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Abstract. We prove existence and uniqueness of weak solutions for the
minimizing total variation flow with initial data in L1. We prove that
the length of the level sets of the solution, i.e., the boundaries of the
level sets, decreases with time, as one would expect, and the solution
converges to the spatial average of the initial datum as t → ∞. We
also prove that local maxima strictly decrease with time; in particular,
flat zones immediately decrease their level. We display some numerical
experiments illustrating these facts.

1. Introduction. Let Ω be a bounded set in RN with Lipschitz-con-
tinuous boundary ∂Ω. We are interested in the problem

∂u

∂t
= div(

Du

|Du|) in Q = (0,∞)× Ω

∂u

∂η
= 0 on S = (0,∞)× ∂Ω (1)
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u(0, x) = u0(x) in x ∈ Ω

where u0 ∈ L1(Ω). This PDE appears when one uses the steepest descent
method to minimize the total variation, a method introduced by L. Rudin
and S. Osher [17], [18] in the context of image denoising and reconstruction.
Then solving (1) amounts to regularizing or, in other words, to filtering the
initial datum u0. This filtering process has less destructive effect on the
edges than filtering with a Gaussian, i.e., than solving the heat equation
with initial condition u0. In this context the given image u0 is a function
defined on a bounded, smooth or piecewise-smooth, open subset Ω of RN -
typically, Ω will be a rectangle in R2. When dealing with the deconvolution
or reconstruction problem one minimizes the total variation functional, i.e.,
the functional

Minimize
∫

Ω
|∇u| (2)

with some constraints, which models the process of image adquisition, in-
cluding blur and noise. We shall not pursue this any longer, and we refer
instead to [16], [17], [18], [11], [12], [10], [22], [23], [2], [20].

As argued in [1], the choice of Neumann boundary conditions is a natural
choice in image processing. It corresponds to the reflection of the picture
across the boundary and has the advantage of not imposing any value on
the boundary and not creating edges on it.

We shall prove existence and uniqueness of solutions of (1) for initial
data in L1(Ω). To make precise our notion of solution let us recall several
facts concerning functions of bounded variation.

A function u ∈ L1(Ω) whose partial derivatives in the sense of distri-
butions are measures with finite total variation in Ω is called a function of
bounded variation. The class of such functions will be denoted by BV (Ω).
Thus u ∈ BV (Ω) if and only if there are Radon measures µ1, . . . , µN defined
in Ω with finite total mass in Ω and∫

Ω
uDiϕdx = −

∫
Ω
ϕdµi (3)

for all ϕ ∈ C∞0 (Ω), i = 1, . . . , N . Thus the gradient of u is a vector-valued
measure with finite total variation

‖ Du ‖= sup{
∫

Ω
u div ϕ dx : ϕ ∈ C∞0 (Ω,Rn), |ϕ(x)| ≤ 1 for x ∈ Ω}. (4)
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The space BV (Ω) is endowed with the norm

‖ u ‖BV =‖ u ‖L1(Ω) + ‖ Du ‖ . (5)

For further information concerning functions of bounded variation we refer
to [15] and [24].

By L1
w(0, T,BV (Ω)) we denote the space of functions w : [0, T ]→ BV (Ω)

such that w ∈ L1((0, T ) × Ω), the maps t ∈ [0, T ] → 〈Dw(t), φ〉 are mea-
surable for every φ ∈ C1

0 (Ω,RN ) and such that
∫ T

0 ‖Dw(t)‖ < ∞. Observe
that, using (4), it follows easily that the map t ∈ [0, T ] → ‖Dw(t)‖ is mea-
surable. Recall that BV (Ω) has a separable predual G, and the definition
above amounts to say that t ∈ [0, T ] → 〈Dw(t), φ〉 is measurable for all
φ ∈ G (see [3]). Now, from the density of G in BV (Ω)∗ in the topology
σ(BV (Ω)∗, BV (Ω)), and the fact that ‖Dw(t)‖ ∈ L1(0, T ), the measurabil-
ity of the map t ∈ [0, T ] → 〈Dw(t), φ〉 follows for all φ ∈ BV (Ω)∗. Since
we are not going to use this formulation below, we shall omit the details of
its proof. To give the notion of solution we need the truncature operator
Tk(r) = [k − (k − |r|)+]sign(r), k ≥ 0, r ∈ R.

Definition 1. A measurable function u : (0, T )×Ω→ R is a weak solution
of (1) in (0, T ) × Ω if u ∈ C([0, T ], L1(Ω)) ∩ W 1,1

loc (0, T ;L1(Ω)), Tk(u) ∈
L1
w(0, T ;BV (Ω)) for all k > 0 and there exists z ∈ L∞((0, T ) × Ω) with
‖z‖∞ ≤ 1, ut = div(z) in D′((0, T )× Ω) such that∫

Ω
(Tk(u(t))− w)ut(t) ≤

∫
Ω
z(t) · ∇w − ‖DTk(u(t))‖ (6)

for every w ∈W 1,1(Ω) ∩ L∞(Ω) and almost everywhere on [0, T ].

Our main result is the following:

Theorem 1. Let u0 ∈ L1(Ω). Then there exists a unique weak solution of
(1) in (0, T )×Ω for every T > 0 such that u(0) = u0. Moreover, if u(t), û(t)
are weak solutions corresponding to initial data u0, û0, respectively, then

‖(u(t)− û(t))+‖1 ≤ ‖(u0 − û0)+‖1 and ‖u(t)− û(t)‖1 ≤ ‖u0 − û0‖1, (7)

for all t ≥ 0.

To prove Theorem 1 we shall use the techniques of completely accretive
operators [7] and Crandall-Liggett’s semigroup generation theorem [13]. Let
us recall the notion of completely accretive operators introduced in [7]. Let
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M (Ω) be the space of measurable functions in Ω. Given u, v ∈M(Ω), we
shall write that

u¿ v if and only if
∫

Ω
j(u) dx ≤

∫
Ω
j(v) dx (8)

for all j ∈ J0 where

J0 = {j : R→ [0,∞], convex, l.s.c., j(0) = 0} (9)

(l.s.c. is an abbreviation for lower semicontinuous function). Let A be an
operator (possibly multivalued) in M(Ω), i.e., A ⊆M(Ω)×M(Ω). We shall
say that A is completely accretive if

u− û¿ u− û+ λ(v − v̂) for all λ > 0 and all (u, v), (û, v̂) ∈ A. (10)

Let P0 = {p ∈ C∞(R) : 0 ≤ p′ ≤ 1, supp(p′) is compact and 0 6∈ supp(p)}.
If A ⊆ L1(Ω)× L1(Ω), then A is completely accretive if and only if∫

Ω
p(u− û)(v − v̂) ≥ 0 for any p ∈ P0, (u, v), (û, v̂) ∈ A. (11)

A completely accretive operator in L1(Ω) is said to bem-completely accretive
if R(I + λA) = L1(Ω) for any λ > 0. In that case, by Crandall-Ligget’s
theorem, A generates an order-preserving contraction semigroup in L1(Ω)
given by the exponential formula e−tAu0 = limn→∞(I + t

nA)−nu0 for any
u0 ∈ L1(Ω). Let us write u(t) = e−tAu0. Then u ∈ C([0, T ], L1(Ω)), for any
T > 0, and is a mild solution (a solution in the sense of semigroups [7]) of

du

dt
+Au 3 0, (12)

such that u(0) = u0.
We shall use a stronger notion of solution of (12). We say that v ∈

C([0, T ], L1(Ω)) is a strong solution of (12) on [0, T ] if v ∈W 1,1
loc ((0, T ), L1(Ω))

and v′(t) + Av(t) 3 0 for almost all t ∈ (0, T ). If u0 ∈ D(A) = {ū ∈ L1(Ω) :
(ū, v̄) ∈ A, for some v̄ ∈ L1(Ω)} (the domain of A) and A is m-completely
accretive, then u ∈ W 1,1

loc ((0, T ), L1(Ω)) and u(t) is a strong solution of (12)
on (0, T ), for all T > 0.

In Section 2, we prove Theorem 1. For that, we shall associate a com-
pletely accretive operator A to the formal differential expression −div( Du

|Du|)
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together with Neumann boundary conditions. Then using Crandall-Liggett’s
semigroup generation theorem [13] we conclude that the abstract Cauchy
problem in L1(Ω)

du

dt
+Au 3 0, u(0) = u0 (13)

has a unique strong solution u ∈ C([0, T ], L1(Ω))∩W 1,1
loc (0, T ;L1(Ω)) (∀T >

0) with initial datum u(0) = u0. In Section 3 we shall prove that strong
solutions of (13) coincide with weak solutions of (1). Section 4 is devoted
to the asymptotic behavior of solutions of (1). In Section 5 we prove that,
as one would expect, the length of the level curves (i.e., the boundaries of
the level sets) of the solution u(t, x) of (1) decreases with time. We also
prove that the level of local maxima strictly decreases with time. Finally,
in Section 6 we display some numerical experiments to illustrate the above
properties.

2. The semigroup solution. Following [5], we define

X(Ω) = {z ∈ L∞(Ω,RN ) : div(z) ∈ L1(Ω)}. (14)

Let us introduce the following operator A in L1(Ω): (u, v) ∈ A if and only
if u, v ∈ L1(Ω), Tk(u) ∈ BV (Ω) for all k > 0 and there exists z ∈ X(Ω) with
‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that∫

Ω
(w − Tk(u))v ≤

∫
Ω
z · ∇w dx− ‖DTk(u)‖,

∀w ∈W 1,1(Ω) ∩ L∞(Ω), ∀k > 0.
Theorem 2. The operator A is m-completely accretive in L1(Ω) with dense
domain. For any u0 ∈ L1(Ω) the semigroup solution u(t) = e−tAu0 is a
strong solution of

du

dt
+Au 3 0, u(0) = u0. (15)

Let us introduce the following auxiliary operator A in L1(Ω): (u, v) ∈ A
if and only if u ∈ BV (Ω) ∩ L∞(Ω), v ∈ L1(Ω) and there exists z ∈ X(Ω)
with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that∫

Ω
(w − u)v ≤

∫
Ω
z · ∇w dx− ‖Du‖
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for every w ∈W 1,1(Ω) ∩ L∞(Ω).
The following proposition relates both operators A and A.

Proposition 1. The operator A is the closure in L1(Ω) of the operator A.
To prove this proposition we need first to establish the following results.

Lemma 1. L∞(Ω) ⊆ R(I +A).
Proof. For any p > 1 we consider the operator Ap in ÃL1(Ω) defined by
(u, v) ∈ Ap if and only if u ∈W 1,p(Ω) ∩ L∞(Ω), v ∈ L1(Ω) and∫

Ω
(w − u)v ≤

∫
Ω
|∇u|p−2∇u · ∇(w − u)

for every w ∈W 1,p(Ω) ∩ L∞(Ω).
By [4], we know that Ap is completely accretive in L1(Ω) and

L∞(Ω) ⊆ R(I +Ap) (for any p > 1). (16)

Let v ∈ L∞(Ω). We find u ∈ BV (Ω) ∩ L∞(Ω) such that (u, v − u) ∈ A; i.e.,
there is z ∈ X(Ω) with ‖z‖∞ ≤ 1 such that v − u = −div(z) and∫

Ω
(w − u)(v − u) ≤

∫
Ω
z · ∇w dx− ‖Du‖ (17)

for every w ∈ W 1,1(Ω) ∩ L∞(Ω). Now, using (16), we know that for any
p > 1 there is up ∈W 1,p(Ω) ∩ L∞(Ω) such that (up, v − up) ∈ Ap. Hence∫

Ω
(w − up)(v − up) ≤

∫
Ω
|∇up|p−2∇up · ∇(w − up), (18)

for every w ∈W 1,p(Ω) ∩ L∞(Ω). Since Ap is completely accretive, we have

‖up‖∞ = ‖(I +Ap)−1v‖∞ ≤ ‖v‖∞. (19)

Now, given ϕ ∈W 1,p(Ω) ∩ L∞(Ω) and taking w = up ± ϕ in (18) we get∫
Ω
|∇up|p−2∇up · ∇ϕ =

∫
Ω

(v − up)ϕ. (20)

If we take ϕ = up in (20) and taking (19) into account we obtain the estimate∫
Ω
|∇up|p =

∫
Ω

(v − up)up ≤M1, (21)
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for any p > 1, where M1 depends on ‖v‖∞ and the measure of Ω. Using
Holder’s inequality we also have that∫

Ω
|∇up| ≤M2, ∀p > 1, (22)

where M2 does not depend on p. Thus, {up}p>1 is bounded in W 1,1(Ω) and
we may extract a subsequence such that up converges in L1(Ω) and almost
everywhere to some u ∈ L1(Ω) as p→ 1+. Now, by (19) and (22), we have
that u ∈ BV (Ω) ∩ L∞(Ω).

Let us prove that {|∇up|p−2∇up}p>1 is weakly relatively compact in
L1(Ω,RN ). For that, using (21) we observe that∫

Ω
|∇up|p−1 ≤

(∫
Ω
|∇up|p

) p−1
p
meas(Ω)

1
p ≤M3,

where M3 does not depend on p. On the other hand, for any measurable
subset E ⊆ Ω,∣∣∣∫

E
|∇up|p−2∇up

∣∣∣ ≤ ∫
E
|∇up|p−1 ≤M

p−1
p

1 meas(E)
1
p .

Thus, {|∇up|p−2∇up}p>1, being bounded and equi-integrable in L1(Ω,RN ),
is weakly relatively compact in L1(Ω,RN ). We may assume that

|∇up|p−2∇up ⇀ z as p→ 1, weakly in L1(Ω,RN ). (23)

Taking ϕ ∈ C∞0 (Ω) in (20) and letting p→ 1, we obtain∫
Ω

(v − u)ϕ =
∫

Ω
z · ∇ϕ,

that is, v − u = −div(z) in D′(Ω). Let us prove that ‖z‖∞ ≤ 1. For any
k > 0, let Bp,k = {x ∈ Ω : |∇up(x)| > k}. As a consequence of (21) we have
that

meas(Bp,k) ≤
M1

kp
for every p > 1, k > 0. (24)

As above, there is some gk ∈ L1(Ω,RN ) such that |∇up|p−2∇upχBp,k ⇀ gk
weakly in L1(Ω,RN ) as p→ 1. Now for any φ ∈ L∞(Ω,RN ) with ‖φ‖∞ ≤ 1,
we easily prove that ∣∣∣∫

Ω
|∇up|p−2∇up · φχBp,k

∣∣∣ ≤ M1

k
.
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Letting p→ 1, we get that∫
Ω
|gk| ≤

M1

k
for every k > 0. (25)

Since we have that
∣∣|∇up|p−2∇upχΩ\Bp,k

∣∣ ≤ kp−1 for any p > 1, letting
p → 1, we obtain that |∇up|p−2∇upχΩ\Bp,k weakly converges in L1(Ω,RN )
to some function fk ∈ L1(Ω,RN ) such that ‖fk‖∞ ≤ 1. Hence, for any
k > 0, we may write z = fk + gk with ‖fk‖∞ ≤ 1 and gk satisfying (25). It
follows that ‖z‖∞ ≤ 1.

Now, to prove (17), let w ∈ W 1,1(Ω) ∩ L∞(Ω) and let wn ∈ C∞(Ω) be
such that wn → w in W 1,1(Ω) as n → ∞. Using wn as a test function in
(18) we may write∫

Ω
(wn − up)(v − up) ≤

∫
Ω
|∇up|p−2∇up · ∇(wn − up).

Hence, ∫
Ω

(wn − up)(v − up) +
∫

Ω
|∇up|p ≤

∫
Ω
|∇up|p−2∇up · ∇wn. (26)

Now, letting p→ 1 in (26) we obtain∫
Ω

(wn − u)(v − u) + ‖Du‖ ≤
∫

Ω
z · ∇wn.

Let us finally let n→∞ to get (17).

Lemma 2. D(A)
L1(Ω)

= L1(Ω).

Proof. We prove that C∞0 (Ω) ⊆ D(A)
L1(Ω)

. Let v ∈ C∞0 (Ω). By Lemma 1,
v ∈ R(I + 1

nA) for all n ∈ N. Thus, for each n ∈ N there exists un ∈ D(A)
such that (un, n(v − un)) ∈ A and, in consequence, there exists some zn ∈
X(Ω) with ‖zn‖∞ ≤ 1, n(v − un) = −div(zn) in D′(Ω) such that∫

Ω
(w − un)n(v − un) ≤

∫
Ω
zn · ∇w − ‖Dun‖ ≤

∫
Ω
|∇w|

for every w ∈W 1,1(Ω) ∩ L∞(Ω). Taking w = v we have that∫
Ω

(v − un)2 ≤ 1
n

∫
Ω
|∇v|.

Letting n→∞, it follows that un → v in L2(Ω). Therefore v ∈ D(A)
L1(Ω)

.
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Lemma 3. If u ∈ BV (Ω) then Tk(u), Gk(u) ∈ BV (Ω) where Gk(r) = r −
Tk(r), k ≥ 0, r ∈ R. Moreover, ‖Du‖ = ‖DTk(u)‖ + ‖DGk(u)‖ for any
k ≥ 0.
Proof. Let un ∈ W 1,1(Ω) be such that un → u in L1(Ω) and

∫
Ω |∇un| →

‖Du‖ as n→∞. Since Tk(un)→ Tk(u) in L1(Ω), then

‖DTk(u)‖ ≤ lim inf
n→∞

‖∇Tk(un)‖ ≤ lim inf
n→∞

‖∇un‖ ≤ ‖Du‖.

Hence, Tk(u), Gk(u) ∈ BV (Ω). Since u = Tk(u) + Gk(u) we have that
‖Du‖ ≤ ‖DTk(u)‖+ ‖DGk(u)‖. On the other hand, since un ∈W 1,1(Ω) we
have that ∫

Ω
|∇un| =

∫
Ω
|∇Tk(un)|+

∫
Ω
|∇Gk(un)|

for any k ≥ 0. Let uni be a subsequence of un such that

lim inf
n→∞

∫
Ω
|∇Tk(un)| = lim

i→∞

∫
Ω
|∇Tk(uni)|.

Then we also have that

lim
i→∞

(∫
Ω
|∇uni | −

∫
Ω
|∇Tk(uni)|

)
= lim

i→∞

∫
Ω
|∇Gk(uni)|.

Hence

‖Du‖ = lim
i→∞

∫
Ω
|∇uni | = lim

i→∞

∫
Ω
|∇Tk(uni)|+ lim

i→∞

∫
Ω
|∇Gk(uni)|

≥ ‖DTk(u)‖+ ‖DGk(u)‖.

Proof of Proposition 1. If (u, v) ∈A, then (Tk(u), v) ∈ A, for any k > 0.
Hence (u, v) ∈ A. Conversely, let (u, v) ∈ A and let (un, vn) ∈ A be such
that un → u, vn → v in L1(Ω) as n → ∞. Since (un, vn) ∈ A, un ∈
BV (Ω) ∩ L∞(Ω), vn ∈ L1(Ω) and there exists zn ∈ X(Ω), ‖zn‖∞ ≤ 1 with
vn = −div(zn) in D′(Ω) such that∫

Ω
(w − un)vn ≤

∫
Ω
zn · ∇w − ‖Dun‖ (27)

for every w ∈ W 1,1(Ω) ∩ L∞(Ω). Let k > 0. Now, since Gk(un) ∈ BV (Ω),
there exists a sequence um,n ∈ W 1,1(Ω) ∩ L∞(Ω) such that ‖um,n‖∞ ≤ Mn
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for all m,n ∈ N, um,n → Gk(un) in L1(Ω) and
∫

Ω |∇um,n| → ‖DGk(un)‖ as
m → ∞. Let w ∈ W 1,1(Ω) ∩ L∞(Ω). Using w + um,n as a test function in
(27) we obtain∫

Ω
(w + um,n − un)vn ≤

∫
Ω
zn · (∇w +∇um,n)− ‖Dun‖

≤
∫

Ω
zn · ∇w +

∫
Ω
|∇um,n| − ‖Dun‖.

Letting m→∞ and using Lemma 3 we obtain∫
Ω

(w − Tk(un))vn ≤
∫

Ω
zn · ∇w − ‖DTk(un)‖. (28)

Taking w = 0 in (28) we have that

‖DTk(un)‖ ≤
∫

Ω
Tk(un)vn ≤ k sup

n
‖vn‖1.

It follows that Tk(u) ∈ BV (Ω). Since ‖zn‖∞ ≤ 1 we may assume that
zn ⇀ z in the weak* topology of L∞(Ω,RN ) with ‖z‖∞ ≤ 1. Now, letting
n→∞ in (28) we obtain that∫

Ω
(w − Tk(u))v ≤

∫
Ω
z · ∇w − ‖DTk(u)‖.

To prove Theorem 2 we need to use test functions in BV (Ω) ∩ L∞(Ω). The
next lemma shows that this is indeed possible. We shall need several results
from [5]. If z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω) we define the functional
(z,Dw) : C∞0 (Ω)→ R by the formula

〈(z,Dw), ϕ〉 = −
∫

Ω
wϕdiv(z) dx−

∫
Ω
w z · ∇ϕdx. (29)

Then (z,Dw) is a Radon measure in Ω,∫
Ω

(z,Dw) =
∫

Ω
z · ∇w dx (30)

for all w ∈W 1,1(Ω) ∩ L∞(Ω) and∣∣∣ ∫
B

(z,Dw)
∣∣∣ ≤ ∫

B
|(z,Dw)| ≤ ‖z‖∞

∫
B
‖Dw‖ (31)
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for any Borel set B ⊆ Ω. Moreover, (z,Dw) is absolutely continuous with
respect to ‖Dw‖ with Radon-Nikodym derivative θ(z,Dw, x), which is a
‖Dw‖ measurable function from Ω to R such that∫

B
(z,Dw) =

∫
B
θ(z,Dw, x)‖Dw‖ (32)

for any Borel set B ⊆ Ω. We also have that

‖θ(z,Dw, ·)‖L∞(Ω,‖Dw‖) ≤ ‖z‖L∞(Ω,RN ). (33)

Lemma 4. We have the following characterization of the operator A :

(u, v) ∈ A if and only if u, v ∈ L1(Ω), Tk(u) ∈ BV (Ω) for all k > 0 and
there exists z ∈ X(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that∫

Ω
(w − Tk(u))v ≤

∫
Ω

(z,Dw)− ‖DTk(u)‖, (34)

∀w ∈ BV (Ω) ∩ L∞(Ω), ∀k > 0. Moreover, we have that
i)
∫

Ω(z,DTk(u)) = ‖DTk(u)‖, for all k > 0,
ii)
∫

Ω vTk(u) = ‖DTk(u)‖, for all k > 0,
iii)

∫
Ωwv =

∫
Ω(z,Dw), for all w ∈ BV (Ω) ∩ L∞(Ω).

Remark. As a consequence we also have the following characterization of
A: (u, v) ∈ A if and only if u, v ∈ L1(Ω), Tk(u) ∈ BV (Ω) for all k > 0
and there exists z ∈ X(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that∫

Ω(w − Tk(u))v =
∫

Ω(z,Dw −DTk(u)), ∀w ∈ BV (Ω) ∩ L∞(Ω), ∀k > 0.
Proof. Let B be the operator defined in the statement of the lemma. Since∫

Ω(z,Dw) =
∫

Ω z ·∇w when w ∈W 1,1(Ω)∩L∞(Ω) we have that B⊆A. Now,
let (u, v) ∈A. Let z ∈ X(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that∫

Ω
(ϕ− Tk(u))v ≤

∫
Ω
z · ∇ϕ− ‖DTk(u)‖, (35)

∀ϕ ∈ W 1,1(Ω) ∩ L∞(Ω), ∀k > 0. Let w ∈ BV (Ω) ∩ L∞(Ω). Using Lemmas
5.2 and 1.8 in [5] we know that there exists a sequence wn ∈ C∞(Ω)∩BV (Ω)
such that

wn → w in L1(Ω),
∫

Ω
|∇wn| → ‖Dw‖, (36)∫

Ω
z · ∇wn =

∫
Ω

(z,Dwn)→
∫

Ω
(z,Dw).
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Using ϕ = wn as test function in (35) we may write∫
Ω

(wn − Tk(u))v ≤
∫

Ω
z · ∇wn − ‖DTk(u)‖. (37)

Letting n→∞ and taking (36) we obtain∫
Ω

(w − Tk(u))v ≤
∫

Ω
(z,Dw)− ‖DTk(u)‖.

We conclude that (u, v) ∈B and, therefore, A=B.
Now, taking w = Tk(u) in (34) we obtain 0 ≤

∫
Ω(z,DTk(u))−‖DTk(u)‖.

Thus, ∫
Ω

(z,DTk(u)) ≤ ‖z‖∞‖DTk(u)‖ ≤ ‖DTk(u)‖ ≤
∫

Ω
(z,DTk(u)),

and we obtain i). To prove ii) we take w = 0 in (34) to obtain

‖DTk(u)‖ ≤
∫

Ω
vTk(u)

and then w = 2Tk(u) to obtain, using i),∫
Ω
vTk(u) ≤ 2

∫
Ω

(z,DTk(u))− ‖DTk(u)‖ = ‖DTk(u)‖.

After using ii) in (34) we may write
∫

Ωwv ≤
∫

Ω(z,Dw) for any w ∈ BV (Ω)∩
L∞(Ω). Since the same inequality holds for −w ∈ BV (Ω)∩L∞(Ω) we obtain
iii).
Remark. As a consequence of i) we have that θ(z,DTk(u), x) = 1 almost ev-
erywhere with respect to the measure ‖DTk(u)‖. In case that z ∈ C(Ω,RN ),
this implies that z(x) · DTk(u)

‖DTk(u)‖ = 1, ‖DTk(u)‖-almost everywhere where
DTk(u)
‖DTk(u)‖ denotes the density of DTk(u) with respect to ‖DTk(u)‖. Heuris-

tically, this amounts to saying that z = Du
‖Du‖ . When z is not continu-

ous we have that z(x) · DTk(u)
‖DTk(u)‖ = 1, ‖∇Tk(u)‖-almost everywhere where

‖∇Tk(u)‖ denotes the absolutely continuous part of ‖DTk(u)‖ with respect
to the Lebesgue measure in RN ([5]). In particular, if u ∈W 1,1(Ω)∩L∞(Ω)
we have that z(x) · ∇u‖∇u‖ = 1, ‖∇u‖-almost everywhere.
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Proof of Theorem 2. Let (u, v), (û, v̂) ∈A, p ∈ P0. We have to prove that∫
Ω
p(u− û)(v − v̂) ≥ 0. (38)

Let z, ẑ ∈ X(Ω), ‖z‖∞ ≤ 1, ‖ẑ‖∞ ≤ 1, be such that v = −div(z), v̂ =
−div(ẑ) and ∫

Ω
(w − Tk(u))v =

∫
Ω

(z,Dw)− ‖DTk(u)‖, (39)∫
Ω

(w − Tk(û))v̂ =
∫

Ω
(ẑ, Dw)− ‖DTk(û)‖, (40)

for any w ∈ BV (Ω) ∩ L∞(Ω) and any k > 0. As observed in the previ-
ous remark, θ(z,DTk(u), x) = 1 ‖DTk(u)‖-almost everywhere, and, using
Corollary 1.6 in [5], we obtain that∫

B
(z,DTk(u)) =

∫
B
θ(z,DTk(u), x)‖DTk(u)‖ =

∫
B
‖DTk(u)‖,∣∣∣∫

B
(ẑ, DTk(u))

∣∣∣ ≤ ∫
B
‖DTk(u)‖

for any Borel set B ⊆ Ω. Similarly,∫
B

(ẑ, DTk(û)) =
∫
B
‖DTk(û)‖,

∣∣∣∫
B

(z,DTk(û))
∣∣∣ ≤ ∫

B
‖DTk(û)‖

for any Borel set B ⊆ Ω. It follows that∫
B

(z − ẑ, D(Tk(u)− Tk(û))) ≥ 0

for any Borel set B ⊆ Ω. This implies that

θ(z − ẑ, D(Tk(u)− Tk(û)), x) ≥ 0 ‖D(Tk(u)− Tk(û))‖-almost everywhere.

Since, according to Proposition 2.8 in [5], we have that

θ(z − ẑ, Dp(Tk(u)− Tk(û)), x) = θ(z − ẑ, D(Tk(u)− Tk(û)), x)

almost everywhere with respect to the measures ‖D(Tk(u) − Tk(û))‖ and
‖Dp(Tk(u)− Tk(û))‖. We conclude that

θ(z − ẑ, Dp(Tk(u)− Tk(û)), x) ≥ 0, ‖Dp(Tk(u)− Tk(û))‖ a.e. (41)
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Taking w = Tk(u)+p(Tk(u)−Tk(û)) in (39) and w = Tk(û)−p(Tk(u)−Tk(û))
in (40), adding both terms, and using (41), we obtain∫

Ω
p(Tk(u)− Tk(û))(v − v̂) =

∫
Ω

(z − ẑ, Dp(Tk(u)− Tk(û)))

=
∫

Ω
θ(z − ẑ, Dp(Tk(u)− Tk(û)), x)‖Dp(Tk(u)− Tk(û))‖ ≥ 0.

The inequality (38) follows by letting k → ∞. Therefore A is completely
accretive. Since A is an extension of A, using Proposition 1 we obtain that
R(I+A) is dense in L1(Ω). It follows that A is m-completely accretive
in L1(Ω) ([7]). By Crandall-Ligget’s theorem, A generates a contraction
semigroup in L1(Ω) given by the exponential formula

e−tAu0 = lim
n→∞

(I +
t

n
A)−nu0 for any u0 ∈ L1(Ω).

The function u(t) = e−tAu0 is a mild solution (a solution in the sense of
semigroups [7]) of

du

dt
+Au 3 0, u(0) = u0. (42)

To prove that u(t) is a strong solution of (42) we shall use the regularizing
effect due to the homogeneity of the operator A [6]. Let us first observe that

if (u, v) ∈A and λ > 0, then (λu, v) ∈A. (43)

Indeed, let (u, v) ∈A and let z ∈ X(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω)
satisfying ∫

Ω
(w − Tk(u))v ≤

∫
Ω

(z,Dw)− ‖DTk(u)‖, (44)

∀w ∈ BV (Ω) ∩ L∞(Ω), ∀k > 0. Then, take as test function in (44) w +
Tk(u)− Tk(λu) instead of w ∈ BV (Ω) ∩ L∞(Ω) to obtain∫

Ω
(w − Tk(λu))v ≤

∫
Ω

(z,Dw)− ‖DTk(λu)‖.

In other words, (λu, v) ∈ A. From (43) it follows immediately that

1
λ

(I + λµA)−1u0 = (I + µA)−1(
1
λ
u0) (45)
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for any λ, µ > 0 and any u0 ∈ L1(Ω). Iterating (45) and taking µ = t
n we

obtain

(I +
t

n
A)−n(

1
λ
u0) =

1
λ

(I + λ
t

n
A)−nu0 (46)

for any λ > 0, n ∈ N and u0 ∈ L1(Ω). Writing S(t) = e−tA and letting
n→∞ in (46) we may write

S(t)(
1
λ
u0) =

1
λ
S(λt)u0, (47)

for any λ > 0 and any u0 ∈ L1(Ω). Now, let u0 ∈ L1(Ω) and u(t) = S(t)u0.
Since A is m-completely accretive in L1(Ω), u(t) will be a strong solution of
(42) once we know that S(t)u0 ∈ D(A) for all t > 0 ([7], Theorem 4.2). From
the proof of Theorem 4.2 in [7] it is sufficient to prove that, given t > 0, for
some sequence tn ↓ 0{S(t+ tn)u0 − S(t)u0

tn

}∞
n=1

is weakly convergent in L1(Ω). (48)

Fix t > 0 and let h > 0, λ = 1 + h
t . Using (47) we have that

S(t+ h)u0 − S(t)u0 = S(λt)u0 − S(t)u0 = λS(t)(
1
λ
u0)− S(t)u0

= λ
[
S(t)(

1
λ
u0)− S(t)u0

]
+ (λ− 1)S(t)u0.

From this, it follows that

|S(t+ h)u0 − S(t)u0| ≤ λ|S(t)(
1
λ
u0)− S(t)u0|+ |λ− 1||S(t)u0|. (49)

The complete accretivity of A implies that S(t)( 1
λu0)−S(t)u0 <<

1
λu0−u0,

S(t)u0 << u0. Since u << v, u, v ∈M(Ω) implies that αu << αv, α > 0,
and |u| << |v|, the previous relations in turn imply that

λ|S(t)(
1
λ
u0)− S(t)u0| << (λ− 1)|u0|, (50)

(λ− 1)|S(t)u0| << (λ− 1)|u0|.

Since the set {f ∈M(Ω) : f << (λ− 1)|u0|} is convex we deduce from (49)
and (50) that |S(t+ h)u0 − S(t)u0| << 2(λ− 1)|u0| = 2ht |u0|; hence,

|S(t+ h)u0 − S(t)u0|
h

<<
2
t
|u0|. (51)
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Now, using Proposition 2.11 in [7] we conclude that
{ |S(t+h)u0−S(t)u0|

h

}
h>0

is
weakly compact in L1(Ω) and (48) holds. Notice also that as a consequence
of (51) we obtain

|u′(t)| ≤ 2
t
|u0|. (52)

Remark. Let us mention another proof of the complete accretivity of A.
For that we consider the functional Φ : L1(Ω)→ (−∞,+∞] defined by

Φ(u) =

{∫
Ω |∇u| if u ∈W 1,1(Ω)

+∞ if u 6∈W 1,1(Ω).
(53)

Then, using Lemma 7.1 in ([7]) we know that the operator ∂L1(Ω)Φ in L1(Ω)
defined by (u, v) ∈ ∂L1(Ω)Φ if and only if u ∈ W 1,1(Ω), v ∈ L1(Ω), and
Φ(w) ≥ Φ(u) −

∫
Ω(w − u)v, ∀w ∈ L1(Ω) such that (w − u)v ∈ L1(Ω) is

completely accretive in L1(Ω). Now, the lower-semicontinuous envelope of
the functional Φ is the functional Ψ given by

Ψ(u) =

{∫
Ω |∇u| if u ∈ BV (Ω)

+∞ if u 6∈ BV (Ω),
(54)

and, using Lemma 7.5 in [7], we know that ∂L1(Ω)Ψ
L1(Ω) is m-completely

accretive in L1(Ω). We obtain using Proposition 1 above and Proposition

3.4 in [7] that A= ∂L1(Ω)Ψ
L1(Ω).

3. Existence and uniqueness of weak solutions.

Lemma 5. Let u ∈ C([0, T ], L1(Ω)) ∩ W 1,1
loc (0, T ;L1(Ω)) be the strong so-

lution of (15) with initial condition u(0) = u0 ∈ L1(Ω). Let Jk(r) =∫ r
0 Tk(s) ds, k > 0. Then∫

Ω
Jk(u(t)) +

∫ t

0
‖DTk(u(s))‖ ds ≤

∫
Ω
Jk(u0) (55)

for all t > 0 and all k > 0.
Proof. Since, almost everywhere on [0, T ], (u(t),−ut(t)) ∈A, for almost
all t ∈ [0, T ] there exists z(t) ∈ X(Ω) with ‖z(t)‖∞ ≤ 1 such that ut(t) =
div(z(t)) and∫

Ω
(Tk(u(t))− w)ut(t) ≤

∫
Ω
z(t) · ∇w dx− ‖DTk(u(t))‖ (56)



minimizing total variation flow 337

for all w ∈W 1,1(Ω) ∩ L∞(Ω), and all k > 0. Now set w = 0 in (56) to get

d

dt

∫
Ω
Jk(u(t)) + ‖DTk(u(t))‖ ≤ 0.

Integrating this expression we obtain (55).
Lemma 6. Let u, v ∈ L1(Ω), u ∈ BV (Ω), z ∈ X(Ω), with ‖z‖∞ ≤ 1 and
v = −div(z). Suppose that∫

Ω
(w − u)v ≤

∫
Ω
z · ∇w dx− ‖Du‖ ∀w ∈W 1,1(Ω) ∩ L∞(Ω). (57)

Then ∫
Ω

(w − Tk(u))v ≤
∫

Ω
z · ∇w dx− ‖DTk(u)‖ (58)

∀w ∈W 1,1(Ω) ∩ L∞(Ω), ∀k > 0.
Proof. As in Lemma 4, we observe that we may use test functions w ∈
BV (Ω) ∩ L∞(Ω) in (57). If we set w = u in (57) we have that∫

Ω
(z,Du) = ‖Du‖. (59)

Since ∫
Ω

(z,DTk(u)) ≤ ‖DTk(u)‖,
∫

Ω
(z,DGk(u)) ≤ ‖DGk(u)‖,

and

‖Du‖=
∫

Ω
(z,Du)=

∫
Ω

(z,DTk(u)+DGk(u))≤‖DTk(u)‖+‖DGk(u)‖=‖Du‖

we obtain∫
Ω

(z,DTk(u)) = ‖DTk(u)‖,
∫

Ω
(z,DGk(u)) = ‖DGk(u)‖.

Now, set w = ϕ+Gk(u), ϕ ∈W 1,1(Ω) ∩ L∞(Ω), in (57) to obtain∫
Ω

(ϕ−Tk(u))v ≤
∫

Ω
z ·∇ϕ+

∫
Ω

(z,DGk(u))−‖Du‖ =
∫

Ω
z ·∇ϕ−‖DTk(u)‖.

We shall need the following lemma, whose proof is straightforward.
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Lemma 7. Let u ∈ C([0, T ], L1(Ω))∩W 1,1
loc (0, T ;L1(Ω)), z ∈ L∞((0, T )×Ω)

with ‖z‖∞ ≤ 1 and such that ut = div(z) in D′((0, T )×Ω). Then for almost
all t ∈ [0, T ]

ut(t) = div(z(t)) in D′(Ω).

Proof of Theorem 1. Let u ∈ C([0, T ], L1(Ω)) ∩W 1,1
loc (0, T ;L1(Ω)) be the

strong solution of (15). Let us assume that u0 ∈ L∞(Ω) ∩ D(A). By the
complete accretivity of A we know that ‖u(t)‖∞ ≤ ‖u0‖∞, and taking k >
‖u0‖∞ we conclude by using Lemma 5 that u ∈ L1(0, T ;BV (Ω)). Since u(t)
is a strong solution of (15), the set K consisting of those values of t ∈ [0, T ]
for which either u is not differentiable at t, or t is not a Lebesgue point for
u′, or u′+Au 63 0, is a null subset of [0, T ]. Then, since u′ ∈ L1(0, T ;L1(Ω)),
Proposition 1.5 in [8] guarantees us that for each ε > 0, there exists a
partition 0 = t0 < t1 < · · · < tn−1 ≤ T < tn with the properties tk 6∈ K,
tk − tk−1 < ε, for k = 1, . . . , n, and

n∑
k=1

∫ tk

tk−1

‖u′(s)− u′(tk)‖ ds < ε.

If one defines uε as uε(0) = u0, uε(t) = u(tk) on (tk−1, tk], k = 1, . . . , n, then
uε → u in C(0, T ;L1(Ω)).

Since (u(tk),−u′(tk)) ∈ A, there exists zk ∈ X(Ω), with u′(tk) = div(zk)
in D′(Ω) such that∫

Ω
(u(tk)− w)u′(tk) ≤

∫
Ω
zk · ∇w − ‖Du(tk)‖

for all w ∈ W 1,1(Ω) ∩ L∞(Ω). Thus, if we set zε(t) = zk and vε(t) = u′(tk)
on (tk−1, tk], k = 1, . . . , n, we get∫ T

0

∫
Ω

(uε − w) vε ϕ ≤
∫ T

0

{∫
Ω
zε · ∇w − ‖Duε(t)‖

}
ϕ(t)

for all w ∈W 1,1(Ω) ∩ L∞(Ω) and all ϕ ∈ C1
0 (0, T ), ϕ ≥ 0. Now, letting ε→

0+, and applying the Vitali convergence theorem, it follows that there exists
z ∈ L∞((0, T ) × Ω) with ‖z‖∞ ≤ 1 such that ut = div(z) in D′((0, T ) × Ω)
and ∫ T

0

∫
Ω

(u− w)ut ϕ ≤
∫ T

0

{∫
Ω
z · ∇w − ‖Du(t)‖

}
ϕ(t)
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for all w ∈W 1,1(Ω)∩L∞(Ω) and all ϕ ∈ C1
0 (0, T ), ϕ ≥ 0. Since (u−w)ut ∈

L1
loc(0, T ;L1(Ω)),

∫
Ω z · ∇w − ‖Du(t)‖ ∈ L1(0, T ) it follows that∫

Ω
(u(t)− w)ut(t) ≤

∫
Ω
z(t) · ∇w − ‖Du(t)‖

for every w ∈W 1,1(Ω)∩L∞(Ω) and almost everywhere on [0, T ]. Now, using
Lemmas 6 and 7 we obtain that∫

Ω
(Tk(u(t))− w)ut(t) ≤

∫
Ω
z(t) · ∇w − ‖DTk(u(t))‖ (60)

for every w ∈ W 1,1(Ω) ∩ L∞(Ω) and almost everywhere on [0, T ]. We have
shown that u(t) is a weak solution of (1).

Now, let u0 ∈ L1(Ω) and let u0n ∈ L∞(Ω)∩D(A). Let un, u be the strong
solutions of (15) with initial data u0n, u0, respectively. We know that un con-
verges to u in C([0, T ], L1(Ω)) and u ∈ C([0, T ], L1(Ω)) ∩W 1,1

loc (0, T ;L1(Ω)).
By Lemma 5, we have that∫ T

0
‖DTk(un(s))‖ ds ≤

∫
Ω
Jk(u0n) (61)

for all T > 0 and all k > 0. It follows that Tk(u) ∈ L1(0, T ;BV (Ω)) for all
k > 0. By the previous paragraph, there exist zn ∈ L∞((0, T ) × Ω) with
‖zn‖∞ ≤ 1 such that unt = div(zn) in D′((0, T )× Ω) and∫ T

0

∫
Ω

(Tk(un)− w)unt ϕ ≤
∫ T

0

∫
Ω
zn · ∇wϕ−

∫ T

0
‖DTk(un(t))‖ϕ(t)

for all w ∈ W 1,1(Ω) ∩ L∞(Ω), all ϕ ∈ C1
0 (0, T ), ϕ ≥ 0 and all k > 0. Write

the previous expression in the form∫ T

0

∫
Ω

(unw − Jk(un))ϕ′ ≤
∫ T

0

∫
Ω
zn · ∇wϕ−

∫ T

0
‖DTk(un(t))‖ϕ(t) (62)

for all w ∈ W 1,1(Ω) ∩ L∞(Ω), all ϕ ∈ C1
0 (0, T ), ϕ ≥ 0 and all k > 0.

Modulo a subsequence, we may assume that zn ⇀ z in the weak* topology
of L∞((0, T )× Ω). Now letting n→∞ in (62) we obtain∫ T

0

∫
Ω

(uw − Jk(u))ϕ′ ≤
∫ T

0

∫
Ω
z · ∇wϕ−

∫ T

0
‖DTk(u(t))‖ϕ(t)
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for all w ∈ W 1,1(Ω) ∩ L∞(Ω), all ϕ ∈ C1
0 (0, T ), ϕ ≥ 0 and all k > 0.

Integrating by parts with respect to t in the left-hand side of the above
expression we obtain∫ T

0

∫
Ω

(Tk(u)− w)ut ϕ ≤
∫ T

0

{∫
Ω
z · ∇w − ‖DTk(u(t))‖

}
ϕ(t)

for all w ∈ W 1,1(Ω) ∩ L∞(Ω), all ϕ ∈ C1
0 (0, T ), ϕ ≥ 0 and all k > 0. Since

(Tk(u) − w)ut ∈ L1
loc(0, T ;L1(Ω)),

∫
Ω z · ∇w − ‖DTk(u(t))‖ ∈ L1(0, T ) it

follows that∫
Ω

(Tk(u(t))− w)ut(t) ≤
∫

Ω
z(t) · ∇w − ‖DTk(u(t))‖

for all w ∈ W 1,1(Ω) ∩ L∞(Ω) and all k > 0, almost everywhere on [0, T ].
Finally observe that ut = div(z) in D′((0, T ) × Ω) and ‖z‖∞ ≤ 1. We
conclude that u is a weak solution of (1).

For further reference, let us observe that, according to Lemma 4, we also
have ∫

Ω
(Tk(u(t))− w)ut(t) =

∫
Ω

(z(t), Dw)− ‖DTk(u(t))‖ (63)

for all w ∈ BV (Ω) ∩ L∞(Ω) and all k > 0, almost everywhere on [0, T ].
Let us finally observe that a weak solution of (1) is a strong solution of

(15). Let u be a weak solution of (1) in (0, T )×Ω. Then u ∈ C([0, T ], L1(Ω))∩
W 1,1
loc ((0, T ), L1(Ω)), Tk(u) ∈ L1([0, T ], BV (Ω)) for all k > 0 and there exists

z ∈ L∞((0, T )× Ω) with ‖z‖∞ ≤ 1, ut = div(z) in D′((0, T )× Ω) such that∫
Ω

(Tk(u(t))− w)ut(t) ≤
∫

Ω
z(t) · ∇w − ‖DTk(u(t))‖ (64)

for every w ∈W 1,1(Ω)∩L∞(Ω) and almost everywhere on [0, T ]. By Lemma
7 we have that almost everywhere on [0, T ], ut(t) = div(z(t)). Hence almost
everywhere on [0, T ], z(t) ∈ X(Ω) and, since (64) holds also almost every-
where on [0, T ], we have that almost everywhere on [0, T ] (u(t),−ut(t)) ∈A,
i.e.,

u′(t) +Au(t) 3 0 a.e. on [0, T ].

Therefore u is a strong solution of (15). The uniqueness of weak solutions
of (1) follows as a consequence of the uniqueness of strong solutions of (15).
The comparison estimates (7) follow from the complete accretivity of A.
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4. Asymptotic behaviour of solutions. In this section we establish
that the mild solutions of problem (1) stabilize as t→ 0 by converging to a
constant function. In order to prove the stabilization theorem we need the
orbits to be relatively compact.

Lemma 8. Let (S(t))t≥0 be the semigroup generated by A. Then, for every
u0 ∈ L1(Ω) the orbit γ(u0) = {S(t)u0 : t ≥ 0} is a relatively compact subset
of L1(Ω).

Proof. Let Jλ be the resolvent of A. Then, Jλ(B) is a relatively compact
subset of L1(Ω) if B is a bounded subset of L∞(Ω). In fact, let B be a
bounded subset of L∞(Ω). Take {fn}∞n=1 ⊆ B and let un := Jλfn. Set
M := supn∈N ‖fn‖∞ < ∞. Since A is m-completely accretive, ‖un‖∞ ≤ M
for every n ∈ N. Moreover, since (un, 1

λ(fn − un)) ∈ A, by Lemma 4,

‖Dun‖ =
∫

Ω

1
λ

(fn − un)un ≤
2
λ
M2 for all n ∈ N.

Thus, {un : n ∈ N} is a bounded sequence in BV (Ω), and by [24, Corollary
5.3.4] we have that {un : n ∈ N} is a relatively compact subset of L1(Ω).

Consider first u0 ∈ D(A) ∩ L∞(Ω). Then, since ‖S(t)u0‖∞ ≤ ‖u0‖∞ for
all t ≥ 0, we have that Jλ(γ(u0)) is a relatively compact subset of L1(Ω) for
all λ > 0. Moreover,

‖S(t)u0 − JλS(t)u0‖1 ≤ λ inf{‖v‖1 : v ∈ A(u0)}.

Hence, γ(u0) is relatively compact in L1(Ω). Finally, since D(A)∩L∞(Ω) is
dense in L1(Ω), given u0 ∈ L1(Ω) and ε > 0, there exists v0 ∈ D(A)∩L∞(Ω)
such that ‖u0 − v0‖1 < ε. Thus we have

sup
t≥0

inf
s≥0
‖S(t)u0 − S(s)v0‖1 ≤ sup

t≥0
‖S(t)u0 − S(t)v0‖1 ≤ ‖u0 − v0‖1 < ε.

It follows that γ(u0) is relatively compact in L1(Ω).
We need the following result about the conservation of mass.

Lemma 9. Let (S(t))t≥0 be the semigroup generated by A. Then, we have
conservation of mass; that is,∫

Ω
S(t)u0 =

∫
Ω
u0, for all t ≥ 0.
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Proof. Given u0 ∈ L1(Ω), let u(t) = S(t)u0. Then, (u(t),−u′(t)) ∈ A.
Hence, taking w = Tk(u(t)) ± 1 as test function in (34), we obtain that∫

Ω u
′(t) = 0. Consequently, the function t 7→

∫
Ω u(t) is constant, and the

proof concludes.

Theorem 3. Let (S(t))t≥0 be the semigroup generated by A. Then

‖S(t)u0 − u0‖1 → 0 as t→∞,

where u0 = 1
µ(Ω)

∫
Ω u0(x) dx. Moreover, if u0 ∈ L∞(Ω) there exists a constant

C, independent of u0, such that

‖S(t)u0 − u0‖p ≤
C‖u0‖22

t
for all t > 0, and 1 ≤ p ≤ N

N − 1
.

Proof. Suppose first that u0 ∈ L∞(Ω). Since A is completely accretive then
‖u(t)‖∞ ≤ ‖u0‖∞. Using k > ‖u0‖∞ and letting t→∞ in (55) we have∫ ∞

0
‖DS(τ)u0‖ dτ ≤

1
2

∫
Ω
u2

0. (65)

Thus, there exists a sequence tn →∞, such that ‖DS(tn)u0‖ → 0 as n→∞.
Now by Lemma 8, there exists a subsequence (tnk) such that

lim
k→∞

S(tnk)u0 = v ∈ ω(u0),

and by the lower semicontinuity of the total variation, it follows that

‖Dv‖ ≤ lim inf
k→∞

‖DS(tnk)u0‖ = 0.

Therefore, v is a constant K, and consequently, S(t)K = K for all t ≥ 0,
so as S(t) are contractions we get ω(u0) = {K} and limt→∞ S(t)u0 = K.
Now, as a consequence of Lemma 9, K = u0 and the proof for the case
u0 ∈ L∞(Ω) concludes. Now, from the above we obtain easily the conclusion
in the general case u0 ∈ L1(Ω).

Finally, suppose u0 ∈ L∞(Ω). Then, by (65) we have that∫ t

0
‖DS(s)u0‖ ds ≤

1
2
‖u0‖22 ∀ t > 0. (66)
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On the other hand, since S(s)u0 = u0, by the Poincaré-Wirtinger inequality
(see, [24, Theorem 5.11.1]), it follows that

‖S(s)u0 − u0‖p = ‖S(s)u0 − S(s)u0‖p ≤M‖DS(s)u0‖, (67)

for all s > 0, and 1 ≤ p ≤ N
N−1 . Then, (66) and (67) imply that∫ t

0
‖S(s)u0 − u0‖p ds ≤

M

2
‖u0‖22 ∀ t > 0. (68)

Now, since A is completely accretive and V (u) = ‖u − u0‖p is a Lyapunov
functional for the semigroup generated by A. Using (68) we get

t‖S(t)u0 − u0‖p ≤
∫ t

0
‖S(s)u0 − u0‖p ds ≤

M

2
‖u0‖22,

concluding the proof.

5. Some qualitative properties. We shall prove that the length of
the level curves of the solution is a decreasing function of time, as should
be expected. We shall also prove that flat zones which are local maxima
(minima) immediately decrease (respectively, increase) with time.

Let Ta,b(r) = min(max(a, r), b), a, b, r ∈ R, a < b. Let ψ : BV (Ω) →
[0,+∞) be defined by

ψ(u) = ‖Du‖, u ∈ BV (Ω).

Proposition 2. Let u0 ∈ L1(Ω). Let u(t, x) be the weak solution of (1).
Then

ψ(Ta,b(u(t))) ≤ ψ(Ta,b(u(s))) (69)

almost everywhere in s, t ∈ (0,∞), t > s and all a < b.

Proof. Assume first that u0 ∈ L2(Ω). Let δ > 0 and t, s ≥ δ such that
(u(t),−ut(t)), (u(s),−ut(s)) ∈ A. Let a, b ∈ R. Assume that 0 ≤ a < b. We
have ∫

Ω
(Tb(u(t))− w)ut(t) ≤

∫
Ω

(z(t), Dw)− ‖DTb(u(t))‖ (70)
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for all w ∈ BV (Ω)∩L∞(Ω). Use as test function w− a+ T−b,a(u(t)). Then∫
Ω

(Ta,b(u(t))− w)ut(t)

≤
∫

Ω
(z(t), Dw) +

∫
Ω

(z(t), DT−b,a(u(t)))− ‖DTb(u(t))‖

≤
∫

Ω
(z(t), Dw)− ‖DTa,b(u(t))‖

for all w ∈ BV (Ω) ∩ L∞(Ω). Consequently, we have∫
Ω

(Ta,b(u(t))− w)ut(t) ≤
∫

Ω
(z(t), Dw)− ‖DTa,b(u(t))‖ (71)

for all w ∈ BV (Ω) ∩ L∞(Ω) and all a, b ∈ R, a < b. Setting w = Ta,b(u(s))
in (71) we have

‖DTa,b(u(t))‖ − ‖DTa,b(u(s))‖ ≤
∫

Ω
ut(t)(Ta,b(u(s))− Ta,b(u(t))).

Using estimate (52) we may write

‖DTa,b(u(t))‖ − ‖DTa,b(u(s))‖ ≤ 2
δ
‖u0‖2‖Ta,b(u(s))− Ta,b(u(t))‖2.

Since a similar estimate holds with s and t interchanged, we have

|‖DTa,b(u(t))‖ − ‖DTa,b(u(s))‖| ≤ 2
δ
‖u0‖2‖Ta,b(u(s))− Ta,b(u(t))‖2. (72)

Since u ∈W 1,1
loc ((0, T ), L2(Ω)), i.e, is a locally absolutely continuous function

of time, then also Ta,b(u) is, and, from (72), we deduce that ψ(Ta,b(u)) is
absolutely continuous in [0, T ] for all T > 0. Let t ∈ [0,∞) be such that
u, Ta,b(u), ψ(Ta,b(u)) are differentiable at t and (u(t),−ut(t)) ∈ A. Set
w = Ta,b(u(t+ ε)), w = Ta,b(u(t− ε)) in (71) to obtain∫

Ω
(Ta,b(u(t))− Ta,b(u(t± ε)))ut(t) ≤ ψ(Ta,b(u(t± ε)))− ψ(Ta,b(u(t))).

Letting ε→ 0+ we have

d

dt
ψ(Ta,b(u(t))) = −

∫
Ω
T ′a,b(u(t))ut(t)2 ≤ 0.
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Hence, ψ(Ta,b(u(t))) is a decreasing function of time. In particular, for all
s < t such that Ta,b(u(s)), Ta,b(u(t)) ∈ BV (Ω), hence almost everywhere in
s, t, s < t, we have

ψ(Ta,b(u(t))) ≤ ψ(Ta,b(u(s))). (73)

In particular, if u(0) ∈ L2(Ω) and Ta,b(u(0)) ∈ BV (Ω) for all a < b, then

ψ(Ta,b(u(t))) ≤ ψ(Ta,b(u(0))) (74)

almost everywhere in t ∈ (0,∞), for all a < b.
Now, let u0 ∈ L1(Ω) and u(t) be the corresponding weak solution of

(1). Let s > 0 be such that Ta,b(u(s)) ∈ BV (Ω) for all a < b (which is
possible by the proof of Lemma 3). Take s as the origin of time. Let un(s) ∈
L2(Ω) ∩ BV (Ω), such that un(s) → u(s) in L1(Ω) and ‖DTa,b(un(s))‖ →
‖DTa,b(u(s))‖ as n→∞, for all a < b. Let un(t, x) be the weak solution of
(1) with initial condition at t = s, un(s, x) = un(s)(x). Then un(t) → u(t)
in C([s, T ], L1(Ω)) for all T > s. Using (74) we have

ψ(Ta,b(un(t))) ≤ ψ(Ta,b(un(s))),

for almost all t ∈ (s,∞) and all a < b. Letting n→∞, we get

ψ(Ta,b(u(t))) ≤ ψ(Ta,b(u(s))), (75)

for almost all t ∈ (s,∞) and all a < b. Hence (75) holds for almost all
s, t ∈ (0,∞), s < t, and all a < b.
Lemma 10. Let g(t, λ) ∈ L1

loc((0,∞) × R). Let ∆ = {(s, t) ∈ (0,∞) ×
(0,∞) : s < t}. Suppose that∫ b

a
g(t, λ) dλ ≤

∫ b

a
g(s, λ) dλ (76)

almost everywhere in (s, t) ∈ ∆ and all a < b. Then g(t, λ) ≤ g(s, λ) almost
everywhere in (s, t, λ) ∈ ∆× R.
Proof. Consider the function G(s, t, λ) defined in ∆ × R by G(s, t, λ) =
g(t, λ) − g(s, λ). Let (s0, t0, λ0) be a Lebesgue point of G. By assumption
we know that for r > 0 and almost all (s, t) ∈ ∆,

∫ λ0+r
λ0−r G(s, t, λ) dλ ≤ 0.

Hence,

G(s0, t0, λ0) = lim
r→0+

1
(2r)3

∫ s0+r

s0−r

∫ t0+r

t0−r

∫ λ0+r

λ0−r
G(s, t, λ) ds dt dλ ≤ 0.

Since almost all points of ∆×R are Lebesgue points of G, the lemma follows.
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Corollary 1. Let u0 ∈ L1(Ω). Let u(t, x) be the weak solution of (1). Then,
for almost all λ ∈ R,

‖Dχ{u(t)>λ}‖ ≤ ‖Dχ{u(s)>λ}‖ (77)

a.e. in s, t ∈ (0,∞), t > s > 0.
Proof. Let g(t, λ) = ‖Dχ{u(t)>λ}‖. By Proposition 2 and the co-area for-
mula, g satisfies the assumptions of lemma 10. Then the conclusion follows
from that lemma.

Note that ‖Dχ{u(t)>λ}‖ = HN−1(∂∗{u(t) > λ}), where HN−1 is the
(N − 1)-dimensional Hausdorff measure and ∂∗{u(t) > λ} is the reduced
boundary of the set {x ∈ Ω : u(t) > λ} (see [24] or [15]).

Next, we prove that flat zones which are local maxima (minima) imme-
diately decrease (respectively, increase) with time. To simplify our presen-
tation, let us take Ω to be a cube in RN .
Proposition 3. Let u0 ∈ C(Ω), 0 ≤ u0 ≤ 1. Suppose that {x ∈ Ω : u0(x) =
1} = K ⊆ B ⊂⊂ Ω for some ball B. Let u be the weak solution of (1). Then
u(t, x) < 1, for all t > 0, x ∈ Ω.

We shall use a comparison principle for the Dirichlet problem together
with explicit supersolutions to prove Proposition 3.

Let g ∈ C2(R+), g(r) > 0, g′(r) < 0, for r > 0. Let M > 0, M <
g(0+). Let U(x) = min(g(|x|),M), x ∈ RN . Let r0 > 0 be such that
g(r0) = M . Then U(x) = M for |x| ≤ r0 and U(x) = g(|x|) for |x| > r0.
Let R > r0, BR = B(0, R). Let us construct a function U(t, x) such that
U ∈ C([0, T ], BR)∩W 1,1((0, T ), L1(BR)), U ∈ L1([0, T ], BV (BR)), U(0, x) =
U(x) and there exists Z(t) ∈ X(BR) with ‖Z(t)‖∞ ≤ 1, such that for T > 0
small enough and t ∈ [0, T ], we have

Ut = div(Z(t)) in D′(BR) (78)
and ∫

BR

Z(t) ·DU(t) = ‖DU(t)‖. (79)

Let us observe that if u(x) = h(|x|), where h ∈ C2(R+), h(r) > 0, h′(r) < 0,
for r > 0, then div( Du

|Du|) = −N−1
|x| . We expect the solution U(t, x) to be a

radial function. Then if the flat zone of U(x) has to remain flat we should
have that

Ut =

{
−λ if |x| < r(t)
−N−1
|x| if |x| > r(t) (80)
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for some λ > 0 and some r(t) > 0 to be determined and such that r(0) = r0.
Assume that Z(t) = − x

|x| for |x| > r(t). This choice is consistent with (78).
Now, in B(0, r(t)), Z(t) must be such that

div(Z(t)) = −λ with Z(t) |∂B(0,r(t))= − x
|x| , ‖Z(t)‖∞ ≤ 1. (81)

Integrating the previous equation in B(0, r(t)), we have

−λmeas(B(0, r(t))) =
∫
B(0,r(t))

div(Z(t)) dx =
∫
∂B(0,r(t))

z · n

= −HN−1(∂B(0, r(t))),

and, therefore, λ = HN−1(∂B(0,r(t)))
meas(B(0,r(t))) = N

r(t) . Then, we may take Z(t) = − x
r(t)

when |x| < r(t). Such a choice of Z(t) satisfies (81). We have to choose r(t)
such that U(t, x) remains a Lipschitz function, in particular continuous for
|x| = r(t). Assume for the time being that r′(t) > 0. Let us observe that

U(t, 0) = U(0)−N
∫ t

0

ds

r(s)
.

Now, if x ∈ BR is a point such that |x| > r(t), then

U(t, x) = U(x) +
∫ t

0
Ut(s, x) ds = U(x)− t(N − 1)

|x| .

Since the value U(t, r(t)−) must coincide with the value of U(t, 0) and
U(t, r(t)−) = U(t, r(t)+), then

U(0)−N
∫ t

0

ds

r(s)
= U(r(t)+)− t(N − 1)

|r(t)| .

Thus, differentiating the above expression we see that r(t) must satisfy the
differential equation

r′(t) = − r(t)
(N − 1)t+ g′(r(t))r(t)2

. (82)

We take r(t) to be the solution of (82) such that r(0) = r0. Then, the
function

U(t, x) =

 U(0)−N
∫ t

0

ds

r(s)
if |x| < r(t)

U(x)− (N − 1) t
|x| if |x| > r(t).

(83)
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satisfies (78) for t > 0 small, Z(t) being given by

Z(t) =

{
− x
r(t) if |x| < r(t)
− x
|x| if |x| > r(t).

(84)

Observe that ‖Z(t)‖∞ ≤ 1 and satisfies (79) for t > 0 small.
Thus, the following result is established.

Proposition 4. There is some T > 0 such that the function U defined in
(83) is a solution of (78) in D′((0, T )×BR) satisfying (79) for all t ∈ [0, T ]
and such that U(0, x) = U(x). Moreover, U ∈ C([0, T ], BR) ∩W 1,1((0, T ),
L1(BR)), and U ∈ L1([0, T ], BV (BR)).
Proof of Proposition 3. Without loss of generality we may assume that
B = B(0, R). Let U(x) = min(g(|x|), 1) where g ∈ C2(R+), g(r) > 0,
g′(r) < 0, for r > 0. Assume that g(0+) > 1, g(R) < 1. Assume also
that supx∈∂B u0 < g(R) and u0(x) ≤ U(x) for x ∈ B. We observe that
u ∈ C([0, T ] × Ω), for all T > 0, when u0 ∈ C(Ω). For that, assume
that u0 ∈ W 1,∞(Ω). Then u(t) ∈ W 1,∞(Ω) for all t > 0. Indeed, let
u0 ∈W 1,∞(Ω). We know that the solution uε of

∂u

∂t
= div

( Du

(ε2 + |Du|2)1/2

)
+ ε∆u in Q = (0,∞)× Ω (85)

∂u

∂η
= 0 in S = (0,∞)× ∂Ω (86)

u(0, x) = u0(x) for x ∈ Ω (87)

converges in L2(Ω) to the weak solution of (1) (see [19]). If we extend u0(x)
to RN by reflection as an even function and then by periodicity we obtain a
function u0(x) defined in RN . Then if uε(t, x) denotes the solution of (85) in
(0,∞) × RN with initial condition u0(x) then uε(t, x) = uε(t, x) for x ∈ Ω,
t > 0. Now, using the Bernstein method as in [1], it is easy to see that

‖∇u(t)‖∞ ≤ ‖∇u0‖∞, for all t > 0.

Then it follows that u(t) ∈ W 1,∞(Ω) for all t > 0 with Lipschitz constant
‖∇u0‖∞. On the other hand, since A is m-completely accretive in L1(Ω),
A∩(L∞(Ω)×L∞(Ω)) generates a strongly continuous semigroup in L∞(Ω).
Consequently, u is a continuous function in (t, x). Now, let u0 ∈ C(Ω), and
u(t, x) be the corresponding weak solution of (1). Let u0n ∈ W 1,∞(Ω) be
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such that u0n → u0 in C(Ω) as n→∞. If un is the weak solution of (1) with
initial datum u0n, then un ∈ C([0, T ]×Ω) converges to u in C([0, T ], L∞(Ω))
as n→∞. Therefore, u ∈ C([0, T ]× Ω).

Since u(t, x) is a continuous function of (t, x), for some T > 0, we have
that u(t, x) ≤ U(t, x), for all t ∈ [0, T ], x ∈ ∂B. Let us prove that u(t, x) ≤
U(t, x), for all t ∈ [0, T ],x ∈ B, where U(t, x) is the solution constructed in
Proposition 4. Since u is a strong solution of (15), there exists z(t) ∈ X(Ω)
such that

−
∫

Ω
(w − u(t))ut(t) =

∫
Ω

(z(t), Dw)− ‖Du(t)‖ (88)

for all w ∈ BV (Ω)∩L∞(Ω). Taking w̃ = u(t)+wϕ−u(t)ϕ in (88), it follows
that

−
∫

Ω
(w − u(t))ϕut(t)

=
∫

Ω
(z(t), Dw)ϕ−

∫
Ω

(z(t), Du(t))ϕ+
∫

Ω
(z(t), Dϕ)(w − u(t))

for all w ∈ BV (Ω)∩L∞(Ω) and ϕ ∈ D(Ω). Let us take now ϕn ∈ D(Ω) such
that ϕn → χB and

∫
Ω ‖∇ϕn‖ → ‖DχB‖. Then

−
∫

Ω
(w − u(t))ϕnut(t)

=
∫

Ω
(z(t), Dw)ϕn −

∫
Ω

(z(t), Du(t))ϕn +
∫

Ω
(z(t), Dϕn)(w − u(t)).

(89)

By Theorem 4.2 in [5], we have that

lim
n→∞

∫
Ω

(z(t), Dϕn)(w − u(t)) =
∫

Ω
(z(t), DχB)(w − u(t))

= −
∫
∂B

(z(t) · η)(w − u(t))

for all w ∈ C(Ω) ∩ L∞(Ω). Letting n→∞ in (89) we get

−
∫
B

(w − u(t))ut(t) =
∫
B

(z(t), Dw)−
∫
B

(z(t), Du(t)) (90)

−
∫
∂B

(z(t) · η)(w − u(t))
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for all w ∈W 1,1(Ω) ∩C(Ω) ∩ L∞(Ω). On the other hand, by Proposition 4
we have that ∫

B
(w − U(t))Ut(t) =

∫
B

(w − U(t))divZ(t)

= −
∫
B

(Z(t), D(w − U(t)) +
∫
∂B

(Z(t) · η)(w − U(t)).
(91)

Taking w = u(t) + p(u(t)− U(t)) in (90) and w = U(t)− p(u(t)− U(t)) in
(91) and adding these equalities we obtain∫

B
p(u(t)− U(t))(ut(t)− Ut(t)) = −

∫
B

(z(t)− Z(t), Dp(u(t)− U(t)))

+
∫
∂B

(z(t)− Z(t)) · η p(u(t)− U(t)).

Working as in the proof of Theorem 2, we have that

−
∫
B

((z(t)− Z(t)), Dp(u(t)− U(t))) ≤ 0.

Since u(t) ≤ U(t) on ∂B, t ∈ [0, T ], if we take p converging to sign+, it
follows that

d

dt

∫
B

(u(t)− U(t))+ ≤ 0 for t ∈ [0, T ].

Since u0(x) ≤ U(x), it follows that u(t, x) ≤ U(t, x) for t ∈ [0, T ], x ∈ B.
Moreover, we may take T > 0 small enough so that u(t, x) < 1 for all
t ∈ [0, T ], x ∈ Ω \B. Thus, we have that u(t, x) < 1 for all t ∈ [0, T ], x ∈ Ω.
Now comparing u(t, x) with constant functions we see that u(t, x) < 1 for
all t > 0, x ∈ Ω.
Remark. We can also compute explicitly the evolution of the characteristic
function of a ball B(p, r) when Ω is a ball centered at p. To fix ideas, let
p = 0, Ω = B(0, R) and u0(x) = kχB(0,r), where 0 < r < R and k > 0. We
look for a solution of (1) of the form u(t, x) = α(t)χB(0,r) +β(t)χB(0,R)\B(0,r)

on some time interval (0, T ) defined by the inequalities α(t) > β(t) for
all t ∈ (0, T ), and α(0) = k, β(0) = 0. Then, we shall look for some
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z ∈ L∞((0, T )×B(0, R)) with ‖z‖∞ ≤ 1, such that

α′(t) = div(z) in (0, T )×B(0, r) (92)

z = − x

|x| on (0, T )× ∂B(0, r),

β′(t) = div(z) in (0, T )× (B(0, R) \B(0, r)) (93)

z = − x

|x| on (0, T )× ∂B(0, r)

z · n = 0 on (0, T )× ∂B(0, R)∫
B(0,R)

z ·Du =
∫
B(0,R)

|Du| for all t ∈ (0, T ). (94)

Integrating equation (92) in B(0, r), we obtain

α′(t)|B(0, r)| =
∫
B(0,r)

div(z) dx =
∫
∂B(0,r)

z · n = −HN−1(∂B(0, r)).

Thus α′(t) = −N
r , and, therefore, α(t) = k − N

r t. In this case we take
z = −x

r and (92) holds. Similarly, we deduce that β′(t) = µ := N rN−1

RN−rN ;

hence, β(t) = N rN−1

RN−rN t. Our first observation is that T is given by

T (
N

r
+N

rN−1

RN − rN ) = k. (95)

To construct z in (0, T )× (B(0, R) \B(0, r)) we shall look for z of the form
z = ρ(|x|) x

|x| such that div(z) = β′(t), ρ(r) = −1, ρ(R) = 0. Since

div(z) = ∇ρ(|x|) · x|x| + ρ(|x|)div(
x

|x|) = ρ′(|x|) + ρ
N − 1
|x| ,

we must have

ρ′(s) + ρ
N − 1
s

= N
rN−1

RN − rN s ∈ (r,R). (96)

The solution of (96) such that ρ(R) = 0 is ρ(s) = µs
N −

µRN

NsN−1 , which also

satisfies ρ(r) = −1. Thus, in B(0, R) \B(0, r), z = µx
N −

µRNx
N |x|N . It is easy to

check that (94) holds. Thus

u(t, x) = (k − N

r
t)χB(0,r) +

NrN−1

RN − rN tχB(0,R)\B(0,r)
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in (0, T )×B(0, R) where T is given by (95). On the other hand, we take

u(t, x) = (k − N

r
T )χB(0,R) =

NrN−1

RN − rN TχB(0,R),

and z(t, x) = 0 in (T,∞) × B(0, R). It is easy to check that u(t, x) is the
solution of (1) in (0,∞)×B(0, R) with initial datum u0(x). Exact solutions
for the minimization problem with constraints (2) in RN with N = 1, 2, 3
have been given in ([21]).

6. Numerical experiments. Minimizing total variation submitted to
constraints is one of the most successful techniques for image restoration. It
was introduced by L. Rudin and S. Osher in [17], [18]. The first numerical
schemes were explicit ([17], [18]). Later, it became evident that one needed
faster and more accurate numerical schemes. This was already noticed by
S. Osher and L. Rudin in unpublished work. Many papers report the efforts
in this sense [11], [12], [10], [22], and [23], to mention a few of them.

Our purpose is not to introduce a new numerical scheme but to display
some phenomena which may be useful to understand the qualitative behavior
of equation (1). A detailed discussion of numerical schemes to minimize total
variation in image restoration can be seen in the references given above.

To discretize equation (1) we shall use an implicit Euler discretization in
time,

un+1 − un
∆t

= div
( Dun+1√

ε2 + |Dun+1|2
)
, u0 = u0, (97)

with ε > 0 and small. This is a quasilinear elliptic equation, which we solve
using fixed-point iteration. Writing w instead of un+1, f instead of un, we
have to solve at each time step an equation like

w −∆t div
( Dw√

ε2 + |Dw|2
)

= f. (98)

Now, let A(v, w) = −div
(

Dw√
ε2+|Dv|2

)
. Then, to solve (98) we use the fixed-

point iteration

wk+1 + ∆t A
(
wk, wk+1

)
= f. (99)

We shall stop this iterative process when ‖f −wk+1−∆t A
(
wk, wk+1

)
‖ ≤ ρ,

for some small ρ > 0. For each k, the space discretization of (99) is a linear
system which we solve using the Gauss-Seidel method.
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We performed some numerical experiments to check the evolution of flat
zones and the asymptotic behavior of equation (1). The main conclusion
being that implicit schemes capture the essential features of the evolution
according to (1).

In Figure 1 (Figures 1.1 to 1.6), we see the evolution of a truncated cone.
Figures 1.1 and 1.2 display the original image and its corresponding sectional
view at x1 = 64, x2 ∈ [0, 127]. Figures 1.3 to 1.6 display the same sectional
view of the solution after 100, 200, 600 and 1000 time steps, respectively.
We shall always use ∆t = 0.4, ε = 0.1, in our numerical experiments. We
see that the level of the flat zone is strictly decreasing and remains a flat
zone while its radius increases with time.

In Figure 2, we display the evolution of a truncated cone whose upper
level set contains concavities. Figure 2.1 displays the original image. Figure
2.2 displays the solution after 100 time steps. Figures 2.3 and 2.4 display the
level lines of each of the images in Figure 2.1 and 2.2, respectively, taken at
multiples of 10, i.e., the boundaries of the sets {(x1, x2) : u(t, x1, x2) ≥ 10k},
k = 0, 1, . . . , 25. Figures 2.5 and 2.6 display the sectional views of the
original image corresponding to x1 = 64, x2 ∈ [0, 127] (left) and to x2 = 64,
x1 ∈ [0, 127] (right). Figures 2.7 to 2.10 display the same sectional views of
the solution after 10 and 25 time steps, respectively. We also see how the
level of the flat zone is strictly decreasing and remains a flat zone. The initial
condition was constructed as follows. Let C be the set in white in Figure 2.1.
We computed d((x1, x2), C) = the distance of (x1, x2) ∈ [0, 127]× [0, 127] to
C. Then we defined u0(x1, x2) = 250− d((x1, x2), C).

In Figure 3 we display the evolution of a Gaussian-like function. A
flat zone is immediately created at the maximum. We also see how the
radius of the flat zone increases while its level decreases with time. Figures
3.1 and 3.2 are the original image and its corresponding sectional view at
x1 = 64, x2 ∈ [0, 127]. Figures 3.3 to 3.5 display the same sectional view of
the solution after 50, 100 and 1000 time steps, respectively.

In Figure 4 we check the asymptotic behavior of the solution as t→∞.
Figures 4.1 and 4.2 are the original image and the solution after 3000 time
steps. Figures 4.3 and 4.4 display the sectional view of Figures 4.1 and 4.2
corresponding to x1 = 20, x2 ∈ [0, 39]. We can see that the mass is conserved
during evolution.
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Figure 1.1. Figure 1.2.

Figure 1.3. Figure 1.4.

Figure 1.5. Figure 1.6.

Figure 1. Fig. 1.1: original image. Fig. 1.2: its corresponding sec-
tional view at x1 = 64, x2 ∈ [0, 127]. Fig. 1.3 to 1.6: same sectional view of
the solution after 100, 200, 600 and 1000 time steps, respectively.
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Figure 2.1. Figure 2.2.

Figure 2.3. Figure 2.4.
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Figure 2.5. Figure 2.6.

Figure 2.7. Figure 2.8.

Figure 2.9. Figure 2.10.

Figure 2. Fig. 2.1: original image. Fig. 2.2: solution after 100 time
steps. Fig. 2.3 and 2.4: level lines of images in Fig. 2.1 and 2.2, respec-
tively, taken at multiples of 10. Fig. 2.5 and 2.6: sectional views of the
original image corresponding to x1 = 64, x2 ∈ [0, 127] (left) and to x2 = 64,
x1 ∈ [0, 127] (right). Fig. 2.7 to 2.10: same sectional views of the solution
after 10 and 25 time steps, respectively.
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Figure 3.1. Figure 3.2.

Figure 3.3. Figure 3.4.

Figure 3.5.

Figure 3. Fig. 3.1: original image. Fig. 3.2: its corresponding sec-
tional view at x1 = 64, x2 ∈ [0, 127]. Fig. 3.3 to 3.5: same sectional view of
the solution after 50, 100 and 1000 time steps, respectively.
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Figure 4.1. Figure 4.2.

Figure 4.3. Figure 4.4.

Figure 4. Fig. 4.1: original image. Fig. 4.2 solution after 3000 time
steps. Fig. 4.3 and 4.4: sectional view of Fig. 4.1 and 4.2 corresponding to
x1 = 20, x2 ∈ [0, 39].


