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In this paper we obtain existence and uniqueness of solutions for the Cauchy problem
for the minimizing total variation flow when the initial condition is a Radon measure19

in R
N . We study limit solutions obtained by weakly approximating the initial measure

µ by functions in L1(RN ). We are able to characterize limit solutions when the initial21

condition µ = h + µs, where h ∈ L1(RN ) ∩ L∞(RN ), and µs = αHk S, α ≥ 0, k is an
integer and S is a k-dimensional manifold with bounded curvatures. In case k < N − 123

we prove that the singular part of the solution does not move, it remains equal to µs for
all t ≥ 0. In particular, u(t) = δ0 when u(0) = δ0. In case k = N − 1 we prove that the25

singular part of the limit solution is (1− 2

α
t)+µs and we also characterize its absolutely

continuous part. This explicit behaviour permits to characterize limit solutions. We also27

give an entropy condition characterization of the solution which is more satisfactory
when k < N − 1. Finally, we describe some distributional solutions which do not have29

the behaviour characteristic of limit solutions.

Keywords: Total variation; nonlinear parabolic equations; strong solutions, Radon31

measures.

1. Introduction33

The purpose of this paper is to prove existence and uniqueness of the minimizing

total variation flow in R
N

35

∂u

∂t
= div

(

Du

|Du|

)

in QT =]0, T [×R
N , (1.1)

1
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coupled with the initial condition1

u(0) = µ , µ being a Radon measure in R
N . (1.2)

This PDE appears (in a bounded domain D) in the steepest descent method for3

minimizing the total variation, a method introduced by L. Rudin, S. Osher and

E. Fatemi [25] in the context of image denoising and reconstruction. When dealing5

with the denoising problem one minimizes the total variation functional
∫

D

|Du| (1.3)
7

with the constraint z = u + n where n represents the noise. Then one minimizes

(1.3) under the above constraint [25]. Numerical experiments show that the model9

is adapted to restore the discontinuities of the image [12, 16, 19, 25]. Indeed, the

underlying functional model is the space of BV functions, i.e., functions of bounded11

variation, which admit a discontinuity set which is countably rectifiable ([2, 17, 26]).

To solve (1.3) (with the specified constraint) one formally computes the13

Euler-Lagrange equation and solves it with Neumann boundary conditions, which

amounts to a reflection of the image across the boundary of D. Many numerical15

methods have been proposed to solve this equation in practice, see for instance

[12, 16, 19, 25] (see also [24] for an interesting analysis of the features of most nu-17

merical methods explaining, in particular, the staircasing effect). This leads to an

iterative process which, in some sense, can be understood as a gradient descent.19

This gradient descent flow (1.1) was initially studied in a bounded domain un-

der Neumann boundary conditions in [3] where the authors proved existence and21

uniqueness of solutions with initial data in L1, and constructed some particular ex-

plicit solutions of the equation. The corresponding results for the Dirichlet problem23

where proved in [4]. This study was completed in [5] where the authors proved that

the solution reaches its asymptotic state in finite time and studied its extinction25

profile, given in terms of the eigenvalue problem

−div

(

Dv

|Dv|

)

= v . (1.4)
27

In [8] the authors constructed many explicit solutions of the eigenvalue problem

(1.4) and, as a consequence, they obtained explicit solutions of the evolution prob-29

lem (1.1) and of the denoising problem in image processing [8]. All together, this

gives a picture of how the flow (1.1) behaves to minimize the total variation of a31

function in L1 under Neumann or Dirichlet boundary conditions.

In this paper we continue the study of the flow (1.1) when the initial conditions33

are Radon measures in R
N . In other words, we study the well-posedness of the

1-Laplacian diffusion equation when the initial data are measures. Recall that, as it35

is mentioned in [13], the existence for the p-Laplacian heat equation can be proved

as in [13], while uniqueness is mentioned as an open question.37

Let us explain the plan of the paper and its main results. In Sec. 2 we recall

some definitions concerning measures, functions of bounded variation, a generalized39
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Green’s formula and the concept of strong solution of the Dirichlet problem for equa-1

tion (1.1). Section 3 is devoted to the construction of limit solutions for equation

(1.1) when the initial condition is a bounded Radon measure µ. Indeed, since (1.1)3

is well posed in L1(RN ) we can approximate µ by functions in un(0) ∈ L1(RN ),

compute the corresponding solutions un(t) and pass to the limit to obtain a function5

u(t) taking values in the space of Radon measures. For later purpose let us denote

u(t) = u(t)ac + u(t)s, where u(t)ac and u(t)s denote the absolutely continuous and7

singular parts of u(t) with respect to Lebesgue measure in R
N . In this paper we

shall not consider general measures, instead we shall restrict ourselves to the case9

of measures

µ = h+ αHk S (1.5)11

where h ∈ L1(RN ) ∩ L∞(RN ), α ≥ 0, and Hk being the k-dimensional Hausdorff

measure in R
N and S is a k-manifold in R

N of classW 3,∞. We also note that we may13

use many different approximations un(0) to the measure µ. In the following sections

we shall first stress the role of one of them, the one in which we approximate the15

singular part of µ, i.e., the measure αHk S by constant functions. Indeed, using

essentially the ideas of Minkowski’s content we know that17

α
Hk(S)

|In(S)|
χ

In(S) ⇀ αHk S weakly∗ as measures as n→ ∞ , (1.6)

where In(S) = {x ∈ R
N : d(x, S) ≤ 1

n}. This result is essentially contained in [2]19

and we recall the proof in the Appendix. In Sec. 4 we compute some explicit limit

solutions for initial measures which have some radial symmetry, in particular for21

sums of Dirac measures concentrated at points or circles. These explicit solutions

exhibit some curious behaviour, namely, Dirac measures concentrated at a finite23

number of points do not move, while the measure αHN−1 ∂B(0, R) has a more

complex evolution described in (4.1). In particular, we note that there is no regu-25

larizing effect for (1.1) when the initial condition is a measure. On the other hand,

this makes explicit that solutions have a very different behaviour according to the27

Hausdorff dimension of the support of the measure. If this dimension is k < N − 1

it seems that the singular part of the measure does not move, while it moves when29

k = N − 1. Our purpose will be to explore this behaviour. Indeed, we shall be able

to prove it for the particular case of measures of the form (1.5). In Sec. 5 we charac-31

terize the behaviour of limit solutions. Let us consider first the case k = N − 1. Let

C2 denote the unbounded connected component of R
N \ S and C1 its complement33

in R
N \S. When k = N −1, in the time interval [0, α

2 ] we have u(t) = u(t)ac +u(t)s

with u(t)s = (1− 2
α t)µs and u(t)ac|Ci , i = 1, 2, is the strong solution of the Dirich-35

let problem (5.26). Note that u(α
2 )s = 0. In the time interval [α

2 ,∞), u(t) = u(t)ac

is the strong solution of (1.1) with initial condition u(α
2 )ac. In case k < N − 1,37

we prove that u(t)s = µs for all t ≥ 0, and u(t)ac is the strong solution of (1.1)

with initial condition µac. Furthermore, we observe that u(t) satisfies some entropy39
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condition which characterizes in some way the solution of (1.1). In Sec. 6 we study1

limit solutions when the initial measure µ is approximated by functions

un0 = µac + ρn ∗ µs ,3

where ρn(x) = nNρ(nx) and ρ is a radial, smooth, positive convolution kernel with

compact support and µs = αHk S with k < N − 1. We prove that the limit5

solution obtained in this case coincides with the limit solution obtained for the

approximation (1.6) and studied in Sec. 5. At this moment we do not know if the7

analogous result holds when k = N − 1. Related to the behaviour of limit solutions

when k = N −1, we remark in Sec. 7 that, if µ is a measure in BV (RN )∗, then u(t)9

is also a measure in BV (RN )∗. Finally, in Sec. 8 we construct some distributional

solutions of (1.1) which do not coincide with the limit solutions constructed in11

previous sections. Finally, for the sake of completeness, the Appendix contains the

proof of (1.6). We s13

2. Preliminaries

2.1. Measures, functions of a measure15

We denote by Cc(R
N ) the space of all real continuous functions in R

N with compact

support and by C0(R
N ) its completion with respect to the sup-norm. If we denote17

by M(RN ) (resp. Mb(R
N )) the space of the scalar Radon (resp. finite scalar Radon)

measures on R
N , by Riesz Theorem, M(RN ) (resp. Mb(R

N )) can be identified with19

the dual of Cc(R
N ) endowed with its natural l.c. topology (resp. with the dual of

the Banach space C0(R
N )).21

Let µ, µn ∈ M(RN ), we say that (µn) locally weakly∗ converges to µ if

lim
n→∞

∫

RN

fdµn =

∫

RN

fdµ ∀ f ∈ Cc(R
N ) ;

23

if µn ∈ Mb(R
N ), we say that (µn) weakly∗ converges to µ if

lim
n→∞

∫

RN

fdµn =

∫

RN

fdµ ∀ f ∈ C0(R
N ) .

25

We will denote this type of convergence by

µn ⇀ µ weakly∗ as measures .27

Given a measure µ ∈ M(RN ) we denote by µac and µs its absolutely continuous

part and its singular part with respect to the Lebesgue measure LN , respectively.29

We denote by µac(x) the density of the measure µac with respect to LN and by
dµs

d|µs|
(x) the density of µs with respect to |µs|.31

We denote by Cw([0, T ],Mb(R
N )) the space of all weakly∗ continuous functions

from [0, T ] to Mb(R
N ). In this space we consider the weakly∗ uniform convergence33

topology, that is, the topology defined by the family of seminorms
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‖u‖ϕ := sup
t∈[0,T ]

∣

∣

∣

∣

∫

RN

ϕdu(t)

∣

∣

∣

∣

,
1

for each u ∈ Cw([0, T ],Mb(R
N )), ϕ ∈ C0(R

N ).

Recall the concept of function of a measure [14]. Given a continuous function3

f : R
k → R which has at most a linear growth at infinity, i.e.,

|f(ξ)| ≤M(1 + ‖ξ‖) , ∀ ξ ∈ R
k ,5

and such that f possesses an asymptotic function, i.e., such that the following limit

exists7

f∞(ξ) := lim
t→∞

f(tξ)

t
, ∀ ξ ∈ R

k ,

for every µ ∈ Mb(R
N ,Rk), we may define the measure f(µ) by writing9

∫

B

f(µ) :=

∫

B

f(µac(x))dx +

∫

B

f∞

(

dµs

d|µs|
(x)

)

d|µs|(x) ,

for every Borel set B ⊂ R
N .11

2.2. BV functions, measures in BV ∗

The natural energy space to study problem (1.1) is the space of functions of bounded13

variation. Recall that if Ω is an open subset of R
N , a function u ∈ L1(Ω) whose

gradient Du in the sense of distributions is a vector valued Radon measure with15

finite total variation in Ω is called a function of bounded variation. The class of

such functions will be denoted by BV (Ω). The total variation of Du in Ω is defined17

by the formula

|Du|(Ω) = sup

{∫

Ω

u div(φ) : φ ∈ C∞
0 (Ω,RN ), ‖φ‖ ≤ 1

}

.
19

The space BV (Ω) is endowed with norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω) .21

If Ω = R
N , we consider BV (RN ) endowed with norm

‖u‖BV (RN ) = |Du|(RN ) .23

Recall that an LN -measurable subset E of R
N has finite perimeter if χE ∈

BV (RN ). The perimeter of E is defined by Per(E) = |DχE |(RN ).25

If E ⊆ R
N is LN -measurable and x ∈ R

N , the upper and lower densities of x in

E are defined by

D̄(E, x) := lim sup
ρ→0+

|E ∩ Bρ(x)|
|Bρ(x)|

,

D(E, x) := lim inf
ρ→0+

|E ∩ Bρ(x)|
|Bρ(x)|

.
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In case that the upper and lower limits are equal, we denote their common value

by D(E, x) and we call it the density of E at x. We denote by Ei := {x ∈ R
N :

D(E, x) = 1} the measure theoretic interior of E, by Ee := {x ∈ R
N : D(E, x) = 0}

the measure theoretic exterior of E and by ∂ME := R
N \ (Ei ∪ Ee) the measure

theoretic boundary of E. We also use the notation ĒM := Ei ∪ ∂ME. Recall that,

by definition,

u+(x) = inf{t : D([u > t], x) = 0} ,
u−(x) = sup{t : D([u < t], x) = 0} .

If t < u+(x) then D([u > t], x) > 0 and it follows that x ∈ [u > t]
M

. In that case,
χ

[u>t]
M (x) = 1. Since χ

[u>t]
M (x) = (χ[u>t])

+(x) we have

u+(x) =

∫ u+(x)

0

dt =

∫ u+(x)

0

χ
[u>t]

M (x)dt

=

∫ ∞

0

χ
[u>t]

M (x)dt =

∫ ∞

0

(χ[u>t])
+(x)dt .

Now, since1

u−(x) = inf{t : x ∈ [u > t]i} ,
observing that χ[u>t]i(x) = (χ[u>t])

−(x), we have

u−(x) =

∫ u−(x)

0

dt =

∫ u−(x)

0

χ
[u>t]i(x)dt

=

∫ ∞

0

χ
[u>t]i(x)dt =

∫ ∞

0

(χ[u>t])
−(x)dt .

The above equalities imply that

u∗(x) :=
u+(x) + u−(x)

2
=

∫ ∞

0

(χ[u>t])
+(x) + (χ[u>t])

−(x)

2
dt

=

∫ ∞

0

(χ[u>t])
∗(x)dt . (2.1)

The symbol Hk denotes the k-dimensional Hausdorff measure in R
N , k ∈3

{0, 1, . . . , N}, and ωk denotes the Lebesgue measure of the unit ball of R
k. For

a LN -measurable subset of R
N , we will use frecuently the notation |A| := LN (A).5

The following characterization of the positive Radon measures belonging to

BV (RN )∗ is given by N. G. Meyer and W. P. Ziemer in [23] (see also [22, 26]).7

Theorem 2.1. Let µ ∈ M+(RN ). The following statements are equivalent.

(i) HN−1(A) = 0 implies that µ(A) = 0 for all Borel sets A ⊂ R
N and there is a9

constant M1 such that
∣

∣

∣

∣

∫

RN

u∗dµ

∣

∣

∣

∣

≤M1|Du|(RN ) forall u ∈ BV (RN ) .
11
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(ii) There is a constant M2 such that µ(A) ≤M2Per(A) for all Borel sets A ⊂ R
N

1

with LN (A) <∞.

(iii) There is a constant M3 such that µ(Br(x)) ≤M3r
N−1 whenever x ∈ R

N and3

r ∈ R.

A positive Radon measure µ satisfying one of the conditions of the above the-5

orem can be identified with an element of BV (RN )∗. Y. Meyer in [22] called these

measures Guy David measures. Let us note that if µ is a Guy David measure,7

we have

〈µ, u〉BV ∗,BV =

∫

RN

u∗dµ , ∀ u ∈ BV (RN ) .
9

2.3. A generalized Green’s formula

Let Ω be an open bounded set in R
N with Lipschitz boundary. Following [6], for11

1 ≤ p <∞ let

Xp(Ω) = {z ∈ L∞(Ω,RN ) : div(z) ∈ Lp(Ω)} . (2.2)13

If z ∈ Xp(Ω) and w ∈ BV (Ω)∩Lp′

(Ω) we define the functional (z,Dw) : C∞
0 (Ω) →

R by the formula15

〈(z,Dw), ϕ〉 = −
∫

Ω

wϕ div(z)dx−
∫

Ω

wz · ∇ϕdx . (2.3)

Then (z,Dw) is a Radon measure in Ω,17
∫

Ω

(z,Dw) =

∫

Ω

z · ∇wdx ∀ w ∈W 1,1(Ω) ∩ Lp′

(Ω) , (2.4)

and19
∣

∣

∣

∣

∫

B

(z,Dw)

∣

∣

∣

∣

≤
∫

B

|(z,Dw)| ≤ ‖z‖∞
∫

B

|Dw| , (2.5)

for any Borel set B ⊆ Ω. Moreover, when z ∈ Xp(Ω) and w ∈ BV (Ω) ∩ Lp′

(Ω), we21

have the following integration by parts formula
∫

Ω

w div(z)dx+

∫

Ω

(z,Dw) =

∫

∂Ω

[z, ν]wdHN−1 , (2.6)
23

where [z, ν] is the weak trace on ∂Ω of the normal component of z (see [6])

2.4. Strong solutions of the Dirichlet problem25

Let Ω be an open bounded set in R
N with Lipschitz boundary. We need to recall

the concept of strong solution introduced in [4] for the Dirichlet problem27























∂u

∂t
= div

(

Du

|Du|

)

, in Q = (0,∞) × Ω ,

u(t, x) = ϕ(x) , on S = (0,∞) × ∂Ω ,

u(0, x) = u0(x) , in x ∈ Ω ,

(2.7)

where u0 ∈ L2(Ω) and ϕ ∈ L∞(∂Ω).
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By L1
w(0, T, BV (Ω)) we denote the space of weakly measurable functions w :1

[0, T ] → BV (Ω) (i.e., t ∈ [0, T ] → 〈w(t), φ〉 is measurable for every φ ∈ BV (Ω)∗)

such that

∫ T

0

‖w(t)‖ <∞. Observe that, since BV (Ω) has a separable predual [2],
3

it follows easily that the map t ∈ [0, T ] → ‖w(t)‖ is measurable.

We shall denote by5

sign0(r) :=







1 , if r > 0 ,

0 , if r = 0 ,

−1 , if r < 0 ,

and by7

sign(r) :=







1 , if r > 0 ,

a ∈ [−1, 1] , if r = 0

−1 , if r < 0 .

Let Tk(r) = [k − (k − |r|)+]sign0(r), k ≥ 0, r ∈ R. We consider the set9

T = {Tk, T
+
k , T

−
k : k > 0}. We need to consider a more general set of truncature

functions, concretely, the set P of all nondecreasing continuous fuctions p : R → R,11

such that p′(r) exists with the possible exception of a finite set of values of r ∈ R

and supp(p′) is compact. Obviously, T ⊂ P .13

Definition 2.1. Let u0 ∈ L2(Ω), ϕ ∈ L1(∂Ω). A measurable function u : (0, T ) ×
Ω → R is a strong solution of problem (2.7) in (0, T ) × Ω if u ∈ C([0, T ], L2(Ω)) ∩
W 1,2

loc (0, T ;L2(Ω)), u ∈ L1
w(0, T ;BV (Ω)) and there exists z ∈ L∞((0, T ) × Ω) with

‖z‖∞ ≤ 1, ut = div(z) in D′((0, T ) × Ω) such that
∫

Ω

(u(t) − w)ut(t)

≤
∫

Ω

(z(t), Dw) −
∫

Ω

|Du(t)| +
∫

∂Ω

|w − ϕ| −
∫

∂Ω

|u(t) − ϕ| (2.8)

for every w ∈ BV (Ω) ∩ L2(Ω) and a.e. on [0, T ].

The following result was proved in [4].15

Theorem 2.2. Let u0 ∈ L2(Ω), ϕ ∈ L1(Ω). Then for every T > 0 there ex-

ists a unique strong solution of (2.7) in (0, T ) × Ω. Moreover, the solution u(t)

of (2.7) is also characterized as follows: u ∈ C([0, T ], L2(Ω)) ∩W 1,2
loc (0, T ;L2(Ω)),

u ∈ L1
w(0, T ;BV (Ω)) and there exists z(t) ∈ X2(Ω), such that ‖z(t)‖∞ ≤ 1,

u′(t) = div(z(t)) in D′(Ω) a.e. t ∈ [0,+∞[ and

∫

Ω

(z(t), Du(t)) =

∫

Ω

|Du(t)| , (2.9)

[z(t), ν] ∈ sign(ϕ− u(t)) HN−1-a.e. on ∂Ω . (2.10)
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Finally, we have the following comparison principle: if u(t), û(t) are solutions of1

(2.7) corresponding to initial data u0, û0 ∈ L2(Ω) ∩ Lp(Ω), respectively, p ≥ 1, and

the same boundary data ϕ, then3

‖(u(t) − û(t))+‖p ≤ ‖(u0 − û0)
+‖p and ‖u(t) − û(t)‖p ≤ ‖u0 − û0‖p , (2.11)

for all t ≥ 0.5

Let us make some comments on the proof which shall be useful in the sequel.

Let Ψϕ : L2(Ω) →] −∞,+∞] be defined by7

Ψϕ(u) =







∫

Ω

|Du| +
∫

∂Ω

|u− ϕ| if u ∈ BV (Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \BV (Ω) ∩ L2(Ω) .

(2.12)

Since the functional Ψϕ is convex and lower semicontinuous in L2(Ω), we have9

that ∂Ψϕ is a maximal monotone operator in L2(Ω), and consequently (see [11]),

if {T (t)}t≥0 is the semigroup in L2(Ω) generated by ∂Ψϕ, for every u0 ∈ L2(Ω),11

u(t) := T (t)u0 is strong solution of the problem






du

dt
+ ∂Ψϕu(t) 3 0 ,

u(0) = u0 .

(2.13)

13

Recall that the operator ∂Ψϕ is defined by

(u, v) ∈ ∂Ψϕ if and only if u, v ∈ L2(Ω) , and15

Ψϕ(w) ≥ Ψϕ(u) +

∫

Ω

(w − u)v , ∀ w ∈ L2(Ω) .

Theorem 2.2 follows from a “distributional” characterization of ∂Ψϕ. For that17

we define the operator Bϕ in L2(Ω) associated with problem (2.7) by

(u, v) ∈ Bϕ if and only if u, v ∈ L2(Ω) and19

there exists z ∈ X2(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that
∫

Ω

(w − u)v ≤
∫

Ω

(z,Dw) −
∫

Ω

|Du| +
∫

∂Ω

|w − ϕ| −
∫

∂Ω

|u− ϕ| ,
21

for all w ∈ BV (Ω) ∩ L2(Ω) .

The following result was proved in [4]. Theorem 2.2 is a consequence of it and23

the fact that u(t) = T (t)u0 is strong solution of (2.13).

Proposition 2.3. The operator Bϕ is maximal monotone with dense domain in25

L2(Ω). Moreover Bϕ = ∂Ψϕ.

We also note that Bϕ is completely accretive, i.e., the semigroup solution is in27

Lp(Ω) if u(0) ∈ Lp(Ω) and we have the contraction estimates described in Theo-

rem 2.2.29
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Let us finally recall the following estimate on ut which holds in general for strong1

solutions of equations like [11, (2.13)].

Proposition 2.4. Let u0 ∈ L2(Ω), ϕ ∈ L1(Ω). Let u(t) be the strong solution of3

(2.7). Then u(t) is a Lipschitz function on [δ,∞) for any δ > 0. More precisely,

given δ > 0, there is a constant C depending on u0, ϕ and δ such that5
∫

Ω

|ut(t, x)|2dx ≤ C a.e. t ∈ [δ,∞) . (2.14)

Remark 2.5. Theorem 2.2 and Proposition 2.4 also hold when Ω is an exterior7

domain, i.e., when Ω = R
N \ Ū , U being an open bounded set in R

N with Lipschitz

boundary. The proof of Theorem 2.2 for exterior domains follows as a consequence9

of Proposition 2.3 for the same domains. Let us make some remarks about the

proof. The proof of the monotonicity and the closedness of Bϕ follows as in [4] or11

[8]. Now, if λ > 0, for any f ∈ L2(Ω) there is a solution u of

u+ λBϕu = f . (2.15)13

Indeed, if f ∈ L2(Ω) ∩ L∞(Ω) has compact support, supp(f) ⊂⊂ B(0, R), the

solution of15


















u− div

(

Du

|Du|

)

= f , in Ω ∩ B(0, R) ,

u = ϕ , on ∂Ω ,

u = 0 , on ∂B(0, R) ,

(2.16)

is also a solution of (2.15). The closedness of Bϕ implies that (2.15) can be solved17

for any f ∈ L2(Ω). It follows that the range of I + λBϕ is L2(Ω), and therefore Bϕ

is maximal monotone. The density of the domain of Bϕ can be proved as in [3].19

The proof of B = ∂Ψϕ is similar to the proof of Lemma 1 in [4]. The estimate of

Proposition 2.4 holds for any semigroup evolution generated by the subdifferential21

of a convex, lower semicontinuous and proper functional [11].

2.5. Strong solutions of the Cauchy problem in L2(RN)23

Definition 2.6. A function u ∈ C([0, T ];L2(RN )) is called a strong solution of

(1.1) if25

u ∈W 1,2
loc (0, T ;L2(RN )) ∩ L1

w(]0, T [;BV (RN )) ,

and there exists z ∈ L∞(]0, T [×R
N ; RN ) with ‖z‖∞ ≤ 1 such that27

ut = div(z) in D′(]0, T [×R
N) ,

and29
∫

RN

(u(t) − w)ut(t) =

∫

RN

(z(t), Dw) −
∫

RN

|Du(t)| ,

∀ w ∈ L2(RN ) ∩ BV (RN ), a.e. t ∈ [0, T ] .

(2.17)

We collect some results in the following theorem in [8].
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Theorem 2.7. Let u0 ∈ L2(RN ). Then there exists a unique strong solution u1

of (1.1) with u(0) = u0 in [0, T ] × R
N for every T > 0. The solution u(t) of

(1.1) is also characterized as follows: u ∈ C([0, T ], L2(RN )) ∩W 1,2
loc (0, T ;L2(RN )),3

u ∈ L1
w(0, T ;BV (RN )) and there exists z(t) ∈ X2(R

N ), such that ‖z(t)‖∞ ≤ 1,

u′(t) = div(z(t)) in D′(RN ) a.e. t ∈ [0, T ] and5

∫

Ω

(z(t), Du(t)) =

∫

RN

|Du(t)| a.e. in (0, T ) . (2.18)

Moreover, if u0 ∈ L2(RN )∩Lp(RN ), then also u(t) ∈ Lp(RN ) for all t > 0. Finally,7

the contractivity estimates of Theorem 2.2 also hold in this case.

More general results concerning existence and uniqueness of entropy solutions9

of (1.1) for general data in L1
loc(R

N ) were proved in [8].

3. Limit Solutions for Measure Initial Data with Singular Part11

Supported in Compact k-Manifold of R
N

In this section we consider measure initial data whose singular part is supported13

in a set S which is an orientable compact k-manifold (k being the dimension) in

R
N without boundary satisfying (A.4). From now on, to simplify, by a compact15

k-manifold we mean an orientable compact k-manifold in R
N without boundary. It

is known that (A.4) holds if the compact k-manifold S is of class W 3,∞.17

Given S ⊂ R
N , we denote by In(S) := {x ∈ R

N : dist(x, S) ≤ 1
n}. We approxi-

mate the initial datum µ = µac + αHk S in the following way: for every n ∈ N,19

let u0,n(µ) be the L1-function defined by

u0,n(µ) := µac +
αHk(S)

|In(S)|
χ

In(S) . (3.1)
21

Lemma 3.1. Let µ = αHk S where S is a compact k-manifold satisfying (A.4),

and α ∈ R. Then, if u0,n(µ) = αHk(S)
|In(S)|

χ
In(S), we have that u0,n ⇀ µ weakly∗ as23

measures.

Proof. Working as in the proof of [2, Theorem 2.106] (see appendix), it is possible25

to prove that

lim
n→∞

∫

In(S)
ϕ(x)dx

ωN−k

(

1
n

)N−k
=

∫

S

ϕ(x)dHk(x) , ∀ ϕ ∈ Cc(R
N ) . (3.2)

27

Then, applying [2, Theorem 2.104] and (3.2), for every ϕ ∈ Cc(R
N ) we get
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lim
n→∞

〈u0,n, ϕ〉 = lim
n→∞

αHk(S)

|In(S)|

∫

In(S)

ϕ(x)dx

= lim
n→∞

αHk(S)

(

wN−k

(

1
n

)N−k

|In(S)|

) ∫

In(S)
ϕ(x)dx

ωN−k( 1
n )N−k

= α

∫

S

ϕ(x)dHk(x) = 〈µ, ϕ〉 .

Given µ ∈ Mb(R
N ) with µs = αHk S, where S is a compact k-manifold1

satisfying (A.4), and α ∈ R, by the above lemma we have

u0,n(µ) ⇀ µ weakly∗ as measures .3

Now, since u0,n(µ) ∈ L1(RN ), we know [8] there exists a unique strong solution un

of the problem (1.1) with initial datum u0,n(µ), that is5

un ∈ C([0, T ], L1(RN )) ∩W 1,1
loc (0, T ;L1(RN )) , p(un) ∈ L1

w(0, T ;BV (RN )) ,

for all p ∈ P and there exists zn ∈ L∞(]0, T [×R
N ; RN) with ‖zn‖∞ ≤ 1 such that7

(un)t = div(zn) in D′(]0, T [×R
N) ,

and9

∫

RN

(p(un(t)) − w)u′n(t) ≤
∫

RN

(zn(t), Dw) −
∫

RN

|Dp(un(t))| , (3.3)

for all w ∈ L∞(RN ) ∩ BV (RN ), a.e. t ∈ [0, T ] and p ∈ P .11

Moreover, from the homogeneity of the operator we have the following estimates:

|un(t)| << |u0,n(µ)| , (3.4)

|un(t+ h) − un(t)|
h

<<
2

t
|u0,n(µ)| , (3.5)

where u << v means
∫

RN

j(u)dx ≤
∫

RN

j(v)dx ∀ j ∈ J0 ,
13

with J0 := {convex l.s.c. maps j : R → [0,+∞] satisfying j(0) = 0} ([10]).

We have un ∈ C([0, T ], L1(RN )) ⊂ C([0, T ],Mb(R
N )). Now, from (3.4) we get15

∫

RN

|un(t)|dx ≤
∫

RN

|u0,n(µ)|dx ≤ |µ|(RN ) ∀ n ∈ N, 0 < t ≤ T , (3.6)

and from (3.5), it follows that17

∫

RN

|un(t+ h) − un(t)|dx ≤ 2h

t
|µ|(RN ) ∀ n ∈ N, 0 < t ≤ T . (3.7)
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From the estimates (3.6) and (3.7), using the standard technique to prove Ascoli-1

Arzela’s Theorem, we deduce that, by extracting a subsequence, if necessary, there

exists u ∈ Cw([0, T ],Mb(R
N )) such that3

un ⇀ u in Cw([0, T ],Mb(R
N )) .

Moreover, from (3.7) and Reshetnyak’s semicontinuity Theorem [2], we have5

∫

RN

|u(t+ h) − u(t)|dx ≤ 2h

t
|µ|(RN ) 0 < t ≤ T , (3.8)

and we obtain that7

u ∈ C([τ, T ],Mb(R
N )) for all 0 < τ < T . (3.9)

Remark 3.2. Taking p = Tk and w = 0 in (3.3), we get9

∫

RN

Tk(un(t))(un)t(t) +

∫

RN

|DTk(un(t))| ≤ 0 .

If we denote Jk(r) :=
∫ r

0 Tk(s)ds, it follows that

∫ T

0

∫

RN

|DTk(un(t))| +
∫

RN

Jk(un(T ))dx

≤
∫

RN

Jk(u0,n(µ))dx ≤Mk|µ|(RN ) . (3.10)

for some constant Mk > 0. Then, having in mind (3.7), we obtain that11

{Tk(un) : n ∈ N} is a bounded sequence in BV ([τ, T ]× R
N ) , (3.11)

for all 0 < τ < T and k > 0.13

We shall say that u(t) is a limit solution of (1.1) corresponding to the initial

condition µ.15

Remark 3.3. The above estimates for un(t) and u(t) also hold for any approxi-

mation un(0) converging to µ weakly∗ in Mb(R
N ).17

4. Some Explicit Limit Solutions

By the results in [8] we know the evolution of some step functions by the total19

variation flow. Let us recall the evolution of balls and annulus in R
N .

Lemma 4.1. For 0 < r < R and x0 ∈ R
N , take ΩR,r(x0) := BR(x0) \Br(x0). Let21

α ≥ 0 and β > 0. Then we have

(i) If u0 = αχBr(x0), the strong solution of (1.1) for the initial datum u0 is given23

by

u(t) =

(

α− N

r
t

)+

χ
Br(x0) .25
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(ii) Let u0 = αχBr(x0) + βχΩR,r(x0) and u(t) be the strong solution of (1.1) for the1

initial datum u0. Then, if α < β, u(t) is given by

u(t) =

(

β − Per(ΩR,r(x0))

|ΩR,r(x0)|
t

)+

χ
ΩR,r(x0) +

(

α+
N

r
t

)

χ
Br(x0)3

for t ∈ [0, Tr], where Tr is such that

Tr

(

Per(ΩR,r(x0))

|ΩR,r(x0)|
+
N

r

)

= β − α .
5

For times t ≥ Tr, the solution u(t) is given by the evolution of u(Tr) according

to the solution model described in (i).7

In the case β < α, u(t) is given by

u(t) =

(

β − Per(BR(x0)) − Per(Br(x0))

|ΩR,r(x0)|
t

)+

χ
ΩR,r(x0)

+

(

α− N

r
t

)+

χ
Br(x0) ,

for t ∈ [0, Tr], where Tr is such that

Tr

(

N

r
− Per(BR(x0)) − Per(Br(x0))

|ΩR,r(x0)|

)

= α− β ,
9

and, for later times, it evolves as the solution given in (i) until its extinction.

Using Lemma 4.1 we may compute some explicit limit solutions:11

(i) Let u(0) = δ0. Then, if u0,n =
χ

B1/n(0)

|B1/n(0)| , we have u0,n ⇀ δ0. Now, by

Lemma 4.1, the strong solution of (1.1) for the initial datum u0,n is given13

by

un(t) =

(

1

|B1/n(0)| −
Per(B1/n(0))

|B1/n(0)| t

)+

χ
B1/n(0) .

15

Hence, for every t > 0,

un(t) ⇀ δ0 locally weakly∗ as measures .17

Therefore, u(t) = δ0 for all t ≥ 0 is the limit solution of (1.1) for the initial

datum δ0.19

(ii) The above example can be extended to u(0) =
∑k

i=1 δpi where {p1, . . . , pk} are

a finite set of points of R
N . Then again by approximating explicit solutions21

and passing to the limit we get u(t) = u(0) for every t > 0.

(iii) For 0 < r < R, we denote ΩR,r := BR(0) \ Br(0) and ΓR = ∂BR(0). We23

are going to compute the limit solution of (1.1) for the initial datum µ =

αHN−1 ΓR, with α > 0. For every n ∈ N, let25

u0,n(µ) =
αHN−1(ΓR)

|In(ΓR)|
χ

In(ΓR) =
αHN−1(ΓR)

|In(ΓR)|
χΩ

R+ 1
n

,R−
1
n

.
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Let un(t) be the unique strong solution of (1.1) for the initial datum u0,n(µ).1

Then, if

Tn =
αHN−1(ΓR)|BR− 1

n
(0)|

|BR− 1
n
(0)|Per(In(ΓR)) + |In(ΓR)|Per(BR− 1

n
(0))

,
3

we know by Lemma 4.1, that un(t) is given by

un(t) =















































(

αHN−1(ΓR)

|In(ΓR)| − Per(In(ΓR))

|In(ΓR)| t

)+

χ
In(ΓR)

+
Per(BR− 1

n
(0))

|BR− 1
n
(0)| tχB

R−
1
n

(0) , 0 < t ≤ Tr ,

(

αn −
Per(BR+ 1

n
)

|BR+ 1
n
(0)| t

)+

χ
B

R+ 1
n

(0) , t ≥ Tn ,
5

with

αn = Tn

(

Per(BR− 1
n
(0))

|BR− 1
n
(0)| +

Per(BR+ 1
n
(0))

|BR+ 1
n
(0)|

)

.
7

Since

lim
n→∞

Tn =
α

2
, and lim

n→∞
αn = α

Per(BR(0))

|BR(0)| ,
9

by Lemma 3.1, we have that

un(t) ⇀ u(t) locally weakly∗ as measures when n→ ∞ ,11

where u(t) is the Radon measure in R
N defined by

u(t) =



















(

1 − 2

α
t

)

µ+
N

R
tχBR(0) , 0 < t ≤ α

2
,

(

α
N

R
− N

R
t

)+

χ
BR(0) , t ≥ α

2
.

(4.1)

13

In the particular case α = 1
Per(BR(0)) , the initial datum coincides with the delta

of unit mass supported on ΓR = ∂BR(0), that is, the distrubution δΓR defined15

by

〈δΓR , ϕ〉 =
1

Per(BR(0))

∫

ΓR

ϕdHN−1 .
17

Then, if we denote by T (t) the solution flow, we have

T (t)(δΓR) = (1 − 2Per(BR(0))t)δΓR +
N

R
tχBR(0) , 0 < t ≤ 1

2Per(BR(0))
,

T (t)(δΓR) =

(

1

|BR(0)| −
Per(BR(0))

|BR(0)| t

)+

χ
BR(0) , t ≥ 1

2Per(BR(0))
.
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(iv) Consider now the case where the initial datum is the measure µ = δ0 +χ
BR(0).1

Take 1
n < R, and consider

u0,n(µ) = χ
BR(0) +

χ
B1/n(0)

|B1/n(0)| =

(

1 +
1

|B1/n(0)|

)

χ
B1/n(0) + χΩ

R, 1
n

.
3

Let un(t) be the unique strong solution of (1.1) for the initial datum u0,n(µ).

Then, if5

Tn =
|ΩR, 1

n
|

|ΩR, 1
n
|Per(B 1

n
(0)) − |B 1

n
(0)|(Per(BR(0)) − Per(B 1

n
(0))

,

by Lemma 4.1, we know that, for 0 < t ≤ Tn, un(t) is given by

un(t) =

(

1

|B 1
n
(0)| −

Per(B 1
n
(0))

|B 1
n
(0)| t

)+

χ
B 1

n
(0)

+

(

1 −
Per(BR(0)) − Per(B 1

n
(0))

|ΩR, 1
n
| t

)+

χΩ
R, 1

n

.

At t = Tn, the two evolving sets reach the same height and un(Tn) = αnχBR(0)7

with

αn =
1

|B 1
n
(0)| −

Per(B 1
n
(0))

|B 1
n
(0)| Tn .

9

Hence, for t > Tn the solution un(t) is equal to the solution starting from

αnχBR(0) (at time Tn), i.e.,

un(t) =

(

αn − Per(BR(0))

|BR(0)| (t− Tn)

)

χ
BR(0)

=

(

1

|B 1
n
(0)| + Tn

(

Per(BR(0))

|BR(0)| −
Per(B 1

n
(0))

|B 1
n
(0)|

)

− Per(BR(0))

|BR(0)| t

)

χ
BR(0) .

Since Tn → +∞ as n→ ∞, we have that

un(t) ⇀ u(t) locally weakly∗ as measures when n→ ∞ ,11

where u(t) is the Radon measure in R
N defined by

u(t) = δ0 +

(

1 − N

R
t

)+

χ
BR(0) .

13

Observe that, in this particular case, if T (t) is the solution flow, we have

u(t) = T (t)(δ0 + χ
BR(0)) = T (t)(δ0) + T (t)(χBR(0)) .15
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Lemma 4.2. For 0 < R1 < R2 < R3, we denote Bi := BRi(0) (i = 1, 2, 3),1

Ω1 := BR2 \BR1 and Ω2 := BR3 \BR2 . Let u0 := aχBR1
+ bχΩ1 + cχΩ2 , with a, b,

c ≥ 0. Then, if u(t) is the strong solution of (1.1) for the initial datum u0, we have:3

(i) If b = 0 < a < c, u(t) is given by

u(t) =



























































(

a− Per(BR1)

|BR1 |
t

)

χBR1
+

Per(Ω1)

|Ω1|
tχΩ1 ,

+

(

c− Per(Ω2)

|Ω2|
t

)

χΩ2 , 0 ≤ t ≤ T1 ,

(

a1 +
Per(BR2)

|BR2 |
t

)

χBR2
+

(

c− Per(Ω2)

|Ω2|
t

)

χΩ2 , T1 ≤ t ≤ S1 ,

(

c1 −
Per(BR3)

|BR3 |
t

)

χBR3
, t ≥ S1 ,

5

where

T1 =
a|BR1 ||Ω1|

Per(BR1)|Ω1| + Per(Ω1)|BR1 |
,

a1 = T1

(

Per(Ω1)

|Ω1|
− Per(BR2)

|BR2 |

)

S1 = (c− a1)
|Ω2||BR2 |

Per(BR2)|Ω2| + Per(Ω2)|BR2 |
,

c1 = c+ S1

(

Per(BR3)

|BR3 |
− Per(Ω2)

|Ω2|

)

;

if we assume that T1 ≤ S1.

(ii) If a < c < b, u(t) is given by7

u(t) =



























































(

a+
Per(BR1)

|BR1 |
t

)

χBR1
+

(

b− Per(Ω1)

|Ω1|
t

)

χΩ1

+

(

c− Per(BR3) − Per(BR2)

|Ω2|
t

)

χΩ2 , 0 ≤ t ≤ T1 ,

(

a+
Per(BR1)

|BR1 |
t

)

χBR1
+

(

b1 −
Per(Ω3)

|Ω3|
t

)

χΩ3 , T1 ≤ t ≤ S1 ,

(

a1 −
Per(BR3)

|BR3 |
t

)

χBR3
, t ≥ S1 ,

where

T1 = (b− c)
|Ω1||Ω2|

Per(Ω1)|Ω2| − |Ω1|(Per(BR3) − Per(BR2))
, Ω3 = BR3 \BR1 ,

b1 = b+

(

Per(Ω3)

|Ω3|
− Per(Ω1)

|Ω1|

)

T1 ,
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S1 = (b1 − a)
|BR1 ||Ω3|

Per(BR1)|Ω3| + Per(Ω3)|BR1 |
,

a1 = a+ S1

(

Per(BR1)

|BR1 |
+

Per(BR3)

|BR3 |

)

;

if we assume that T1 ≤ S1.1

(iii) If a = c < b, u(t) is given by

u(t) =



























































(

a+
Per(BR1)

|BR1 |
t

)

χBR1
+

(

b− Per(Ω1)

|Ω1|
t

)

χΩ1 ,

+

(

c− Per(BR3) − Per(BR2)

|Ω2|
t

)

χΩ2 , 0 ≤ t ≤ T1 ,

(

a+
Per(BR1)

|BR1 |
t

)

χBR1
+

(

b− Per(Ω1)

|Ω1|
t

)

χΩ1 , T1 ≤ t ≤ S1 ,

(

a1 −
Per(BR2)

|BR2 |
t

)

χBR3
, t ≥ S1 ,

3

where

T1 =
a|Ω2|

Per(BR3) − Per(BR2)
,

S1 = (b− a)
|Ω1||BR1 |

Per(BR1)|Ω1| + Per(Ω1)|BR1 |
,

a1 = a+ S1

(

Per(BR1)

|BR1 |
+

Per(BR2)

|BR2 |

)

;

if we assume that T1 ≤ S1.

Proof. (i) We look for a solution of the form u(t) = a(t)χBR1
+ b(t)χΩ1 + c(t)χΩ2 ,

with b(t) ≤ a(t) ≤ c(t) on some time interval (0, T1). Then, we shall look for some

z(t) ∈ X1(R
N ), with ‖z(t)‖∞ ≤ 1, such that

u′(t) = div(z(t)) in D′(RN ) , (4.2)

∫

RN

(z(t), Du(t)) =

∫

RN

|Du(t)|(RN ) . (4.3)

Now, by the coarea formula, if Es = {x ∈ R
N : u(t)(x) > s}, we have

∫

RN

|Du(t)|(RN )

=

∫ ∞

0

∫

RN

|DχEs |ds =

∫ b(t)

0

∫

RN

|DχBR3
|ds

+

∫ a(t)

b(t)

∫

RN

|DχBR1∪Ω2 |ds+

∫ c(t)

a(t)

∫

RN

|DχΩ2 |ds
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= b(t)Per(BR3) + (a(t) − b(t))(Per(BR1) + Per(Ω2)) + (c(t) − a(t))Per(Ω2)

= b(t)Per(BR3) + a(t)Per(BR1) − b(t)(Per(BR1) + Per(Ω2)) + c(t)Per(Ω2)

= a(t)Per(BR1) − b(t)Per(Ω1) + c(t)Per(Ω2) .

On the other hand,1

u′(t) = a′(t)χBR1
+ b′(t)χΩ1 + c′(t)χΩ2 .

Then, by Green formula, in order to have (4.2) and (4.3), we need

a(t)Per(BR1) − b(t)Per(Ω1) + c(t)Per(Ω2)

=

∫

RN

|Du(t)|(RN )

=

∫

RN

(z(t), Du(t)) = −
∫

RN

div(z(t))u(t) = −
∫

RN

u′(t)u(t)

= −a′(t)a(t)|BR1 | − b′(t)b(t)|Ω1| − c′(t)c(t)|Ω2| .

Therefore, we must have

a′(t) = −Per(BR1)

|BR1 |
, a(0) = a⇒ a(t) =

(

a− Per(BR1)

|BR1 |
t

)+

,

b′(t) =
Per(Ω1)

|Ω1|
, b(0) = 0 ⇒ b(t) =

Per(Ω1)

|Ω1|
t ,

c′(t) = −Per(Ω2)

|Ω2|
, c(0) = c⇒ c(t) =

(

c− Per(Ω2)

|Ω2|
t

)+

.

If we consider the vector field z(t) defined by

z(t)(x)

:=



























































− x

R1
, if x ∈ BR1

[

(RN−1
2 +RN−1

1 ) − (R2 +R1)
RN−1

2 RN−1
1

‖x‖N

]

x

RN
2 −RN

1

, if x ∈ Ω1

[

(R3 +R2)
RN−1

2 RN−1
3

‖x‖N
− (RN−1

3 +RN−1
2 )

]

x

RN
3 −RN

2

, if x ∈ Ω2

− xR3

‖x‖N
, if x ∈ R

N \BR3 ,

we have

div(z(t)) = −Per(BR1)

|BR1 |
in BR1 , z(t)(x)|∂BR1

= − x

‖x‖ ,
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div(z(t)) =
Per(Ω1)

|Ω1|
in Ω1 , z(t)(x)|∂BR1

= − x

‖x‖ , z(t)(x)|∂BR2
=

x

‖x‖ ,

div(z(t)) = −Per(Ω2)

|Ω2|
in Ω2 , z(t)(x)|∂BR2

=
x

‖x‖ , z(t)(x)|∂BR3
= − x

‖x‖ ,

div(z(t)) = 0 in R
N \BR3 , z(t)(x)|∂BR3

= − x

‖x‖ .

Hence, u(t) =
(

a− Per(BR1 )

|BR1 |
t
)

χBR1
+ Per(Ω1)

|Ω1|
tχΩ1 +

(

c− Per(Ω2)
|Ω2|

t
)

χΩ2 is a strong1

solution of (1.1) in [0, T1], with T1 such that

a− Per(BR1)

|BR1 |
T1 =

Per(Ω1)

|Ω1|
T1 ,

3

i.e.,

T1 =
a|BR1 ||Ω1|

Per(BR1)|Ω1| + Per(Ω1)|BR1 |
.

5

Now,

u(T1) =
a|BR1 |Per(Ω1)

Per(BR1)|Ω1| + Per(Ω1)|BR1 |
χBR2

+

(

c− Per(Ω2)

|Ω2|
T1

)

χΩ2 .7

Then, for t > T1 the solution u(t) is equal to the solution starting from u(T1) (at

time T1) as it is described in (ii) of Lemma 4.1.9

The proofs of cases (ii) and (iii) are similar and we shall omit the details.

Theorem 4.3. Let µ be the measure µ = χ
BR(0) + αHN−1 Γr, α > 0, and let11

u(t) be the limit solution of (1.1) constructed using the approximations (3.1) for the

initial datum µ. Then, we have13

(i) If R < r, u(t) is given by

u(t) =















































































(

1 − Per(BR(0))

|BR(0)| t

)

χ
BR(0) +

Per(Ωr,R)

|Ωr,R|
tχΩr,R

+

(

1 − 2

α
t

)

αHN−1 Γr , ≤ t ≤ T ,

(

β +
Per(Br(0))

|Br(0)| t

)

χ
Br(0)

+

(

1 − 2

α
t

)

αHN−1 Γr , T ≤ t ≤ α

2
,

(

β +
α

2

Per(Br(0))

|Br)0)| − Per(Br(0))

|Br(0)| t

)+

χ
Br(0) , t ≥ α

2
,

15

where

T =
|BR||Ωr,R|

Per(BR)|Ωr,R| + Per(Ωr,R)|BR|
, β = T

(

Per(Ωr,R)

|Ωr,R|
− Per(Br)

|Br|

)

;
17
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if we assume that T ≤ α
2 .1

(ii) If R = r, u(t) is given by

u(t) =



















(

1 +
Per(Br)

|Br|
t

)

χBr +

(

1 − 2

α
t

)

αHN−1 Γr , 0 ≤ t ≤ α

2
,

(

1 + α
Per(Br)

|Br|
− Per(Br)

|Br|
t

)+

χBr , t ≥ α

2
.

3

(iii) If R > r, u(t) is given by

u(t) =



























































(

1 +
Per(Br)

|Br|
t

)

χBr +

(

1 − 2

α
t

)

αHN−1 Γr

+

(

1 − Per(BR) − Per(Br)

|ΩR,r|
t

)

χΩR,r , 0 ≤ t ≤ T ,

(

1 +
Per(Br)

|Br|
t

)

χBr +

(

1 − 2

α
t

)

αHN−1 Γr , T ≤ t ≤ α

2
,

(

1 +
α

2

(

Per(Br)

|Br|
+

Per(Br)

|Br|

)

− Per(Br)

|Br|
t

)+

χBR , t ≥ α

2
,

5

where

T =
|ΩR,r|

Per(BR) − Per(Br)
,

7

if we assume that T ≤ α
2 .

Proof. (i) For every n ∈ N, let u0,n(µ) = χ
BR(0) + αHN−1(Γr)

|In(Γr)|
χ

In(Γr). If n is large9

enough, we have

u0,n(µ) =















1 , in BR(0)

αHN−1(Γr)

|In(Γr)|
, in In(Γr) .

11

Then, applying Lemma 4.2 (i), with R1 = R, R2 = r − 1
n , R3 = r + 1

n , a = 1 and

c = αHN−1(Γr)
|In(Γr)| , we have that if un(t) is the unique strong solution of (1.1) for the13
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initial datum u0,n(µ), then1

un(t) =



























































































(

1 − Per(BR)

|BR|
t

)

χBR +
Per(Ω

r− 1
n

,R
)

|Ω
r− 1

n
,R

| tχΩ
r− 1

n
,R
,

+

(

αHN−1(Γr)

|In(Γr)|
− Per(In(Γr))

|In(Γr)|
t

)

χ
In(Γr) , 0 ≤ t ≤ Tn ,

(

an +
Per(Br− 1

n
)

|Br− 1
n
| t

)

χB
r− 1

n

+

(

αHN−1(Γr)

|In(Γr)|
− Per(In(Γr))

|In(Γr)|
t

)

χ
In(Γr) , Tn ≤ t ≤ Sn ,

(

cn −
Per(Br+ 1

n
)

|Br+ 1
n
| t

)

χB
r+ 1

n

, t ≥ Sn ,

where

Tn =
|BR||Ωr− 1

n ,R|
Per(BR)|Ωr− 1

n ,R| + Per(Ωr− 1
n ,R)|BR|

,

an = Tn

(

Per(Ωr− 1
n ,R)

|Ωr− 1
n ,R|

−
Per(Br− 1

n
)

|Br− 1
n
|

)

,

Sn =

(

αHN−1(Γr)

|In(Γr)|
− an

) |In(Γr)||Br− 1
n
|

Per(Br− 1
n
)|In(Γr)| + Per(In(Γr))|Br− 1

n
| ,

cn =
αHN−1(Γr)

|In(Γr)|
+ Sn

(

Per(Br+ 1
n
)

|Br+ 1
n
| − Per(In(Γr))

|In(Γr)|

)

.

Now

T := lim
n→∞

Tn =
|BR||Ωr,R|

Per(BR)|Ωr,R| + Per(Ωr,R)|BR|
,

β := lim
n→∞

an = T

(

Per(Ωr,R)

|Ωr,R|
− Per(Br)

|Br|

)

,

lim
n→∞

Sn

= lim
n→∞

(

αHN−1(Γr)

|In(Γr)|
− an

) |In(Γr)||Br− 1
n
|

Per(Br− 1
n
)|In(Γr)| + Per(In(Γr))|Br− 1

n
| =

α

2
,

lim
n→∞

cn

=
αHN−1(Γr)

|In(Γr)|
+ Sn

(

Per(Br+ 1
n
)

|Br+ 1
n
| − Per(In(Γr))

|In(Γr)|

)

= β +
α

2

Per(Br)

|Br|
.

The proofs of cases (ii) and (iii) are similar and we shall omit the details.3
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Remark 4.4. (i) Limit solutions corresponding to initial conditions given by a1

measure are, in general, measures. There is no regularizing effect.

(ii) Not all measures are treated in the same way. The solutions u(t) corresponding3

to measures µ for which the dimension of the support of its singular part µs

is estrictly less than N − 1 satisfy that the singular part of u(t) does not move5

(examples (i) and (ii) of Theorem 4.3). If the support of µs has dimension

N − 1, the singular part of u(t) evolves (example (iii) of Theorem 4.3). We7

shall prove in Sec. 5 that this corresponds to the behaviour of limit solutions.

(iii) It is interesting to compare example (i) with what happens with the p-9

Laplacian operator

∆p(u) = div(|Du|p−2Du) , p > 1 .11

Di Benedetto and Herrero [15] introduce the concept of local weak solution for

the Cauchy problem13

ut = ∆pu in QT =]0, T [×R
N , (4.4)

and prove that a nonnegative local weak solution of (4.4) in QT admits a unique15

initial trace u0 which is a σ-finite Borel measure. Moreover, for p > 2N
N+1 , they

prove the solvability of the Cauchy problem (4.4) when the initial datum is a17

σ-Borel positive measure in R
N . Now, if p > 2, Kamin and Vázquez [20] (see

also [21]) prove that the Barenblatt selfsimilar solution19

w(t, x) = t−k(C − q‖ξ‖p/(p−1))
(p−1)/(p−2)
+ ,

where21

ξ = xt−k/N , k =
(

p− 2 +
p

N

)−1

, q =
p− 2

p

(

k

N

)t/(p−1)

,

is the unique nonnegative weak solution of the Cauchy problem (4.4) satisfying23

u(0, x) = 0 for x 6= 0 , lim
t→0

∫

Br(0)

u(t, x)dx = M .

Therefore, in this case, δ0 evolves. Nevertheless, in the limit case p = 1, δ025

does not evolve. To our knowledge it is not known if δ0 does not evolve in the

case 1 < p ≤ 2N
N+1 .27

5. Characterization of Limit Solutions

Let 0 ≤ µ ∈ M(RN ) and 0 ≤ k ≤ N . Recall that the upper and lower k-dimensional29

densities of µ at x are respectively defined by

Θ∗
k(µ, x) := lim sup

ρ→0+

µ(Bρ(x))

ωkρk
, Θ∗k(µ, x) := lim inf

ρ→0+

µ(Bρ(x))

ωkρk
.

31

If Θ∗
k(µ, x) = Θ∗k(µ, x) their common value is denoted by Θk(µ, x).
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Theorem 5.1. Let 0 ≤ µ ∈ Mb(R
N ) be such that µac ∈ L∞(RN ) ∩ L1(RN ).1

Suppose that µs = αHk S, where S is a compact k-manifold in R
N of class W 3,∞.

Let un(t) be the strong solution of problem (1.1) with initial datum u0,n(µ) and let3

u(t) be the corresponding limit solution. Then, for any T > 0 there is a constant

KT = K(N,T, ‖µac‖), independent of n, such that5

un(t, x) ≤ KT ∀ x ∈ R
N \ In(S) , ∀ t ∈ (0, T ) . (5.1)

Moreover, up to extraction of a subsequence if necessary, we have

un(t) → u(t)ac , LN -a.e. for all t > 0 , (5.2)

un(t)χRN\In(S) → u(t)ac in Lp
loc(R

N ) , ∀ p ∈ [1,∞) , (5.3)

un(t)χIn(S) ⇀ u(t)s weakly∗ as measures , (5.4)

supp(u(t)s) = S







for all t ≥ 0 , if k < N − 1 ,

for 0 ≤ t <
α

2N
, if k = N − 1 ,

(5.5)

7

and

u(t)s ≤ µs for all t ≥ 0 . (5.6)9

Moreover,

if k < N − 1 , we have that u(t)s ≥ µs , for all t ≥ 0 . (5.7)11

Therefore,

if k < N − 1 , we have that u(t)s = µs , for all t ≥ 0 . (5.8)13

Proof. Let us prove (5.1). Since S has bounded curvatures, there exists r > 0

such that, for every x ∈ R
N \ In(S) one can find yx ∈ R

N and rx ≥ r such that15

x ∈ Brx(yx) and Brx(yx) ∩ In(S) = ∅. Then, given x ∈ R
N \ In(S), and

vx
0,n :=‖ u0,n(µ) ‖∞ χ

RN\Brx (yx) + ‖µac‖∞χBrx (yx) ,17

we have that 0 ≤ u0,n(µ) ≤ vx
0,n. Note that the solution vx

n(t) of (1.1) with initial

datum vx
0,n is

vx
n(t)

=‖ u0,n(µ) ‖∞ χ
RN\Brx (yx) + inf

{

‖µac‖∞ +
Nt

rx
, ‖ u0,n(µ) ‖∞

}

χ
Brx (yx)

Using the comparison principle for solutions in L1
loc(R

N ) [8], we obtain that un(t) ≤
vx

n(t), Therefore, we have19

0 ≤ un(t) ≤ ‖µac‖∞ +
Nt

rx
≤ ‖µac‖∞ +

Nt

r
in Brx(yx) , (5.9)

for any t ≥ 0, x ∈ R
N \ In(S) and (5.1) follows.21
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Let vn(t) := un(t)χRN\In(S). Using (3.6), (3.7), (3.11), and the compact embed-1

ding of BV ([τ, T ] × BR(0)) in L1([τ, T ] × BR(0)) for any τ > 0 and R > 0, by

extracting a subsequence, if necessary, we may assume that3

vn → v a.e. in ]0, T [×R
N , (5.10)

and5

vn → v in L1
loc([0, T ] × R

N ) and vn(t) → v(t) in L1
loc(R

N ) ∀ t ∈ [0, T ] . (5.11)

Thus, using (5.1) we also have7

vn(t) → v(t) in Lp
loc(R

N ) ∀ t ∈ [0, T ] and in Lp
loc([0, T ]× R

N ) , (5.12)

for all p ∈ [1,∞). Now, by estimates (3.6) and (3.7), as in Sec. 3, we may assume9

that vn(t) converges in Cw([0, T ],Mb(R
N )) to some measure ṽ(t). According to

(3.6) and (5.11), we have that ṽ(t) = v(t) for all t ∈ [0, T ]. On the other hand, we11

may also assume that

un(t)χIn(S) ⇀ w(t) weakly∗ as measures .13

Hence, w(t) is singular respect to the Lebesgue measure LN . Since un(t) = vn(t) +

un(t)χIn(S), we have u(t) = v(t) + w(t), for all t ∈ [0, T ], with v(t) absolutely15

continuos respect to LN and w(t) singular respect to LN . It follows that v(t) =

u(t)ac and w(t) = u(t)s, and we conclude the proof of (5.2) and (5.3).17

From (5.3) is is easy to deduce that supp(u(t)s) ⊂ S for all t > 0. Let us prove

the opposite inclusion. Given p ∈ S, we have19

u0,n(µ) ≥ wp
0,n =

αHk(S)

|In(S)|
χ

B 1
n

(p) .

Using the comparison principle and having in mind Lemma 4.1, we have21

un(t) ≥
(

αHk(S)

‖In(S)‖ − nNt

)+

χ
B 1

n
(p) .

Since the above inequality is true for all p ∈ S, we deduce that23

un(t) ≥
(

αHk(S)

|In(S)| − nNt

)+

χ
In(S) . (5.13)

As a consequence, for all x ∈ S and all m ≥ n we have

1

|B 1
n
(x)|

∫

B 1
n

(x)

um(t)

≤
(

|Im(S) ∩ B 1
n
(x)|

|B 1
n
(x)|

)

(

αHk(S)

|Im(S)|

)(

1 − mN |Im(S)|t
αHk(S)

)+

. (5.14)

Now, by [2, Theorem 2.104], we have25

lim
m→∞

mN |Im(S)|t
αHk(S)

=







0 , if k < N − 1 ,

Ntω1

α
, if k = N − 1 .
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Then, taking limits in (5.14), and applying Lemma 3.1, we obtain1

lim sup
m→∞

1

|B 1
n
(x)|

∫

B 1
n

(x)

um(t) ≥























µs(B 1
n
(x))

|B 1
n
(x)| , if k < N − 1 ,

µs(B 1
n
(x))

|B 1
n
(x)|

(

1 − Ntω1

α

)+

, if k = N − 1 .

Hence, since um(t) ⇀ u(t) weakly∗ as measures, we have3

u(t)(B 1
n
(x))

|B 1
n
(x)| ≥























µs(B 1
n
(x))

|B 1
n
(x)| , if k < N − 1 ,

µs(B 1
n
(x))

|B 1
n
(x)|

(

1 − Ntω1

α

)+

, if k = N − 1 .

Since x ∈ supp(µs), from the above inequalities we deduce that5

lim sup
n→∞

u(t)(B 1
n
(x))

|B 1
n
(x)| =







0 , for t ≥ α

2N
, if k = N − 1 ,

+∞ , otherwise ,

which implies, using Besicovitch derivation Theorem (see [2]), that x ∈ supp(u(t)s)7

for all t ≥ 0 if k < N − 1, and for 0 ≤ t < α
2N in case k = N − 1. This concludes

the proof of (5.5).9

Let us prove (5.6). Let v0,n = αHk(S)
|In(S)| . Observe that v0,n ≥ u0,n(µ) for n large

enough. Hence, using the comparison principle, we have11

un(t) ≤ αHk(S)

|In(S)| for all t ≥ 0 .

Then, if x ∈ S, using (5.1), we have

Θ∗
k(u(t), x) = lim sup

ρ→0+

u(t)(Bρ(x))

ωkρk
≤ lim sup

ρ→0+

lim sup
n→∞

∫

Bρ(x) un(t)

ωkρk

= lim sup
ρ→0+

lim sup
n→∞

∫

Bρ(x)∩In(S) un(t) +
∫

Bρ(x)\In(S) un(t)

ωkρk

≤ lim sup
ρ→0+

lim sup
n→∞

αHk(S)
|In(S)|

∫

Bρ(x)
χ

In(S) +Kt|Bρ(x)|
ωkρk

≤ lim sup
ρ→0+

lim supn
αHk(S)
|In(S)|

∫

Bρ(x)
χ

In(S)

ωkρk

≤ lim sup
ρ→0+

µs(Bρ(x))

ωkρk
= Θ∗

k(µs, x) .
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Using [2, Theorem 2.83], it follows that1

Θ∗
k(u(t)s, x) ≤ Θ∗

k(µs, x) = α Hk a.e. in S .

Then, by (5.5), it follows that u(t)s ≤ µs.3

Finally, let us prove (5.7). Let ϕ ∈ C∞
0 (RN ), ϕ ≥ 0. Then, using (5.4), (5.13)

and Lemma 3.1, we have

〈u(t)s, ϕ〉 = lim
n
〈un(t)χIn(S), ϕ〉 ≥ lim

n

αHk(S)

|In(S)|

∫

In(S)

(

1 − nN |In(S)|t
αHk(S)

)+

ϕ(x)dx

= lim
n

αHk(S)

|In(S)|

∫

In(S)

ϕ(x)dx = 〈µs, ϕ〉 .

Note that in the above derivation we have used that
∣

∣

∣

∣

∣

nNt

αHk(S)

∫

In(S)

ϕ(x)dx

∣

∣

∣

∣

∣

≤ ‖ ϕ ‖∞ nNt|In(S)|
αHk(S)

≤ Cnk+1−N → 0 as n→ ∞ ,
5

since k < N − 1. We conclude that u(t)s ≥ µs.

5.1. Singular part of µ of dimension N − 17

We assume that µ = µac + αHN−1 S, with α ≥ 0, µac ∈ L1(RN ) ∩ L∞(RN ),

and S is a compact (N − 1)-manifold of class W 3,∞. We want to describe the9

precise behaviour of u(t) and, in particular, compute u(t)s. For that we need precise

estimates for the evolution of un(t)χIn(S).11

Our first purpose will be to prove the following result.

Theorem 5.2. In the time interval [0, α
2 ] we have13

u(t)s = (α− 2t)+HN−1 S =

(

1 − 2

α
t

)+

µs . (5.15)

Let R
N \S = C1 ∪C2, where C1 is the open bounded component of R

N \S. Let15

Ω1
n := (RN \ In(S)) ∩ C1 and Ω2

n = (RN \ In(S)) ∩ C2. Let ν1
n, ν2

n, νn denote the

outer unit normals to ∂Ω1
n, ∂Ω2

n and ∂In(S), respectively.17

Lemma 5.3. Let 0 ≤ T < α
2N . For n large enough and almost all t ∈ [0, T ], we

have that
∫

Ωi
n

(zn(t), Dun(t)) =

∫

Ωi
n

|Dun(t)| , i = 1, 2 ,

(5.16)
∫

In(S)

(zn(t), Dun(t)) =

∫

In(S)

|Dun(t)| ,

and

[zn(t), ν1
n] = [zn(t), ν2

n] = 1 HN−1-a.e. (5.17)19
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Proof. Since un are strong solutions of (1.1), by Theorem 2.7, we know that1

(zn(t), Dun(t)) = |Dun(t)| as measures in R
N for almost all t ≥ 0. This implies

(5.16).3

Note that estimates (5.9), (5.13) prove that for n large enough and for any

t ∈ [0, T ] there is a jump discontinuity in un(t) in ∂In(S). This implies (5.17).

Indeed, let u−n1 and u+
n1 be the traces of un in ∂Ω1

n taken from inside and from

outside the domain, respectively, and let u−n2 and u+
n2 be the traces of un in ∂Ω2

n

taken from outside and from inside the domain, respectively. We have
∫

RN

|Dun(t)|

=

∫

RN

(zn(t), Dun(t)) = −
∫

RN

div(zn(t))un(t)

= −
∫

Ω1
n

div(zn(t))un(t) −
∫

Ω2
n

div(zn)(t)un(t) −
∫

In(S)

div(zn)(t)un(t)

=

∫

Ω1
n

(zn(t), Dun(t)) +

∫

Ω2
n

(zn(t), Dun(t)) +

∫

In(S)

(zn(t), Dun(t))

−
∫

∂Ω1
n

[zn(t), ν1
n]un(t) −

∫

∂Ω2
n

[zn(t), ν2
n]un(t) −

∫

∂In(S)

[zn(t), νn]un(t)

=

∫

RN\∂In(S)

|Dun(t)| +
∫

∂Ω1
n

[zn(t), ν1
n(t)](u+

n1(t) − u−n1(t))

+

∫

∂Ω2
n

[zn(t), ν2
n](u+

n2(t) − u−n2(t)) .

Since for any t ∈ [0, T ] we have
∫

RN

|Dun(t)|

=

∫

RN\∂In(S)

|Dun(t)| +
∫

∂Ω1
n

|u+
n1(t) − u−n1(t)| +

∫

∂Ω2
n

|u+
n2(t) − u−n2(t)|

and by (5.9), (5.13), we know that for n large enough and any t ∈ [0, T ], |u+
ni−u−ni| >

0HN−1 a.e. in ∂Ωi
n, comparing the previous two formulas we deduce (5.17).5

To obtain a more precise estimate, we observe that

Per(In(S))

|In(S)| = n+ on ,
7

with on

n = 0 as n → ∞. We denote by d the signed distance function d(x) :=

dist(x,C1) − dist(x,C2). It is well known that if S is of class Cp, then there exists9

n0 ∈ N such that d ∈ Cp(In(S)) for all n ≥ n0 (see [18]).

Lemma 5.4. Let 0 < T < α
2 .11
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(i) Let αn = n + |on| +
√
n, wn(t) = (αHN−1(S)

|In(S)| − αnt)
+χ

In(S), with ηn(x) =1

−nd(x)∇d(x), t ∈ [0, T ]. Then, for n large enough we have

(wn)t ≤ div(ηn) on In(S) ,3

and ηn · νn = −1 where νn is the outer unit normal to In(S).

(ii) Let βn = n− |on| −
√
n, Wn(t) = (b+αHN−1(S)

|In(S)| − βnt)
+χ

In(S), t ∈ [0, T ], with5

b ≥ µac(x) for almost all x ∈ In(S) and ηn(x) = −nd(x)∇d(x). Then, for n

large enough we have7

(Wn)t ≥ div(ηn) on In(S) ,

and ηn · νn = −1 where νn is the outer unit normal to In(S).9

Proof. We only prove (i) since the proof of (ii) is similar. Observe that by our

choice of T , for n large enough we have that (αHN−1(S)
|In(S)| − αnT ) > 0. Observe that11

(wn)t = −αn and

div(ηn)(x) = −n(∇d(x) · ∇d(x)) − nd(x)∆d(x) = −n− nd(x)∆d(x) .13

Then (wn)t ≤ div(ηn) if and only if

−αn ≤ −n− nd(x)∆d(x) ,15

on In(S), i.e., if and only if

1 + d(x)∆d(x) ≤ αn
1

n
= 1 + (|on| +

√
n)

1

n
,17

on In(S), i.e., if and only if

d(x)∆d(x) ≤ (|on| +
√
n)

1

n
.19

Now,

∆d(x) =

N−1
∑

i=1

−ki

1 − kid(x)
,

21

where ki are the principal curvatures of S at y(x) ∈ S, such that d(x) = ‖x−y(x)‖.
Hence, having in mind that S has bounded curvatures, for n large enough we have

d(x)∆d(x) ≤ d(x)

N−1
∑

i=1

|ki|
1 − kid(x)

≤ d(x)

N−1
∑

i=1

|ki|(1 + 2|ki|d(x))

≤ C(d(x) + d(x)2) , ∀ x ∈ In(S) ,

where C is a constant bounding
∑N−1

i=1 |ki| and
∑N−1

i=1 |ki|2. Then by choosing n

large enough we have that23

d(x)∆d(x) ≤ (|on| +
√
n)

1

n
, ∀ x ∈ In(S) .

The condition ηn · νn = −1 follows immediately from the definition of ηn.25
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Lemma 5.5. For any t ∈ [0, α
2 [ we have1

wn(t) ≤ un(t) ≤Wn(t) on In(S) . (5.18)

Proof. First we consider a time interval [0, τ ] with τ < α
2N . Now, by Lemma 5.3, we3

have that un(t)χint(In(S)), for n large enough, is the strong solution of the problem



































wt = div

(

Dw

|Dw|

)

, in (0, τ) × int(In(S)) ,

[z, νn] = −1 , on (0, τ) × ∂In(S) ,

w(0) = µac +
αHk(S)

|In(S)| , in int (In(S)) .

(5.19)

5

Then, by the above lemma we have

(un)t − (Wn)t ≤ div(zn(t)) − div(ηn) on In(S) .7

Hence, applying Green’s formula we get

∫

In(S)

((un)t − (Wn)t)(un(t) −Wn(t))+

≤
∫

In(S)

(div(zn(t)) − div(ηn))(un(t) −Wn(t))+

= −
∫

In(S)

(zn(t), D(un(t) −Wn(t))+) +

∫

∂In(S)

[zn(t), νn](un(t) −Wn(t))+)

+

∫

In(S)

(ηn, D(un(t) −Wn(t))+) −
∫

∂In(S)

[ηn, νn](un(t) −Wn(t))+)

= −
∫

In(S)

(zn(t), D(un(t) −Wn(t))+) +

∫

In(S)

(ηn, D(un(t) −Wn(t))+) .

Now, by the chain rule in BV (see [2]), there exists 0 ≤ ξ(t), such that

D(un(t) −Wn(t))+ = ξ(t)D(un(t) −Wn(t)) = ξ(t)Dun(t) .9

Then, since

∫

In(S)

(zn(t), D(un(t) −Wn(t))+) =

∫

In(S)

|D(un(t) −Wn(t))+| ,
11

and
∫

In(S)

(ηn, D(un(t) −Wn(t))+) ≤
∫

In(S)

|D(un(t) −Wn(t))+| ,
13



May 4, 2004 15:2 WSPC/152-CCM 00136

The Minimizing Total Variation Flow with Measure Initial Conditions 31

it follows that

d

dt

∫

In(S)

1

2
(un(t) −Wn(t))+)2

=

∫

In(S)

((un)t − (Wn)t)(un(t) −Wn(t))+ ≤ 0 .

Thus, since un(0) ≤ Wn(0), we obtain that un(t) ≤ Wn(t) on In(S). In a similar1

way, we obtain that un(t) ≥ wn(t) on In(S). Therefore, we conclude that (5.18)

holds for any t ∈ [0, τ ]. Since this holds for any τ < α
2N , having in mind (3.7), we3

have that (5.18) holds in [0, α
2N ]. Observe that, for any t > 0

un(t) ≤‖ µac ‖∞ +
Nt

r
on R

N \ In(S) .5

On the other hand we have

un

( α

2N

)

≥ wn

( α

2N

)

on In(S) .7

Thus, using the above estimate and working as in (5.13) which is obtained by

comparison with balls, for n large enough, we have still a jump in the solution9

un(t) during the time interval [ α
2N , 2

α
2N − α

2N2 ). This means that Lemma 5.3 still

holds in this time interval. Thus we may proceed as above in the proof to conclude11

that (5.18) holds in [0, 2 α
2N − α

2N2 ]. Thus, since in the k-iteration the time interval

obtained is [0, α
2 (1−(N−1

N )k+1)], iteratively we prove that, for n large enough, (5.18)13

holds in [0, α
2 [.

Remark 5.6. The estimates of Lemma 5.5 permit us to prove that [zn(t), νi
n] = 1,15

i = 1, 2, for any t ∈ [0, T ] (where T < α
2 ) and n large enough.

Proof of Theorem 5.2. We observe that17

wn(t) ⇀ (α− 2t)+HN−1 S ,

and also19

Wn(t) ⇀ (α− 2t)+HN−1 S ,

weakly∗ as measures. This and Lemma 5.5 imply that (5.15) holds in [0, α
2 ). Now,

using (3.8) we have
∫

RN

∣

∣

∣us

(α

2

)

− us

(α

2
− h
)∣

∣

∣ ≤
∫

RN

∣

∣

∣u
(α

2

)

− u
(α

2
− h
)∣

∣

∣

≤ 4

α− 2h
h|µ|(RN ) ,

and letting h→ 0+ we deduce that us(
α
2 ) = 0. Thus, (5.15) holds in [0, α

2 ].21
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By (5.1), for each T > 0 there exists a constant KT = ‖µac‖∞ + NT
r > 0 such1

that

0 ≤ un(t, x) ≤ KT ∀ x ∈ R
N \ In(S) , 0 ≤ t ≤ T . (5.20)3

hence sign(KT +1−un(t, x)) = 1 for all x ∈ ∂Ωi
n, i = 1, 2. Let CT = KT +1. Using

Remark 5.6 we have that for n large enough5

[zn(t), νi
n] = sign(CT − un(t)) (5.21)

when t ∈ [0, T ] and T < α
2 . Thus, according to Theorem 2.2, for n large enough7

un(t)|Ωi
n

is the strong solution of the Dirichlet problem


























vt = div

(

Dv

|Dv|

)

, in (0, T )× Ωi
n ,

v = CT , on ∂Ωi
n × (0, T ) ,

v(0) = µac , in Ωi
n .

(5.22)

9

Now, for any T < α
2 and n large enough we have that

CT + 1 ≤ wn(T ) .11

Hence sign(CT − un(t, x)) = −1 for all x ∈ ∂In(S). Again, using Remark 5.6 we

have that [zn(t), νn] = −1 on ∂In(S) when t ∈ [0, T ] and T < α
2 . According to13

Theorem 2.2, un(t)|In(S) is the strong solution of the Dirichlet problem






























wt = div

(

Dw

|Dw|

)

, in (0, T ) × int(In(S)) ,

w = CT , on ∂In(S) × (0, T ) ,

w(0) = µac +
αHk(S)

|In(S)| , in int (In(S)) .

(5.23)

15

We summarize the above discussion in the following Lemma.

Lemma 5.7. Let T < α
2 . For n large enough, we have that un(t)|Ωi

n
, i = 1, 2,17

is the strong solution of problem (5.22) in [0, T ]; and un(t)|int(In(S)) is the strong

solution of problem (5.23) in [0, T ].19

Lemma 5.8. The sequence un is bounded in C([0, T ], L2(Ωi
n)). More precisely, for

any δ > 0 we have21

∫

Ωi
n

|(un)t|2dx ≤ C(δ) ∀ t ∈ [δ, T ] , i = 1, 2 . (5.24)

Moreover, we have that23

un(t)|Ωi
n
→ u(t)|Ci in L2(Ci) , i = 1, 2 . (5.25)

Proof. The assertion (5.24) is a consequence of Lemma 5.7, Theorem 2.2 and25

Proposition 2.4. Since C1 is bounded, the convergence of un(t)|Ω1
n

→ u(t)|C1 in



May 4, 2004 15:2 WSPC/152-CCM 00136

The Minimizing Total Variation Flow with Measure Initial Conditions 33

L2(C1) is a consequence of Theorem 5.1. To prove the corresponding asertion in C2,1

let us prove the equiintegrability of u2
n at infinity. For that, let M > 0 be such that

C1 is contained in B(0,M/4). Let ϕ ∈ C∞(RN ) be such that ϕ = 0 on B(0,M/2),3

ϕ = 1 outside B(0,M) and it increases linearly from 0 to 1 in B(0,M)\B(0,M/2).

Since un(t)|Ω2
n

is the strong solution of (5.22) (i = 2) by Lemma 5.7, multiplying5

the equation in (5.22) (i = 2) by unϕ
2 and integrating by parts, we obtain

1

2

d

dt

∫

Ω2
n

un(t)2ϕ2 +

∫

Ω2
n

|Dun(t)|ϕ2 = −
∫

Ω2
n

un(t)zn(t) · ∇ϕ2 .
7

Hence

1

2

d

dt

∫

Ω2
n

un(t)2ϕ2 ≤ 2

∫

Ω2
n

un(t)ϕ|∇ϕ| ≤ 2 ‖ un(t)ϕ ‖p′‖ ∇ϕ ‖p ,

where p > N and p′ is its conjugate exponent. Since |∇ϕ| ≤ 2
M , we have

‖ ∇ϕ ‖p≤
2

M
(CMN )1/p ≤ C

M1−N/p
.9

Since ‖ un(t) ‖p′ is bounded independently of n by the complete accretivity of the

operator underlying (5.22) (i = 2) we have that ‖ un(t)ϕ ‖p′ is bounded indepen-11

dently of n and M , and we may write

1

2

d

dt

∫

Ω2
n

un(t)2ϕ2 ≤ C

M1−N/p
.

13

Thus, integrating in [0, t], given ε > 0 we find M large enough so that
∫

Ω2
n

un(t)2ϕ2 ≤
∫

Ω2
n

µ2
acϕ

2 + ε ≤ 2ε ,
15

for all n. Now, using this and (5.3) we conclude that un(t)|Ω2
n
→ u(t)|C2 in L2(C2).

17

Consider the following Dirichlet problems, i = 1, 2,






















vt = div

(

Dv

|Dv|

)

, in (0, T ) × Ci ,

v = CT , on (0, T )× S ,

v(0) = µac , in Ci .

(5.26)

19

Theorem 5.9. u(t)ac|Ci is the strong solution of problem (5.26) in [0, α
2 ), i = 1,

2.21

Proof. Let T < α
2 . We shall prove in detail only the case v(t) := u(t)ac|C1 , the

other case being similar. We divide the proof in three steps.23

Step 1. By Lemma 5.8 we know that

vn(t) := un(t)|Ω1
n
→ v(t) in L2(C1) . (5.27)25
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and1

vnt → vt weakly in L2
loc((0, T ), L2(C1)) . (5.28)

Since ‖zn‖∞ ≤ 1 for all n ∈ N, we may assume that3

zn ⇀ z ∈ L∞(]0, T [×C1,R
N ) weakly∗ . (5.29)

Passing to the limit we deduce that5

vt = divx(z) in D′(]0, T [×C1) . (5.30)

On the other hand, if we take η(t, x) = φ(t)ψ(x) with φ ∈ D(]0, T [) and ψ ∈ D(C1),7

the same calculation as above shows that

vt(t) = divx(z(t)) in D′(C1) a.e. t ∈ [0, T ] . (5.31)9

Step 2. Consider the functions ṽn(t) defined by

ṽn(t)(x) :=

{

vn(t)(x) , if x ∈ Ω1
n ,

CT , if x ∈ In(S) ∩ C1 .11

Let Φ : L2(C1) →] −∞,+∞] the functional defined by

Φ(w) :=











∫

C1

|Dw| +
∫

∂C1

|CT − w|dHN−1 , if w ∈ L2(C1) ∩ BV (C1) ,

+∞ , if w 6∈ BV (C1) .13

Since the functional Φ is lower semicontinuous [4] and we have (5.27), we may write

∫

C1

|Dv(t)| +
∫

∂C1

|CT − v(t)|dHN−1

= Φ(v(t)) ≤ lim inf
n→∞

Φ(ṽn(t))

= lim inf
n→∞

∫

C1

|Dṽn(t)| = lim inf
n→∞

(

∫

Ω1
n

|Dvn(t)| +
∫

∂Ω1
n

(CT − v1
n(t))dHN−1

)

= lim inf
n→∞

(

−
∫

Ω1
n

(vn)tvn(t) +

∫

∂Ω1
n

CT dHN−1

)

= lim inf
n→∞

(

− d

dt

∫

Ω1
n

1

2
|vn(t)|2 +

∫

∂Ω1
n

CT dHN−1

)

.

Hence, using Fatou’s Lemma, we have
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∫ T

0

∫

C1

|Dv(t)| +
∫ T

0

∫

∂C1

|CT − v(t)|dHN−1

≤ lim inf
n→∞

(

∫

Ω1
n

(

1

2
|vn(0)|2 − 1

2
|vn(T )|2

)

+

∫ T

0

∫

∂Ω1
n

CT dHN−1

)

=

∫

C1

(

1

2
v(0)2 − 1

2
v(T )2

)

+

∫ T

0

∫

∂C1

CT dHN−1 .

Therefore, v(t) ∈ BV (C1) for almost all t ∈ [0, T ].1

Let ν1 be the outer unit normal to ∂C1. Then, since ‖[zn(t), ν1]‖∞ ≤ ‖zn(t)‖∞ ≤
1, up to extraction of a subsequence, if necessary, we may assume that3

[zn(·), ν1] ⇀ ρ σ[L∞((0, T ) × ∂C1), L
1((0, T ) × ∂C1)] .

Now, working as in the proof of Step 4 of [4, Theorem 1], we get5

ρ(t) = [z(t), ν1]HN−1-a.e. on ∂C1, a.e. t ∈ [0, T ] .

Let us prove that ρ(t) = 1. For that, let w(t) := η(t)χC1 where η(t) ∈ D(0, T ).

Using Lemma 5.8, we have
∫ T

0

∫

Ω1
n

v′n(t, x)w(t, x)dxdt

→
∫ T

0

∫

C1

vt(t, x)w(t, x)dxdt =

∫ T

0

∫

C1

vt(t, x)η(t)dxdt .

Now
∫ T

0

∫

Ω1
n

v′nwdxdt =

∫ T

0

η(t)

∫

Ω1
n

div(zn)dxdt

=

∫ T

0

η(t)

∫

∂Ω1
n

[zn(t), ν1
n]dHN−1dt

= HN−1(∂Ω1
n)

∫ T

0

η(t)dt .

On the other hand,
∫ T

0

∫

C1

vtηdxdt =

∫ T

0

η(t)

∫

C1

div(z)dxdt

=

∫ T

0

η(t)

∫

∂C1

[z(t), ν1]dHN−1dt .

Thus, we have7

∫ T

0

η(t)

∫

∂C1

[z(t), ν1]dHN−1dt = HN−1(C1)

∫ T

0

η(t)dt .

It follows that [z(t), ν1] = 1HN−1-a.e. on ∂C1 and a.e. t ∈ [0, T ].9
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Step 3. Finally, we are going to prove that v verifies the inequalities (3.3). Let

w ∈ C1(C1) and η ∈ D(0, T ). Then, working as in Step 2 and using (5.21) we have
∫ T

0

∫

C1

(u(t) − w)ut(t)η(t)dxdt +

∫ T

0

∫

C1

|Du(t)|η(t)dt

+

∫ T

0

∫

∂C1

|CT − u(t)|dHN−1dt

≤ lim inf
n

∫ T

0

∫

Ω1
n

(un(t) − w)unt(t)η(t)dxdt

+

∫ T

0

∫

Ω1
n

|Dun(t)|η(t)dt +

∫ T

0

∫

∂Ω1
n

|CT − un(t)|dHN−1dt

= lim inf
n

∫ T

0

∫

Ω1
n

(un(t) − w)div(zn(t))η(t)dxdt +

∫ T

0

∫

Ω1
n

|Dun(t)|η(t)dt

+

∫ T

0

∫

∂Ω1
n

|CT − un(t)|dHN−1dt

≤ lim inf
n

(

−
∫ T

0

∫

Ω1
n

zn(t) ·D(un(t) − w)η(t)dxdt

+

∫ T

0

∫

∂Ω1
n

[zn(t), ν1
n](un(t) − w)ηdHN−1dt+

∫ T

0

∫

Ω1
n

|Dun(t)|η(t)dt

+

∫ T

0

∫

∂Ω1
n

|CT − un(t)|dHN−1dt

)

= lim inf
n

∫ T

0

∫

Ω1
n

zn(t) ·Dwη(t)dxdt

+

∫ T

0

∫

∂Ω1
n

|CT − w|ηdHN−1dt

=

∫ T

0

∫

C1

(z(t), Dw)η(t)dxdt

+

∫ T

0

∫

∂C1

|CT − w|ηdHN−1dt .

Observe that in the last limit we have used the fact that1

HN−1 ∂Ω1
n → HN−1 ∂C1 in the distributional sense ,

which is true because ∂C1 has bounded curvatures. Now, approximating a function3

w ∈ L2(C1)∩W 1,1(C1) by functions in C1(C1) we obtain that the above inequality
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also holds for all w ∈ L2(C1)∩W 1,1(C1). This implies that the inequalities (3.3) hold1

for all w ∈ L2(C1)∩W 1,1(C1) and a.e. in [0, T ]. Finally, approximating functions in

L2(C1)∩BV (C1) by functions in L2(C1)∩W 1,1(C1) we obtain that the inequalities3

(3.3) hold for all w ∈ L2(C1) ∩ BV (C1) and a.e. in [0, T ].

From Theorem 5.9, we have the following characterization of limit solutions.5

Theorem 5.10. Assume that µ = µac + αHN−1 S, with α ≥ 0, µac ∈ L1(RN ) ∩
L∞(RN ), and S is a compact (N − 1)-manifold in R

N of class W 3,∞. If u(t) is the7

limit solution of problem (1.1) corresponding to the initial condition µ, then in the

time interval [0, α
2 ] we have that u(t)ac|Ci is the strong solution of problem (5.26),9

i = 1, 2, and we have

u(t)s =

(

1 − 2

α
t

)+

µs . (5.32)
11

For t ≥ α
2 , u(t)s = 0 and u(t) = u(t)ac is the entropy (or equivalently, strong)

solution of (1.1) in [α
2 ,∞) × R

N with initial condition u(α
2 ).13

Proof. The behaviour of u(t) in [0, α
2 ) was described in Theorems 5.2 and 5.9.

According to (5.4) and (5.15), for t = α
2 we deduce15

un

(α

2

)

χ
In(S) → 0 in L1(RN ) .

Now, by (5.1), there is a positive constant C such that17

un

(α

2

)

= un

(α

2

)

χ
RN\In(S) + un

(α

2

)

χ
In(S) ≤ C + un

(α

2

)

χ
In(S) .

Hence,19

(

un

(α

2

)

− C
)+

≤ un

(α

2

)

χ
In(S) .

Now, by estimate (3.4) we have21

un(t) << un

(α

2

)

for any t ≥ α

2
, (5.33)

consequently23

∫

RN

(un(t) − C)+ ≤
∫

RN

(

un

(α

2

)

− C
)+

for t ≥ α

2
,

and we have that25
∫

RN

(un(t) − C)+ → 0 for t ≥ α

2
.

Thus, having in mind that |In(S)| → 0 and un(t) ≤ (un(t) − C)+ + C, we deduce27

that

un(t)χIn(S) → 0 in L1(RN ) for t ≥ α

2
.29
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Since un(t)χIn(S) ⇀ u(t)s weakly∗ as measures we conclude that u(t)s = 0 for1

t ≥ α
2 .

Hence3

un(t) = un(t)χRN\In(S) + un(t)χIn(S) → u(t)ac in L1
loc(R

N ) .

By the equintegrability in time given by estimate (3.7), the above convergence can5

be taken locally uniformly in (0, T ). Since un(t) is an entropy solution of (1.1) and

converges in L1
loc((

α
2 ,∞)×R

N ) to u(t) = u(t)ac, then u(t) is an entropy solution of7

(1.1) in [α
2 ,∞) × R

N [8]. Since u(t) ∈ L2(RN ) and entropy solutions coincide with

strong solutions, we have that u(t) is also a strong solution of (1.1) for t ≥ α
2 [8].9

We could write an entropy condition for the solutions described in Theorem 5.10,11

similar to the one considered in Sec. 5.1, but not being satisfactory for a flexible

treatment of uniqueness in the general case, we shall not pursue this here.13

Remark 5.11. As it was observed to us by the referee, Theorem 5.10 can be

extended to more irregular (N − 1)-manifolds. Indeed, it can be extended to the15

case where S is a closed and Lipschitz (N−1)-manifold which can be approximated

by closed (N − 1)-manifolds Sn of class W 3,∞ in the sense that17

(i) ‖HN−1 S −HN−1 Sn‖Mb(RN ) → 0 as n→ ∞ ,

and (ii) if Qn denotes the set inside Sn, and Q denotes the set inside S, then Q∩Qn19

is an increasing sequence whose union is Q. To justify this assertion, let un(t) be the

strong solution of (1.1) such that un(0) = µac+αHN−1 Sn given by Theorem 5.10.21

Since un(t)s = (1− 2
α t)

+HN−1 Sn, we have that un(t)s →= (1− 2
α t)

+HN−1 S

in the norm of measures. On the other hand, we know that un(t)ac|Qn is the strong23

solution of the problem






















vt = div

(

Dv

|Dv|

)

, in (0, T ) ×Qn ,

[z, ν] = 1 , on (0, T )× ∂Qn ,

v(0) = µac , in Qn .

(5.34)

25

Then, after some standard calculations and using that

∂(Q ∩Qn) ⊆ [S ∩ Sn ∩ Sm] ∪ [S∆Sn] ∪ [Sn∆Sm] ,27

we prove that

d

dt

∫

Q∩Qn

|un(t) − um(t)| ≤
∫

∂(Q∩Qn)

|[zn − zm, ν]|

≤ 2(HN−1(S∆Sn) + HN−1(Sn∆Sm)) ,

for every n ≥ 1, and every m ≥ n. In particular, since um(0) = un(0), we have
∫

Q∩Qn

|un(t) − um(t)| ≤ 2T (HN−1(S∆Sn) + HN−1(Sn∆Sm)) ,
29
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for any t ∈ [0, T ], every n ≥ 1, and every m ≥ n. Thus1

∫

Q∩Qp

|un(t) − um(t)| ≤ 2T (HN−1(S∆Sn) + HN−1(Sn∆Sm)) ,

for any t ∈ [0, T ], and for all m ≥ n ≥ p. We deduce that {un} is a Cauchy sequence3

in C([0, T ], L1(Q∩Qp)) for any p ≥ 1. Since un(t) is bounded in L∞([0, T ], L1(Qn)),

there is a function u ∈ L∞([0, T ], L1(Q)) such that, passing to a subsequence, if5

necessary, un converges to u(t) in C([0, T ], L1(Q ∩ Qp)) for any p ≥ 1. Moreover,

we may assume that zn → z weakly∗ in L∞(]0, T [×Q), and we obtain that7

ut = div(z) in D′(]0, T [×Q .
To prove that [z(t), ν] = 1HN−1 a.e. in S, let ϕ(t, x) = φ(x)η(t) where φ ∈ C∞

0 (Q)9

and η ∈ C∞
0 (]0, T [). Since for p large enough, and n ≥ p, we have
∫ T

0

∫

Q∩Qp

unϕ
′ =

∫ T

0

∫

Q∩Qp

zn · ∇ϕ+

∫ T

0

∫

∂(Q∩Qp)

[zn(t), ν]ϕ ,
11

letting n→ ∞ and p→ ∞ in this order, we get
∫ T

0

∫

Q

uϕ′ =

∫ T

0

∫

Q

z · ∇ϕ+

∫ T

0

∫

S

ϕ .
13

Consequently, [z(t), ν] = 1HN−1 a.e. in S and for almost all t ∈]0, T [. Now, working

in a similar way as in [4], it can be proved that u(t)|Q is an entropy solution of15

problem






















vt = div

(

Dv

|Dv|

)

, in (0, T ) ×Q ,

[z, ν] = 1 , on (0, T )× ∂Q ,

v(0) = µac , in Q .

(5.35)

17

In a similar way we can prove that there is a subsequence of un|RN\Qn
converging

to an entropy solution u(t)|RN\Q of19























vt = div

(

Dv

|Dv|

)

, in (0, T )× (RN \Q) ,

[z, ν] = 1 , on (0, T ) × ∂(RN \Q) ,

v(0) = µac in R
N \Q .

(5.36)

We conclude with this our sketch of the proof. A complete discussion of this problem21

will be detailed elsewhere.

5.2. Singular part of µ of dimension k < N − 123

In the case k < N − 1, we assume S to be a compact k-manifold of class W 3,∞. We

have C1 = ∅. Thus, Ω1
n = ∅ and Ω2

n = R
N \ In(S). Let us rename Ω̃n := R

N \ In(S).25

Let T > 0. Since |In(S)| behaves as 1
nN−k as n→ ∞, we note that estimates (5.9),
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(5.13) prove that, for n large enough, there is a jump discontinuity in un(t) in1

∂In(S) for any t ∈ [0, T ]. As in Lemma 5.3 we have

Lemma 5.12. Let T > 0. For n large enough we have that3

[zn(t), ν2
n] = −[zn(t), νn] = 1 HN−1-a.e. and a.e. in [0, T ] . (5.37)

With the same notation for CT as in the previous section we have the following5

result.

Lemma 5.13. Let T > 0. For n large enough, un(t)|Ω̃n
is the strong solution of7

problem






















vt = div

(

Dv

|Dv|

)

, in (0, T )× Ω̃n ,

v = CT , on (0, T ) × ∂Ω̃n ,

v(0) = µac , in Ω̃n .

(5.38)

9

and un(t)|int(In(S)) is the strong solution of problem (5.23).

Consider the Dirichlet problem11











vt = div

(

Dv

|Dv|

)

, in (0, T ) × R
N ,

v(0) = µac , in R
N .

(5.39)

Working as in the proof of Theorem 5.9, we obtain the following result.13

Theorem 5.14. u(t)ac is the strong solution of problem (5.39).

By (5.8) we also have that u(t)s = µs for all t ≥ 0. Then, by Theorem 5.14, we15

have the following characterization of the limit solutions

Theorem 5.15. Assume that k < N − 1. Let µ = µac + αHk S, with α ≥ 0,17

µac ∈ L1(RN ) ∩ L∞(RN ), and S is a compact k-manifold of class W 3,∞. If u(t) is

the limit solution of problem (1.1) corresponding to the initial condition u(0) = µ,19

then u(t)ac is the strong solution of problem (5.39) and we have u(t)s = µs for any

t ≥ 0. In the particular case that µac = 0, we have u(t) = µ for all t ≥ 0.21

Remark 5.16. In a similar way as we noted in Remark 5.11, Theorem 5.15 can be

extended to more irregular k-manifolds (k < N − 1). Indeed, it can be extended to23

the case where S is a closed and Lipschitz k-manifold which can be approximated

by closed k-manifolds Sn of class W 3,∞ in the sense that25

‖HN−1 S −HN−1 Sn‖Mb(RN ) → 0 as n→ ∞ .

To justify this assertion, let un(t) be the solution of (1.1) such that un(0) = µac +27

αHk Sn given by Theorem 5.15. Since un(t)s = αHk Sn, we have that un(t)s →
u(t)s := αHk S in the norm of measures. Since un(t)ac is the strong solution of29
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ut = div( Du
|Du| ) in R

N with initial datum un(0)ac = µac, we conclude that u(t) =1

u(t)ac + αHk S, where u(t)ac is the strong solution of ut = div( Du
|Du| ) in R

N with

initial datum u(0)ac = µac. Thus, Theorem 5.15 also holds in this case.3

5.2.1. The entropy condition when k < N − 1

Since u(t)ac is the strong solution of the Cauchy problem (5.39), there exists z ∈5

L∞(]0, T [×R
N) with ‖z‖∞ ≤ 1 such that

(uac)t = div(z) in D′(]0, T [×R
N) . (5.40)7

Moreover u(t)ac satifies the entropy condition [8]

−
∫ T

0

∫

RN

jp(u(t)ac − l)ηt +

∫ T

0

∫

RN

η(t)|D(p(u(t)ac − l)

+

∫ T

0

∫

RN

z(t) · ∇η(t)p(u(t)ac − l) ≤ 0 , (5.41)

for all l ∈ R and 0 ≤ η(t, x) = φ(t)ψ(x), with φ ∈ D(]0, T [), ψ ∈ C∞
0 (RN ) and for

all p ∈ T , being jp(r) =
∫ r

0 p(s)ds.9

Moreover, since u(t)s = µs for all t ≥ 0, given ν = βHk S, β ∈ R, we have

−
∫ T

0

∫

RN

jp(u(t)s − ν)ηt = 0 .
11

Hence, from (5.41) we obtain the following entropy condition for the limit solution

u(t):

−
∫ T

0

∫

RN

jp(u(t) − l − dν)ηt +

∫ T

0

∫

RN

η(t)|D(p(u(t)ac − l)|

+

∫ T

0

∫

RN

z(t) · ∇η(t)p(u(t)ac − l) ≤ 0 , (5.42)

for all l ∈ R, ν = βHk S, β ∈ R, and 0 ≤ η(t, x) = φ(t)ψ(x), with φ ∈ D(]0, T [),

ψ ∈ C∞
0 (RN ) and for all p ∈ T , being jp(r) =

∫ r

0
p(s)ds.13

Let us prove in which sense limit solutions are characterized by the entropy

condition (5.42). Indeed, let v ∈ Cw([0, T ],Mb(R
N )) be such that v(0) = µ, v(t)s =

f(t)Hk S, 0 < a ≤ f(t) ≤ A, and satisfies vt = div(ξ) in D′(]0, T [×R
N) and (5.42).

Then, if we take in (5.42) p = T+
k and β > A, we get

−
∫ T

0

∫

RN

j+k (v(t)ac − l)ηt +

∫ T

0

∫

RN

η(t)|D(T+
k (v(t)ac − l)|

+

∫ T

0

∫

RN

ξ(t) · ∇η(t)T+
k (v(t)ac − l) ≤ 0 . (5.43)
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Similarly, taking p = T−
k and β < a, we get

−
∫ T

0

∫

RN

j−k (v(t)ac − l)ηt +

∫ T

0

∫

RN

η(t)|D(T−
k (v(t)ac − l)|

+

∫ T

0

∫

RN

ξ(t) · ∇η(t)T−
k (v(t)ac − l) ≤ 0 . (5.44)

Now, from (5.43) and (5.44), using the doubling variables method of Kruzhkov (see1

[8]), it follows that v(t)ac = u(t)ac. On the other hand, since v(t)ac ∈ L∞(RN ),

taking p = T+
k in (5.42) and l large enough, we obtain that3

−
∫ T

0

∫

RN

j+k (v(t)s − ν)ηt ≤ 0 ,

for ν = βHk S and 0 ≤ η(t, x) = φ(t)ψ(x), with φ ∈ D(]0, T [), ψ ∈ C∞
0 (RN ).5

Then,

k

∫ T

0

∫

RN

d

dt
(v(t)s − ν)+η ≤ 0 .

7

Now, taking ν = v(0)s, it follows that

v(T )s ≤ v(0)s = µs .9

Similarlly, working with T−
k , we get v(T )s ≥ v(0)s = µs. Consequently, we obtain

that11

v(t)s = µs , ∀ t ≥ 0 .

6. Solutions Obtained by Approximating the Singular Part of µ13

by Convolution in the Case k < N − 1

Let u0 = µac + µs with µs = aHk S with k < N − 1, a > 0, and S being15

a compact k-manifold of class W 3,∞. We assume that µac ∈ L1(RN ) ∩ L∞(RN ).

Let ρ ∈ C∞
0 (RN ) be a radial decreasing function such that ρ ≥ 0, whose support17

coincides with B(0, 1), and
∫

RN ρ(x)dx = 1. Let ρn(x) = nNρ(nx). Let us prove

that if we approximate u0 by u0n = µac + ρn ∗ µs and un(t) denotes the solution of19

(1.1) with initial condition u(0) = u0n, then un(t) converges to the limit solution

of (1.1) with initial condition u(0) = u0, and consequently, u(t)s = µs for all t ≥ 0.21

We fix T > 0. Let ν = Hk S. In a first step, we shall need the following

condition on ρ23

(H)ρ : ρ ∈ C∞(B(0, 1)) is a radial decreasing function with ρ ≥ 0, ρ(x) = 0 outside

B(0, 1),
∫

RN ρ(x)dx = 1, and if we write ρ = ρ(‖x‖) the behavior of ρ(1 − r) near25

r = 0 is as γrβ for some γ > 0, 0 < β <∞.
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Lemma 6.1. Let 0 < ε < Hk(S), αj ≥ 0, α0 = 0, αj < αj+1 be such that1

αj

αj+1
≥ (1 − ε) for all j ≥ 1 and

∫

[0≤ρn∗ν≤α1](ρn ∗ ν)(x)dx ≤ ε. Then

∞
∑

j=0

αj |[αj ≤ ρn ∗ ν < αj+1]| ≥ (1 − ε)(Hk(S) − ε) . (6.1)
3

As a consequence, if νn(x) =
∑∞

j=0 αjχ[αj≤ρn∗ν<αj+1], we have
∫

RN

(ρn ∗ ν − νn)(x)dx ≤ ε(1 + (Hk(S) − ε)) . (6.2)
5

Proof.
∞
∑

j=0

αj |[αj ≤ ρn ∗ ν < αj+1]|

≥ (1 − ε)

∞
∑

j=1

αj+1|[αj ≤ ρn ∗ ν < αj+1]|

≥ (1 − ε)

∞
∑

j=1

∫

[αj≤ρn∗ν<αj+1]

(ρn ∗ ν)(x)dx

= (1 − ε)

∫

RN

(ρn ∗ ν)(x)dx − (1 − ε)

∫

[0≤ρn∗ν≤α1]

(ρn(x) ∗ ν)(x)dx

≥ (1 − ε)Hk(S) − ε(1 − ε) = (1 − ε)(Hk(S) − ε) .

The inequality (6.2) follows from (6.1) and the observation that νn ≤ ρn ∗ ν.

Notice that we always have

ρn ∗ ν(x) ≤ nN

∫

RN

χ
B(0, 1

n )(x − y)dν(y)

≤ nN sup
x∈RN

ν

(

B

(

x,
1

n

))

≤ CnN−k .

Lemma 6.2. Assume that ρ satisfies (H)ρ. Let 0 < q < 1, α > 0. Then7

∫

[0≤ρn∗ν≤αnN−k−q]

(ρn ∗ ν)(x)dx → 0 as n→ ∞ . (6.3)

Proof. Let p > 0 such that p(β + k
2 ) < q. Let x ∈ R

N , d(x, S) < 1
n − 1

n1+p . There

is Y ∈ S such that ‖x − Y ‖ < 1
n − 1

n1+p . Moreover, we may assume that Y − x

is orthogonal to S. Let us consider the k-plane Hk tangent to S at the point Y .

Let H be the N − 1 plane containing Hk and orthogonal to Y − x. By taking n

large enough we may assume that, locally around Y , S ∩B(x, 1
n ) is the graph of a

function (Xk+1, . . . , XN) = gY (X1, . . . , Xk), (X1, . . . , Xk) ∈ Hk ∩B(x, 1
n ). Observe
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that, in the (X1, . . . , XN ) coordinate system, the point Y has coordinates (0, . . . , 0)

and gY (0) = 0, DgY (0) = 0. The intersection of H and B(x, 1
n ) is a N − 1 ball

BY of radius, at least, 1
n(p+2)/2 . Indeed, we take the N − 1 plane H ′ parallel to H

and tangent to B(x, 1
n ). We consider the surface of B(x, 1

n ) as a graph over H ′.

We compare the surface of B(x, 1
n ) with the paraboloid xN = k(x2

1 + · · · + x2
N−1).

By rotation invariance in the N − 1 first coordinates we may reduce the situation

to the comparison of the circle y = 1
n −

√

( 1
n )2 − x2 and the parabola y = kx2

2 .

Observe that if k = n, the parabola y = kx2 is above the circle y = 1
n −
√

( 1
n )2 − x2.

Thus, when y = 1
np+1 the x coordinate of the circle is, at least, 1

n(p+2)/2 , which is

the corresponding abscissa of the parabola. We conclude that the radius of BY

is, at least, 1
n(p+2)/2 . Now, observe that, since gY is smooth and the curvatures

of S are bounded, there is a constant C > 0 such that, if (X1, . . . , Xk) ∈ Hk ∩
B(Y, 1

2n(p+2)/2 ), then ‖(Xk+1, . . . , XN)‖ ≤ C
np+2 . Thus the distance of the graph of

gY over Hk ∩ B(Y, 1
2n(p+2)/2 ) (call it S1) to ∂B(x, 1

n ) is greater or equal than the

distance of the point of coordinates ( 1
n − 1

np+1 + C
np+2 ,

1
2n(p+2)/2 ) to the boundary of

the ball B(0, 1
n ) in R

2. This distance is greater or equal than 1
4np+1 . Thus, if y ∈ S1,

then the distance from ny to the boundary of B(nx, 1) is greater or equal than 1
4np .

By our choice of ρ, we have that ρ(n(x− y)) ≥ γ 1
4npβ for all y ∈ S1. Now,

∫

RN

ρn(x− y)dν(y)

= nN

∫

RN

ρ(n(x − y))dν(y)

≥ nN

∫

S1

ρ(n(x − y))dν(y) ≥ nNγ
1

4npβ
ν(S1) ≥ γ′

nN

npβnk(p+2)/2
.

Thus, if x ∈ R
N is such that d(x, S) < 1

n − 1
np+1 and ρn ∗ ν(x) < αnN−k−q , then1

γ′
nN

npβnk(p+2)/2
≤ αnN−k−q ,

which implies that q ≤ p(β + k
2 ), a contradiction. Thus, if ρn ∗ ν(x) < αnN−k−q ,

then d(x, S) ≥ 1
n − 1

np+1 . Hence

∫

[0≤ρn∗ν≤αnN−k−q]

ρn ∗ νdx ≤ αnN−k−q |[0 < ρn ∗ ν ≤ αnN−k−q ]|

≤ αnN−k−q

∣

∣

∣

∣

{

x ∈ R
N :

1

n
− 1

np+1
≤ d(x, S) <

1

n

}∣

∣

∣

∣

≤ αCnN−k−q 1

nN−k+p
= Cα

1

np+q
→ 0 as n→ ∞ ,

where C > 0 is a constant.3
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Lemma 6.3. Assume that ρ satisfies (H)ρ. Then given ε = 1
h > 0, there are1

constants αh,n
j ≥ 0 such that αh,n

0 = 0, αh,n
j < αh,n

j+1,
αh,n

j

αh,n
j+1

≥ (1 − 1
h ) for all j, h,

n ≥ 1 and nh ≥ 1 such that3

∫

[0≤ρn≤αn
1 ]

(ρn ∗ ν)(x)dx ≤ ε for n ≥ nh .

Therefore, if we denote Ah,n
j = [αh,n

j ≤ ρn ∗ ν(x) < αh,n
j+1], j ≥ 0, and we define5

νh,n(x) =
∑∞

j=1 α
h,n
j
χ

Ah,n
j
, we have

∫

RN

(ρn ∗ ν − νh,n)dx ≤ 1

h

(

1 + Hk(S) − 1

h

)

for all n ≥ nh . (6.4)
7

Proof. Let us choose p, q > 0 such that p(β + k
2 ) < q ≤ 1. Given ε = 1

h , there is

mh such that r
r+1 ≥ 1 − 1

h for all r ≥ mh. We define αh,n
0 = 0, αh,n

1 = mhn
N−k−q ,9

αh,n
j = (mh + j − 1)nN−k−q . Then, by Lemma 6.2, we have

∫

[0≤ρn≤αh,n
1 ]

(ρn ∗ ν)(x)dx ≤ 1

h
,

11

for n large enough, say for n ≥ nh. By our choice of mh, we have that
αh,n

j

αh,n
j+1

≥ (1− 1
h )

for all j ≥ 1. By Lemma 6.1, we have that (6.4) holds for all n ≥ nh.13

In the rest of the section and until we consider the general case we assume that ρ

satisfies condition (H)ρ. Note that (6.4) holds for n = nh. Thus, there is a sequence15

ni such that ρni ∗ ν − νi,ni → 0 in L1(RN ). Thus, for simplicity of notation, we

shall denote νn instead of νi,ni , α
n
j instead of αi,ni

j , and An
j instead of Ai,ni

j . With17

this notation and for further reference, we have
∫

RN

(ρn ∗ ν − νn)dx → 0 as n→ ∞ . (6.5)
19

The sets An
j are not far from being level sets of the distance function d(x, S).

To prove that we need the following Lemma.21

Lemma 6.4. Let λ > 0. Let S be a compact k-manifold of class W 2,∞. Let ρ be

the radial convolution kernel introduced above with the assumption that ρ(1 − r)23

behaves as γr2 near r = 0 for some γ > 0. Let

Φ(t, ~e,H) =

∫

(t~e+H)∩B(0,1)

ρ(u)dHk(u) , (6.6)
25

for t ∈ [0, 1], ~e a unit vector in R
N , H a k-hyperplane orthogonal to ~e. Then Φ

depends only on t and, if x is such that ρn ∗ ν(x) = λnN−k−q , then we have27

d(x, S) =
1

n
Φ−1

(

λ

nq
+ nkF (x)

)

(6.7)
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where1

F (x) = O

(

1

nk+1

)

, ∇F (x) = O

(

1

nk

)

. (6.8)

Proof. To avoid any confusion in the formalism and help the intuition let us ob-3

serve that the result is obviously true if k = 0 and S is reduced to a finite number

of points. Thus, we may assume that k ≥ 1. Let x be such that5

∫

S

ρn(x− y)dHk(y) = λnN−k−q .

Then7

∫

S

ρ(n(x− y))dHk(y) =
λ

nk+q
. (6.9)

Let x0 ∈ S be such that ‖x − x0‖ = d(x, S) and such that x − x0 is orthogonal to9

S. Let Hk be the tangent plane to S at x0 passing by 0. We assume n to be large

enough so that S ∩B(x, 1
n ) can be parameterized by a function ψ : Hk ∩B(0, 1

n ) →11

R
N−k where ψ ∈ W 2,∞. Thus we may write S ∩ B(x, 1

n ) as the set of points

y = x0 +(z, ψ(z)) where z ∈ Q := [(x0 +Hk)∩B(x, 1
n )]−x0. Moreover, we assume13

that |ψ(z)| ≤ C‖z‖2. Thus, using that ρ has compact support, we may write (6.9)

as15

∫

Q

ρ(n(x− x0) − n(z, ψ(z)))Jk(ψ)(z)dz =
λ

nk+q
. (6.10)

where Jk(ψ) denotes the “corresponding” Jacobian [17]. Then, we have

∫

Q

ρ(n(x − x0) − n(z, 0))dz

=
λ

nk+q
+

∫

Q

[ρ(n(x− x0) − n(z, 0))− ρ(n(x − x0) − n(z, ψ(z)))Jk(ψ)(z)]dz

=
λ

nk+q
+ F (x)

where

F (x) =

∫

Q

[ρ(n(x− x0) − n(z, 0)) − ρ(n(x− x0) − n(z, ψ(z)))Jk(ψ)(z)]dz

=

∫

Q

[ρ(n(x− x0) − n(z, 0)) − ρ(n(x− x0) − n(z, ψ(z)))]Jk(ψ)(z)dz

+

∫

Q

ρ(n(x− x0) − n(z, 0))[1 − Jk(ψ)(z)]dz

=: τ1 + τ2
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Let us estimate both terms τ1 and τ2,

|τ1| ≤ Cn

∫

Q

|ψ(z)|Jk(ψ)(z)dz ≤ Cn

∫

Q

‖z‖2Jk(ψ)(z)dz

≤ C

n

∫

Q

Jk(ψ)(z)dz ≤ C

nk+1

(the constant C denotes a different constant on each line). Now, using that |1 −1

Jk(ψ)(z)| ≤ C‖z‖, we have

|τ2| ≤ C

∫

Q

ρ(n(x− x0) − n(z, 0))|z|dz ≤ C

n

∫

Q

dz =
C

nk+1
.

3

Similarly, since ρ is of class C2, we bound

|∇τ1| ≤
C

nk
,5

and

|∇τ2| ≤
C

nk
.7

Summarizing, we have
∫

Q

ρ(n(x− x0) − n(z, 0))dz =
λ

nk+q
+ F (x) , (6.11)

9

with

F (x) = O

(

1

nk+1

)

, ∇F (x) = O

(

1

nk

)

. (6.12)
11

Let ~e be the unit vector in the direction of x − x0, so that x − x0 = ~ed(x, S) and

let u = n(x− x0) − n(z, 0). Observe that (z, 0) ∈ Q if and only if u ∈ (n~ed(x, S) +

Hk) ∩B(0, 1). Then we have
∫

Q

ρ(n(x− x0) − n(z, 0))dz

=
1

nk

∫

(n~ed(x,S)+Hk)∩B(0,1)

ρ(u)du =
λ

nk+q
+ F (x) . (6.13)

Let Φ be the function defined in (6.6). Let us prove that Φ only depends on t. Let

R be a rotation in R
N such that Rt~e = ~e, i.e., such that R(H) is orthogonal to ~e.13

Then

Φ(t, ~e, R(H)) = Φ(t, ~e,H) .15

Thus Φ(t, ~e,H) is independent of H . Let us write it as Φ(t, ~e). Now, let R be any

rotation in R
N . Then, using any k-hyperplane H orthogonal to R~e, we have17

Φ(t, R~e) =

∫

(tR~e+H)∩B(0,1)

ρ(u)du =

∫

(t~e+RtH)∩B(0,1)

ρ(u)du = Φ(t, ~e) ,
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since Rt(H) is orthogonal to ~e. Thus, Φ = Φ(t) only depends on t. Then Φ is1

continuous, and strictly decreasing. We may write (6.13) as

Φ(nd(x, S)) = Φ(nd(x, S), ~e,Hk) =
λ

nq
+ nkF (x) , (6.14)3

hence

d(x, S) =
1

n
Φ−1

(

λ

nq
+ nkF (x)

)

. (6.15)
5

Remark 6.5. By the properties of Φ we may write Φ(t) = Φk(t),

Φk(t) =

∫

(tek+1+H′

k
)∩Bk+1(0,1)

ρ(u)du ,
7

where ek+1 = (0, . . . , 1) ∈ R
k+1, H ′

k = {x : xk = 0}, Bk+1(0, 1) the unit ball in

R
k+1.9

Let us write αn
j = λn

j n
N−k−q . By Lemma 6.4, we may write

An
j =

[

1

n
Φ−1

(

λn
j+1

nq
+ nkF (x)

)

< d(x, S) ≤ 1

n
Φ−1

(

λn
j

nq
+ nkF (x)

)]

.
11

Let

Bn
j =

[

1

n
Φ−1

(

λn
j+1

nq

)

< d(x, S) ≤ 1

n
Φ−1

(

λn
j

nq

)]

13

and let us define

ν′n =

∞
∑

j=1

αn
j
χBn

j
. (6.16)

15

Lemma 6.6. We have
∫

RN

|νn − ν′n|dx → 0 as n→ ∞ . (6.17)
17

Proof. Let us prove that

An
j ⊆

⋃

|j−i|≤1

Bn
i , (6.18)

19

and

Bn
j ⊆

⋃

|j−i|≤1

An
i . (6.19)

21

With this, since αn
j+1 − αn

j = αn
j − αn

j−1 = nN−k−q , we may write

∫

RN

|νn − ν′n|dx ≤
Cnq
∑

j=1

nN−k−q |An
j ∆Bn

j | . (6.20)
23
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First, observe that, since (6.18) implies that An
i ∩ Bn

j = ∅ if |i− j| ≥ 2, (6.19) is a1

consequence of (6.18). Now, let us take n large enough so that

|nkF (x)| ≤ C

n
≤ 1

nq
.3

Then, if x ∈ Ak
j , using the fact that Φ−1 is a decreasing function, we have

d(x, S) ≤ 1

n
Φ−1

(

λn
j

nq
+ nkF (x)

)

≤ 1

n
Φ−1

(

λn
j

nq
− 1

nq

)

=
1

n
Φ−1

(

λn
j−1

nq

)

,
5

and

d(x, S) >
1

n
Φ−1

(

λn
j+1

nq
+ nkF (x)

)

≥ 1

n
Φ−1

(

λn
j+1

nq
+

1

n

)

=
1

n
Φ−1

(

λn
j+2

nq

)

.

Both inequalities prove the inclusion (6.18).

Let

ε(j, n, x) = sup
i=j,j+1

∣

∣

∣

∣

Φ−1

(

λn
i

nq
+ nkF (x)

)

− Φ−1

(

λn
j

nq

)∣

∣

∣

∣

,

ε1n = sup
j,x

|ε(j, n, x)| ,

ε2n = Φ−1

(

λn
j

nq

)

− Φ−1

(

λn
j+1

nq

)

,

and7

εn = sup(ε1n, ε
2
n) .

Since Φ−1 is continuous and nkF (x) = O( 1
n ) we have that εn → 0 as n → ∞. Let9

us prove that

An
j ∆Bn

j ⊆
[

1

n
Φ−1

(

λn
j

nq

)

− εn
n

≤ d(x, S) ≤ 1

n
Φ−1

(

λn
j

nq

)

+
εn
n

]

. (6.21)
11

Indeed, if x ∈ Bn
j \An

j , then either

(i) d(x, S) > 1
nΦ−1(

λn
j

nq + nkF (x)) or (ii) d(x, S) < 1
nΦ−1(

λn
j+1

nq + nkF (x)).13

In case (i),

d(x, S) >
1

n
Φ−1

(

λn
j

nq

)

+
1

n
Φ−1

(

λn
j

nq
+ nkF (x)

)

− 1

n
Φ−1

(

λn
j

nq

)

≥ 1

n
Φ−1

(

λn
j

nq

)

− ε(j, n, x)

n
≥ 1

n
Φ−1

(

λn
j

nq

)

− εn
n
.

On the other hand, since x ∈ Bn
j , we have

d(x, S) ≤ 1

n
Φ−1

(

λn
j

nq

)

≤ 1

n
Φ−1

(

λn
j

nq

)

+
εn
n
.

15
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In case (ii),

d(x, S) <
1

n
Φ−1

(

λn
j+1

nq
+ nkF (x)

)

≤ 1

n
Φ−1

(

λn
j+1

nq
− 1

n

)

=
1

n
Φ−1

(

λn
j

nq

)

≤ 1

n
Φ−1

(

λn
j

nq

)

+
εn
n
.

On the other hand, since x ∈ Bn
j , we have1

d(x, S) >
1

n
Φ−1

(

λn
j+1

nq

)

≥ 1

n
Φ−1

(

λn
j

nq

)

− ε2n
n

≥ 1

n
Φ−1

(

λn
j

nq

)

− εn
n
.

In a similar way we prove that An
j \Bn

j is contained in the right-hand side of (6.21).3

Since, by [2, Theorem 2.104],

lim
n→∞

|[d(x, S) < 1
nΦ−1(

λn
j

nq ) + εn

n ]|

ωN−k

(

1
nΦ−1

(

λn
j

nq

)

+ εn

n

)N−k
= Hk(S) ,

5

and

lim
n→∞

|[d(x, S) < 1
nΦ−1(

λn
j

nq ) − εn

n ]|

ωN−k

(

1
nΦ−1

(

λn
j

nq

)

− εn

n

)N−k
= Hk(S) ,

7

given δ > 0, for n large enough, we have

|An
j ∆Bn

j |

≤
∣

∣

∣

∣

[

1

n
Φ−1

(

λn
j

nq

)

− εn
n

≤ d(x, S) ≤ 1

n
Φ−1

(

λn
j

nq

)

+
εn
n

]∣

∣

∣

∣

≤ ωN−kHk(S)

·
[

(1 + δ)

(

1

n
Φ−1

(

λn
j

nq

)

+
εn
n

)N−k

− (1 − δ)

(

1

n
Φ−1

(

λn
j

nq

)

− εn
n

)N−k
]

= Hk(S)
ωN−k

nN−k

[

(

Φ−1

(

λn
j

nq

)

+ εn

)N−k

−
(

Φ−1

(

λn
j

nq

)

− εn

)N−k
]

+ δHk(S)
ωN−k

nN−k

[

(

Φ−1

(

λn
j

nq

)

+ εn

)N−k

+

(

Φ−1

(

λn
j

nq

)

− εn

)N−k
]

≤ CHk(S)
ωN−k

nN−k

(

Φ−1

(

λn
j

nq

))N−k−1

εn + CδHk(S)
ωN−k

nN−k

≤ CHk(S)
ωN−k

nN−k
(εn + δ) .

Introducing the above estimate in (6.20), we obtain

∫

RN

|νn − ν′n|dx ≤ CHk(S)

Cnq
∑

j=1

nN−k−q ωN−k

nN−k
(εn + δ) ≤ C(εn + δ) .

9
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Letting n→ ∞, we obtain1

lim sup
n

∫

RN

|νn − ν′n|dx ≤ δ .

Since this is true for all δ > 0, we obtain (6.17).3

Let Cn
1 = [d(x, S) ≤ 1

nΦ−1(
λn
1

nq )]. Let us note that since
λn
1

nq → 0 as n → ∞ and

Φ−1(0+) = 1, we have that Φ−1(
λn
1

nq ) may be taken arbitrarily near to 1. According5

to (6.17), if un(t) and vn(t) denote the solutions of (1.1) corresponding to the initial

conditions un(0) = µac + ρn ? (aν) and vn(0) = v0n = µac + aν′n, then7

∫

RN

|un(t) − vn(t)|dx → 0 as n→ ∞ .

In particular, both un(t) and vn(t) converge to the same solution u(t) of (1.1)9

corresponding to the initial condition u(0). Since the value αn
1 grows as nN−k−q

as n → ∞ and k ≤ N − 2, we have that αn
1 grows at least as n2−q as n → ∞.11

Thus the comparison given by estimates (5.9), (5.13) prove that for all T > 0 and

n large enough, the solution vn(t) has a jump discontinuity at ∂Cn
1 , and, therefore,13

if ξn(t, x) denotes the vector field associated to vn(t), i.e., the vector field satisfying

(vn)t = div(ξn) in D′((0, T ) × R
N ) ,15

and
∫

RN

(ξn(t), Dvn(t)) =

∫

RN

|Dvn(t)| ,
17

then we have that [ξn(t), νCn
1 ] = −1 a.e. t, and HN−1 in ∂Cn

1 . Moreover we also

obtain, like in Theorem 5.1, that19

vn(t)χCn
1
⇀ u(t)s weakly∗ as measure . (6.22)

Let us prove that u(t)s = µs = aHk S. Given η(t, x) := φ(t)ψ(x), with21

φ ∈ D(]0, T [) and ψ ∈ D(RN ), since vn(t)|Cn
1

is the strong solution of problem























wt = div

(

Dw

|Dw|

)

, in (0, T ) × int(Cn
1 ) ,

w = CT , on ∂Cn
1 × (0, T ) ,

w(0) = µac + aν′n , in int (Cn
1 ) .

(6.23)

23

We have

−
∫ T

0

φ′(t)

∫

Cn
1

vn(t)ψ = −
∫ T

0

∫

Cn
1

vn(t)ηt =

∫ T

0

∫

Cn
1

v′n(t)η =

∫ T

0

∫

Cn
1

div(ξn(t))η

=

∫ T

0

φ(t)

(

−
∫

Cn
1

(ξn(t),∇ψ) +

∫

∂Cn
1

[ξn(t), νn]ψdHN−1

)

.
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Now, by (6.22) we have1

∫

Cn
1

vn(t)ψ → 〈u(t)s, ψ〉 .

Moreover,3

∫

Cn
1

(ξn(t),∇ψ) → 0

and5

∫

∂Cn
1

[ξn(t), νn]ψdHN−1 = −
∫

∂Cn
1

ψdHN−1 → 0 .

Therefore, taking limits as n→ ∞, we obtain that7

∫ T

0

φ′(t)〈u(t)s, ψ〉dt = 0 , ∀ φ ∈ D(]0, T [) .

Hence9

d

dt
〈u(t)s, ψ〉 = 0 in D′(]0, T [) , ∀ ψ ∈ D(RN ) .

Thus, we have proved that11

u(t)s = µs , ∀ t ≥ 0, if k < N − 1 .

In conclusion, under the assumption that ρ satisfies (H)ρ with β = 2 we have13

proved the following result.

Theorem 6.7. Assume that k < N − 1. Let µ = µac + aHk S, with a ≥ 0, µac ∈15

L1(RN )∩L∞(RN ), S a compact k-manifold of class W 3,∞. Then, if u(t) is the limit

solution of problem (1.1) corresponding to the initial condition µ = µac+µs obtained17

as a limit of the solutions un(t) of (1.1) corresponding to un(0) = µac + ρn ∗µs, we

have u(t)s = µs and u(t)ac is the strong solution of problem (5.39). In particular19

u(t) is the limit solution of problem (1.1) corresponding to the initial condition µ.

Let us complete the proof in case that ρ ∈ C∞
0 (RN ) be a radial decreasing21

function such that ρ ≥ 0, whose support coincides with B(0, 1), and
∫

RN ρ(x)dx = 1.

Let un0 = µac + ρn ∗ µs and let un(t) be the solutions of (1.1) with un(0) =23

un0. We know that un(t) → U(t) weakly∗ as measures for some function U ∈
Cw([0, T ],Mb(R

N )). Given ε > 0, let ρ̃ be a kernel satisfying (H)ρ with β = 2 for25

which we already know that Theorem 6.7 holds. Let ν̃ ′n be the measure constructed

with the kernel ρ̃ which satisfies Lemma 6.6. Let ṽn(t) be the solution of (1.1)27

corresponding to the initial condition ṽn(0) = µac + aν̃′n. By Theorem 6.7 we know

that ṽn(t) converges to u(t) where u(t)s = µs for all t ≥ 0 and u(t)ac is the strong29

solution of (5.39) corresponding to the initial condition u(0)ac(0) = µac. Since

‖ρn ∗ µs − ρ̃n ∗ µs‖1 ≤ ‖ρn − ρ̃n‖1‖µs‖1 ≤ ε‖µs‖1 ,31
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we have that1

‖un(0) − ṽn(0)‖1 ≤ ε‖µs‖1 ,

and, therefore,3

‖un(t) − ṽn(t)‖1 ≤ ε‖µs‖1 ∀ t ≥ 0 .

Letting n→ ∞ we obtain5

‖U(t) − u(t)‖1 ≤ ε‖µs‖1 ∀ t ≥ 0 .

Since this is true for all ε > 0, we conclude that U(t) = u(t) for all t ≥ 0. This7

concludes the proof of Theorem 6.7.

7. Guy David Measure Initial Conditions9

Lemma 7.1. Let u0 ∈ L1(RN ) be and u(t) the unique strong solution of (1.1) with

initial datum u0. Then, for every set E ⊂ R
N of finite perimeter, we have

∫

E

ut(t)dx ≤ Per(E) a.e. t > 0 . (7.1)

∫

E

u(t)dx ≤
∫

E

u0dx+ tPer(E) a.e. t > 0 . (7.2)

Proof. Taking w = Tk(u(t)) − χE as test function in the definition of strong

solution, we have11

∫

RN

χEut(t) ≤ −
∫

RN

(z(t), DχE) ≤ Per(E) .

Then, integrating in time, we get13

∫

RN

χE(u(t) − u0)dx ≤ tPer(E) .

Proposition 7.2. Let µ be a Guy David measure and u(t) the limit solution of15

(1.1) corresponding to the initial condition µ. Then, for any t > 0, u(t) is also a

Guy David measure.17

Proof. Since u0,n(µ) ⇀ µ and un(t) ⇀ u(t) locally weakly∗ as measures, by

Lemma 7.1, for any x ∈ R
N and r > 0, we have

u(t)(Br(y)) ≤ lim inf
n→∞

∫

Br(y)

un(t)dx ≤ lim inf
n→∞

∫

Br(y)

u0,ndx+ tPer(Br(y))

≤ lim sup
n→∞

∫

Br(y)

u0,ndx+ tPer(Br(y)) ≤ µ(Br(y)) + tPer(Br(y)) .

Now, using Theorem 2.1, we deduce that u(t) is a Guy David measure.
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8. Distributional Solutions of (1.1) and the Equation −div(z) = µ1

In [8], extending a result of [22], the following result is established.

Lemma 8.1. Let f ∈ L2(RN )∩LN (RN ). The following statements are equivalent:3

(i) The function u ≡ 0 is the solution of

min
w∈L2(RN )∩BV (RN )

D(w) , D(w) :=

∫

RN

|Dw| + 1

2

∫

RN

(w − f)2dx . (8.1)
5

(ii) There exists z ∈ X2(R
N ) with ‖z‖∞ ≤ 1 satisfying

−div (z) = f in D′(RN ) .7

(iii)

‖f‖∗

:= sup

{∣

∣

∣

∣

∣

∫

RN

f(x)w(x)dx

∣

∣

∣

∣

∣

: w ∈ L2(RN ) ∩BV (RN ),

∫

RN

|Dw| ≤ 1

}

≤ 1.

Now we are going to study the equation −div(z) = µ, where µ ∈ M(RN ) ∩
BV (RN )∗. We denote9

Z(RN ) := {z ∈ L∞(RN ,RN ) : div(z) ∈ BV (RN )∗} .
Given z ∈ Z(RN) and u ∈ BV (RN ), we can define the distribution (z,Du) in R

N ,11

by

〈(z,Du), ϕ〉 := −〈div(z), ϕu〉BV ∗,BV −
∫

RN

z · ∇ϕudx , ∀ ϕ ∈ D(RN ) .
13

Definition 8.2. Given µ ∈ M(RN ) ∩ BV (RN )∗, we say that z ∈ Z(RN ), with

‖z‖∞ ≤ 1, is a solution of15

−div(z) = µ in BV (RN )∗ ,

if17

−div(z) = µ in D′(RN ) ,

and (z,Du) is a Radon measure satisfying19

∫

RN

|(z,Du)| ≤
∫

RN

|Du| ,
∫

RN

(z,Du) = 〈µ, u〉BV ∗,BV ∀ u ∈ BV (RN ) .

Theorem 8.3. Let µ ∈ M(RN )∩BV (RN )∗. There is a solution z ∈ L∞(RN ,RN )21

with ‖z‖∞ ≤ 1 of

−div(z) = µ in BV (RN )∗ , (8.2)23

if and only if

‖µ‖BV (RN )∗ = sup

{

〈µ, v〉BV ∗,BV | : v ∈ BV (RN ) ,

∫

RN

|Dv| ≤ 1

}

≤ 1 .
25
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Proof. If z ∈ L∞(RN ,RN) with ‖z‖∞ ≤ 1 is a solution of (8.2), then for any

v ∈ BV (RN ) we have

|〈µ, v〉BV ∗,BV | =

∣

∣

∣

∣

∫

RN

(z,Dv)

∣

∣

∣

∣

≤
∫

RN

|Dv| .

Thus ‖µ‖BV (RN )∗ ≤ 1.1

Assume that µ ∈ M(RN) ∩ BV (RN )∗ is such that ‖µ‖BV (RN )∗ ≤ 1. Let ρ ∈
C∞

0 (RN ) with ρ ≥ 0,
∫

RN ρ(x)dx = 1 and ρn(x) = 1
nN ρ(

x
n ). Let µn = ρn ∗ µ. Then3

µn ∈ C∞(RN ) ∩ L2(RN ) ∩ LN(RN ) ∩ BV (RN )∗ and

‖µn‖BV (RN )∗ ≤ ‖µ‖BV (RN )∗ ≤ 1 .5

Thus, by Lemma 8.1, there is a vector field zn ∈ L∞(RN ,RN ) with ‖zn‖∞ ≤ 1

such that7

−div(zn) = µn in D′(RN ) . (8.3)

We may assume that zn → z weakly∗ in L∞(RN ) and −div(zn) → ξ weakly∗ in

BV (RN )∗ with ‖z‖∞ ≤ 1 and ‖ξ‖BV (RN )∗ ≤ 1. Thus we may pass to the limit in

(8.3) and obtain that ξ = −div(z) in D′(RN ). Thus, we have z ∈ Z(RN). Let us

see that (z,Du) is a Radon measure in R
N for all u ∈ BV (RN ). Let ϕ ∈ D(RN ),

then by the integration by parts formula (2.6), we have

〈(z,Du), ϕ〉 = 〈ξ + div(zn), uϕ〉BV ∗,BV −
∫

RN

div(zn)uϕdx−
∫

RN

z · ∇ϕudx

= 〈ξ + div(zn), uϕ〉BV ∗,BV +

∫

RN

(zn − z) · ∇ϕudx+

∫

RN

ϕ(zn, Du) .

Then, taking limits in n, we get9

|〈(z,Du), ϕ〉| ≤ ‖ϕ‖∞
∫

RN

|Du| ,

consequently, (z,Du) is a Radon measure in R
N and11

∫

RN

|(z,Du)| ≤
∫

RN

|Du| .

Moreover,13

〈ξ, u〉BV ∗,BV =

∫

RN

(z,Du) , ∀ u ∈ BV (RN ) . (8.4)

Indeed, let ϕ ∈ C∞
0 (RN ) be such that ϕ ≥ 0, ϕ(x) = 1 for x ∈ B(0, 1), supp(ϕ) ⊆15

B(0, 2), and ϕn(x) = ϕ( x
n ). Since uϕn → u in BV (RN ) as n→ ∞ and

−
∫

RN

z · ∇ϕnudx ≤ ‖∇ϕ‖∞
n

∫

n≤‖x‖≤2n

|u| → 0 ,
17

as n→ ∞, we have

〈ξ, u〉BV ∗,BV =

∫

RN

(z,Du) ,
19

for all u ∈ BV (RN ).
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Finally, let us prove that ξ = µ. For that, by an approximation procedure,

we only need to prove that 〈ξ, u〉BV ∗,BV = 〈µ, u〉BV ∗,BV for any u ∈ BV (RN ) ∩
L∞(RN ) with compact support. We know that ρn ∗ u(x) → u∗(x)HN−1-a.e. in R

N

[2], hence, also µ-a.e., since µ vanishes on HN−1 null sets [26, Theorem 5.12.4].

Then

〈µ, u〉BV ∗,BV =

∫

RN

u∗dµ = lim
n

∫

RN

ρn ∗ u(x)dµ(x)

= lim
n

∫

RN

u(x)ρn ∗ µ(x)dx = lim
n
〈u, µn〉BV ∗,BV

= lim〈u,−div(zn)〉BV ∗,BV = 〈u, ξ〉BV ∗,BV .

If u ∈ BV (RN ), we have that the equality (2.1) holds modulo an HN−1 null

set. Then for any rectifiable set Γ we have

〈HN−1 Γ, u〉BV ∗,BV =

∫

Γ

u∗(x)dHN−1(x)

=

∫

Γ

∫ ∞

0

(χ[u>t])
∗(x)dtdHN−1(x)

=

∫ ∞

0

∫

Γ

(χ[u>t])
∗(x)dHN−1(x)dt

=

∫ ∞

0

〈HN−1 Γ, χ[u>t]〉BV ∗,BV dt .

Let us consider first the simpler case of the Hausdorff measure restricted to a1

rectifiable Jordan curve.

Proposition 8.4. Let Γ be a rectifiable Jordan curve in R
2. Then,3

‖H1 Γ‖BV ∗ ≤ 1 if and only if Γ is a convex curve .

Proof. Assume that Γ is a convex curve. Let u ∈ BV (R2), u ≥ 0. Then, by the

coarea formula, we have

〈H1 Γ, u〉BV ∗,BV =

∫ ∞

0

〈H1 Γ, χ[u>t]〉BV ∗,BV dt

≤
∫ ∞

0

Per([u > t])dt =

∫

R2

|Du| ,

in other words, ‖H1 Γ‖BV ∗ ≤ 1.5

Now, assume that ‖H1 Γ‖BV ∗ ≤ 1. Suppose that Γ is not convex. Let V = co(Γ)

(where co(Γ) denotes the convex enveloppe of Γ). Then Per(V ) < H1(Γ). Choose7

ε > 0 small enough so that, if U = V + B(0, ε), then Per(U) < H1(Γ). Then we

have
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〈H1 Γ, χU 〉BV ∗,BV = H1(Γ) > Per(U) =

∫

R2

|DχU | ,
1

hence, ‖H1 Γ‖BV ∗ > 1, a contradiction.

We need to recall the following definition given in [1]. Let D ⊂ R
N be a set of3

finite perimeter, D is said to be decomposable if there exists a partition (A,B) of

D such that Per(D) = Per(A)+Per(B) and both |A| and |B| are estrictly positive.5

D is said to be indecomposable if it is not decomposable.

Theorem 8.5. Let Γi, i = 1, . . . ,m be disjoint rectifiable Jordan curves in R
2.7

Then, if we take Γ :=
⋃m

i=1 Γi we have ‖H1 Γ‖BV ∗ ≤ 1 if and only if the following

two conditions hold:9

(i) Γi is convex for all i = 1, . . . ,m,

(ii) let Ci the bounded open set with boundary Γi and let {i1, . . . , ik} ⊆ {1, . . . ,m}11

be a k-tuple of indices with 0 ≤ k ≤ m; if we denote by Ei1,...,ik
a solution of

the variational problem13

min







Per(E) : E of finite perimeter,

k
⋃

j=1

Cij ⊆ E ⊆ R
2 \

⋃

j 6∈{i1 ,...,ik}

Cj







,

we have15

Per(Ei1,...,ik
) ≥

k
∑

j=1

Per(Cij ) = H1





k
⋃

j=1

Γij



 . (8.5)

Proof. We recall that by the coarea formula, for any rectifiable set Γ and u ∈17

BV (RN ) we have

〈HN−1 Γ, u〉BV ∗,BV =

∫ ∞

0

〈HN−1 Γ, χ[u>t]〉BV ∗,BV dt .
19

Assume now that ‖H1 Γ‖BV ∗ ≤ 1. Suppose first that exists i ∈ {1, . . . ,m} such

that Γi is not convex. Let V = co(Γi). Then Per(V ) < H1(Γi). Choose ε > 0 small21

enough such that, if U = V +B(0, ε), Per(U) < H1(Γi). Then we have

〈H1 Γ, χU 〉BV ∗,BV ≥ H1(Γi) > Per(U) =

∫

R2

|DχU | ,
23

hence, ‖H1 Γ‖BV ∗ > 1, a contradiction.

Suppose now that condition (8.5) does not hold. Then we have for suitable25

{i1 . . . , ik} that there exists Ei1,...,ik
such that

Per(Ei1 ,...,ik
) < H1





k
⋃

j=1

Γij



 .
27
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Choose ε > 0 small enough such that, if U = Ei1,...,ik
+ B(0, ε), Per(U) <1

H1(
⋃k

j=1 Γij ). Then we obtain

〈H1 Γ, χU 〉BV ∗,BV ≥ H1





k
⋃

j=1

Γi



 > Per(U) =

∫

R2

|DχU | .
3

To prove the other implication we recall that if we take Ω :=
⋃m

i=1 Ci, as it is proved

in [8], from (8.5) we have,5

H1



D ∩





k
⋃

j=1

Γij







 ≤ Per(D,R2 \ Ω̄) ≤ Per(D) , (8.6)

for any bounded indecomposable set of finite perimeter D [1], where {i1, . . . , ik} ⊂
{1, . . . ,m} is the set of indexes such that D ∪ ⋃k

j=1 Cij is connected. Let u ∈
BV (RN ). Since [u > t] has finite perimeter, there exists a countable family {Dp}
of indecomposable sets such that H1([u > t]) =

∑

p Per(Dp) (see [1]). Then

〈H1 Γ, u〉BV ∗,BV =

∫ ∞

0

〈H1 Γ, χ[u>t]〉BV ∗,BV dt

=

∫ ∞

0

H1([u > t] ∩ Γ)dt =

∫ ∞

0

∑

p

H1(Dp ∩ Γ)dt .

Now, if Dp ∩ Γ = Dp ∩⋃k(p)
j=1 Γi(p)j

, using (8.6), we finally obtain

〈H1 Γ, u〉BV ∗,BV =

∫ ∞

0

∑

p

H1



Dp ∩
k(p)
⋃

j=1

Γi(p)j



 dt

≤
∫ ∞

0

∑

p

P (Dp)dt =

∫ ∞

0

Per([u > t])dt =

∫

R2

|Du| .

Definition 8.6. Let µ ∈ Mb(R
N ). We say that u(t) is a distributional solu-7

tion of (1.1) in [0, T ] × R
N corresponding to the initial condition u(0) = µ

if u ∈ C((0, T ],Mb(R
N )), u(t) ⇀ u(0) weakly∗ as measures and there exists9

z ∈ L∞((0, T )× R
N) with ‖z‖∞ ≤ 1 such that

(z(t), DTk(uac)) = |DTk(uac(t))| a.e. t ∈ (0, T ) , ∀ k > 0 , (8.7)11

and

ut = div(z) in D′((0, T ) × R
N ) . (8.8)13

Let µ ∈ Mb(R
N ) be a singular measure. Then u(t) = µ is a distributional

solution of (1.1). Indeed, it suffices to take z = 0. Note that u(t) satisfies the family15

of inequalities (5.42), hence is an entropy solution of (1.1) in this sense. Thus, if

µ = αHN−1 S where S is a compact N − 1-manifold of class W 3,∞, and α > 0,17
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we cannot take condition (5.42) as the notion of entropy solution for (1.1) but a1

different family of inequalities which one could obtain as in Sec. 5.1. Assume now

that ‖µ‖BV (RN )∗ ≤ 1. Then u(t) = (1− t)µ is also a distributional solution of (1.1).3

In this case, we take z as a solution of −div(z) = µ with ‖z‖∞ ≤ 1.

Remark 8.6. Let Γi, i = 1, . . . ,m, be convex curves and let Ci denote the bounded5

open set with boundary Γi. Let Γ =
⋃m

i=1 Γi. We assume that Γi are of class C1,1

satisfying7

ess sup
p∈Γi

kΓi(p) ≤
Per(Ci)

|Ci|
,

where kΓi denotes the curvature of Γi, and the assumption (ii) of Theorem 8.5. Let9

us see that the limit solution of problem (1.1) corresponding to the initial datum

u0 = αH1 Γ, α > 0 is given by11

u(t) =























(α− 2t)H1 Γ +

m
∑

i=1

Per(Ci)

|Ci|
tχCi , t ∈

[

0,
α

2

]

,

m
∑

i=1

Per(Ci)

|Ci|
(α − t)+χCi , t ≥ α

2
.

(8.9)

Indeed, by results in [8] we know that there is a vector field ξ ∈ L∞(R2,R2) with13

‖ξ‖∞ ≤ 1 such that

−div(ξ) =

m
∑

i=1

Per(Ci)

|Ci|
χCi (8.10)

15

and

[ξ, νi] = −1 i = 1, . . . ,m ,17

where νi is the outer unit normal to Ci, i = 1, . . . ,m. Now, for t ∈ [0, α
2 ], we define

the vector field19

ξ′(t, x) =

{

−ξ(x) , x ∈ Ci , i = 1, . . . ,m ,

ξ(x) , x ∈ R
2 \ ∪m

i=1C̄i .

Then, ut = div ξ′ in D′((0, α
2 )×Ci) and we have that u(t)|Ci is the strong solution21

of (5.26) in (0, α
2 ) ×Ci. In the same way we prove that u(t)|

R2\∪m
i=1C̄i

is the strong

solution of (5.26) in (0, α
2 ) × R

2 \ ∪m
i=1Ci. Thus, by Theorem 5.10, u(t) coincides23

in [0, α
2 ] with the limit solution of (1.1) corresponding to the initial condition u0.

For times t ≥ α
2 , the limit solution u(t) is described by the strong solution of (1.1)25

corresponding to the initial data u(α
2 ) = α

2

∑m
i=1

Per(Ci)
|Ci|

χCi and is given by (see

[8])27

u
(α

2
+ t, x

)

=

m
∑

i=1

Per(Ci)

|Ci|
(α

2
− t
)+

χCi(x) t ≥ 0, x ∈ R
N .
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Appendix9

In this Appendix, for the sake of completeness, we outline the proof of (3.2) using

the ideas of Minkowski’s content [2].11

First of all, we note that, if f is a continuous function and S is a countably

Hk-rectifiable set, we can write its integral respect to the Hausdorff measure as
∫

S

f(z)dHk(z)

= sup

{

∑

i

inf
t∈Ki

f(t)Hk(Ki);Ki ⊂ S compact, pairwise disjoint

}

. (A.1)

We denote by Gk the set of orthogonal projections onto k-dimensional subspaces

of R
N . A slight modification of the proof of [2, Proposition 2.66] give us the following13

result.

Proposition A.1. For any countably Hk-rectifiable set E,
∫

E

f(x)dHk

= sup

{

∑

i

inf
t∈Ki

f(t)Lk(πi(Ki)) : πi ∈ Gk,Ki ⊂ E compact, pairwise disjoint

}

.

(A.2)

With the same technique used to prove [2, Proposition 2.101 and Lemma 2.102],15

we can stablish the following two results.

Proposition A.2 (Lower bound). For any countably Hk-rectifiable closed set S,17

if f is a positive continuous function, the following inequality holds

lim inf
ρ→0+

∫

Iρ(S) f(z)dLN(z)

wN−kρN−k
≥
∫

S

f(z)dHk(z) ,
19

where Iρ(S) := {x ∈ R
N : dist(x, S) ≤ ρ} .
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Lemma A.3. Let S ⊂ R
n be a countably Hk-rectifiable set and τ > 1. Then, for1

any β > 0, Hk-almost all of S can be covered by a sequence (Si) of pairwise disjoint

compact sets with diameter less or equal than β satisfying3

lim sup
ρ→o+

∫

Iρ(Si)
dLN (z)

wN−kρN−k
≤ τHk(Si) <∞ . (A.3)

In the next Theorem we need to assume that S satisfies the following density5

lower bound

ν(Bρ(x)) ≥ γρk , ∀ x ∈ S , ρ ∈ (0, 1) , (A.4)7

for a suitable measure ν absolutely continuous with respect to Hk.

Theorem A.4. Let S ⊂ R
N be a countably rectifiable compact set and assume that9

(A.4) holds for some γ > 0 and some Radon measure ν in R
N absolutely continuous

with respect to Hk. Then, we have11

∫

S

f(z)dHk(z) = lim
ρ→0+

∫

Iρ(S)
f(z)dLN (z)

wN−kρN−k
, (A.5)

for all continuous function f .13

Proof. First note that it is enough to prove (A.5) assuming f is positive. By

Proposition A.2, we only have to prove one inequality, and we may also assume15

that
∫

S
f(z)dHk(z) <∞.

Given η > 0, as f is continuous, we can find β > 0 such that if K is a subset of17

R
N whose diameter is less than β, we have that the oscillation of f in K, osck(f),

is less or equal than η.19

On the other hand, given ε > 0, by Lemma A.3, we can find compact pairwise

disjoint sets Si with diameter less than β such that21

Hk

(

S \
⋃

i

Si

)

= 0 ,

and23

lim sup
ρ→o+

∫

Iρ(Si)
dLN (z)

wN−kρN−k
≤ (1 + ε)Hk(Si) .

Moreover, we have that there exists n such that ν(S) < ε+
∑n

i=1 ν(Si).
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Let E = S \⋃n
i=1 Si and, for λ, ρ fixed, define1

S̃ρ :=

{

x ∈ S : dist

(

x,
n
⋃

i=1

Si

)

≥ λρ

}

.

If we apply now Besicovitch’s covering theorem (see [2]), we can find a cover of3

S̃ρ by balls {Bλρ(xj)}j∈J centered at points of S̃ρ with overlapping controlled by

ξ. By the definition of S̃ρ and the lower estimate bound (A.4), we can control the5

cardinality of such J since

∑

j∈J

γ(λρ)k ≤
∑

j∈J

ν(Bλρ(xj)) ≤ ξν

(

Iλρ(S) \
n
⋃

i=1

Si

)

≤ ξε ,
7

for ρ sufficiently small. Thus, we obtain that the cardinal of J is less than (ξε)
(γλkρk)

.

As a consequence,9

LN (I(1+λ)ρ(S̃ρ)) ≤
∑

j∈J

LN (B(1+2λ)ρ(xj)) ≤
ωN (1 + 2λ)Nξε

γλk
ρN−K .

We notice now that we have the following inclusions11

Iρ(S) ⊂ Iρ(E) ∪
n
⋃

i=1

Iρ(Si) ⊂ I(1+λ)ρ(S̃ρ) ∪
n
⋃

i=1

Iρ(Si) .

Therefore, having in mind Lemma A.3 and (A.1), we have

lim sup
ρ→0+

∫

Iρ(S)
f(z)dLN

wN−kρN−k

≤ lim sup
ρ→0+

∫

I(1+λ)ρ(S̃ρ) f(z)dLN

wN−kρN−k

+ lim sup
ρ→0+

∫

∪n
i=1Iρ(Si)

f(z)dLN

wN−kρN−k
≤ ‖f‖∞ lim sup

ρ→0+

|I(1+λ)ρ(S̃ρ)|
ωN−kρN−k

+

n
∑

i=1

lim sup
ρ→0

∫

Iρ(Si)
f(z)dLN

ωN−kρN−k
≤ ‖f‖∞

ωN (1 + 2λ)Nξε

ωN−kγλk

+

n
∑

i=1

lim sup
ρ→0+

sup
z∈Iρ(Si)

f(z)
|Iρ(Si)|

ωN−kρN−k

≤ Cε+ (1 + ε)
n
∑

i=1

(

lim sup
ρ→0+

inf
z∈Iρ(Si)

f(z) + η

)

Hk(Si)

≤ Cε+ (1 + ε)

(∫

S

fdHk + ηHk(S)

)

.

We conclude by taking limits as ε, η → 0+.13
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