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We introduce a new concept of solution for the Dirichlet problem for the total
variational flow named entropy solution. Using Kruzhkov's method of doubling
variables both in space and in time we prove uniqueness and a comparison prin-
ciple in L1 for entropy solutions. To prove the existence we use the nonlinear semi-
group theory and we show that when the initial and boundary data are nonnegative
the semigroup solutions are strong solutions. � 2001 Academic Press

1. INTRODUCTION

Suppose that 0 is an open bounded domain with a Lipschitz boundary
and . # L� (�0). Let %: 0 � RN be a vector field (whose smoothness will
be made precise below) with |%|�1. Recently, in [7], a variational method
was proposed to extend the data . from �0 to a function u in 0 along the
integral curves of %=, the vector orthogonal to %, so that u is constant
along the integral curves of %=. Formally, we think of % as the vector field
made by the normals to the level sets of u, i.e., the sets [x # 0 : u(x)�*],
* # R. In that case we would have that % } Du=|Du|. In the case that u is
a function of bounded variation, almost all levels sets are of finite perimeter
and, therefore, one can compute the normal along the boundary of the
level sets (modulo a set of HN&1 null measure). Moreover, to get . as a
trace of a function u in 0, the right function space is BV(0), the space of
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functions of bounded variation in 0. Thus, to extend . from �0 to 0, it
was proposed in [7] to minimize the functional F(u)=�0 |{u|&�0 % } {u
defined in the set of functions of bounded variation BV(0) whose trace at
the boundary is given by .. Formally, if we integrate by parts in the second
term of F(u) we obtain

F(u)=|
0

|{u|+|
0

div(%) } u&|
�0

% } n� u.

Since u, % are known at the boundary, minimizing F amounts to minimizing

E(u)=|
0

|{u|+|
0

div(%) } u.

Let us comment on the class of admissible functions where E has to be
minimized. We assume that div(%) # L1 (0) and . # L� (�0). It seems
reasonable to impose that the solution u is a bounded function with an L�

bound given by &.&� . Then the second integral in the definition of E(u)
is well defined. The first integral requires the use of the space of bounded
variation functions. Thus our admissible class is A=[u # BV(0) : |u(x)|�
&.&� a.e. u|�0=.]. The final model is [7]

Minimize
u # A

|
0

|{u|+|
0

div(%) } u. (1.1)

As is well know [16, 19] the solution of this problem has to be understood
in a weak sense as the solution of the problem

Minimize
|u|�&.&�

u # BV(0) |
0

|{u|+|
0

div(%) } u+|
�0

|u&.| dH1. (1.2)

Existence for this variational problem was proved in [19, Theorem 1.4]
when % # L1

loc(0)2, div(%) # L1 (R2), . # L� (�0).
This is one of our motivations to study the Dirichlet problem

�u
�t

=div \ Du
|Du|++ f (t, x) in Q=(0, �)_0

u(t, x)=.(x) on S=(0, �)_�0 (1.3)

u(0, x)=u0 (x) in x # 0,
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where u0 # L1 (0) and . # L� (�0). This evolution equation is related to
the gradient descent method used to minimize the functional (1.2), if we
forget about the constraint |u|�&.&� . The constraint would introduce a
further term in (1.3) but will not change the nature of the difficulties related
to the solution of the PDE. We shall even make a further simplification,
since we shall consider f (t, x)=0. Hence, our aim is to study existence and
uniqueness of solutions of the Dirichlet problem

�u
�t

=div \ Du
|Du|+ in Q=(0, �)_0

u(t, x)=.(x) on S=(0, �)_�0 (1.4)

u(0, x)=u0 (x) in x # 0,

where 0 is an open bounded domain with a Lipschitz boundary, u0 #
L1 (0), and . # L� (�0).

The other motivation for the study of (1.4) comes from [2], [3], and
[8]. The general purpose of the works [8] and [3] is the study of elliptic
and parabolic problems in divergence form with initial data in L1. Exist-
ence and uniqueness results of entropy solutions when the associated varia-
tional energy has a growth at infinity of order p with p>1 are proved (see
also [4, 11]). In [2], the authors consider the equation

ut=div \ Du
|Du|+ (1.5)

in an open bounded Lipschitz domain with Neumann boundary condi-
tions, proving existence and uniqueness of entropy (or renormalized) solu-
tions (called weak solutions in [2]). Let us recall that this PDE appears
when one uses the steepest descent method to minimize the total variation,
a method introduced by Rudin and Osher [24, 25] in the context of image
denoising and reconstruction. The main point is that, in the case of
Neumann boundary conditions, this equation generates a nonlinear con-
traction semigroup in L1 (0) which is homogeneous of degree 0, a fact
related to the regularity in time of the solutions on (1.5). Indeed, the
homogeneity of the operator permits one to conclude that ut (t) # L1 (0) a.e.
for t>0. This was used to prove uniqueness of solutions of (1.5) in the case
of Neumann boundary conditions. This property is loosed when we con-
sider the case of Dirichlet boundary conditions. Thus, a different approach
is needed and we believe it to be helpful with a view to the general case of
energy functionals with linear growth in |Du|. A result about existence and
uniqueness of solutions (named pseudosolutions) for the Dirichlet problem
in the case of energy functionals with linear growth in |Du|, concretely for
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the Dirichlet problem for the time-dependent minimal surface equation, is
studied in [22].

The aim of this paper is to introduce a new concept of solution of the
problem (1.4), for which existence and uniqueness for initial data in L1 (0)
are proved.

The paper is organized as follows: in Section 2 the results we need about
functions of bounded variation are summarized. In the next section we give
the definition of entropy solution and we state the main result. In Sections
4 and 5 we study the problem from the point of view of nonlinear semi-
group theory, showing that for initial data in L2 (0), the semigroup solu-
tion is a strong solution. The next section is devoted to prove the existence
and uniqueness of entropy solutions. Finally, in the last section we obtain
that the time derivative of the entropy solution is an L1

loc function when the
initial data are nonnegative.

2. DEFINITIONS AND PRELIMINARY FACTS

To make precise our notion of solution let us recall several facts concerning
functions of bounded variation.

A function u # L1 (0) whose partial derivatives in the sense of distribu-
tions are measures with finite total variation in 0 is called a function of
bounded variation. The class of such functions will be denoted by BV(0).
Thus u # BV(0) if and only if there are Radon measures +1 , ..., +N defined
in 0 with finite total mass in 0 and

|
0

uDi . dx=&|
0

. d+i (2.1)

for all . # C�
0 (0), i=1, ..., N. Thus the gradient of u is a vector valued

measure with finite total variation

&Du&=sup {|0
u div . dx : . # C �

0 (0, RN, |.(x)|�1 for x # 0.)= (2.2)

The space BV(0) is endowed with the norm

&u&BV=&u&L1(0)+&Du&. (2.3)

For further information concerning functions of bounded variation we refer
to [1, 17, and 28].

We shall need several results from [5]. Following [5], let

X(0)=[z # L� (0, RN) : div(z) # L1 (0)]. (2.4)
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If z # X(0) and w # BV(0) & L� (0) we define the functional (z, Dw) :
C�

0 (0) � R by the formula

( (z, Dw), .)=&|
0

w. div(z) dx&|
0

wz } {. dx. (2.5)

Then (z, Dw) is a Radon measure in 0,

|
0

(z, Dw)=|
0

z } {w dx (2.6)

for all w # W1, 1 (0) & L� (0), and

} |B
(z, Dw)}�|

B
|(z, Dw)|�&z&� |

B
&Dw& (2.7)

for any Borel set B�0. Moreover, (z, Dw) is absolutely continuous with
respect to &Dw& with the Radon�Nikodym derivative %(z, Dw, x) which is
a &Dw& measurable function from 0 to R such that

|
B

(z, Dw)=|
B

%(z, Dw, x) &Dw& (2.8)

for any Borel set B�0. We also have that

&%(z, Dw, } )&L�(0, &Dw&)�&z&L�(0, RN) . (2.9)

In [5], a weak trace on �0 of the normal component of z # X(0) is
defined. Concretely, it is proved that there exists a linear operator
#: X(0) � L� (�0) such that

&#(z)&� �&z&�

#(z)(x)=z(x) } &(x) for all x # �0 if z # C1 (0� , RN).

We shall denote #(z)(x) by [z, &](x). Moreover, the following Green's
formula relating the function [z, &] and the measure (z, Dw), for z # X(0)
and w # BV(0) & L� (0), is established:

|
0

w div(z) dx+|
0

(z, Dw)=|
�0

[z, &] w dH N&1. (2.10)

We also need to introduce, as in [5], a weak trace on �0 of the normal
component of certain vector fields in 0. We define the space

Z(0) :=[(z, !) # L� (0, RN)_BV(0)* : div(z)=! in D$(0)].
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We denote R(0) :=W1, 1 (0) & L� (0) & C(0). For (z, !) # Z(0) and
w # R(0) we define

( (z, !), w) �0 :=(!, w) BV(0)*, BV(0)+|
0

z } {w.

Then, working as in the proof of Theorem 1.1 of [5], we obtain that if w,
v # R(0) and w=v on �0 one has

( (z, !), w) �0=( (z, !), v) �0 \(z, !) # Z(0). (2.11)

As a consequence of (2.11), we can give the following definition: Given
u # BV(0) & L� (0) and (z, !) # Z(0), we define ( (z, !), u) �0 by setting

( (z, !), u) �0 :=( (z, !), w) �0 ,

where w is any function in R(0) such that w=u on �0. Again, working
as in the proof of Theorem 1.1. of [5], we can prove that for every
(z, !) # Z(0) there exists Mz, !>0 such that

|( (z, !), u) �0 |�Mz, ! &u&L1(�0) \u # BV(0) & L� (0). (2.12)

Now, taking a fixed (z, !) # Z(0), we consider the linear functional F :
L� (�0) � R defined by

F(v) :=( (z, !), w) �0 ,

where v # L�(�0) and w # BV(0) & L� (0) is such that w |�0=v. By
estimate (2.12), there exists #z, ! # L� (�0) such that

F(v)=|
�0

#z, ! (x) v(x) dHN&1.

Consequently there exists a linear operator #: Z(0) � L� (�0), with #(z, !)
:=#z, ! , satisfying

( (z, !), w) �0=|
�0

#z, ! (x) w(x) dH N&1 \w # BV(0) & L� (0).

In the case z # C1 (0� , RN), we have #z(x)=z(x) } &(x) for all x # �0. Hence,
the function #z, ! (x) is the weak trace of the normal component of (z, !).
For simplicity of notation, we shall denote #z, ! (x) by [z, &](x).
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We need to consider the space BV(0)2 , defined as BV(0) & L2 (0)
endowed with the norm

&w&BV(0)2
:=&w&L2(0)+&Dw&.

It easy to see that L2 (0)/BV(0)2* and

&w&BV(0)*2
�&w&L2(0) \w # L2 (0). (2.13)

Now, it is well known (see, for instance, [26]) that the dual space
(L1 (0, T; BV(0)2))* is isometric to the space L� (0, T; BV(0)2*, BV(0)2)
of all weakly* measurable functions f : [0, T ] � BV(0)2*, such that v( f ) #
L� ([0, T ]), where v( f ) denotes the supremum of the set [ |(w, f ) | :
&w&BV(0)2

�1] in the vector lattice of measurable real functions. Moreover,
the dual paring of the isometric is defined by

(w, f )=|
T

0
(w(t), f (t)) dt,

for w # L1 (0, T; BV(0)2) and f # L� (0, T; BV(0)2* , BV(0)2).
By L1

w(0, T, BV(0)) we denote the space of weakly measurable functions
w: [0, T ] � BV(0) (i.e., t # [0, T ] � (w(t), ,) is measurable for every
, # BV(0)*) such that �T

0 &w(t)&<�. Observe that, since BV(0) has a
separable predual (see [1]), it follows easily that the map t # [0, T ] �
&w(t)& is measurable.

To make precise our notion of solution we need the following definitions.

Definition 1. Let 9 # L1 (0, T, BV(0)). We say 9 admits a weak
derivative in L1

w(0, T, BV(0)) & L� (QT) if there is a function 3 # L1
w(0, T,

BV(0)) & L� (QT) such that 9(t)=� t
0 3(s) ds, the integral being taken as

a Pettis integral.

Definition 2. Let ! # (L1 (0, T, BV(0)2))*. We say that ! is the time
derivative in the space (L1 (0, T, BV(0)2))* of a function u # L1 ((0, T )_0) if

|
T

0
(!(t), 9(t)) dt=&|

T

0
|

0
u(t, x) 3(t, x) dx dt

for all test functions 9 # L1 (0, T, BV(0)) which admit a weak derivative
3 # L1

w(0, T, BV(0)) & L� (QT) and have compact support in time.
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Observe that if w # L1 (0, T, BV(0)) & L� (QT) and z # L� (QT , RN) is
such that there exists ! # (L1 (0, T, BV(0)))* with div(z)=! in D$(QT), we
can define, associated to the pair (z, !), the distribution (z, Dw) in QT by

( (z, Dw), ,) :=&|
T

0
(!(t), w(t) ,(t))

&|
T

0
|

0
z(t, x) w(t, x) {x,(t, x) (2.14)

for all , # D(QT).

Defintion 3. Let ! # (L1 (0, T, BV(0)2))*, z # L� (QT , RN). We say
that !=div(z) in (L1 (0, T, BV(0)2))* if (z, Dw) is a Radon measure in QT

with normal boundary values [z, &] # L� ((0, T )_�0), such that

|
QT

(z, Dw)+|
T

0
(!(t), w(t)) dt=|

T

0
|

�0
[z(t, x), &] w(t, x) dHN&1 dt,

for all w # L1 (0, T, BV(0)) & L� (QT).
We shall denote by

1 if r>0

sign0 (r) :={0 if r=0

&1 if r<0

and by

1 if r>0

sign(r) :={a # [&1, 1] if r=0

&1 if r<0.

Let Tk (r)=[k&(k&|r| )+] sign0 (r), k�0, r # R. We consider the set
T=[Tk , T +

k , T &
k : k>0]. We need to consider a more general set of

truncature functions, concretely, the set P of all nondecreasing continuous
functions p: R � R, such that there exists p$ except a finite set and supp( p$)
is compact. Obviously, T/P.

3. THE MAIN RESULT

In this section we give the concept of solution for the Dirichlet
problem (1.4) and we state the existence and uniqueness result for this type
of solution.
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Definition 4. A measurable function u: (0, T )_0 � R is an entropy
solution of (1.4) in QT=(0, T )_0 if u # C([0, T ]; L1 (0)), p(u( } )) # L1

w(0,
T, BV(0)) \p # T and there exist (z(t), !(t)) # Z(0) with &z(t)&��1, and
! # (L1 (0, T, BV(0)2))* such that ! is the time derivative of u in (L1 (0, T,
BV(0)2))*, !=div(z) in (L1 (0, T, BV(0)))* and [z(t), &] # sign( p(.)&
p(u(t))) a.e. in t # [0, T ], satisfying

&|
T

0
|

0
j(u(t)&l ) 't+|

T

0
|

0
'(t) &Dp(u(t)&l )&

+z(t) } D'(t) p(u(t)&l )�|
T

0
|

�0
[z(t), &] '(t) p(u(t)&l ),

for all l # R, for all ' # C� (QT ), with '�0, '(t, x)=,(t) �(x), being
, # D(]0, T[), � # C� (0� ), and p # T, where j(r)=�r

0 p(s) ds.

Our main result is:

Theorem 1. Let u0 # L1 (0), and . # L1 (�0). Then there exists a unique
entropy solution of (1.4) in (0, T )_0 for every T>0 such that u(0)=u0 .
Moreover, if u(t), û(t) are the entropy solutions corresponding to initial data
u0 , û0 , respectively, then

&(u(t)&û(t))+&1�&(u0&û0)+&1 and &u(t)&û(t)&1�&u0&û0& (3.1)

for all t�0.

4. THE SEMIGROUP SOLUTION

To prove Theorem 1 we shall use the techniques of completely accretive
operators and the Crandall�Liggett semigroup generation theorem [14].
Let us recall the notion of completely accretive operators introduces in [9].
Let M(0) be the space of measurable functions in 0. Given u, v # M(0),
we shall write

u<<v if and only if |
0

j(u) dx�|
0

j(v) dx (4.1)

for all j # J0 where

J0=[ j # R � [0, �], convex, l.s.c., j(0)=0] (4.2)
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(l.s.c. is an abbreviation for lower semicontinuous function). Let A be a
operator (possibly multivalued) in M(0), i.e., A�M(0)_M(0). We shall
say that A is completely accretive if

u&û<<u&û+*(v&v̂) for all *>0 and all (u, v), (û, v̂) # A. (4.3)

Let

P0=[ p # C� (R) : 0�p$�1, supp( p$) is compact and 0 � supp( p)].

If A�L1 (0)_L1 (0), then A is completely accretive if and only if

|
0

p(u&û)(v&v̂)�0 for any p # P0 , (u, v), (û, v̂) # A. (4.4)

A completely accretive operator in L1 (0) is said to be m-completely
accretive if R(I+*A)=L1 (0) for any *>0. In that case, by Crandall�
Liggett's theorem, A generates a contraction semigroup in L1 (0) given by
the exponential formula

e&tAu0= lim
n � � \I+

t
n

A+
&n

u0 for any u0 # L1 (0).

Let us write u(t)=e&tAu0 . Then u # C([0, T], L1 (0)), for any T>0, and
is a mild solution (a solution in the sense of semigroups [10]) of

du
dt

+Au % 0 (4.5)

such that u(0)=u0 .
We shall use a stronger notion of solution of (4.5). We say that v #

C([0, T], L1 (0)) is a strong solution of (4.5) on [0, T] if v # W 1, 1
loc ((0, T ),

L1 (0)) and v$(t)+Av(t) % 0 for almost all t # (0, T ). If u0 # D(A)=
[u� # L1 (0): (u� , v� ) # A, for some v� # L1 (0)] (the domain of A) and A is
m-completely accretive, then u # W 1, 1

loc ((0, T ), L1 (0)) and u(t) is a strong
solution of (4.5) on (0, T ), for all T>0.

To prove Theorem 1 we shall associate a completely accretive operator
A. to the formal differential expression &div( Du

|Du|) together with the
Dirichlet boundary condition.

Let us introduce the following operator A. in L1 (0).

(u, v) # A. if and only if u, v # L1 (0), p(u) # BV(0) for all p # P
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and there exists z # X(0) with &z&��1, v=&div(z) in D$(0) such that

|
0

(w& p(u)) v�|
0

z } {w&&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)|,

\w # W1, 1 (0) & L� (0), and \p # P.

Theorem 2. Let . # L1 (�0). The operator A. is m-completely accretive
in L1 (0) with dense domain.

To prove this theorem, we need first to consider the following operator,
which is related with the p-Laplacian operator with Dirichlet boundary
condition. For p>1, let . # W1&1�p, p (�0), and

W1, p
. (0) :=[u # W1, p (0) : u | �0=. H N&1-a.e. on �0].

We define the operator A., p in L1 (0) as

(u, v) # A., p if and only if u # W 1, p
. (0) & L�(0), v # L1 (0) and

|
0

(w&u) v�|
0

|{u| p&2 {u } {(w&u)

for every w # W 1, p
. (0) & L� (0).

Proposition 1. Let . # L� (�0) & W1&1�p, p (�0). The operator A., p is
completely accretive and L� (0)�R(I+A., p).

Proof. Let p # P0 and (u, v), (û, v̂) # A., p . Since (u, v) # A., p , taking
w=u& p(u&û) as a test function in the definition of the operator A., p we
get

|
0

p(u&û) v�|
0

|{u| p&2 {u } {p(u&û).

Similarly, since (û, v̂) # A., p , taking w=û+ p(u&û) as a test function in
the definition of the operator A., p we get

|
0

p(u&û) v̂�|
0

|{û| p&2 {û } {p(u&û).
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Hence

|
0

(v&v̂) p(u&û)�|
0

( |{u| p&2 {u&|{û| p&2 {û) } {p(u&û)�0.

Therefore, A., p is completely accretive.
Let us now see that L� (0)�R(I+A., p). Let v # L� (0). We need to

prove that there exists u # W 1, p
. (0) & L� (0) such that (u, v&u) # A., p ; i.e.,

|
0

(w&u)(v&u)�|
0

|{u| p&2 {u } {(w&u)

\w # W 1, p
. (0) & L� (0). (4.6)

For n # N, let #n (s) :=Tn (s)+ 1
n |s| p&2 s, and consider the operators An :

W1, p
. (0) � (W 1, p (0))*, defined by

(Anu, w) :=|
0

|{u| p&2 {u } {w+|
0

#n (u) w.

It is easy to see that An is monotone, coercive, and continuous on finite
dimensional subspaces. Then, by classical results (see, for instance, [20]),
given v there exists un # W 1, p

. (0) such that

(Anun , un&w) �|
0

v(un&w) \w # W 1, p
. (0).

That is

|
0

(w&un)(v&#n (un))�|
0

|{un | p&2 {un } {(w&un)

\w # W 1, p
. (0). (4.7)

Let k>0 be such that &.&��k. If we take w=Tk (un) in (4.7), we get

|
0

(Tk (un)&un)(v&#n (un))�|
0

|{un | p&2 {un } {(Tk (un)&un).

Hence, if

An (k) :=[x # 0 : |un (x)|>k],
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we have that

|
0

|{(un&Tk (un))| p=|
An(k)

|{un | p&2 {un } {un

=|
0

|{un | p&2 {un } {(un&Tk (un))

�|
0

v(un&Tk (un))&|
0

#n (un)(un&Tk (un))

�|
0

v(un&Tk (un)).

Now, by Young's inequality

|
0

v(un&Tk (un))�C= &v& p$
� *N(An (k))+=C |

0
|un&Tk (un)| p.

From here, since un&Tk (un) # W 1, p
0 (0), using Poincare� 's inequality, we

obtain that

&un&Tk (un)&1, p�R*N(An (k))1�p,

from which it follows, applying the classical Stampacchia methods (see
for instance, Appendix B in [20]), that there exists a constant M1=
M1 (&v&� , &.&�) such that

&un&��M1 \n # N. (4.8)

On the other hand, taking w0 as a test function in (4.7) and applying
Young's inequality, we obtain

|
0

|{un | p�|
0

|{un | p&2 {un } {w0+|
0

v(un&w0)

+|
0

#n (un)(w0&un)

�=C |
0

|{un | p+C= |
0

|{w0 | p+|
0

vun

+|
0

w0 (#n (un)&v).
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From this it follows that there exists a constant M2=M2 (*N(0), &v&� ,
&.&� , &w0&1, p) such that

|
0

|{un | p�M2 \n # N. (4.9)

As a consequence of (4.8) and (4.9), [un]n # N is bounded in W 1, p (0).
Hence there exists a subsequence, still denoted un , such that un �
u # W1, p (0) weakly in W1, p (0). Moreover, by the Rellich�Kondrachov
theorem, un � u in L p (0), and by Theorem 3.4.5 in [23], un � u in L p (�0).
After passing to a suitable subsequence, we can assume that un � u a.e. in
0. So, by (4.8), &u&��M1 .Therefore we have that u # W 1, p

. (0) & L� (0).
Proceeding as in the proof of step 3 of Theorem 2.1 in [3], we obtain

that

|{un | p&2 {un � |{u| p&2 {u in measure, and a.e.

Now, by (4.9), we have that [ |{un | p&2 {un]n # N is bounded in (L p$ (0))N.
Hence

|{un | p&2 {un � |{u| p&2 {u weakly in (L p$ (0))N. (4.10)

Given w # W 1, p
. (0) & L� (0), by (4.10), we get

|
0

|{un | p&2 {un } {w � |
0

|{u| p&2 {u } {w, (4.11)

and by Fatou's lemma, we have

|
0

|{u| p&2 {u } {u�lim inf
n � � |

0
|

0
|{un | p&2 {un } {un . (4.12)

On the other hand, since un � u in L p (0) we have

lim
n � � |

0
(w&un)(v&#n (un))=|

0
(w&u)(v&u). (4.13)

From (4.11), (4.12), and (4.13), passing to the limit in (4.7) we get (4.6),
and the proof concludes. K

To prove Theorem 2, we need to give the following characterization of
the operator A. .
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Proposition 2. The following assertions are equivalent:

(a) (u, v) # A.

(b) u, v # L1 (0), p(u) # BV(0) for all p # P, and there exists z # X(0),
with &z&��1, v=&div(z) in D$(0) such that

|
0

(w& p(u)) v�|
0

(z, Dw)=&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)| (4.14)

for every w # BV(0) & L� (0) and p # P.

(c) u, v # L1 (0), p(u) # BV(0) for all p # P, and there exists z # X(0),
with &z&��1, v=&div(z) in D$(0) such that

|
0

(w& p(u)) v�|
0

(z, Dw)&&Dp(u)&&|
�0

[z, &](w& p(.))

&|
�0

| p(u)& p(.)| (4.15)

for every w # BV(0) & L� (0) and p # P.

(d) u, v # L1 (0), p(u) # BV(0) for all p # P, and there exists z # X(0),
with &z&��1, v=&div(z) in D$(0) such that

|
0

(z, Dp(u))=&Dp(u)& \p # P (4.16)

[z, &] # sign( p(.)& p(u)) HN&1-a.e. on �0, \p # P. (4.17)

Proof. Let (u, v) # A. . Then, there exists z # X(0) with &z&��1, v=
&div(z) in D$(0), such that

|
0

(w& p(u)) v�|
0

z } Dw&&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)| (4.18)
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for every w # W1, 1 (0) & L� (0) and every p # P. Let w # BV(0) & L� (0),
p # P. Using Lemmas 5.2 and 1.8 in [5] we know that there exists a
sequence wn # W 1, 1 (0) & L� (0) such that

wn � w in L1 (0),

|
0

|{wn | � &Dw&, (4.19)

|
0

z } {wn=|
0

(z, Dwn) � |
0

(z, Dw).

and wn | �0=w | �0 , &wn&��&w&� , \n # N. Then taking wn as a test func-
tion in (4.18) and letting n � � we get that (4.18) holds for all
w # BV(0) & L� (0) and all p # P. Thus (a) and (b) are equivalent.

Since

&|
�0

[z, &](w& p(.))�|
�0

|w& p(.)|,

to prove the equivalence between (b) and (c), it is enough to show that if
(u, v) # A. , then (4.15) is satisfied. In fact, since (u, v) # A. , there exists
z # X(0) with &z&��1, v=&div(z) in D$(0), such that

|
0

(w& p(u)) v�|
0

(z, Dw)&&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)| (4.20)

for every w # BV(0) & L� (0) and every p # P. Now, given w # BV(0) &
L� (0) and p # P, by Lemmas 5.2 and 5.5 of [5], there exists wn #
W1, 1 (0) & L� (0) such that wn � w in L1 (0), wn | �0= p(.), and &wn&�

�&w&�+&p(.)&� , \n # N. Then taking wn as a test function in (4.18) and
using Green's formula, we get

|
0

(wn& p(u)) v�|
0

(z, Dwn)&&Dp(u)&&|
�0

| p(u)& p(.)|

=&|
0

div(z) wn+|
�0

[z, &] p(.)&&Dp(u)&

&|
�0

| p(u)& p(.)|.
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Letting n � �, it follows that

|
0

(w& p(u)) v�&|
0

div(z) w+|
�0

[z, &] p(.)&&Dp(u)&

&|
�0

| p(u)& p(.)|.

Therefore, applying Green's formula again, we obtain (4.15).
Suppose now that (b) or, equivalent, (c) is satisfied. Taking w= p(u) in

(4.18) we obtain

0�|
0

(z, Dp(u))&&Dp(u)&.

Thus,

|
0

(z, Dp(u))�&z&� &Dp(u)&�&Dp(u)&�|
0

(z, Dp(u)),

and (4.16) holds. Let us prove (4.17). Since p(.) # L� (�0), by Lemma 5.5
in [5], there exist wn # W1, 1 (0) & L� (0) satisfying:

wn | �0= p(.) \n # N,

|
0

|{wn |�|
�0

| p(.)|+
1
n

\n # N,

&wn&1�
1
n

, &wn&��&p(.)&� \n # N.

Taking w=wn in (4.18) and using Green's formula (2.10), we get

|
0

(wn& p(u)) v�&|
0

div(z) wn+|
�0

[z, &] p(.)&&Dp(u)&

&|
�0

| p(u)& p(.)|. (4.21)

363TOTAL VARIATION FLOW



Then, letting n � � in (4.21), we obtain

&|
0

p(u) v�|
�0

[z, &] p(.)&&Dp(u)&&|
�0

| p(u)& p(.)|.

Now, by (4.16), and applying Green's formula, we have that

&Dp(u)&=|
0

(z, Dp(u))=|
0

vp(u)+|
�0

[z, &] p(u).

Hence,

0�|
�0

([z, &]( p(.)& p(u))&| p(u)& p(.)| ).

Since

[z, &]( p(.)& p(u))&| p(u)& p(.)|�0,

we have that

[z, &]( p(.)& p(u))=| p(u)& p(.)| HN&1-a.e. on �0,

and we obtain (4.17). Finally, to prove that (d) implies (c), we only need
to apply Green's formula. K

Remark 1. (1) As a consequence of the proof of the above proposi-
tion we can put equality in the definition of the operator; that is, the
following characterization of the operator A. holds.

(u, v) # A. if and only if u, v # L1 (0), p(u) # BV(0) for all p # P

and there exists z # X(0) with &z&��1, v=&div(z) in D$(0) such that

|
0

(w& p(u)) v=|
0

(z, Dw)&&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)|,

\w # BV(0) & L� (0) and \p # P.
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(2) As a consequence of the above proposition, if (u, v) # A. , we
have that %(z, DTk (u), x)=1 a.e. with respect to the measure &DTk (u)&. In
the case that z # C(0, RN), this implies that

z(x) }
DTk (u)

&DTk (u)&
=1, &DTk (u)&-a.e.,

where DTk (u)�&DTk (u)& denotes the density of DTk (u) with respect to
&DTk (u)&. Heuristically, this amounts to saying that z= Du

&Du& . When z is
not continuous we have that

z(x) }
DTk (u)

&DTk (u)&
=1, &{Tk (u)&-a.e.,

where &{Tk (u)& denotes the absolutely continuous part of &DTk (u)& with
respect to the Lebesgue measure in RN [5]. In particular, if u # W1, 1 (0) &
L� (0) we have that

z(x) }
{u

&{u&
=1, &{u&-a.e.

(3) Observe that by (d) in the above proposition, if u # L� (0), then
the truncatures are redundant in the definition of A. .

To prove the following result, we need to introduce the function
8: L1 (0) � (&�, +�] defined by

8(u)={&Du&+|
�0

|u&.|

+�

if u # BV(0)

if u # L1 (0)"BV(0).
(4.22)

The functional 8 is convex and lower semicontinuous in L1 (0) (see [6] or
[27]).

Proposition 3. Let . # L1 (�0). Then L� (0)/R(I+A.) and D(A.) is
dense in L1 (0).

Proof. Suppose first that . # W1�2, 2 (�0) & L� (�0). Let v # L� (0). We
shall find u # BV(0) & L� (0) such that (u, v&u) # A. , i.e., there is
z # X(0) with &z&��1 such that v&u=&div(z) and

|
0

(w&u)(v&u)�|
0

z } {w dx&&Du&+|
�0

|w&.|&|
�0

|u&.| (4.23)

for every w # W1, 1 (0) & L� (0).
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Since . # W1&1�p, p (�0) for all p>1, by Proposition 1, we know that for
any 1<p�2 there is up # W 1, p

. (0) & L� (0) such that (up , v&up) # A., p .
Hence

|
0

(w&up)(v&up)�|
0

|{up | p&2 {up } {(w&up), (4.24)

for every w # W 1, p
. (0) & L� (0).

Let M :=sup [&.&� , &v&�]. Then, taking w=up&(up&M)+ as a test
function in (4.24), we obtain

|
0

(up&M)+ (up&v)�0.

Hence,

|
[up>M]

(up&M)2�|
[up>M]

(up&M)(up&v)

=|
0

(up&M)+ (up&v)�0.

Consequently, up�M a.e. in 0. Analogously, taking w=up+(up+M)& as
a test function, we get &M�up a.e. in 0. Therefore,

&up&��M for all 1<p�2. (4.25)

Taking w = w0 # W 1, p
. (0) & L� (0) in (4.24) and applying Young's

inequality we obtain

|
0

|{up | p�|
0

|{up | p&2 {up } {w0&|
0

(w0&up)(v&up)

�= |
0

|{up | p+C= |
0

|{w0 | p+C(&v&� , &w0&�).

Thus

|
0

|{up | p�M1 \1<p�2, (4.26)
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where M1 depends on &v&� , &w0&� , and &w0&1, 2 . Using Ho� lder's
inequality we also have that

|
0

|{up |�M2 \1<p�2, (4.27)

where M2 does not depend on p. Thus, [up]p>1 is bounded in W 1, 1 (0)
and we may extract a subsequence such that up converges in L1 (0) and
almost everywhere to some u # L1 (0) as p � 1+. Now, by (4.25) and
(4.27), we have that u # BV(0) & L� (0).

Let us prove that [ |{up | p&2 {up]p>1 is weakly relatively compact in
L1 (0, RN). For that, using (4.26), we observe that

|
0

|{up | p&1�\|0
|{up | p+

( p&1)�p

*N(0)1�p�M3 ,

where M3 does not depend on p. On the other hand, for any measurable
subset E�0 such that *N(E)<1, we have

} |E
|{up | p&2 {up }�|

E
|{up | p&1�M ( p&1)�p

1 *N(E)1�p�M4 *N(E)1�2

Thus, [ |{up | p&2 {up]p>1 , being bounded and equiintegrable in L1 (0, RN),
is weakly relatively compact in L1 (0, RN). We may assume that

|{up | p&2 {up ( z as p � 1+, weakly in L1 (0, RN). (4.28)

Given � # C�
0 (0), taking w=up\� in (4.24) and letting p � 1+, we

obtain

|
0

(v&u) �=|
0

z } {�,

that is, v&u=&div(z) in D$(0). Moreover, the same technique that we
use in the proof of Lemma 1 in [2] shows that &z&��1.

For every w # W 1, 2
. (0) & L� (0), by (4.24) and Young's inequality, we

get

|
0

|{up |+|
�0

|up&.|�
p&1

p
*N(0)&

1
p |

0
(w&up)(v&up)

+
1
p |

0
|{up | p&2 {up } {w.
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Then, using the lower semicontinuity of the functional 8 defined by (4.22),
letting p � 1+, we obtain

&Du&+|
�0

|u&.|� &|
0

(w&u)(v&u)+|
0

z } {w, (4.29)

for every w # W 1, 2
. (0) & L� (0).

Now, to prove (4.23), we assume first that there exists w0 # W1, 2 (0) &
L� (0) such that .=w0| �0

(i.e., . is the trace of w0). Let w # W1, 1 (0) &

L� (0) and let wn # W 1, 2
. (0) & L� (0) be such that wn � w in L1 (0) as

n � � and &wn&��&w&� . Using wn as a test function in (4.29) and apply-
ing Green's formula (2.10), we may write

|
0

(wn&u)(v&u)�|
0

z } {wn&&Du&&|
�0

|u&.|

=&|
0

div(z) wn+|
�0

[z, &] .&&Du&&|
�0

|u&.|.

From here, letting n � � and applying again the Green's formula, we get

|
0

(w&u)(v&u)

�&|
0

div(z) w+|
�0

[z, &] .&&Du&&|
�0

|u&.|

=|
0

z } {w&|
�0

[z, &] w+|
�0

[z, &] .&&Du&&|
�0

|u&.|

�|
0

z } {w&&Du&+|
�0

|w&.|&|
�0

|u&.| ,

and the proof of (4.23), in this particular case, concludes.
Suppose now we are in the general case, that is, . # L1 (�0). Take

vn # W1, 2 (0) & L� (0) such that .n :=vn | �0
� . in L1 (�0). From the

above, there exists un # BV(0) & L� (0) and z # X(0) with &zn &��1 such
that v&un=&div(zn) and

|
0

(w&un)(v&un)�|
0

zn } {w dx&&Dun &+|
�0

|w&.n|

&|
�0

|un&.n | (4.30)
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for every w # W1, 1 (0) & L� (0). Moreover, by (4.25), we have &un&��
max[&v&� , &.n&�]. We can assume that zn � z weakly* in L� (0). Now,
taking w=0 in (4.30), we get

&|
0

unv+|
0

(un)2+&Dun &+|
�0

|un&.n |�|
�0

|.n |.

Hence,

&un&2
2+&Dun&�|

0
unv+|

�0
|.n |� 1

2 &un&2
2+ 1

2 &v&2
2+|

�0
|.n |.

Thus, [un] is a bounded sequence in BV(0) & L2 (0). Then, since BV(0)
is compactly embedded in L1 (0) (see [28] or [17]), there is a sub-
sequence, still denoted by [un] such that un � u in L1 (0). Finally, taking
limits in (4.30), we obtain that (u, v&u) # A. .

To prove the density of D(A.) in L1 (0), we prove that C �
0 (0)�

D(A.)L1(0). Let v # C �
0 (0). By the above, v # R(I+ 1

nA.) for all n # N.
Thus, for each n # N there exists un # D(A.) such that (un , n(v&un)) # A.

and, therefore, there exists some zn # X(0) with &zn &��1, n(v&un)=
&div(zn) in D$(0) such that

|
0

(w&Tk (un)) n(v&un)�|
0

zn } {w&&DTk (un)&+|
�0

|w&Tk (.)|

&|
�0

|Tk (un)&Tk (.)|

for every w # W1, 1 (0) & L� (0). Taking w=Tk (v) and applying Fatou's
lemma we have that

|
0

(v&un)2�
1
n \|0

|{u|+|
�0

|.|+ .

Letting n � �, it follows that un � v in L2 (0). Therefore v #
D(A.)L1(0). K

Proof of Theorem 2. Let (u, v), (û, v̂) # A. , p # P0 . We have to prove
that

|
0

p(u&û)(v&û)�0. (4.31)

369TOTAL VARIATION FLOW



Let z, ẑ # X(0), &z&��1, &ẑ&��1, be such that v=&div(z), v̂=&div(ẑ)
and

|
0

(w&Tk (u)) v�|
0

(z, Dw)&&DTk (u)&&|
�0

[z, &](w&Tk (.))

&|
�0

|Tk (u)&Tk (.)|, (4.32)

|
0

(w&Tk (û)) v̂�|
0

(ẑ, Dw)&&DTk (û)&&|
�0

[ẑ, &](w&Tk (.))

&|
�0

|Tk (û)&Tk (.)|, (4.33)

for any w # BV(0) & L� (0) and any k>0. As observed in the previous
remark, %(z, DTk (u), x)=1 &DTk (u)&-a.e., and, using Corollary 1.6 in [5],
we obtain that

|
B

(z, DTk (u))=|
B

%(z, DTk (u), x) &DTk (u)&=|
B

&DTk (u)&,

} |B
(ẑ, DTk (u))}�|

B
&DTk (u)&

for any Borel set B�0. Similarly,

|
B

(ẑ, DTk (û))=|
B

&DTk (û)&,

} |B
(z, DTk (û))}�|

B
&DTk (û)&

for any Borel set B�0. It follows that

|
B

(z& ẑ, D(Tk (u)&Tk (û)))�0

for any Borel set B�0. This implies that

%(z&ẑ, D(Tk (u)&Tk (û)), x)�0, &D(Tk (u)&Tk (û))&-a.e.

Since, according to Proposition 2.8 in [5], we have that

%(z&ẑ, Dp(Tk (u)&Tk (û)), x)=%(z& ẑ, D(Tk (u)&Tk (û)), x)
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a.e. with respect to the measures &D(Tk (u)&Tk (û))& and &Dp(Tk (u)&
Tk (û))&. We conclude that

%(z&ẑ, Dp(Tk (u)&Tk (û)), x)�0, &Dp(Tk (u)&Tk (û))&-a.e. (4.34)

Taking w=Tk (u)& p(Tk (u)&Tk (û)) in (4.32) and w=Tk (û)+p(Tk (u)&
Tk (û)) in (4.33), adding both terms, and using (4.17) and (4.34), we obtain

|
0

p(Tk (u)&Tk (û))(v̂&v)

�|
0

(ẑ&z, Dp(Tk (u)&Tk (û)))

+|
�0

([z, &]&[ẑ, &]) p(Tk (u)&Tk (û))

=&|
0

%(z&ẑ, Dp(Tk (u)&Tk (û)), x) &Dp(Tk (u)&Tk (û))&

+|
�0

([z, &]&[ẑ, &]) p(Tk (u)&Tk (û))�0.

The inequality (4.31) follows by letting k � �. Therefore A. is completely
accretive.

In view of Proposition 3, to prove that A. satisfies the range condition,
it is enough to prove that A. is closed. Let (un , vn) # A. , such that
(un , vn) � (u, v) in L1 (0)_L1 (0). Let us see that (u, v) # A. . Since
(un , vn) # A. , there exists zn # X(0), &zn&��1 with vn=&div(zn) in D$(0)
such that

|
0

(w& p(un)) vn �|
0

(zn , Dw)&&Dp(un)&+|
�0

|w& p(.)|

&|
�0

| p(un)& p(.)| (4.35)

for every w # BV(0) & L� (0) and all p # P. Since &zn&��1 we may
assume that zn ( z in the weak* topology of L� (0, RN) with &z&��1.
Moreover, since vn � v in L1 (0), we have v=&div(z) in D$(0), and

lim
n � � |

0
(zn , Dw)=|

0
(z, Dw).
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Now, letting n � � in (4.35), and having in mind the lower semicontinuity
of the function 8, defined in (4.22), we obtain that

|
0

(w& p(u)) v�|
0

(z, Dw)&&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)|.

Consequently, (u, v) # A. . K

5. STRONG SOLUTIONS FOR DATA IN L2 (0)

In this section we are going to see that when the initial datum is in
L2 (0), then the semigroup solution is a strong solution.

Let [S(t)]t�0 be the contraction semigroup in L1 (0) generated by
the operator A. via Crandall�Liggett's exponential formula. Since A. is an
m-completely accretive operator, S(t)(L2 (0))/L2 (0). Let 9. : L2 (0) �
]&�, +�], the restriction to L2 (0) of the functional 8 defined by
(4.22), i.e.,

9. (u)={&Du&+|
�0

|u&.|

+�

if u # BV(0) & L2 (0)

if u # L2 (0)"BV(0) & L2 (0).
(5.1)

Since the function 9. is convex and lower semicontinuous in L2 (0), we
have that �9. is a maximal monotone operator in L2 (0), and conse-
quently (see [12]), if [T(t)]t�0 is the semigroup in L2 (0) generated by
�9. , for every u0 # L2 (0), u(t) :=T(t) u0 is a strong solution of the
problem

du
dt

+�9.u(t) % 0
(5.2)

u(0)=u0 .

Recall that the operator �9. is defined by

(u, v) # �9. if and only if u, v # L2 (0), and

9. (w)�9. (u)+|
0

(w&u) v, \w # L2 (0).

372 ANDREU ET AL.



Lemma 1. Let B. :=A. & (L2 (0)_L2 (0)). Then B.=�9. .

Proof. Let (u, v) # B. . Then, u, v # L2 (0), p(u) # BV(0) for all p # P,
and there exists z # X(0) with &z&��1, v=&div(z) in D$(0) such that

|
0

(w& p(u)) v�|
0

(z, Dw)&&Dp(u)&+|
�0

|w& p(.)|

&|
�0

| p(u)& p(.)|,

\w # BV(0) & L� (0) and \p # P. Letting p=Tk and k � � we obtain that

|
0

(w&u) v�|
0

(z, Dw)&&Du&+|
�0

|w&.|&|
�0

|u&.|,

\w # BV(0) & L� (0). To prove that (u, v) # �9. , we have to prove that

|
0

(w&u) v�&Dw&&&Du&+|
�0

|w&.|&|
�0

|u&.| (5.3)

for every w # L2 (0) & BV(0). Now, given w # L2 (0) & BV(0), since
(u, v) # B. , by the first observation of the lemma, there exists z # X(0), with
&z&��1, v=&div(z) in D$(0) such that

|
0

(Tk (w)&u) v�|
0

(z, DTk (w))&&Du&+|
�0

|Tk (w)&.|

&|
�0

|u&.|,

for every k>0. From this, it follows that

|
0

(Tk (w)&u) v�&DTk (w)&&&Du&+|
�0

|Tk (w)&.|&|
�0

|u&.|. (5.4)

Now, since limk � � Tk (w)=w in L2 (0),

&Dw&�lim inf
k � �

&DTk (w)&.
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Moreover, since &DTk (w)&�&w&, we also have that

lim sup
k � �

&DTk (w)&�&Dw&.

Thus

lim
k � �

&DTk (w)&=&Dw&.

Therefore, letting k � � in (5.4), we obtain (5.3). We have proved that
B. /�9. .

By Proposition 3, we have that L� (0)/R(I+B.). Hence, �9.=
B� L2(0)

. . It follows that �9.=A. & (L2 (0)_L2 (0)). K

Using this lemma and having in mind Proposition 2, we have the follow-
ing result.

Theorem 3. Let . # L1 (�0). Given u0 # L2 (0), u(t)=S(t) u0 is a strong
solution of (5.2). Moreover, u$(t) # L2 (0), p(u(t)) # BV(0) for all p # P, and
there exists z(t) # X(0), &z(t)&��1, and u$(t)=div(z(t)) in D$(0) a.e.
t # [0, +�[, satisfying

|
0

(w& p(u(t))) u$(t)

�|
0

(z(t), Dw)&&Dp(u(t))&

&|
�0

[z(t), &](w& p(.))&|
�0

| p(u(t))& p( .)| (5.5)

for every w # BV(0) & L� (0) and p # P.
Moreover, u(t) is also characterized as follows: there exists z(t) # X(0),

&z(t)&��1, and u$(t)=div(z(t)) in D$(0) a.e. t # [0, +�[, satisfying

|
0

(z(t), Dp(u(t)))=&Dp(u(t))& \p # P (5.6)

[z(t), &] # sign( p(,)& p(u(t))) HN&1-a.e. on �0, \p # P. (5.7)

Remark 2. Note that under the assumptions of Theorem 3, since u(t) #
BV(0), applying the lower semicontinuity of 9. , if we take p=Tk and
take limits when k � �, we obtain that (5.5), (5.6), and (5.7) are true when
p is the identity map.
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We have the following weak form of the maximum principle.

Theorem 4. Let u1 and u2 be two strong solutions of

dui

dt
+�9.i

ui (t) % 0
(5.8)

ui (0)=ui, 0 , i=1, 2,

where ui, 0 # L2 (0) and .i # L1 (�0). Suppose that u1, 0�u2, 0 and .1�.2 .
Then we have u1�u2 .

Proof. By Theorem 3 and the above remark, we have that ui (t), u$i (t) #
L2 (0), and there exist zi (t) # X(0), &zi (t)&��1, and u$i (t)=div(zi (t)) in
D$(0), satisfying:

|
0

(zi (t), D(ui (t)))=&D(ui (t))& (5.9)

[zi (t), &] # sign(.i&ui (t)) HN&1-a.e. on �0. (5.10)

Since d
dt(u2 (t)&u1 (t))=div(z2 (t)&z1 (t)) in L2 (0), multiplying by

(u2 (t)&u1 (t))+, integrating, and using Green's formula, we get

1
2 |

0

d
dt

[(u2 (t)&u1 (t))+]2

=|
0

div(z2 (t)&z1 (t))(u2 (t)&u1 (t))+

=&|
0

(z2 (t)&z1 (t), D((u2 (t)&u1 (t))+))

+|
�0

[z2 (t)&z1 (t), &](u2 (t)&u1 (t))+. (5.11)

Now, by (5.9) it follows that

%(z2 (t)&z1 (t), D(u2 (t)&u1 (t)), x)�0 &D(u2 (t)&u1 (t))&-a.e.

According to Proposition 2.8 in [5], we have

%(z2 (t)&z1 (t), D(u2 (t)&u1 (t)), x)

=%(z2 (t)&z1 (t), D(u2 (t)&u1 (t))+, x)
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a.e. with respect to &D(u2 (t)&u1 (t))& and &D(u2 (t)&u1 (t))+&. Hence we
can conclude that

%(z2 (t)&z1 (t), D(u2 (t)&u1 (t))+, x)�0, &D(u2 (t)&u1 (t))+&-a.e.

Consequently, we have

|
0

(z2 (t)&z1 (t), D((u2 (t)&u1 (t))+))

=|
0

%(z2 (t)&z1 (t), D(u2 (t)&u1 (t))+, x) &D(u2 (t)&u1 (t))+&

�0. (5.12)

On the other hand, since .1�.2 , from (5.10), it is easy to see that

|
�0

[z2 (t)&z1 (t), &](u2 (t)&u1 (t))+�0. (5.13)

From (5.11), (5.12), and (5.13), we obtain that

1
2 |

0

d
dt

[(u2 (t)&u1 (t))+]2�0.

Hence the initial condition u1, 0 � u2, 0 gives u1 � u2 , and the proof
concludes. K

Proposition 4. Let 0�u0 # L2 (0) and 0�. # L1 (�0). Then, if u is the
strong solution of the problem (5.1), we have

u$(t)�
u(t)

t
for t>0.

The opposite inequality holds if u0 , .�0.

Proof. We shall prove the proposition only when u0 , .�0, the other
case being similar. First, let us see that for *>0, we have

*&1u(*t)=e&tA*&1. (*&1u0). (5.14)
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By Crandall�Liggett's exponential formula, it is enough to prove that for
all +>0,

(I++A*&1.)&1 (*&1u0)=*&1(I+*+A.)&1 (u0). (5.15)

In fact, v+ :=(I++A*&1.)&1 (*&1u0) if and only if (v+ , (*&1u0&v*)�+) #
A*&1. , which is equivalent to the existence of z+ # X(0), such that

&div(z+)=
*&1u0&v*

+
,

|
0

(z+ , Dv+) =&Dv+&,

[z+ , &] # sign(*&1.&v+).

Then, we have

&div(z+)=
u0&*v*

*+
,

|
0

(z+ , D*v+) =&D*v+ &,

[z+ , &] # sign(.&*v+),

which is equivalent to saying that (*v+ , (u0&*v+)�*+) # A. , that is, v+=
*&1 (I+*+A.)&1 (*&1u0), and (5.15) holds.

Fix t>0. For h>0, if *t=t+h, applying (5.14), we obtain

u(t+h)&u(t)=u(*t)&u(t)=(1&*&1) u(*t)+*&1u(*t)&u(t)

=
h

t+h
u(t+h)+e&tA*&1. (*&1u0)&u(t).

Now, since *&1u0�u0 and *&1.�., by Theorem 4, we get

e&tA*&1. (*&1u0)�u(t).

Consequently,

u(t+h)&u(t)�
h

t+h
u(t+h),

and the result follows. K
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6. EXISTENCE AND UNIQUENESS FOR DATA IN L1 (0)

In this section we are going to prove Theorem 1.

Proof of Theorem 1 (Existence).

Let u0 # L1 (0) and [S(t)]t�0 the contraction semigroup in L1 (0)
generated by A. . We shall prove that u(t) :=S(t) u0 is an entropy solution
of problem (1.4). We divide the proof in different steps.

Step 1. Since D(A.) & L� (0) is dense in L1 (0), given u0 # L1 (0)
there exists a sequence u0, n # D(A.) & L� (0) such that u0, n � u0 in L1 (0).
Then, if un (t) :=S(t) u0, n , we have that un � u in C([0, T]; L1 (0)) for
every T>0. As a consequence of Theorem 3, un (t), u$n (t) # L2 (0), p(un (t))
# BV(0) for all p # P and there exists zn (t) # X(0), &zn (t)&��1, and u$n (t)
=div(zn (t)) in D$(0) a.e. t # [0, +�[, satisfying

&|
0

(w& p(un (t))) u$n (t)

�|
0

(zn (t), Dw)&&Dp(un (t))&

&|
�0

[zn (t), &](w& p(.))&|
�0

| p(un (t))& p(.)| (6.1)

for every w # BV(0) & L� (0) and p # P. Moreover,

|
0

(zn (t), Dp(un (t)))=&Dp(un (t))& \p # P (6.2)

and

[zn (t), &] # sign( p(.)& p(un (t))) HN&1-a.e. on �0, \p # P. (6.3)

Since &[zn (t), &]&��&zn (t)&��1, we can suppose (up to extraction of
a subsequence, if necessary) that

[zn ( } ), &] � \ _(L� (ST), L1 (St)).

Step 2. Convergence of the derivatives and identification of the limit.
Since the map t [ u$n (t) is strongly measurable from [0, T] into L2 (0),
and by (2.13),

&u$n (t)&BV(0)*2
�&u$n (t)&L2(0) ,
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it follows that this map is strongly measurable from [0, T] into BV(0)2*.
Moreover, for every w # BV(0)2 , by Green's formula we have

|
0

u$n (t) w=|
0

div(zn (t)) w=&|
0

(zn (t), Dw)+|
�0

[zn (t), &] w.

Hence

} |0
u$n (t) w }�&Dw&+|

�0
|w|�M &w&BV(0)2

\n # N.

Thus,

&u$n (t)&BV(0)*2
�M \n # N and t # [0, T].

Consequently, [u$n]n # N is a bounded sequence in L� (0, T; BV(0)2*). Since
L� (0, T; BV(0)2*) is a vector subspace of the dual space (L1 (0, T;
BV(0)2))*, we can find a net [u$:] such that

u$: � ! # (L1 (0, T; BV(0)2))* weakly*. (6.4)

Since &zn (t)&��1 for all n # N and a.e. t # [0, T], we can suppose that

zn � z # L� (QT , RN) weakly*. (6.5)

Given ' # D(QT), since ' # L1 (0, T; BV(0)2), we have

(!, ') =lim
:

(u$: , ')=lim
: |

T

0
(u$: (t), '(t)) dt

=lim
: |

T

0
|

0
u$: (t) '(t) dx dt

=lim
: |

T

0
|

0
div(z: (t)) '(t) dx dt

=&lim
: |

T

0
|

0
z: (t) } {'(t) dx dt

=&|
QT

z } {'=(divx(z), ').

Hence,

!=divx(z) in D$(QT). (6.6)
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On the other hand, if we take '(t, x)=,(t) �(x) with , # D(]0, T[) and
� # D(0), the same calculation as above shows that

!(t)=divx(z(t)) in D$(0) a.e. t # [0, T]. (6.7)

Consequently, (z(t), !(t)) # Z(0) for almost all t # [0, T]; therefore we can
consider [z(t), &] defined as in Section 2.

Lemma 2. ! is the time derivative of u in the sense of Definition 2.

Proof. Let 9 # L1 (0, T, BV(0)) be the weak derivative of 3 # L1
w(0, T,

BV(0)) & L� (QT), i.e., 9(t)=�t
0 3(s) ds, the integral being taken as a Pettis

integral. By (6.4) we have that

|
T

0
(!(t), 9(t)) dt=lim

: |
T

0
(u$: (t), 9(t)).

Now,

|
T

0
(u$: (t), 9(t)) =lim

h |
T

0
|

0
9(t)

u: (t+h)&u(t)
h

dx dt

=lim
h |

T

0
|

0

9(t&h)&9(t)
h

u: (t) dx dt

= &lim
h |

T

0
|

0

1
h |

t

t&h
3(s) ds u: (t) dx dt

= &|
T

0
|

0
3(t, x) u: (t, x) dx dt.

Passing to the limit in : in the above expression, we obtain

|
T

0
(!(t), 9(t)) dt=&|

T

0
|

0
3(t, x) u(t, x) dx ds. K (6.8)

Step 3. Convergence of the energy. In this step we shall prove that for
any p # P, we have

lim
n � � |

T

0
&Dp(un (t))&+|

T

0
|

�0
| p(un (t))& p(.)|

=|
T

0
&Dp(u(t))&+|

T

0
|

�0
| p(u(t))& p(.)|. (6.9)
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Taking w=0 in (6.1) we get

&Dp(un (t))&+|
�0

| p(un (t))& p(.)|

�&|
0

p(un (t)) u$n (t)+|
�0

[zn (t), &] p(.).

If we denote Jp (r) :=�r
0 p(s) ds, it follows that

|
t

0
&Dp(un (t))&+|

T

0
|

�0
| p(un (t))& p(.)|

�&|
T

0

d
dt |0

Jp (un (t))+|
T

0
|

�0
| p(.)|

=|
0

(Jp(u0, n)&Jp (un (T )))+|
T

0
|

�0
| p(.)|�Mp .

Since the functional 8p : L1 (0) � ]&�, +�], defined by

8p (w)={&Du&+|
�0

|u& p(.)|

+�

if w # BV(0)

if u # L1 (0)"BV(0),
(6.10)

is lower semicontinuous in L1 (0), we have

8p ( p(u(t)))�lim inf
n � �

8p ( p(un (t)))

=lim inf
n � � \&Dp(un (t))&+|

�0
| p(un (t))& p(.)|+ . (6.11)

On the other hand, by the Fatou's lemma, it follows that

|
T

0
lim inf

n � � \&Dp(un (t))&+|
�0

| p(un (t))& p(.)|+
�lim inf

n � � |
T

0 \&Dp(un (t))&+|
�0

| p(un (t))& p(.)|+�Mp . (6.12)

As a consequence of (6.11) and (6.12), we obtain that p(u(t)) # BV(0) for
almost all t # [0, T].
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Lemma 3. The map t [ p(u(t)) from [0, T] into BV(0) is weakly
measurable.

Proof. Let E :=Cc (0)N+1 and S: BV(0) � E* be the map defined by

S(w) :=\w dx,
�w
�x1

, ...,
�w

�xN+ .

Then, &w&BV(0)�&S(w)&E*�N &w&BV(0) . If we denote by F the closure in
E of the set

[(,0 , ,1 , ..., ,N): ,i # D(0), and ,0=div(,1 , ..., ,N)],

in [1] it is shown that S(BV(0)) is isomorphic to ( E
F)*; that is, G := E

F is
the predual of the space BV(0). Now, if ,=(,0 , ,1 , ..., ,N) # D(0)N+1,

(S( p(u(t))), ,) =|p(u(t)) ,0& :
N

i=1
|

0
p(u(t))

�,
�x i

.

Hence, the map t [ (S( p(u(t))), ,) is measurable. From here, approxi-
mating the functions of Cc (0)N+1 by functions of D(0)N+1, we get that
for every , # G, the function t [ (S( p(u(t))), ,) is measurable. Thus, since
G is separable, it follows that the map

t [ &p(u(t))&BV(0)= sup
, # G, &,&�1

(S( p(u(t))), ,)

is measurable.
Given w # BV(0)*, let g(t) :=(p(u(t)), w) . To see that g is measurable,

consider w: # G such that w: � w with respect to _(G**, G*)=
_(BV(0)*, BV(0)). From the above, we know that if g: (t) :=(S( p(u(t))),
w:) , g: is measurable, and g: (t) � g(t). Now, since

| g: (t)|�&p(u(t))&BV(0) &w:&BV(0)*

�R &p(u(t))&BV(0)=F(t) # L1 (0, T ),

and the order interval [&F, F] in L1 (0, T ) is _(L1 (0, T ), L� (0, T ))-
relatively compact, there exists a sequence g:n

such that

g:n
� g in _(L2 (0, T ), L� (0, T )).

Hence, g is measurable. K

From the above, if 0�' # D(]0, T[), the map t [ p(u(t)) '(t) from
[0, T] into BV(0) is weakly measurable.
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Lemma 4. For any {>0, we define the function �{ as the Dunford
integral (see [15])

�{ :=
1
{ |

t

t&{
'(s) p(u(s)) ds # BV(0)**,

that is,

(�{ (t), w) =
1
{ |

t

t&{
('(s) p(u(s)), w) ds,

for any w # BV(0)*. Then �{ # C([0, T]; BV(0)). Moreover, �{ (t) # L2 (0),
and, thus, �{ (t) # BV(0)2 .

Proof. Given , # D(0),

|(�{ (t), ,) |�
1
{ |

t

t&{
|'(s)| |(p(u(s)), ,) | ds

=
1
{ |

t

t&{
|'(s)| \|0

| p(u(s))| |,| dx+ ds�C &,&� .

Consequently, �{ (t) is a finite Radon measure in 0. Moreover, a similar
calculation shows that for every i=1, 2, ..., N, ��{(t)

�xi
is also a finite Radon

measure in 0. Hence, we have �{ (t) # BV(0) (see Exercise 3.2 in [1]), and
the Dunford integral of the definition of �{ (t) is a Pettis integral.
Moreover, if an � 0 (for simplicity suppose that an>0), given w # BV(0)*
with &w&�1, we have

|(�{ (t+an)&�{ (t), w) |

= } 1{ |
t+an

t+an&{
'(s)(p(u(s)), w) ds&

1
{ |

t

t&{
'(s)(p(u(s)), w) ds }

� } 1{ |
t+an

t
'(s)(p(u(s)), w) ds&

1
{ |

t&{+an

t&{
'(s)(p(u(s)), w) ds }

�
1
{ |

t+an

t
|'(s)| &p(u(s))&BV(0) ds

+
1
{ |

t&{+an

t&{
|'(s)| &p(u(s))&BV(0) ds.
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Since the function s [ |'(s)| &p(u(s))&BV(0) is in L1 ([0, T]),

lim
n � �

&�{ (t+an)&�{ (t)&BV(0)=0.

Thus, �{ # C([0, T]; BV(0)).
Moreover, �{ (t) # L2 (0). In fact, given g # L� (0), with &g&2�1, since

g # BV(0)*, we have

|(�{ (t), g) |= } 1{ |
t

t&{
'(s)(p(u(s)), g) ds }

= }1{ |
t

t&{
'(s) \|0

p(u(s)) g dx+ ds }
�

1
{ |

t

t&{
|'(s)| &p(u(s))&2 &g&2�M.

From the density of L� (0) in L2 (0), we obtain that �{ (t) # L2 (0). K

Lemma 5. For {>0 small enough, we have

|
T

0
(�{ (t), !(t)) dt�&|

T

0
|

0

'(t&{)&'(t)
&{

Jp (u(t)). (6.13)

Proof. Since �{ # C([0, T], BV(0)) admits a weak derivative in L1
w(0,

T, BV(0)) & L� (QT), using (6.8) we have for {>0 small enough that

|
T

0
(�{ (t), !(t)) dt=|

T

0
|

0

u(t+{)&u(t)
{

'(t) p(u(t)).

Now, since p is nondecreasing, we have

Jp (u(t))&Jp (u(t+{))�(u(t)&u(t+{)) p(u(t))

and consequently, for {>0 small enough, we obtain

|
T

0
|

0

u(t+{)&u(t)
{

'(t) p(u(t))�|
T

0
|

0

Jp (u(t+{))&Jp (u(t))

{
'(t)

=|
T

0
|

0

'(s&{)&'(s)
{

Jp (u(s)),

and we finish the proof of (6.13). K
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Now, we can conclude the proof of Step 3. As a consequence of (6.13),
using Green's formula, we have

|
T

0
|

0

'(t&{)&'(t)
&{

Jp (u(t))

� &|
T

0
|

T

0
(�{(t), !(t)) dt

=&lim
: |

T

0
(�{ (t), u$: (t)) dt

=&lim
: |

T

0 \1
{ |

t

t&{
'(s)(p(u(s)), u$: (t)) ds+ dt

=&lim
: |

T

0 \1
{ |

t

t&{
'(s) \|0

p(u(s)) div z: (t)+ ds+ dt

=lim
: _|

T

0 \1
{ |

t

t&{
'(s) \|0

(z: (t), Dp(u(s)))+ ds+ dt

&|
T

0 \1
{ |

t

t&{
'(s) \|�0

[z: (t), &] p(u(s))+ ds+ dt&
�|

T

0 \1
{ |

t

t&{
'(s) &Dp(u(s))& ds+ dt

&|
T

0 \1
{ |

t

t&{
'(s) \|�0

\(t) p(u(s))+ ds+ dt.

Then, taking the limit as { � 0+, we get

|
T

0
|

0
'$(t) Jp (u(t))�|

T

0
'(t) &Dp(u(t))&&|

T

0
'(t) |

�0
\(t) p(u(t)).

Now, since this is true for all 0�' # D(]0, T [), it follows that

&
d
dt |0

Jp (u(t))�&Dp(u(t))&&|
�0

\(t) p(u(t)),
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and consequently

|
0

(Jp (u0)&Jp (u(T )))�|
T

0
&Dp(u(t))&&|

T

0
|

�0
\(t) p(u(t)). (6.14)

Finally, using (6.14), we obtain

|
T

0
&Dp(u(t))&+|

T

0
|

�0
| p(u(t))& p(.)|

�lim inf
n � � |

T

0
&Dp(un (t))&+|

T

0
|

�0
| p(un (t))& p(.)|

�lim inf
n � � \|

T

0
|

0
p(un (t)) u$n (t)+|

T

0
|

�0
[zn (t), &] p(.)+

=|
0

Jp (u0)&Jp (u(T ))+|
T

0
|

�0
\(t) p(.)

�|
T

0
&Dp(u(t))&+|

T

0
|

�0
\(t)( p(.)& p(u(t)))

�|
T

0
&Dp(u(t))&+|

T

0
|

�0
| p(u(t))& p(.)|,

which concludes the proof of (6.9). Moreover, we get that

\(t) # sign( p(.)& p(u(t))) H N&1-a.e. on �0, a.e. t # [0, T]. (6.15)

Step 4. The boundary condition. Let us now see that

\(t)=[z(t), &] HN&1-a.e. on �0, a.e. t # [0, T]. (6.16)

In fact, if w # BV(0) & L� (0) and v # R(0) such that v | �0=w | �0 , we have
that

|
t

0
(z: (s), w)�0=|

t

0
(div(z: (s)), v)+|

t

0
|

0
z: (s) } {v.

Hence

lim
: |

t

0
(z: (s), w) �0 =|

t

0
(!(s), v)+|

t

0
|

0
z(s) } {v

=|
t

0
(z(s), w) �0=|

t

0
|

�0
[z(s), &] dH N&1. (6.17)
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On the other hand, since z: (s) # X(0), if we apply Green's formula we have
that

|
t

0
(div(z: (s)), v)=&|

t

0
|

0
z: (s) } {v+|

t

0
|

�0
[z: (s), &] w.

Consequently,

|
t

0
(z: (s), w) �0=|

t

0
|

�0
[z: (s), &] w.

From here, taking limits in :, we get

|
t

0
|

�0
\(s) w=|

t

0
|

�0
[z(s), &] w

\w # BV(0) & L� (0), and t # [0, T]. (6.18)

Now, if w # L1 (�0), we take wk # BV(0) & L� (0) such that wk| �0
=Tk (w).

By (6.18), we have

|
t

0
|

�0
\(s) wk=|

�0
[z(s), &] wk .

Letting k � �, it follows that

|
t

0
|

�0
\(s) w=|

t

0
|

�0
[z(s), &] w \w # L1 (�0), and t # [0, T],

and consequently (6.16) holds.

Step 5. Next, we prove that !=div(z) in (L1 (0, T, BV(0)2))* in the
sense of Definition 3. To do that let us first observe that (z, Dw), defined
by (2.14), is a Radon measure in QT for all w # L1

w(0, T, BV(0)) & L� (QT).
Let , # D(QT), then

( (z, Dw), ,)= &|
T

0
(!(t)&u$: (t), w(t) ,(t)) &|

QT

w(z&z:) } {x ,

+|
T

0
( (z: (t), Dw(t)) ,(t)).
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Then by (6.4), taking limits in :, we get

( (z, Dw), ,) =lim
: |

T

0
( (z: (t), Dw(t)), ,(t)). (6.19)

Therefore

|( (z, Dw), ,) |�&,&� |
T

0
&Dw(t)& dt,

from which it follows that (z, Dw) is a Radon measure in QT . Moreover,
from (6.19), applying Green's formula we obtain that

|
QT

(z, Dw)=lim
: |

T

0
(z: (t), Dw(t))

=lim
: \&|

T

0
|

0
div(z: (t)) w(t)+|

T

0
|

�0
[z: (t), &] w(t)+

=&|
T

0
(!(t), w(t))+|

T

0
|

�0
[z(t), &] w(t).

Consequently

|
QT

(z, Dw)+|
T

0
(!(t), w(t))=|

T

0
|

�0
[z(t), &] w(t). (6.20)

Step 6. Conclusion. Finally, we are going to prove that u verifies:

&|
T

0
|

0
j(u(t)&l ) 't+|

T

0
|

0
'(t) &Dp(u(t)&l )&

+|
T

0
|

0
z(t) } D'(t) p(u(t)&l )

�|
T

0
|

�0
[z(t), &] '(t) p(u(t)&l ), (6.21)

for all ' # C� (QT ), with '�0, '(t, x)=,(t) �(x), being , # D(]0, T[),
� # C� (0� ), and p # P, where j(r)=�r

0 p(s) ds.
Let ' # C� (QT ), with '�0, '(t, x)=,(t) �(x), being , # D(]0, T[),

� # C� (0� ), and p # P, a # R. Let Hp (r) := �r
a p(s) ds. Since u$n (t) =

div(zn (t)), multiplying by p(un (t)) '(t) and integrating, we obtain that
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|
T

0
|

0

d
dt

Hp (un (t)) '(t)

=|
T

0
|

0
p(un (t)) u$n (t) '(t)

=|
T

0
|

0
div(zn (t)) p(un (t)) '(t)

=&|
T

0
|

0
(zn (t), D( p(un (t)) '(t)))+|

t

0
|

�0
[zn (t), &] p(un (t)) '(t)

=&|
T

0
|

0
'(t) &Dp(un (t))&&|

T

0
|

0
zn (t) } {'(t) p(un (t))

+|
T

0
|

�0
[zn (t), &] p(un (t)) '(t)

=&|
T

0
|

0
'(t) &Dp(un (t))&&|

T

0
|

0
zn (t) } {'(t) p(un (t))

&|
T

0
|

�0
| p(un (t))& p(.)| '(t)+|

T

0
|

�0
[zn (t), &] p(.) '(t).

Hence, having in mind that '(0)='(T )=0, we get

|
T

0
|

0
'(t) &Dp(un (t))&+|

T

0
|

�0
| p(un (t))& p(.)| '(t)

=&|
T

0
|

0
zn (t) } {'(t) p(un (t))+|

T

0
|

�0
[zn (t), &] p(.) '(t)

&|
T

0
|

0

d
dt

Hp (un (t)) '(t)

=&|
T

0
|

0
zn (t) } {'(t) p(un (t))+|

T

0
|

�0
[zn (t), &] p(.) '(t)

&|
T

0
|

0

d
dt

(Hp (un (t)) '(t))+|
T

0
|

0
Hp (un (t)) 't

=&|
T

0
|

0
zn (t) } {'(t) p(un (t))+|

T

0
|

�0
[zn (t), &] p(.) '(t)

+|
T

0
|

0
Hp(un (t)) 't .
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Letting n � �, it follows that

|
T

0
|

0
'(t) &Dp(u(t))&+|

T

0
|

�0
| p(u(t))& p(.)| '(t)

�lim inf
n � � _|

T

0
|

0
'(t) &Dp(un (t))&+|

T

0
|

�0
| p(un (t))& p(.)| '(t)&

=lim inf
n � � _&|

T

0
|

0
zn (t) } {'(t) p(un (t))

+|
T

0
|

�0
[zn (t), &] p(.) '(t)+|

T

0
|

0
Hp (un (t)) 't&

=&|
T

0
|

0
z(t) } {'(t) p(u(t))+|

T

0
|

�0
[z(t), &] p(.) '(t)

+|
T

0
|

0
Hp (u(t)) 't .

Now, using that | p(u(t))& p(.)|=[z(t), &]( p(.)& p(u(t))), we have

&|
T

0
|

0
Hp (u(t)) 't+|

T

0
|

0
'(t) &Dp(u(t))&

+|
T

0
|

0
z(t) } {'(t) p(u(t))�|

T

0
|

�0
[z(t), &] p(u(t)) '(t). (6.22)

Finally, given l # R and p # P, since q(r) :=p(r&l ) is an element of P, and
taking a=l, we obtain (6.21) as a consequence of (6.22) and the proof of
the existence is finished.

Proof of Theorem 1 (Uniqueness)

To prove uniqueness we shall show that the entropy solutions and semi-
group solutions coincide. As a consequence of the semigroup theory (3.1)
is satisfied. Our technique is inspired by a method introduced by Kruzhkov
[21] to prove L1-contraction for entropy solutions for scalar conservation
laws: the doubling of variables. Carrillo [13] probably was the first to
apply Kruzhkov's method to second order equations (see also [18]).
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Let u(t) be an entropy solution with initial datum u0 # L1 (0) and
u� (t)=S(t) u� 0 the semigroup solution with initial datum u� 0 # L� (0). Then,
there exist z(t), z� (t) # Z(0) with &z(t)&��1, &z� (t)&��1, and

[z(t), &] # sign(T +
k (.)&T +

k (u(t))) a.e. in t # [0, T], (6.23)

[z� (t), &] # sign(T +
k (.)&T +

k (u� (t))) a.e. in t # [0, T], (6.24)

and such that, if r, r� # RN, with &r&�1, &r� &�1, and l1 , l2 # R, then

&|
T

0
|

0
j +

k (u(t)&l1) 't+|
T

0
|

0
'(t) &DT +

k (u(t)&l1)&

+|
T

0
|

0
(z(t)&r) } D'(t) T +

k (u(t)&l1)

+|
T

0
|

0
r } D'(t) T +

k (u(t)&l1)

�|
T

0
|

�0
[z(t), &] '(t) T +

k (u(t)&l1), (6.25)

and

&|
T

0
|

0
j &

k (u� (t)&l2) 't+|
T

0
|

0
'(t) &DT &

k (u� (t)&l2)&

+|
T

0
|

0
(z� (t)&r� ) } D'(t) T &

k (u� (t)&l2)

+|
T

0
|

0
r� } D'(t) T &

k (u� (t)&l2)

�|
T

0
|

�0
[z� (t), &] '(t) T &

k (u� (t)&l2), (6.26)

for all ' # C� (QT ), with '�0, '(t, x)=,(t) �(x), being , # D(]0, T[),
� # C� (0� ), and j+

k (r)=�r
0 T +

k (s) ds, j &
k (r)=�r

0 T &
k (s) ds.

We choose two different pairs of variables (t, x), (s, y) and consider u,
z as functions in (t, x), u� , z� in (s, y). Let 0�, # D(]0, T[), 0�� # D(0),

391TOTAL VARIATION FLOW



\n a classical sequence of mollifiers in RN and \~ n a sequence of mollifiers
in R. Define

'n (t, x, s, y) :=\n (x& y) \~ n (t&s) , \t+s
2 + � \x+ y

2 + .

Note that for n sufficiently large,

(t, x) [ 'n (t, x, s, y) # D(]0, T[_0) \(s, y) # QT ,

(s, y) [ 'n (t, x, s, y) # D(]0, T[_0) \(t, x) # QT .

Hence, for (s, y) fixed, if we take in (6.25) l1=u� (s, y) and r=z� (s, y), we
get

&|
T

0
|

0
j +

k (u(t, x)&u� (s, y))('n)t+|
T

0
|

0
'n &DxT +

k (u(t, x)&u� (s, y))&

+|
T

0
|

0
(z(t, x)&z� (s, y)) } {x'nT +

k (u(t, x)&u� (s, y))

+|
T

0
|

0
z� (s, y) } {x 'nT +

k (u(t, x)&u� (s, y))�0. (6.27)

Similarly, for (t, x) fixed, if we take in (6.26) l2=u(t, x) and r� =z(t, x), we
get

&|
T

0
|

0
j &

k (u� (s, y)&u(t, x))('n)s+|
T

0
|

0
'n &DyT &

k (u� (s, y)&u(t, x))&

+|
T

0
|

0
(z� (s, y)&z(t, x)) } {y'nT &

k (u� (s, y)&u(t, x))

+|
T

0
|

0
z(t, x) } {y'nT &

k (u� (s, y)&u(t, x))�0. (6.28)

Now, since T &
k (r)=&T +

k (&r) and j &
k (r)= j +

k (&r), we can rewrite (6.28)
as

&|
T

0
|

0
j +

k (u(t, x)&u� (s, y))('n)s+|
T

0
|

0
'n &DyT +

k (u(t, x)&u� (s, y))&

+|
T

0
|

0
(z(t, x)&z� (s, y)) } {y'n T +

k (u(t, x)&u� (s, y))

&|
T

0
|

0
z(s, y) } {y 'n T +

k (u(t, x)&u� (s, y))�0. (6.29)
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Integrating (6.27) in (s, y) and (6.29) in (t, x) and taking their sum yields

&|
QT_QT

j +
k (u(t, x)&u� (s, y))(('n)t+('n)s)

+|
QT_QT

'n &DxT +
k (u(t, x)&u� (s, y))&

+|
QT_QT

'n &Dy T +
k (u(t, x)&u� (s, y))&

+|
QT_QT

(z(t, x)&z� (s, y)) } ({x'n+{y'n) T +
k (u(t, x)&u� (s, y))

+|
QT_QT

z� (s, y) } {x 'T +
k (u(t, x)&u� (s, y))

&|
QT_QT

z(t, x) } {y'nT +
k (u(t, x)&u� (s, y))�0. (6.30)

Now, by Green's formula we have

|
QT_QT

z� (s, y) } {x'nT +
k (u(t, x)&u� (s, y))

+|
QT_QT

'n &DxT +
k (u(t, x)&u� (s, y))&

=&|
QT_QT

'nz� (s, y) } DxT +
k (u(t, x)&u� (s, y))

+|
QT_QT

'n &DxT +
k (u(t, x)&u� (s, y))&�0,

and

&|
QT_QT

z(t, x) } {y'nT +
k (u(t, x)&u� (s, y))

+|
QT_QT

'n &DyT +
k (u(t, x)&u� (s, y))&

=|
QT_QT

'nz(t, x) } Dy T +
k (u(t, x)&u� (x, y))

+|
QT_QT

'n &DyT +
k (u(t, x)&u� (s, y))&�0.
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Hence, from (6.30), it follows that

&|
QT_QT

j +
k (u(t, x)&u� (s, y))(('n) t+('n)s)

+|
QT_QT

(z(t, x)&z� (s, y))

_({x'n+{y 'n) T +
k (u(t, x)&u� (s, y))�0. (6.31)

Since,

('n)t+('n)s=\n (x& y) \~ n (t&s) ,$ \t+s
2 + � \x+ y

2 +
and

{x'n+{y'n=\n (x& y) \~ n (t&s) , \t+s
2 + {� \x+ y

2 + ,

passing to the limit in (6.31), it yields

&|
QT

j +
k (u(t, x)&u� (t, x)) .$(t) �(x)

+|
QT

(z(t, x)&z� (t, x)) } {�(x) ,(t) T +
k (u(t, x)&u� (t, x))�0. (6.32)

We have to prove that

lim
n |

QT

(z(t, x)&z� (t, x)) } {�n (x) ,(t) T +
k (u(t, x)&u� (t, x))�0

for any sequence �n A 10 . Since !=div(z), !� =div(z� ) in (L1 (0, T,
BV(0)2))*, the following integration by parts formula holds

|
QT

(z&z� , Dw)+|
T

0
(!(t)&!� (t), w(t)) dt

=|
T

0
|

�0
[z(t, x)&z� (t, x), &] w(t, x) dH N&1 dt,
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for all w # L1 (0, T, BV(0)) & L� (QT). Set

w=((�&1) ,T +
k (u&u� )){ (t, x)=(�(x)&1)(,T +

k (u&u� )){ (t, x),

where

(,T +
k (u&u� )){ (t, x)=

1
{ |

t+{

t
,(s) T +

k (u(s, x)&u� (s, x)) dt,

in the above formula to obtain

|
QT

(z(t, x)&z� (t, x)) } {(�(x)&1)(,T +
k (u&u� )){ (t, x) dx dt

=&|
QT

(z(t, x)&z� (t, x)) } (�(x)&1) D(,T +
k (u&u� )){ (t, x) dx dt

&|
QT

(!(t)&!� (t))(�(x)&1)(,T +
k (u&u� )){ (t, x)

+|
T

0
|

�0
[z(t, x)&z� (t, x), &](�(x)&1)

_(,T +
k (u&u� )){ (t, x) dHN&1 dt.

Since

|
QT

(z&z� ) } {(�&1) ,T +
k (u&u� ) dx dt

= lim
{ � 0+ |

QT

(z&z� ) } {(�&1)(,T +
k (u&u� )){ dx dt,

and, using that �|�0=0, also

&|
T

0
|

�0
[z&z� , &] ,T +

k (u&u� ) dHN&1 dt

= lim
{ � 0+ |

T

0
|

�0
[z&z� , &] (�&1)(,T +

k (u&u� )){ dH N&1 dt
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we may write

|
QT

(z&z� ) {�,T +
k (u&u� )

=|
QT

(z&z� ) {(�&1) ,T +
k (u&u� )

=lim
{ |

QT

(z&z� ) } (1&�) D(,T +
k (u&u� )){ dx dt

+|
QT

(!&!� )(1&�)(,T +
k (u&u� )){

&|
T

0
|

�0
[z&z� , &] ,T +

k (u&u� ) dHN&1 dt.

Now, since !, !� are the time derivatives of u, resp. u� , in (L1 (0, T, BV(0)2))*,
we have that

|
T

0
|

0
(!&!� )(1&�)(,T +

k (u&u� )){

=|
T

0
|

0
(!&!� )((1&�) ,T +

k (u&u� )){

=|
T

0
|

0
(1&�) ,T +

k (u&u� )
1
{

2&
{ (u&u� ),

where 2&
{ (u&u� )=(u&u� )(t)&(u&u� )(t&{). Let v=u&u� . Since

T +
k (v(t))(v(t)&v(t&{))�JTk

+ (v(t))&JTk
+ (v(t&{))

(JTk
+ being the primitive of T +

k ), and ,, (1&�)�0, we have for { small
enough that

|
T

0
|

0
(!&!� )(1&�)(,T +

k (u&u� )){

�|
T

0
|

0
(1&�) ,

JT k
+

(v(t))&JTk
+ (v(t&{))

{

=&|
T

0
|

0

,(t+{)&,(t)
{

(1&�) JTk
+ (u&u� ).
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Thus, we have

|
QT

(z&z� ) {�,T +
k (u&u� )

�lim
{ \|QT

(z&z� ) } (1&�) D(,T +
k (u&u� )){ dx dt

&|
T

0
|

0

,(t+{)&,(t)
{

(1&�) JTk
+ (u&u� )+

&|
T

0
|

�0
[z&z� , &] ,T +

k (u&u� ) dHN&1 dt.

Finally, we observe that

lim
{ } |QT

(z&z� )(1&�) D(,T +
k (u&u� )){ dx dt }

�2 |
QT

(1&�) , &DT +
k (u&u� )& dx dt,

which enables us to write that

|
QT

(z&z� ) {�,T +
k (u&u� )�&2 |

QT

(1&�) , &DT +
k (u&u� )& dx dt

&|
T

0
|

0
,$(t)(1&�) JTk

+ (u&u� )

&|
T

0
|

�0
[z&z� , &] ,T +

k (u&u� ) dHN&1 dt.

Let �=�n where �n A 10 in the last expression. Using that &DT +
k (u(t)&

u� (t))& is a Radon measure a.e. in t with &DT +
k (u(t)&u� (t))& # L1 (0, T ),

letting n � �, we obtain

lim
n |

QT

(z&z� ) {�n,T +
k (u&u� )

� &|
T

0
|

�0
[z&z� , &] ,T +

k (u&u� ) dHN&1 dt.
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Thus

|
QT

j +
k (u(t, x)&u� (t, x)) ,$(t)

�&|
T

0
|

�0
[z&z� , &] ,T +

k (u&u� ) dHN&1 dt�0. (6.33)

Since this is true for all 0�, # D(]0, T[), we get

d
dt |0

j +
k (u(t, x)&u� (t, x))�0.

Hence

|
0

j +
k (u(t, x)&u� (t, x))�|

0
j +

k (u0&u� 0).

Then, letting k � �, we obtain

|
0

(u(t, x)&u� (t, x))+�|
0

(u0&u� 0)+.

From here we deduce that

&u(t)&u� (t)&1�&u0&u� 0&1 , \t�0.

Hence, taking un (t)=S(t) u0, n , u0, n # L� (0), and u0, n � u0 in L1 (0), we
have

&u(t)&un (t)&1�&u0&u0, n&1 , \t�0.

Consequently, letting n � �, u(t)=S(t) u0 , and the proof of the unique-
ness concludes. K

7. REGULARITY FOR POSITIVE INITIAL DATA

In this section we shall see that when the initial data are nonnegative, the
semigroup solutions are strong solution.

We need to consider truncatures Ta, b , a<b, defined by

a if r<a
Ta, b (r) :={r if a�r�b

b if r>b.
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Proposition 5. Let u0 # L1 (0), . # L1 (�0). Let (S(t))t�0 be the semi-
group generated by A. . Then, if u(t)=S(t) u0 ,

(i)

|
0

j(u(t))+|
t

0
8( p(u(s)))�|

t

0
|

�0
| p(.)|+|

0
j(u0),

where p is a truncature ( p=Ta, b), j is the primitive of p, and 8 is the
functional defined by (4.22).

(ii) p(u)t # L2
loc(0, {, L2(0)), for every truncature p as above. Moreover,

we have the estimate

8( p(u(t)))+|
t

s
|

0
| p(u)t |2�C,

where C>0 depends on s, &u0&L1 , &.&L1 , and p.

Proof. (i) First, assume that u0 # L2 (0)

d
dt |0

j(u)=|
0

p(u) ut=|
0

p(u) div(z)

=&|
0

z } Dp(u)+|
�0

[z, &] p(u)

=&|
0

|Dp(u)|+|
�0

[z, &]( p(u)& p(.)+ p(.))

=&|
0

|Dp(u)|&|
�0

| p(u)& p(.)|+|
�0

[z, &] p(.).

Integrating this expression, we obtain

|
0

j(u(t))+|
T

0
8( p(u(t)))�|

T

0
|

�0
| p(.)|+|

0
j(u0). (7.1)

Since j has linear growth at infinity, if u0 # L1 (0), the estimate in (i)
follows by approximating u0 by functions u0n # L2 (0) and passing to the
limit.
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(ii) Assume first that u0 # L2 (0). Let $>0 and t, s�$ such that
(u(t), &ut (t)), (u(s), &ut (s)) # A. . We know that

|
0

( p(u(t))&w) ut (t)�|
0

(z(t), Dw)&&Dp(u(t))&+|
�0

|w& p(.)|

&|
�0

| p(u(t))& p(.)|

for all w # BV(0) & L� (0). Setting w= p(u(s)) in the above expression we
have

8( p(u(t)))&8( p(u(s)))�|
0

ut (t)( p(u(s))& p(u(t))).

Using the estimate for semigroups generated by subdifferentials in L2 (see
for instance [12, Theorem 3.2]) we have

8( p(u(t)))&8( p(u(s)))�C($) &u0&2 &p(u(s))& p(u(t))&2 .

Since a similar estimate holds with s and t interchanged, we have

|8( p(u(t)))&8( p(u(s)))|�C($) &u0&2 &p(u(s))& p(u(t))&2 . (7.2)

Since u # W 1, 1
loc ((0, {), L2 (0)), i.e., is a locally absolutely continuous func-

tion of time, then p(u) is also, and, from (7.2), we deduce that 8( p(u)) is
absolutely continuous in [0, {] for all {>0. Let t # [0, �) be such that u,
p(u), 8( p(u)) are differentiable at t and (u(t), &ut (t)) # A. . Set w=
p(u(t+=)), w= p(u(t&=)) in the above expression to obtain

|
0

( p(u(t))& p(u(t\=))) ut (t)�8( p(u(t\=)))&8( p(u(t))).

Letting = � 0+ we have

d
dt

8( p(u(t)))+|
0

p$(u(t)) ut (t)2=0.

In particular, since p$ is either 0 or 1, we have

d
dt

8( p(u(t)))+|
0

| p(u)t (t)|2�0.
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In particular 8( p(u(t)) is a decreasing function of t. If u0 # BV(0) & L2 (0),
integrating from 0 to t we get

8( p(u(t)))+|
t

0
|

0
| p(u)t |2�8(u0).

Observe that by the estimate in (i), if u0 # L2 (0), then u(s) # BV(0) &
L2 (0) for almost all s>0 and we have

8( p(u)(t))+|
t

s
|

0
| p(u)t |2�8( p(u)(s)),

for almost all 0<s<t. Now, let u0 # L1 (0) and u0n # L2 (0) be such that
u0n � u0 in L1 (0). Then, if un (t, x) denotes the solution corresponding to
initial datum u0n we have

8( p(un)(t))+|
t

s
|

0
| p(un)t |2�8( p(un)(s)), (7.3)

for almost all 0<s<t and all n. Now, observe that by the estimate in (i),

|
t

0
8( p(un)({))�C

for some constant C>0. Let $>0. Then

|
t

0
8( p(un)({))�|

$

0
8( p(un)({))�8( p(un)($)) $.

Consequently, 8( p(un)(s)) is a bounded sequence for almost all s>0.
Thus, for a.e. s>0, the left hand side of (7.3) is bounded. Hence, we may
assume that p(un (t)) � p(u(t)) in L1 (0) for a.e. t>0. Now, we may pass
to the limit in (7.3) and use the lower semicontinuity of the left hand side
to obtain that

8( p(u)(t))+|
t

s
|

0
| p(u)t |2�C, (7.4)

where C depends on s, &u0&L1 , &.&L1 , p. K

Theorem 5. Let u0 # L1 (0), . # L1 (�0). Suppose that u0 + M � 0,
.+M�0 (or u0&M�0, .&M�0) for some M�0. Let (S(t))t�0 be the
semigroup generated by A. . Then, if u(t)=S(t) u0 , ut # L1

loc(0, T, L1 (0)).
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Proof. It is easy to check via the resolvents that the semigroup solution
corresponding to the data u0\M, .\M coincides with the semigroup
solution corresponding to the data u0 , . plus the constant \M; i.e.,
S(t)(u0\M, .\M)=S(t)(u0 , .)\M. Thus, without loss of generality we
may assume that M=0. Let us prove the theorem in case u0 , .�0, the
other case being analogous. We know, by the homogeneity estimate,
Proposition 4, that ut is a Randon measure in (s, t)_0, for all 0<s<t.
Thus, its mass is bounded; i.e.,

|
t

s
|

0
|ut |<�.

Now, taking p=Ta, b , the estimate in (ii) of the previous proposition says
that ut is a function in L2 (Qa, b), for all a<b, where Qa, b=
[(t, x) # Q: a<u(t, x)<b]. Thus, this, with the last integral bound, proves
that ut # L1

loc(0, {, L1 (0)). K

Remark 3. Under the assumption of the above theorem, since ut #
L1

loc(0, T, L1 (0)), working as in [2] we can prove that u is a strong solu-
tion. Consequently, existence and uniqueness can be obtained in an easier
way than in the general case using the same technique as in [2].
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