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Abstract

In this paper we study the best constant(2) for the trace map fromv11(Q) into L1(0Q). We
show that this constant is attainedBrv (2) when/1 () < 1. Moreover, we prove that this constant
can be obtained as limit when ™ 1 of the best constant (lel’(Q) < LP(0Q). To perform the
proofs we will look at Neumann problems involving the 1-Laplacidfn(u) = div(Du/|Dul).
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1. Introduction

Let Q be a bounded set iR" with Lipschitz continuous bounda@®. Of importance
in the study of boundary value problems for differential operator® iare the Sobolev
trace inequalities. In particula 11(Q) — L1(0Q) and hence the following inequality
holds:

Ml a0 <Nl
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for all u € WhL(Q). The best constant for this embedding is the lardesuich that the
above inequality holds, that is,

21(Q) = inf {/ |u|+/ IVul: ue Wl*l(Q),/ |u|=1}. (1)
Q Q 0Q

Our main interest in this paper is to study the dependence of the best cong@nand
extremals (functions where the constant is attained) on the domain. A related problem was
studied by Demengel if8] (see Remark 2). We remark that the existence of extremals is
not trivial, due to the lack of compactness of the embedding.

For 1< p <N, let us consider the variational problem

inf {/ |u|p—|—/ |VulP: u e Wl"’(Q),/ |u|p=1}. 2)
Q Q Q

If we denote by, () the above infimum, we have that

Jolul? + [o|Vul”
Joq lul?

Jp(Q) =inf { cu#00n0Q, uc Wl’P(Q)} ()

is the best constant for the trace map fréth ” (Q) into L? (0Q). Due to the compactness of
the embeddingv1-?(Q) — L (0Q), itis well known (see for instandd0]) that problem
(3) has a minimizer inW%7(Q). These extremals are weak solutions of the following
problem:

Apu = lu|P~2u in Q,
0 4
{|Vu|1’2—” = JulP2 ondQ, @
ov
whered ,u = div(|Vu|?~2Vu) is thep-Laplacian,d/dv is the outer unit normal derivative
and if we use the normalizatiqntnL,,(@Q) =1, one can check thdt= 4, (Q), see[11].
Our first result says thait; (2) is the limit asp ~\ 1 of 4,(£) and provides a bound for
21(9).

Theorem 1. We have that

lim, (@) = /1(2)

and

. |1Q]
21(2) < min { P Q) 1} ,

where P (2) stands for the perimeter @?.
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Therefore, it seems natural to search for an extremalf@®2) as the limit of extremals
for 4,(€2) whenp N\ 1. Formally, if we take limit ag \ 1in Eq. (4), we get

mu:dw(D”>=ﬂ-inQ
|Du| |ue| (5)

Du u
— v =11(Q)— on 09Q.
[Dul |u]

Hence we will look at Neumann problems involving the 1-Laplacitiiy ) =div(Du /| Du|)
in the context of bounded variation functions (the natural context for this type of problems).
To our knowledge the results obtained here have independent interest.
We shall say tha® has thdrace-propertyif there exists a vector fieldy € L>®(Q, RY),
with [|zolleo <1 such that divzg) € L*°(Q2) and

[z0, V] = M (Q)# N lae ondQ.

Our main result states that for any domain having the trace property, the best Sobolev
trace constant}1 (), is attained by a function ifi1(Q) whose derivatives in the sense of
distributions are bounded measurestarthat is a function with bounded variation.

Theorem 2. LetQ be a bounded open seti{’ with the trace-property. Thethere exists a
nonnegative function of bounded variation which is a minimizer of the variational problem
(1) and a solution of probler(b).

We will see that every bounded doma2with 41(Q) < 1, has the trace-property. Hence
we have proved that, if1(22) < 1 then there exists an extremal. Moreover, using results
from [12], we can find examples of domains (a ball or an annulus) suchiilig) = 1
and verify the trace property (and therefore they have extremals). We also prove that every
planar domairf2 with a point of curvature greater than 2 verifiegQ2) < 1.

Organization of the papeltn Section 2 we collect some preliminary results and prove
Theorem 1. In Section 3 we deal with the Neumann problem for the equatiGy) eivl.
Finally, in Section 4 we use these results to prove the main theorem, Theorem 2. Throughout
this papelC andc denote constants that may change from one line to another.

2. Preliminary results. Proof of Theorem 1

Let us begin with some notation and definitions. Recall that a funatier.1(Q) whose
partial derivatives in the sense of distributions are measures with finite total variaibn in
is called afunction of bounded variatiorThe class of such functions will be denoted by
BV (Q). Thusu € BV(Q) if and only if there are Radon measues . . ., uy defined in
Q2 with finite total mass irf2 and

/um¢=—/¢wi
Q Q
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forall o € C5°(©),i =1,..., N. Thus the gradient af is a vector valued measure with
finite total variation

[Du|(2) = Sup{/ udive: ¢ € CF(Q, RY), lpx)|<1forx e Q} .
Q
The set of bounded variation functiorsy (€2), is a Banach space endowed with the norm
lullaviay = s+ 1Dul(@ = [ i+ [ Dul.

A measurable sef ¢ R" is said to be ofinite perimeteiin Q if y, € BV (), in this
case the perimeter & in Q is defined asP(E, Q) := |Dy|. We shall use the notation
P(E) := P(E, RY), andZ ;(Q) shall denote the set of all subset®@f finite perimeter.
For a set of finite perimetd one can define the essential bound&rg, which is countably
(N —1) rectificable with finite#”¥ ~1 measure, and compute the unit nornfalx) at.#V —*
almost all pointsc of 6" E, where#V1is the(N — 1) dimensional Hausdorff measure,
and|Dy | coincides with the restriction a#™ ~1 to 9" E.

It is well known (see[1,9] or [13]) that for a given functiom € BV (L) there exists a
sequence, € WH1(Q) such that, strict converges tg, i.e.,

up, — u in LY(Q) and/ |wn|_>/ |Dul.
Q Q

Moreover, there is a trace operator BV (Q) — L(6Q) such that
It 100 <Clullpv@ Yu € BV(Q) (6)

for some constanC depending only orf2. The trace operator is continuous between
BV (Q), endowed with the topology induced by the strict convergencelangk2). In the
sequel we write (1) = u.

From the above results, we get

D
M: u£00ndQ, ueBV(Q);.
Jao lul

Let us recall a generalized Green'’s formula givefbh(see alsg4]). For 1< p < oo, let

21(Q) = inf {

X,(Q) ={z € L¥(Q,RY): div(z) € L"(Q)}.

If z € X,(Q) andw € BV (2) N LP/(Q) the functional(z, Dw): Cg°(£2) — R is defined
by the formula

((z, Dw),qo>=—/ w(pdiv(z)—f wz - Vo.
Q Q

Then(z, Dw) is a Radon measure 18,

/(Z,Dw)z/z-Vw
Q Q
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forallw e wh1(Q)n L>*(Q) and

/(z, Dw)‘ </ I(z, Dw)|<||z||oof |Dw| (7
B B B

for any Borel setB C Q.
In [5], aweak trace ofiQ2 of the normal component afe X ,(Q) is defined. Concretely,
it is proved that there exists a linear operator X ,(2) — L*(09) such that

”V(Z)”oo< ||Z||OOa
P(2)(x) =z(x) - v(x) forall x € 0Qif z € C1(Q, RY).

We shall denotey(z)(x) by [z, v](x). Moreover, the followingGreen’s formularelating
the function[z, v] and the measure, Dw), forz € X,(2) and w € BV(Q) N L7 (Q), is
established:

/ wdiv(z) dx + / (z, Dw) =/ [z, v]wdA# N1, (8)
Q Q Q
Now we can prove Theorem 1.

Proof of Theorem 1. We have to prove that

llji@li,,(g) =1(Q) )
and

. |2

Since
Lp@lull}, o0, <Nullf, VYue WP (Q)
if we set

A% :=lim supl,(Q)
Jav

we have
P lull oo <lulliy Yu e WHHQ)
from where it follows thatl* < 11(Q), that is

lim supi,(£) <A1(9Q). (11)
PN\l

Letv, be a minimizer of problem (3). Then,iif, := a,v,, with a,, satisfying

1/(p—1) 1/(1=p)
ap = wo </|mﬂ :
g </PQ P 0Q P
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we get

/ |Mp| :f |“p|p
0Q 0Q

and consequently
fQ |Mp|p+fQ|VMp|p (12)
Joo lupl

Applying Hoélder’s inequality and (12), we have

Ap(Q) =

1
@< ol Ja IVl o0y Ua (il +19uy1)7) 7

faQ|”p| fm ||
1/
<|QYP 2P=V/p (folupl? + [oIVup,P)™"”
fag'up|
)LP(Q)]-/P

— |Q|l/p’2(p*1)/p S—
(Jog lupl) "
Hence
ol—p p/r
R T T (/Q |up|>

from where it follows that

im it 7,,(2) > 11(2). (13)

Now, (9) follows from (11) and (13).
Takingu = y, we obtain that

fQ 720l +fQ|DX.Q| _ |2
f59|XQ| P(Q)

On the other hand, R, := {x € Q: d(x, 0Q) < ¢}, we have

fQ |XQS| + fQ |DXQS| . [Q] + P2, Q)
f@Q|X95| P(Q) '

Hence, taking — 07, it follows that.i; () < 1. Therefore, (10) holds.

1) <

21(Q) <

It is well known (see for instancfl1]) that, for everyp > 1, there exist an extremal
for the embeddingv>7(Q) — L?(0Q) (this embedding is compact). This is a solution
0<u, € WhP(Q) of the equation

/lp(Q):/ Iupl”+[ [Vupl?, / lupl =1, (14)
Q Q 2Q
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such that.,, > 0 and satisfies in the weak sense

{Apup = diV(|Vup|1’_2Vup) = |up|1’_2up in Q, (15)

\Vup|P~2Vuy - v=12,(Q)|uy|”"?u, onoiQ.

Now, by Young’s inequality we have

= —Ap(Q) + —IQI
p
Then, by (9) it follows that
il(Q):Iim/ |u,,|+/ [Vupl. (16)
rilJQ Q

Moreover, by the compact embedding®¥ (Q) into L1(Q), we can suppose that

u, — u € BV(Q) intheL'-norm and e. in Q (17)
and

Vu, — Du weakly" as measures (18)

Then, we have
JA = Iim/ |Vu,,|=}v1(Q)—/ lu|. (19)
pilJg Q

On the other hand, by the lower-semi-continuity of the total variation respeétitierm,
we get

/|Du|<|im inff |Vu,,|=/11(9)—/ |ua].
Q Pl Ja Q

Hence,

fIDu|+f |u| < 21(Q). (20)
Q Q

We are interested in the problem: Whemia minimizer of the variational problem (1)? In
these cases we would find an extremal for our minimization problem (1).
Formally, if we take limitagp N\ 1 in Eq. (15), we get

Ay i=div(B) = inQ, e
‘gz‘ v=/1(R)5 ondQ.

Following[2,6] (see als¢4]), we give the following definition of solution of problem (21).
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Definition 1. Afunctionu € BV (Q) is said to be &olutionof problem (21) if there exists
z € X1(Q) With ||z]leo <1, T € L®(2) With ||7]lec <1 andd € L®(0Q) with [|0]jcc <1
such that

div(z) =7 in 2'(Q), (22)
tu=|u|lae in Q and (z, Du)=|Du| as measures (23)
[z,v]=A1(2)0 and Ou = |u|#N 1-ae onoQ. (24)

Another problem we are interested in is: In what casesaisolution of problem (21)?
Note that ifv is a solution of problem (21) anfl,, [v| # 0, thenw := v/ [, v] is a
minimizer of the variational problem (1). Indeed, multiplying (22)\bgnd integrating by

parts, we have

/|v|=/‘cv=/div(z)v=—/(z, DU)+/ [z, v]v
Q Q Q Q 0Q

= —/ |Dv|+il(9>/ o],
Q oQ

From where it follows that

/11(9)=/ |w|+[ [Dw].
Q Q

Before we solve the above problems, let us study first the equatign) divl with
Neumann boundary conditions.

3. The equationdiv(z) = 1 with Neumann boundary conditions

Throughout this section we shall denotetbg bounded connected open seiit, N > 2,
with Lipschitz continuous boundagQ. Giveng € L*°(092) with | g|l < 1, consider the
functional§, : L2(Q) —] — oo, +00] defined by

o ) | Jo1Dul = [iogu if ue BV(Q) N L%(Q),
g =10 if ugBV(Q).

In [6] it is proved that
06g = g, (25)
where.«Z,, is the operator in.2(Q) defined by

(u,v) € Ay < ueBV(Q)N LX),
ve L4(Q) and3z € X2(Q), [zllo<1
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such that

—divz) =v in Z'(Q),

(z, Du) = |Du| as measures
and

[z.v] =g #Nl-ae ondQ.

Lety : L2(Q) — R the operator defined by

Y(u) = %/Q(u(x) + 1)%dx.
We have
O=argminé, +y) <= 0e (&g + ) (0),
— -1€06,(00) < (0,-1) € o,.
Then, by (25), it follows that
O=argminé, + ) <= 3z € X2(Q), llzllo <1, such that
div(z) =1 in 2'(Q),
[z,v]=g #" l-ae onoQ.

On the other hand, & argmin&’, + ) if and only if

1 1
/|Du|—f gu+-/(u+1)2>—|sz| Yu € BV(Q) N L3(Q).
Q 00 2 Jo 2

1133

(26)

Replacingu by su (wheres > 0), expanding thé.2 norm, dividing bye, and lettinge — 0%

we get

f gugf |Du|+/u Yu € BV(Q) N L%(Q).
oQ Q Q

Consequently we have obtained the following result.

Lemma 1. Letg € L*°(0Q2) with ||g]lcc < 1. Then the following are equivalent

(i) there existg € X2(9Q), ||z]lco <1, such that
diviz)=1 in 2'(Q),
[z, vl=g # N La.e. on Q.

(i) Eq.(27)holds

(27)
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Working as above but using the functional
1
P =3 f (Ju(x)| + 1) dx
Q
instead ofyy, we obtain the following result.

Lemma 2. Letg € L*°(0Q) with ||g|l~ < 1. Then the following are equivalent
(i) there exist € X2(Q), |Izllco <1,andt € L*®(Q), ||7]lco <1 such that

div(iz) =1 in 2'(Q),

[z,v]=g AN La.e. on 0Q.
(ii) the following inequality holds

/ gu</ |Du|+[ lu| Yu e BV(Q) N L Q). (28)
0Q Q Q
We state now the main result of this section.

Theorem 3. Let Q be a bounded connected open sefiif, N >2, with Lipschitz con-
tinuous boundary Q. Assume thafQ|/ P (22) <A < 1. Then the following are equivalent

(i) there exist € X2(Q), ||Iz]lco <1, such that
diviz) =1 in 2'(Q),
[z,v] = A#NLa.e. on 0Q,

(ii)
),/ ugf |Du|+/ u Yue BV(Q)NLXQ), (29)
oQ Q Q
(iii)
Af ugf |Du|—|—f lu| Yu e BV(Q)NLQ), (30)
o Q Q
(iv)
1<(Q), (31)
v)
|E| — AN TYOENOQ)| <P(E, Q) VE € 2;(Q). (32)

Proof. By Lemma 1 withg = 4, (i) and (ii) are equivalent. Obviously, (iii) and (iv) are
equivalent, and (ii) implies (iii). Let us see that (iii) implies (v). Taking 5 in (30), with
E C Q a set of finite perimeter, it follows that

—[E| = 2#N"Y@ EN Q)< P(E, Q)
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and takinge = yo\ g, We get
JANTLE(Q\E) N 0Q) < P(Q\E, Q) + |Q\E|.

Now, sinceP (Q\E, Q)=P(E, Q) and#’¥ 10" (Q\E)NdQ)=P(Q) — 4"V 10" ENdQ),
we have

AMP(Q) — AN YHIEN QIS P(E, Q) + Q| — |E|.
Then, sincel > ||/ P(£2), we obtain
|E| — AN YO0 ENoQ)< P(E, Q)

and (v) holds. Finally, let us see that (v) implies (ii). Giver BV (), since for allx € Q,

+00 0
u(x) =/ Ljusr)(X) At —/ Lu <y () 0,
0 00

using (32) and the coarea formula we get

+o0 0
[uwde= [ [ ggeodedi= [ [ g cpmdrar
Q 0 Q —o00 JQ

+00 0
Z/ |{u>t}|dt—f [{u<t}|dt
0

—00

+o0o
> f QAN u>13N0Q) — Pu>1}, Q) dr
0
0
—/ QAN <ty N oQ) + Pu<rt), Q) dr

+o0
=z/ udeN_l—/ P({u>1}, Q)dr
0Q

—00

=/1f ud/fN_l—/ |Du|
0Q Q

and (29) holds. O
Taking 4 = |Q]/ P(£2) in the above theorem we obtain the following result.

Corollary 1. LetQ be a bounded connected open seRih, N >2, with Lipschitz contin-
uous boundaryQ. If |Q|/P(L2) < 1, then the following are equivalent

0]
dz € X2(Q), |zlloo <1, such that
div(z) =1 in 2'(Q),
1%

[z,v] = m #N"La.e. on 09, (33)
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(i)
e
21(Q) = Q)
(iii)
|Q| N—1,~% 7
|E|——P(Q)%’ (0ENOQ)| <P(E,Q) VEeZs(Q.

We do not know if the assumptia@ connected in Corollary 1 is necessary. So, a nat-
ural question is the following: Is there a nonconnected open bounde@ sath that
|Q|/P () <1, verifying (33) andl1(Q2) < |Q2|/P(£2)?

There are open sefsfor which (33) holds angl?|/ P (2) =1, as the following examples
show.

Example 1. Let @ = Bx(0) c R" the ball inR" centered in 0 of radiu® Then, if
z(x) :== x/N, we have

diviz) =1 in 2'(Q)

and
R 19 N_1
V] =—=——#"""-ae on i
[z, v] N PQ
Moreover,
1%
= —< <1
”Z”oo N P(Q)

Example 2. Let @ = Bz (0)\B,(0) c R the annulus iR" centered in 0 of radiuR and
r. Then, it is easy to see that if

X
N(RN-1 4 pN-1)

NlRNl]

2(x) = |:(RN1+VN1) —(R+N——y

we have

diviz) =1 in 2'(Q)

and
1Qln-1
,V] = —— A" ""-ae. on 0Q.
==
Moreover,
19]
lzllo €1 = <L

P(Q)
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Remark 1. Motron in [12] proves that ifQ = Bz (0) is the ball inR" centered in 0 of
radiusR or Q = Bz (0)\ B, (0) the annulus iR" centered in 0 of radiuR andr, then

P(Q
/ |u|<¥ |u|+/ |Vu| Vu e Whi(Q) (34)
oQ 12l Ja Q

and equality holds in (34) if and only ifis constant.
From (10) and (34), it follows that @ = Bz (0) ¢ R" or Q= Bz (0)\ B, (0) c R", then

Qe
a@={ @ HE
|fm21.

Moreover, if|Q2]/ P () <1, theru = (1/ P (£2)) x iS @ minimizer of the variational problem
(1), being the only minimizer in the cafe|/ P(2)=1, and if|Q2|/ P(Q2) > 1, the variational
problem (1) does not have minimizer.

In the following example we show that there exists bounded connected opé&?) sétis
|Q2]/P(2) <1, for which21(Q) < |Q|/P(£).

Example 3. Foré >0 and O<a<7t/2, let
Q5,5 := B1(0) U (B24.5(0)\ B2(0))
U {(x, y) e RY x RT: x? +y?<2, arctg(X> <oc}.
X

We have

1254 _n+7‘c(52+45)+%o¢
P(Qs5,) 10n+2m5+2—30"

Thus, for 0< <1 and O< « < n/2, we have

|Qé,oc|
P(Qﬁ,a)

<1

Now, if we takeu := By 5ONB2(0)?

Jo,,1Dul + Jo, 14l 20 4 1(5% + 45)
Jag,, lul © 8n+20m—20

/ll(Qé,oc) <

Then, it is easy to see that féranda small enough, we get

|-Q<3,oc|
<
P(Qé,oc)

/11(95,01) <

In the next example we will see that even we can t@keonvex.
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Fig. 1. Triangle.

Example 4. Let Q be the set irfit? with the boundary isosceles triangle with heighbase
of length Z: and the two equal sides of lendth_ett the angle between the height and one
of the equal side (sd€ig. 1). Then,

Q  ak ak _ ksint
P(Q) 2a+1)  a2a-+a/sint)y  2(1+sint)’

Let E C Q the set with boundary the isosceles triangle with helghtr, base of length
2b and the two equal sides of lengthThen, ifu := y,, we have

Jo|Dul+ [olul 26+ bk —r)  bk+2—r) sins

@< —— = D k+2-1).
e Joq lul 2] 2b/ sint 5 k+2=n
Hence,
1%
1)< —<1
1(8) < ) <
if
1 i 1 i
k<min{(r—2) +_Smt,2 +_S|m}'
sint sin¢

Now, obviously, we can find, r, andt satisfying the above inequality, and consequently,
we can obtain a convex, bounded openeshtisfying

12|

The next example show the necessity of the assumgiioannected in Lemma 2.

Example 5. For 0< p <r andd > 0, let
Q,,.5 = Bp(0) U(B,;5(0)\B,(0) C R
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We have

12,51 0%+ p2+2r0

P(Q,,5) 22r+6+p)

If we takeu := yp (o andv := 1B, 5ONB O then

D(u) = fgw-fi |Dul + er)wr-f’ Jul _P
fagp,,,,, |u| 2

and
Jo, IDVI+ [o vl
@ — p.1,0 p.r.0 ——
(v) 5

fagp,,,é v

Suppose that & p < 6 <2. If we consider the vector fielziin 2, ,. ; defined by

5(325:0)’) if (x,y)e€ B,(0),
z(x,y) = [5 —(0+2 )V(r + 5)} (x, y) if (x,y) € B,.5(0)\B,(0)
’ ’ r r(Y),
|, W | 22r 4+ 0) y +0

we have||z|leo <1,
diviz) =t in 2'(Q,,s)
with
T= ) X0B,(0) T ZB,+,(0\B,(0)
and
0 2l
[z,v] = > A -ae. 0N 0Qp .
Now,
p
Q)< P(u) = 5
Hence,
0
21(Q) < —=.
1(8) < >

Consequently, in general, Lemma 2 it is not tru@ifs not connected.
If 6 =p, we have

|Qp r p| p
i Q T, < @ — @ = 45 = 0P - —.
182p.r.p) () @) (XQp,r,p) P(Qprp) 2
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Suppose thgt <1. Then, if we consider the vector fietdn Q, , , defined by

(Y
Z(x, y) = 2 if (.X, )’) € Bp(o),

0" if (x.y) € By p(0\B,(0),

we have
div(z) = XB,(0) in D@/(-Qp,r,p)
and

[Z7 V] == gy"aBp(O) %l'a-e. On an),r,ﬂ'

Thereforeu is a solution of the problem

D
Aw = div< w ) " ina,,.,,

|Dul) — |w]|
Dw p w (35)
mvzzm on an,r,p~

Now, if we consider the vector fieldin Q,, . , defined by
0 if (x,y) € B,(0),

rr+ ] ()
— 2
[p (0 +2r) ||<x,y>||]2(2r+p>

= { if (x,y) € Br4p(0)\B,(0),
we have

dv(z) = 5,,,0\80 N7 p.rp)
and

[z, v1= gXa(Brw(m\Brw»*}fl‘ae on 98p.r.p-

Thereforeyis also a solution of problem (35). Moreover, in this case @jgg,p is a solution
of problem (35).

Problem. Is 71(2,..p) = p/27?

The next example shows that there are bounded connected opeif2 deiswhich
J1(Q) <1and|Q|/P(Q) > 1.

Example 6. Let Q :=] — k, 0[ x]0, k[U{0}x]0, 6[U]0, 1[x]0, o[C R? be. Then

Q] k249 .
— = 1 ifk>24+V6-0.
PQ #12 me
Now, if we takeu := y10 1751051, W€ have
fg |Du| + fQ |ul . 20
Joq lul 249

Therefore, for instance, if = 1 andk = 5, we have |/ P(Q2) > 1 and/1(Q) < 1.

() < <1l < 0<d<?2.
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4. Proof of Theorem 2

LetQ be abounded connected open séin N > 2, with Lipschitz continuous boundary
0Q. By Lemma 2, if we assume thd(Q2) < 1, there exist € X2(£), |1zl <1, and
ldiv(z) [lo < 1 such that

[Z,v] = J1(Q)#N1-ae on oQ.

We recall the following definition.

Definition 2. Let Q be a bounded open setR" with Lipschitz continuous boundafg.
We shall say tha© has thetrace-propertyif there exists a vector fieldy € L>°(Q, RY),
with ||zolleo <1 such that divzg) € L*° () and

[z, V] = (@) #N L-aeon 0Q.

By the above, we have that every bounded connected op&ris@&", N > 2, with Lips-
chitz continuous boundary ard(Q) < 1, has the trace-property. Also, as a consequence of
Examples 1, 2, and Remark 1, we have th&:f Bz (0) ¢ RY or Q=B (0)\B,(0) c R",
and|Q|/ P (Q) <1, thenQ has the trace-property. Therefore there existgith 11(Q2) =1
satisfying the trace-property.

Let us present some examples of planar domains that varify) < 1.

Example 7. Assume thaf2 ¢ R? is a bounded open set such that there exists some point,
xo € 0Q (we may assumeg = 0), with curvature of the boundary at that point greater than
2, we will show that in this casg () < 1. So, let us assume that locally near the ori@in
can be described &N B, (0) = {(x, y): y > ax?}. As we are assuming that the curvature
at the origin is greater than 2 we have- 1. Let us consider the functian = yqn, -, as

a test function to estimatg . We have

(@< Jo |Dug| + fQ lug) _ Jela+ fom(s — as®)ds
Joo luel fom\/mds
B Jela+3eela
B 0‘/%(1 + 2a?%52 + O(s3)) ds

<1

if & is small enough.

Remark that if2 = Bz (0) we have that the curvature ig R and, by Example 1, we
havel1(Bg(0)) < 1if and only if R < 2. Hence, some restriction on the curvature must be
imposed.

Next we prove that on every domain that enjoys the trace-property the best Sobolev trace
constant is attained, Theorem 2.

Proof of Theorem 2. First let us see that the functiarobtained in (17) is a minimizer of
the variational problem (1). Lefp be the vector field given in Definition 2. Then, by (18),
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we have

/Q(ZQ, Du) = LiTl/gz(ZQ’ Vup,) = lljig?l (—/Qdiv(zg)up + /m[zg, v]up)

— / div(zo)u + 21(Q) = f (zg, Du) — /11(9)/ u+ A1(Q)
Q Q 0Q

from where it follows that

/ lu| = 1. (36)

Q

Therefore, by (20) we get thatis a minimizer of (1). Moreover, by (19), it follows that
lim / |Vu,,|:/11(Q)—/ |u|:/ |Dul. (37)
AN o} Q Q

Henceu, — u respect to the strict convergence, and consequently
up —u in LY(0Q) asp \, L. (38)

Let us see now that the functianis a solution of problem (21). By Hélder’s inequality,
we have

(p=D/p
/ lup P <IQIYP ( / |up|P) <1QIYP 2, (@) PP < My (39)
Q Q
On the other hand, i is a measurable subset@fwith |E| < 1, we have

-2
f |“p|p Up
E

By (39) and (40), it follows that|up|1’—2up: 1< p<2}is a weakly relatively compact
subset ofL1(Q). Hence, we can assume that there existsL1(Q) such that

</ lup P~ M| EJYP. (40)
E

luplP~2u, — v weakly in LY(Q) asp \ 1. (41)
In a similar way, it is easy to see that there exists L1(Q, R") such that
|Vu,|”~2Vu, — z weakly in L1(Q, R¥) asp \, 1. (42)

Now, givenp € Z(Q), from (41) and (42), it follows that
(div(z), @) = —/ z-Vp=—Ilim / |Vup|p_2Vup-V(p
Q m1Jg
= Iim/div Vu,|P~2Vu =|im/ " u =/r .
/o (IVup| PQ ol Q| l p® o [

Thus,

divz) =t in 2'(Q). (43)



F. Andreu et al. / Nonlinear Analysis 59 (2004) 1125-1145 1143

We claim now that

lzlloo < 1. (44)
In fact, for anyk > 0, let

B = {x € Q. [Vu,(x)|>k}.

As above, there exists sorge € L1(Q, R") such that

\VuplP~?Vupyp, , — g weakly in LY@, RY) asp \ 1. (45)
Now, since
, |V ()7 Ap(L)
|Bp il ZAXBp.k(x)dngfz 0 dx < o

forany¢ € L*>°(Q) with ||¢]oc <1, we have

(p—=1/p
<(f |wp|f’) 1B, k| YP
Q

zp(Q))” P 2@
kP -k

‘ /Q VuuplP "2V, - g, ,
< ;LP(Q)(p_l)/p <

Letting p ~\ 1, we get that

;L Q
/ng|< l]({) for everyk > 0. (46)
Q

On the other hand, since we have
IVuup P 2Vu,tonp, | <P~ forany p>1,

letting p \, 1, we obtain that there exists sorfiee L1(Q, RY) with || fi|lo <1 such that
\VuplP~?Vupros,, — fe weakly in L@, RY) asp \ 1. (47)

Hence, for anyk > 0, we may writez = fx + gk, With || fx|lcoc <1 andg, satisfying (46).
From where (44) follows.
Sinceu, — u a.e.inQ, by (41) it follows that

tw=|ulae in Q and |[|7]e <1l

On the other hand, given a measurable suBset 0Q, by Holder’s inequality we have
p—1
/ ug—ld%ng(/\ up d%Nl> %N*l(E)prge%N*l(E)zfp
E oQ

from where it follows that{ugfl: 1< p<2}is a weakly relatively compact subset of
L1(0Q). Hence, we can assume that there exdstsL1(0Q), such that

ub™ - 0 weakly in L1(0Q). (48)
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Moreover, by (48), (14) and applying Fatou’s Lemma, it is easy to see that

10100 <1. (49)
On the other hand, by (38) and (48), we get

Ou = |u|#N 1-ae on Q. (50)

Now, sinceu, is aweak solution of (15), having in mind (41), (9) and (48 i€ Wi1(Q)n
C(Q) N L>®(Q), we have

(z,w)mzz/div(z)w+/z~Vw=/rw+/z~Vw
Q Q Q Q
= lim f ug_lw+f |Vup|P—2Vup.Vw
lJo Q

= lim f uﬁflw—/‘ diV(|Vup|”_2Vup)w~l—[ IVup|”_2Vup-vw
JANE o} Q Q

lim AP(Q)/ ug‘lwzzl(g)/ Ow.
PNl oQ Q

Thus, having in mind the definition of the weak traceddhof the normal component af
given in[5], we get

[z, v] = 72(Q)0. (51)

Finally, since

f|Du|=/11(9)—f |u|=11<9>—fw
Q Q Q

=11(Q) — / div(z)u = 21(Q) + / (z, Du) — / [z, v]u
Q Q 0Q

=11(Q)+/(Z, Du)—/h(Q)/ 9u=/(z, Du),
Q 00 Q

we have(z, Du) = |Du| as measures.[]

Remark 2. Letusremark that as a consequence of Theoren{] ihis obtained the above
theorem in the particular case thais a bounded open subset®t , whose boundar§Q
is at least piecewis&? and/1(Q) < 1.

Remark 3. Note that in the above theorem we have proved thaisfthe limit asp N\ 1
of the minimizers:, of the variational problem

inf {/ |u|1’+/ |Vul: u e Wl'f’(Q),/ |u|=1,} (52)
Q Q Q

then, if fm lu] = 1, we have thati is a minimizer of the variational problem (1) and a
solution of problem (21).
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