(s, y)

)
dy ds

−
∫ T

0

∫
Ω

z(s, y) · ∇yηnT+
k

(
u(t, x) − ū(s, y)

)
dy ds � 0. (79)

Integrating (77) in (s, y), (79) in (t, x) and taking their sum yields

−
∫

QT×QT

J+
k

(
u(t, x) − ū(s, y)

)(
(ηn)t + (ηn)s

)
+

∫
QT×QT

ηn

∣∣DxT+
k

(
u(t, x) − ū(s, y)

)∣∣
+

∫
QT×QT

ηn

∣∣DyT
+
k

(
u(t, x) − ū(s, y)

)∣∣
+

∫
QT×QT

(
z(t, x) − z̄(s, y)

)
·
(
∇xηn + ∇yηn

)
T+

k

(
u(t, x) − ū(s, y)

)

+
∫

QT×QT

z̄(s, y) · ∇xηnT+
k

(
u(t, x) − ū(s, y)

)

−
∫

QT×QT

z(t, x) · ∇yηnT+
k

(
u(t, x) − ū(s, y)

)
� 0. (80)

Now, by Green’s formula we have

∫
QT×QT

z̄(s, y) · ∇xηnT+
k

(
u(t, x) − ū(s, y)

)
+

∫
QT×QT

ηn

∣∣DxT+
k

(
u(t, x) − ū(s, y)

)∣∣
= −

∫
QT×QT

ηnz̄(s, y) · DxT+
k

(
u(t, x) − ū(s, y)

)
+

∫
QT×QT

ηn

∣∣DxT+
k

(
u(t, x) − ū(s, y)

)∣∣ � 0,
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and

−
∫

QT×QT

z(t, x) · ∇yηnT+
k

(
u(t, x) − ū(s, y)

)
+

∫
QT×QT

ηn

∣∣DyT
+
k

(
u(t, x) − ū(s, y)

)∣∣
=

∫
QT×QT

ηnz(t, x) · DyT
+
k

(
u(t, x) − ū(s, y)

)
+

∫
QT×QT

ηn

∣∣DyT
+
k

(
u(t, x) − ū(s, y)

)∣∣ � 0.

Hence, from (80), it follows that

−
∫

QT×QT

J+
k

(
u(t, x) − ū(s, y)

)(
(ηn)t + (ηn)s

)

+
∫

QT×QT

(
z(t, x) − z̄(s, y)

)
·
(
∇xηn + ∇yηn

)
T+

k

(
u(t, x) − ū(s, y)

)
� 0. (81)

Since,

(ηn)t + (ηn)s = ρn(x − y)ρ̃n(t − s)φ′
(

t + s

2

)
ψ

(
x + y

2

)

and

∇xηn + ∇yηn = ρn(x − y)ρ̃n(t − s)φ
(

t + s

2

)
∇ψ

(
x + y

2

)
,

passing to the limit in (81), it yields

−
∫

QT

J+
k

(
u(t, x) − ū(t, x)

)
φ′(t)ψ(x) dx dt

+
∫

QT

(
z(t, x) − z̄(t, x)

)
· ∇ψ(x)φ(t)T+

k

(
u(t, x) − ū(t, x)

)
dx dt � 0. (82)

We have to prove that

lim
n

∫
QT

(
z(t, x) − z̄(t, x)

)
· ∇ψn(x)φ(t)T+

k

(
u(t, x) − ū(t, x)

)
dx dt � 0

for any sequence ψn ↑ χΩ . Working as in the uniqueness proof of Theorem 1 in [3], we obtain that

lim
n

∫
QT

(
z(t) − z̄(t)

)
∇ψnφT+

k

(
u(t) − ū(t)

)
dx dt

� −
∫ T

0

∫
∂Ω

[
z(t) − z̄(t), ν

]
φT+

k

(
u(t) − ū(t)

)
dHN−1 dt.

Thus, having in mind that for m large enough, we have

T+
k

(
u(t) − ū(t)

)
= T+

k

(
Tm

(
u(t)

)
− Tm

(
ū(t)

))
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and by Remark 2,

[
z(t) − z̄(t), ν

](
Tm

(
u(t)

)
− Tm

(
ū(t)

))
� 0 for almost all t ∈ [0, T ] and HN−1-a.e. on ∂Ω,

we obtain from (82) that

∫
QT

J+
k

(
u(t, x) − ū(t, x)

)
φ′(t) dx dt � −

∫ T

0

∫
∂Ω

[
z − z̄, ν

]
φT+

k

(
u − ū

)
dHN−1 dt � 0. (83)

Since this is true for all 0 � φ ∈ D(]0, T [), we get

d
dt

∫
Ω

J+
k

(
u(t, x) − ū(t, x)

)
dx dt � 0.

Hence∫
Ω

J+
k

(
u(t, x) − ū(t, x)

)
dx �

∫
Ω

J+
k

(
u0 − ū0

)
dx.

Then, dividing the last inequality by k and letting k → 0, we obtain

∫
Ω

(
u(t, x) − ū(t, x)

)+ �
∫

Ω

(
u0 − ū0

)+
.

From here we deduce that

∥∥u(t) − ū(t)
∥∥

1 �
∥∥u0 − ū0

∥∥
1 ∀t � 0.

Hence, taking un(t) = S(t)u0,n, u0,n ∈ L∞(Ω) and u0,n → u0 in L1(Ω), we have

∥∥u(t) − un(t)
∥∥

1 �
∥∥u0 − u0,n

∥∥
1 ∀t � 0.

Consequently, letting n → ∞, u(t) = S(t)u0, and the proof of the uniqueness concludes.

5. Asymptotic behaviour

In this section we establish that the entropy solutions of problem (1) stabilize as t → ∞ by converging
to a constant function. We use the Lyapunov method for semigroups of nonlinear contractions introduced
by Pazy [27].

We use some terminology and notations from classical topological dynamics. For a continuous semi-
group (T (t))t�0 on a metric space X , the orbit or trajectory of u ∈ X is the set γ(u) = {T (t)u: t � 0},
and the ω-limit set of u is

ω(u) =
{
v ∈ X: v = lim

n→∞
T (tn)u for some sequence tn → ∞

}
.

This set is possibly empty. Now, it is well-known that if γ(u) is relatively compact, then ω(u) is a
nonempty, compact and connected subset of X . Furthermore, ω(u) is positive invariant under T (t),
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i.e., T (t)ω(u) = ω(u) for any t � 0. An equilibrium or stationary point is a point u ∈ X such that
γ(u) = ω(u) = {u}, or equivalently, T (t)u = u for all t � 0.

In order to prove the stabilization theorem we need the orbits to be relatively compact.

Theorem 6. Let (S(t))t�0 be the semigroup generated by Bβ and Jλ its resolvent. Then,

(i) Jλ(B) is a relatively compact subset of L1(Ω) if B is a bounded subset of L∞(Ω).
(ii) For every u0 ∈ L1(Ω) the orbit γ(u0) = {S(t)u0: t � 0} is a relatively compact subset of L1(Ω).

Proof. (i) Let B a bounded subset of L∞(Ω). Take (fn) ⊂ B and let un := Jλfn. Set M :=
supn∈N

‖fn‖∞ < ∞. Since Bβ is completely accretive, we have

‖un‖∞ � M ∀n ∈ N. (84)

On the other hand, since (un, 1
λ (fn − un)) ∈ Aβ , it follows that

∫
Ω
|Dun| � 1

λ
M1LN (Ω) ∀n ∈ N. (85)

Thus, {un: n ∈ N} is a bounded sequence in BV(Ω), and consequently, we have that {un: n ∈ N} is a
relatively compact subset of L1(Ω).

(ii) Consider first u0 ∈ D(Bβ) ∩ L∞(Ω). Then, since

∥∥S(t)u0
∥∥
∞ � ‖u0‖∞ for all t � 0,

as a consequence of (i), we have that Jλ(γ(u0)) is a relatively compact subset of L1(Ω) for all λ > 0.
Moreover,

∥∥S(t)u0 − JλS(t)u0
∥∥

1 � λ inf
{
‖v‖1: v ∈ Aβ(u0)

}
.

Hence, γ(u0) is relatively compact in L1(Ω).
Finally, since D(Bβ) ∩ L∞(Ω) is dense in L1(Ω), given u0 ∈ L1(Ω) and ε > 0, there exists v0 ∈

D(Bβ) ∩ L∞(Ω) such that ‖u0 − v0‖1 < ε. So we have,

sup
t�0

inf
s�0

∥∥S(t)u0 − S(s)v0
∥∥

1 � sup
t�0

∥∥S(t)u0 − S(t)v0
∥∥

1 � ‖u0 − v0‖1 < ε.

From where it follows that γ(u0) is relatively compact in L1(Ω). �

In [2] it is proved that in the particular case of Neumann boundary condition (i.e., for β = R × {0})
the solutions stabilize at t → +∞ converging to the average of the initial datum. For general β, we have
the following result.

Theorem 7. Let u0 ∈ L1(Ω) and u(x, t) be the entropy solution of problem (1) with initial datum u0.
Then, there exists a constant Ku0 , Ku0 ∈ β̂−1{0} such that

∥∥u(·, t) − Ku0

∥∥
1 → 0 as t → ∞.
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Moreover, if u0 � 0 and dβ := sup{r � 0: 0 ∈ β̂(r)}, then

inf{dβ , u0} � Ku0 � inf{dβ , u0},

where

w =
1

LN (Ω)

∫
Ω

w dx.

Proof. Suppose first that u0 ∈ L∞(Ω). Let (S(t))t�0 be the semigroup generated by Bβ and Jλ its
resolvent. Let V : L1(Ω) → [0, +∞] be defined by

V(w) =




1
2

∫
Ω

w2 dx if w ∈ L2(Ω),

+∞ if w /∈ L2(Ω).

It is well-known that V is lower semicontinuous (see [15], p. 160). On the other hand, since Bβ is
completely accretive, we have

1
2

∫
Ω

(
Jn

t/nf
)2

dx � 1
2

∫
Ω

f 2 dx for f ∈ L2(Ω), t > 0 and n ∈ N.

Now, by the Crandall–Liggett Theorem, since V is lower semicontinuous, we have

V
(
S(t)f

)
� lim inf

n→∞
V

(
Jn

t/nf
)

� V(f ) for t � 0.

Therefore, V is a Lyapunov functional for the semigroup (S(t))t�0.
Let W : L1(Ω) → ]−∞, +∞] defined by

W(u) =




∫
Ω
|Du|, if u ∈ BV(Ω),

+∞, if u /∈ BV(Ω).

Since u0 ∈ L∞(Ω) and Bβ is completely accretive, Jλu0 = (I+λBβ)−1u0 ∈ D(Bβ) ⊂ BV(Ω)∩L∞(Ω).
Then, (Jλu0, 1

λ (u0 −Jλu0)) ∈ Aβ . Thus, taking w = 0 as a test function in the definition of the operator
Aβ , we have

∫
Ω

∣∣DJλu0
∣∣ � 1

λ

∫
Ω

(u0 − Jλu0)Jλu0 dx −
∫

∂Ω
j(Jλu0) dHN−1.

Hence, since j(Jλu0) � 0 HN−1-a.e. on ∂Ω, we obtain

W(Jλu0) � 1
λ

∫
Ω

(u0 − Jλu0)Jλu0 dx.

Now, since

V(Jλu0) − V(u0) =
1
2

∫
Ω

(Jλu0)2 dx − 1
2

∫
Ω

u2
0 dx � −

∫
Ω

(u0 − Jλu0)Jλu0 dx,
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we get

V(Jλu0) + λW(Jλu0) − V(u0) � 0. (86)

Replacing u0 by Jk−1
λ u0 in (86) we find

V
(
Jk

λu0
)
+ λW

(
Jk

λu0
)
− V

(
Jk−1

λ u0
)

� 0.

Adding these inequalities from k = 1 to k = n and choosing λ = t/n, it yields

V
(
Jn

t/nu0
)
+

n∑
k=1

t

n
W

(
Jk

t/nu0
)
− V(u0) � 0. (87)

Next we define a piecewise constant function

Fn(τ ) = W
(
Jk

t/nu0
)

for (k − 1)t/n < τ � kt/n.

Then

n∑
k=1

t

n
W

(
Jk

t/nu0
)

=
∫ t

0
Fn(τ ) dτ.

On the other hand, by the Crandall–Liggett Theorem,

lim
n→∞

Jk
t/nu0 = S(τ )u0 in L1(Ω),

where k = kn(τ ) = [nτ/t] + 1. Since W is lower semicontinuous in L1(Ω), we have

W
(
S(t)u0

)
� lim inf

n→∞
W

(
Jk

t/nu0
)

= lim inf
n→∞

Fn(τ ).

Thus, by Fatou’s Lemma, we obtain

∫ t

0
W

(
S(τ )u0

)
dτ � lim inf

n→∞

∫ t

0
Fn(τ ) dτ = lim inf

n→∞

n∑
k=1

t

n
W

(
Jk

t/nu0
)
. (88)

Passing to the limit as n → ∞ in (87) and taking into account (88) and the lower semicontinuity of V ,
we get

V
(
S(t)u0

)
+

∫ t

0
W

(
S(τ )u0

)
dτ − V(u0) � 0.

Consequently

∫ ∞

0
W

(
S(τ )u0

)
dτ � V(u0). (89)
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Thus, there exists a sequence tn → ∞, such that W(S(tn)u0) → 0 as n → ∞. Now by Theorem 6,
there exists a subsequence (tnk

) such that

lim
k→∞

S(tnk
)u0 = v ∈ ω(u0).

Hence, by the lower semicontinuity of W , it follows that

W(v) � lim inf
k→∞

W
(
S(tnk

)u0
)

= 0.

Therefore, v is a constant Ku0 . If Ku0 = 0, since 0 is an equilibrium, ω(u0) = {0}. Suppose Ku0 > 0.
Then, since ‖S(t)Ku0‖∞ � ‖Ku0‖∞ = Ku0 and S(t) is order preserving,

0 � S(t)Ku0 � Ku0 . (90)

Since, S(t)Ku0 , Ku0 ∈ ω(u0) and V is a Lyapunov functional, it follows from the Invariance Principle
of Dafermos ([18]) that V(S(t)Ku0) = V(Ku0 ) for all t � 0. Consequently, by (90) and the definition
of V , S(t)Ku0 = Ku0 for all t � 0, so as S(t) are contractions, we get ω(u0) = [Ku0 ] and the proof for
the case u0 ∈ L∞(Ω) concludes. Now, since L∞(Ω) is dense in D(Bβ) = L1(Ω) and S(t) is an order
preserving contraction, from the above we obtain easily the conclusion in the general case u0 ∈ L1(Ω).
Finally, as Ku0 is an equilibrium, it follows that Ku0 ∈ β̂−1{0}.

Suppose now that u0 � 0. Since the operator Bβ is completely accretive, we have 0 � S(t)u0 � u0

and ‖S(t)u0‖1 � ‖u0‖1. Hence, Ku0 � u0. Moreover, by the definition of dβ , we have Ku0 � dβ , so
Ku0 � inf{dβ , u0}. Consider v0 = inf{dβ , u0}. Then, since v0 � u0, we have ω(v0) � ω(u0). Now, if
η = R × {0}, it is easy to see that

e−tBβv0 = e−tBηv0 ∀t � 0.

Thus, ω(v0) = v0, and consequently, Ku0 � v0 = inf{dβ , u0}. �

Remark 3. Note that in the above theorem if u0 � 0, then Ku0 = u0 if β(r) = 0 for all r > 0 and
Ku0 = 0 if β(r) > 0 for all r > 0. Therefore, for the Dirichlet problem (i.e., for β = {0} × R),
the solutions stabilize as t → ∞ by converging to zero in the L1-norm. Now, in [5] it is proved the
existence of a finite extinction time for the solutions of the Dirichlet problem and also that the solutions
of the Neumann problem reach the average of the initial data in finite time in the two dimensional case.
This property of reaching the asymptotic state in finite time is not true for general nonlinear boundary
conditions. For example, when β is given by (29) explicit solutions are obtained in Examples 1 and 2
which converge to zero at t → +∞, but are strictly positives for all time.
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