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A Strongly Degenerate Quasilinear Equation: the Elliptic Case

F. ANDREU – V. CASELLES – J. M. MAZÓN

Abstract. We prove existence and uniqueness of entropy solutions for the Neu-
mann problem for the quasilinear elliptic equation u − div a(u, Du) = v, where
v ∈ L∞, a(z, ξ) = ∇ξ f (z, ξ), and f is a convex function of ξ with linear growth
as ‖ξ‖ → ∞, satisfying other additional assumptions. In particular, this class
includes the case where f (z, ξ) = ϕ(z)ψ(ξ), ϕ > 0, ψ being a convex func-
tion with linear growth as ‖ξ‖ → ∞. In the second part of this work, using
Crandall-Ligget’s iteration scheme, this result will permit us to prove existence
and uniqueness of entropy solutions for the corresponding parabolic problem with
bounded measurable initial data.

Mathematics Subject Classification (2000): MISSING.

1. – Introduction

Let � be a bounded set in R
N with boundary ∂� of class C1. We are

interested in the problem

(1.1)

{ u − div a(u, Du) = v in �

∂u

∂η
= 0 on ∂�,

where v ∈ L∞(�), a(z, ξ) = ∇ξ f (z, ξ), f being a function with linear growth
as ‖ξ‖ → ∞ and ∂

∂η
is the Neumann boundary operator associated to a(u, Du),

i.e.,
∂u

∂η
:= a(u, Du) · ν,

with ν the unit outward normal on ∂�.
Our purpose in this paper is to define a notion of entropy solution for (1.1),

and prove existence and uniqueness results when the right hand side v is in
L∞(�). Besides the fact that the elliptic problem is interesting by itself, this
result permits us to associate to the expression −div a(u, Du) with Neumann

Pervenuto alla Redazione il ??.
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boundary condition an accretive operator B in L1(�) whose domain is contained
in L∞(�) (which amounts to consider the right hand side v of (1.1) in L∞(�))
and whose closure B is m-accretive in L1(�), and, thus, generates a non-linear
contraction semigroup T (t) in L1(�) [11], [18], [19]. However, even if B
is not characterized in distributional terms, the knowledge of the operator B
and the fact that if u is the entropy solution of (1.1) we have the estimate
‖u‖∞ ≤ ‖v‖∞, permits to use Crandall-Ligget’s iteration scheme and define the
function

u(t) := T (t)u0 = lim
n→∞

(
I + t

n
B

)−n
u0, u0 ∈ L∞(�).

which is a semigroup solution of the parabolic problem

(1.2)




∂u

∂t
= div a(u, Du) in QT = (0, T ) × �

∂u

∂η
= 0 on ST = (0, T ) × ∂�

u(0, x) = u0(x) in x ∈ �.

In a subsequent work [6] we shall define the notion of entropy solution for (1.2)
and prove that the semigroup solution u(t) is an entropy solution. Moreover,
we shall also prove that entropy solutions of (1.2) are unique. As a technical
tool both in this paper and in [6] we shall use the lower semi-continuity results
proved in [21] for energy functionals whose density is a function g(u, Du)

convex in Du and with a linear growth rate in Du.
Particular instances of these PDE’s have been studied in [12], [13], [14]

and [20], when N = 1. Let us describe their results in some detail. In [12],
[13], and [20] the authors considered the problem

(1.3)

{ ∂u

∂t
= (ϕ(u)b(ux))x in (0, T ) × R

u(0, x) = u0(x) in x ∈ R

corresponding to (1.2) when N = 1 and a(u, ux) = ϕ(u)b(ux), where ϕ :
R → R

+ is smooth and strictly positive, and b : R → R is a smooth odd
function such that b′ > 0 and lims→∞ b(s) = b∞. Such models appear as
models for heat and mass transfer in turbulent fluids [8], or in the theory of
phase transitions where the corresponding free energy functional has a linear
growth rate with respect to the gradient [28]. As the authors observed, in
general, there are no classical solutions of (1.2), they defined the notion of
entropy solution and proved existence [12] and uniqueness [20] of entropy
solutions of (1.3). Existence was proved for bounded strictly increasing initial
conditions u0 : R → R such that b(u′

0) ∈ C(R) (where b(u′
0(x0)) = b∞ if u0 is

discontinuous at x0), b(u′
0(x)) → 0 as x → ±∞ [12]. The entropy condition

was written in Oleinik’s form and uniqueness was proved using Kruzhkov’s
method of doubling variables.
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In [14], [15], the author considered the Neumann problem in an interval
of R

(1.4)




∂u

∂t
= (a(u, ux))x in (0, T ) × (0, 1)

ux(t, 0) = ux(t, 1) = 0

u(0, x) = u0(x) in x ∈ (0, 1)

for functions a(u, v) of class C1,α([0, ∞) × R) such that ∂
∂v

a(u, v) < 0 for any
(u, v) ∈ [0, ∞)×R, a(u, 0) = 0 (and some other additional assumptions). After
observing that there are no, in general, classical solutions of (1.2), the author
associated an m-accretive operator to −(a(u, ux))x with Neumann boundary
conditions, and proved the existence and uniqueness of a semigroup solution
of (1.4). However, the accretive operator generating the semigroup was not
characterized in distributional terms. An example of the equations considered
in [14], [15] is the so called plasma equation (see [23])

(1.5)
∂u

∂t
=

(
u5/2ux

1 + u|ux |

)
x

in (0, T ) × (0, 1),

where the initial condition u0 is assumed to be positive. In this case u represents

the temperature of electrons and the form of the conductivity a(u, ux) = u5/2ux
1+u|ux |

has the effect of limiting heat flux. Thus, existence and uniqueness results for
higher dimensional problems were not considered. This will be the purpose of
the present paper.

The case of equations of type

(1.6) u − div a(x, Du) = v in �,

where v ∈ L1(�), or the corresponding parabolic problem

(1.7)
∂u

∂t
= div a(x, Du) in (0, T ) × �,

where a(x, ξ) = ∇ξ f (x, ξ), f (x, ·) being a convex function of ξ with linear
growth as ‖ξ‖ → ∞ has been considered in [2], [3] and [4] (see also [5]),
where existence and uniqueness results of entropy solutions were proved.

The present work can be considered as an extension of the previous works
to the case where a depends on (u, Du) instead of (x, Du). We treat in this
paper the elliptic case, the parabolic problem being considered in [6]. Entropy
or renormalized solutions for elliptic or parabolic problems of types (1.1), (1.2),
or (1.7), when f (u, ξ) or f (x, ξ) has a growth of order p > 1 as ‖ξ‖ → ∞,
were considered in [9], [16] and [17] (see also the references therein).

Finally, let us explain the plan of the paper. In Section 2 we recall some
basic facts about functions of bounded variation, denoted by BV (�), Green’s
formula, and lower semi-continuity results for energy functionals defined in
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BV (�). In Section 3 we introduce the main assumptions on the underlying
operator, and define the notion of entropy solutions for (1.1). In Section 4
we prove an existence and uniqueness result for the entropy solutions of (1.1)
when the right hand side v is in L∞(�). To prove existence we shall use
the lower semi-continuity result for energy functionals whose density is a func-
tion g(u, Du) convex in Du and with a linear growth rate in Du proved in
[21], uniqueness will be proved by means of Kruzhkov’s technique of doubling
variables. Finally, in Section 5, we define an accretive operator associated to
−div a(u, Du) with Neumann boundary condition whose closure is m-accretive
and generates a contraction semigroup in L1(�), providing a solution of (1.2)
in the semigroup sense. That semigroup solutions can be characterized in terms
of entropy solutions will be the object of a subsequent paper [6].

Acknowledgements. The first and third authors have been supported by EC
through the RTN Programme Nonlinear Partial Differential Equations Describing
Front propagation and other Singular Phenomena, HPRN-CT-2002-00274, and by
PNPGC project, reference BFM2002-01145. The second author acknowledges
partial support by the Departament d’Universitats, Recerca i Societat de la
Informació de la Generalitat de Catalunya and by PNPGC project, reference
BFM2000-0962-C02-01.

2. – Preliminaries

We start with some notation. Here LN and HN−1 are, respectively, the N -
dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff measure
in R

N .
Due to the linear growth condition on the Lagrangian, the natural energy

space to study (1.1) is the space of functions of bounded variation. We recall
briefly some facts about functions of bounded variation (for further information
concerning functions of bounded variation we refer to [1], [24] or [29]).

A function u ∈ L1(�) whose partial derivatives in the sense of distributions
are measures with finite total variation in � is called a function of bounded
variation. The class of such functions will be denoted by BV (�). Thus
u ∈ BV (�) if and only if there are Radon measures µ1, . . . , µN defined in �

with finite total mass in � and

(2.1)
∫

�

u Diϕdx = −
∫

�

ϕdµi

for all ϕ ∈ C∞
0 (�), i = 1, . . . , N . Thus the gradient of u is a vector valued

measure with finite total variation

|Du|(�) = sup
{∫

�

u div ϕ dx : ϕ ∈ C∞
0 (�, R

N ), |ϕ(x)| ≤ 1 for x ∈ �

}
.

The space BV (�) is endowed with the norm

(2.2) ‖ u ‖BV =‖ u ‖L1(�) +|Du|(�).
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For u ∈ BV (�), the gradient Du is a Radon measure that decomposes into its
absolutely continuous and singular parts Du = Dau+Dsu. Then Dau = ∇u LN

where ∇u is the Radon-Nikodym derivative of the measure Du with respect
to the Lebesgue measure LN . Let us denote by Dsu = −→

Dsu|Dsu| the polar
decomposition of Dsu, where |Dsu| is the total variation measure of Dsu. We
also split Dsu in two parts: the jump part D j u and the Cantor part Dcu.
We denote by Su the set of all x ∈ � such that x is not a Lebesgue point
of u. We say that x ∈ � is an approximate jump point of u if there exist
u+(x) �= u−(x) ∈ R and νu(x) ∈ SN−1 such that

lim
ρ↓0

1

LN (B+
ρ (x, νu(x)))

∫
B+
ρ (x,νu (x))

|u(y) − u+(x)| dy = 0

lim
ρ↓0

1

LN (B−
ρ (x, νu(x)))

∫
B−
ρ (x,νu (x))

|u(y) − u−(x)| dy = 0,

where
B+

ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}
and

B−
ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 < 0}.

We denote by Ju the set of approximate jump points of u. Ju is a Borel subset
of Su and HN−1(Su \ Ju) = 0. We have

D j u = Dsu Ju and Dcu = Dsu (� \ Su).

It is well known (see for instance [1]) that

D j u = (u+ − u−)νuHN−1 Ju .

Moreover, if x ∈ Ju , then νu(x) = Du
|Du| (x), Du

|Du| being the Radon-Nikodym
derivative of Du with respect to its total variation |Du|.

Let � be a bounded open subset of R
N . Given a Borel function g :

� × R × R
N → R

+ such that

(2.3) C‖ξ‖ − D ≤ g(x, z, ξ) ≤ M(1 + ‖ξ‖) ∀ (x, z, ξ) ∈ � × R × R
N ,

for some constants C > 0, M ≥ 0, we consider the energy functional

G(u) :=
∫

�

g(x, u(x), ∇u(x)) dx

defined in the Sobolev space W 1,1(�). In order to get an integral representation
of the relaxed energy associated with G, i.e.,

G(u) := inf
{un}

{
lim inf
n→∞ G(un) : un ∈ W 1,1(�), un → u ∈ L1(�)

}
,
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Dal Maso in [21] introduced the following functional for u ∈ BV (�):

(2.4)

Rg(u) :=
∫

�

g(x, u(x), ∇u(x)) dx +
∫

�

g0
(

x, u(x),
Du

|Du| (x)

)
|Dcu|

+
∫

Ju

(∫ u+(x)

u−(x)

g0(x, s, νu(x)) ds

)
dHN−1(x),

where the recession function g0 of g is defined as

(2.5) g0(x, z, ξ) = lim
t→0+ tg

(
x, z,

ξ

t

)
.

It is clear that the function g0(x, z, ξ) is positively homogeneous of degree
one in ξ , i.e.

g0(x, z, sξ) = sg0(x, z, ξ) for all z, ξ and s > 0.

Let us describe a different way of writing the functional Rg(u). Let us
consider the function g̃ : � × R × R

N ×] − ∞, 0] → R defined as

(2.6) g̃(x, z, ξ, t) :=



−g
(

x, z, −ξ

t

)
t if t < 0

g0(x, z, ξ) if t = 0.

As it is proved in [21], if g is a Borel function satisfying (2.3) and g(x, z, ·)
is convex in R

N for all (x, z) ∈ � × R, then one has

(2.7)
Rg(u) =

∫
�×R

g̃
(

(x, s),
dαu

d|αu| (x, s)
)

d|αu|(x, s)

=
∫

�×R

g̃ ((x, s), ν[(x, s); N (u)]) dHN (x, s),

where αu = DχN (u), with N (u) :={(x, s)∈R×� : s < u+(x)} and ν[(x, s); N (u)]
is the interior normal to N (u) at (s, x) if it exists, and ν[(x, s); N (u)] = 0
otherwise.

In [21] Dal Maso proved the following result:

Theorem 2.1. Let � be a bounded open subset of R
N . Let g : �×R×R

N → R

be a continuous function satisfying (2.3), g0 exists and such that g(x, z, ·) is convex
in R

N . Then, G(u) = Rg(u) for all u ∈ BV (�) andRg(u) is lower semi-continuous
respect to the L1(�)-convergence.

We need to consider the following truncature functions. For a < b, let
Ta,b(r) := max(min(b, r), a). It is usual to denote Tk = T−k,k .
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Proposition 2.2. Let � be a bounded open subset of R
N . Let g : �×R×R

N →
R be a continuous function satisfying (2.3), g0 exists and such that g(x, z, ·) is convex
in R

N . Let us define the functional

Ra,b
g (u) =

∫
�

g(x, u(x), ∇Ta,bu(x)) dx, u ∈ W 1,1(�).

For u ∈ BV (�), let

Ra,b
g (u) :=

∫
�

∫ b

a
g̃ ((x, s), ν[(x, s); N (u)]) dHN−1(x) ds

+
∫

[u≤a]
(g(x, u(x), 0) − g(x, a, 0)) dx

+
∫

[u≥b]
(g(x, u(x), 0) − g(x, b, 0)) dx .

Then Ra,b
g (u) is lower semi-continuous with respect to the L1(�)-convergence, and

Ra,b
g coincides with the lower semi-continuous envelope of Ra,b

g .

Proof. Observe that we have

Rg(Ta,b(u)) =
∫

�

∫ b

a
g̃ ((x, s), ν[(x, s); N (u)]) dHN−1(x) ds.

Hence, we may write

Ra,b
g (u) = Rg(Ta,b(u)) +

∫
[u≤a]

(g(x, u(x), 0) − g(x, a, 0)) dx

+
∫

[u≥b]
(g(x, u(x), 0) − g(x, b, 0)) dx .

Since the functional Rg is lower semi-continuous with respect to L1(�) con-
vergence (Theorem 2.1), we conclude that Ra,b

g is also lower semi-continuous.
Moreover, if u ∈ W 1,1(�), we have

Ra,b
g (u) =

∫
[a<u<b]

g(x, u(x), ∇u(x)) dx +
∫

[u≤a]
g(x, u(x), 0) dx

+
∫

[u≥b]
g(x, u(x), 0) dx

=
∫

[a<u<b]
g(x, u(x), ∇u(x)) dx +

∫
[u≤a]

g(x, a, 0) dx

+
∫

[u≥b]
g(x, b, 0) dx +

∫
[u≤a]

(g(x, u(x), 0) − g(x, a, 0)) dx

+
∫

[u≥b]
(g(x, u(x), 0) − g(x, b, 0)) dx

= Rg(Ta,b(u)) +
∫

[u≤a]
(g(x, u(x), 0) − g(x, a, 0)) dx

+
∫

[u≥b]
(g(x, u(x), 0) − g(x, b, 0)) dx = Ra,b

g (u).
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Therefore, Ra,b
g is a lower semi-continuous extension of Ra,b

g to BV (�).

Let g : R × R
N → R be a continuous function satisfying (2.3). Given

u ∈ BV (�), let us define the measures

Rg(u, φ) :=
∫

R

∫
�

φ(x)g̃ (s, ν[(s, x); N (u)]) dHN−1(x) ds

and

Ra,b
g (u, φ) :=

∫ b

a

∫
�

φ(x)g̃ (s, ν[(s, x); N (u)]) dHN−1(x) ds

+
∫

[u≤a]
φ(x) (g(u(x), 0) − g(a, 0)) dx

+
∫

[u≥b]
φ(x) (g(u(x), 0) − g(b, 0)) dx

for any φ ∈ C(�). For simplicity, we shall write

Rg(u, φ) =
∫

�

φ(x)g(u, Du)

and

Ra,b
g (u, φ) =

∫
�

φ(x)g(u, DTa,b(u)).

The singular parts respect to the Lebesgue measure LN of these measures will
be denoted by

(Rg)
s(u, φ) =

∫
�

φ(x)g(u, Du)s

and

(Ra,b
g )s(u, φ) =

∫
�

φ(x)g(u, DTa,b(u))s,

respectively.
We shall need several results from [7] (see also [25]) in order to give a

sense to the integrals of bounded vector fields with divergence in L p integrated
with respect to the gradient of a BV function. Let p ≥ 1 and p′ ≥ 1 be such
that 1

p + 1
p′ = 1 . Following [7], let

(2.8) X p(�) = {z ∈ L∞(�, R
N ) : div(z) ∈ L p(�)}.

If z ∈ X p(�) and w ∈ BV (�) ∩ L p′
(�) we define the functional (z, Dw) :

C∞
0 (�) → R by the formula

(2.9) 〈(z, Dw), ϕ〉 := −
∫

�

w ϕ div(z) dx −
∫

�

w z · ∇ϕ dx .
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Then (z, Dw) is a Radon measure in �,

(2.10)
∫

�

(z, Dw) =
∫

�

z · ∇w dx ∀ w ∈ W 1,1(�) ∩ L∞(�)

and

(2.11)
∣∣∣∣
∫

B
(z, Dw)

∣∣∣∣ ≤
∫

B
|(z, Dw)| ≤ ‖z‖∞

∫
B

|Dw|

for any Borel set B ⊆ �. Moreover, (z, Dw) is absolutely continuous with
respect to |Dw| with Radon-Nikodym derivative θ(z, Dw, x) which is a |Dw|
measurable function from � to R such that

(2.12)
∫

B
(z, Dw) =

∫
B

θ(z, Dw, x)|Dw|

for any Borel set B ⊆ �. We also have that

(2.13) ‖θ(z, Dw, .)‖L∞(�,|Dw|) ≤ ‖z‖L∞(�,RN ).

By writing
z · Dsu := (z, Du) − (z · ∇u) dLN ,

we see that z · Dsu is a bounded measure. Furthermore, in [25] it is proved
that z · Dsu is absolutely continuous with respect to |Dsu| (and, thus, it is a
singular measure with respect to LN ), and

(2.14) |z · Dsu| ≤ ‖z‖∞|Dsu|.

As a consequence of Theorem 2.4 of [7], we have:

(2.15) If z ∈ X p(�) ∩ C(�, R
N ), then z · Dsu = (z · −→

Dsu) d|Dsu|.

In [7], a weak trace on ∂� of the normal component of z ∈ X p(�) is
defined. Concretely, it is proved that there exists a linear operator γ : X (�) →
L∞(∂�) such that

‖γ (z)‖∞ ≤ ‖z‖∞

γ (z)(x) = z(x) · ν(x) for all x ∈ ∂� if z ∈ C1(�, R
N ).

We shall denote γ (z)(x) by [z, ν](x). Moreover, the following Green’s formula,
relating the function [z, ν] and the measure (z, Dw), for z ∈ X p(�) and
w ∈ BV (�) ∩ L p′

(�), is established:

(2.16)
∫

�

w div(z) dx +
∫

�

(z, Dw) =
∫

∂�

[z, ν]w dHN−1.
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3. – Basic assumptions. The notion of entropy solution for the elliptic problem

This section deals with the elliptic problem

(3.1)

{ v = −div a(u, Du) in �

∂u

∂η
= 0 on ∂�.

Here we assume that � is an open bounded set in R
N , with boundary

∂� of class C1, and the Lagrangian f : R × R
N → R satisfies the following

assumptions, which we shall refer collectively as (H):

(H1) f is continuous on R × R
N and is a convex differentiable function of ξ

such that ∇ξ f (z, ξ) ∈ C(R × R
N ). Further we require f to satisfy the linear

growth condition

(3.2) C0‖ξ‖ − D0 ≤ f (z, ξ) ≤ M(‖ξ‖ + 1).

for any (z, ξ) ∈ R × R
N , |z| ≤ R and some positive constants C0, D0, M

depending on R. Moreover, we assume f 0 exists.

We consider the function a(z, ξ) = ∇ξ f (z, ξ) associated to the Lagrangian
f . By the convexity of f

(3.3) a(z, ξ) · (η − ξ) ≤ f (z, η) − f (z, ξ),

and the following monotonicity condition is satisfied

(3.4) (a(z, η) − a(z, ξ)) · (η − ξ) ≥ 0.

Moreover, it is easy to see that

(3.5) |a(z, ξ)| ≤ M ∀ (z, ξ) ∈ R × R
N , |z| ≤ R.

We also assume that a(z, 0) = 0 for all z ∈ R. We consider the function
h : R × R

N → R defined by

h(z, ξ) := a(z, ξ) · ξ.

By (3.4), we have

(3.6) h(z, ξ) ≥ 0 ∀ ξ ∈ R
N , z ∈ R.

Moreover, from (3.3) and (3.2), it follows that

(3.7) C0‖ξ‖ − D1 ≤ h(z, ξ) ≤ M‖ξ‖
for any (z, ξ) ∈ R × R

N , |z| ≤ R, where D1 is a positive constant depending
on R, C0 and M being as above.
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(H2) We assume that ∂a
∂ξi

(z, ξ) ∈ C(R × R
N ) for any i = 1, . . . , N .

This assumption is not necessary for the case of separated variables described
in Remark 3.1.

We assume that

(H3) h(z, ξ) = h(z, −ξ), for all z ∈ R and ξ ∈ R
N and h0 exists.

Observe that we have

C0‖ξ‖ ≤ h0(z, ξ) ≤ M‖ξ‖ for any (z, ξ) ∈ R × R
N , |z| ≤ R.

(H4) f 0(z, ξ) = h0(z, ξ), for all ξ ∈ R
N and all z ∈ R.

(H5) a(z, ξ) · η ≤ h0(z, η) for all ξ, η ∈ R
N , and all z ∈ R.

(H6) We assume that h0(z, ξ) can be written in the form h0(z, ξ) = ϕ(z)ψ0(ξ)

with ϕ a C1-function such that for any R > 0, we have ϕ(z) > αR > 0 for all
z ∈ R, |z| ≤ R, and ψ0 being a convex function homogeneous of degree 1.

(H7) For any R > 0, there is a constant C > 0 such that

(3.8) |(a(z, ξ) − a(ẑ, ξ)) · (ξ − ξ̂ )| ≤ C |z − ẑ| ‖ξ − ξ̂‖
for any (z, ξ), (ẑ, ξ̂ ) ∈ R × R

N , |z|, |ẑ| ≤ R.

Observe that, by the monotonicity condition (3.4) and using (3.8), it follows
that

(3.9) (a(z, ξ) − a(ẑ, ξ̂ )) · (ξ − ξ̂ ) ≥ −C |z − ẑ| ‖ξ − ξ̂‖
for any (z, ξ), (ẑ, ξ̂ ) ∈ R × R

N , |z|, |ẑ| ≤ R.

Let us observe that under assumptions (H4) and (H6), applying the chain
rule for BV-functions (see [1]), we have

(3.10) R f (u) =
∫

�

f (u, ∇u)dx + ψ0
(

Du

|Du|
)

|Ds Jϕ(u)|,

where Jϕ(r) = ∫ r
0 ϕ(s) ds.

Remark 3.1. An important particular case of Lagrangian f satisfying all
assumptions (H) but (H2), is the one given by f (z, ξ) = ϕ(z)ψ(ξ) with ϕ a
C1-function such that for any R > 0, we have ϕ(z) > αR > 0 for all z ∈ R,
|z| ≤ R, and ψ a convex smooth function such that

C0‖ξ‖ − D0 ≤ ψ(ξ) ≤ M(‖ξ‖ + 1) ∀ξ ∈ R
N ,

and there exists

ψ0(ξ) = lim
t→0+ tψ

(
ξ

t

)
.
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In this case, if b(ξ) := ∇ψ(ξ), we have a(z, ξ) = ϕ(z)b(ξ), and h(z, ξ) =
a(z, ξ) · ξ = ϕ(z)b(ξ) · ξ . Then, in order to have that (H) holds we need to
assume that:

(i) b(−ξ) · (−ξ) = b(ξ) · ξ ≥ 0 for all ξ ∈ R
N and there exists

lim
t→0+ b

(
ξ

t

)
· ξ = ψ0(ξ).

(ii) b(ξ) · η ≤ ψ0(ξ) · η for all ξ, η ∈ R
N .

We note that in this case (H2) is not necessary to obtain existence and uniqueness
of solutions for problem (1.2). Let us prove that (H7) holds. Indeed, by applying
the mean value Theorem, we have

|(a(z, ξ) − a(ẑ, ξ)) · (ξ − ξ̂ )| = |(ϕ(z) − ϕ(ẑ))||b(ξ) · (ξ − ξ̂ )|
≤ sup

τ∈[0,1]
|ϕ′(τ z + (1 − τ)ẑ)|M |z − ẑ| ‖ξ − ξ̂‖

≤ C |z − ẑ| ‖ξ − ξ̂‖,

for some constant C > 0 depending on R and any (z, ξ), (ẑ, ξ) ∈ R × R
N ,

|z|, |ẑ| ≤ R.

Remark 3.2. There are physical models for plasma fusion by inertial
confinement in which the temperature evolution of the electrons satisfies an

equation of type (1.2), where a(z, ξ) = |z|5/2ξ

1+|z||ξ | which corresponds to f (z, ξ) =
|z|3/2|ξ | − |z|1/2 ln (1 + |z||ξ |) [23], (see also [14] for a mathematical study in
the one-dimensional case). It is easy to check that (H1) (in particular (3.2) and
(3.7)) holds for any (z, ξ) ∈ R × R

N with z ∈ [a, R], a > 0, the constants in
(3.2) and (3.7) depending on a, R. Note that (H2) also holds. We also observe
that h0(z, ξ) = |z|3/2|ξ | and (H3)-(H6) hold. Finally, to check (H7) we observe
that

∂a
∂z

(z, ξ) = 5

2

z3/2ξ

1 + z|ξ | − z5/2|ξ |ξ
(1 + z|ξ |)2

,

and therefore ∣∣∣∂a
∂z

(z, ξ)
∣∣∣ ≤ 7

2
z1/2

for any z ∈ [a, R] and any ξ ∈ R
N . It follows that

|a(z, ξ) − a(ẑ, ξ)| ≤ 7

2
R1/2|z − ẑ|

for any z ∈ [a, R] and any ξ ∈ R
N . Thus (H7) also holds for the values of

z ∈ [a, R] and ξ ∈ R
N . In this case, the results below will prove existence and

uniqueness of entropy solutions of (1.1) for any initial condition v ∈ L∞(�)

such that v(x) ≥ a > 0 for some a > 0.
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We need to consider the function space

T BV (�) :=
{

u ∈ L1(�) : Tk(u) ∈ BV (�), ∀ k > 0
}

,

and to give a sense to the Radon-Nikodym derivative ∇u of a function u ∈
T BV (�). Notice that the function space T BV (�) is closely related to the
space G BV (�) of generalized functions of bounded variation introduced by E.
Di Giorgi and L. Ambrosio ([22], see also [1]). In [3] we give the following
results.

Lemma 3.3. For every u ∈ T BV (�) there exists a unique measurable function
v : � → R

N such that

(3.11) ∇Tk(u) = vχ{|u|<k} LN − a.e.

Lemma 3.4. If u ∈ T BV (�), then p(u) ∈ BV (�) for every Lipschitz con-
tinuous function p : R → R satisfying p′(s) = 0 for |s| large enough. Moreover,
∇ p(u) = p′(u)∇u LN -a.e.

Thanks to Lemma 3.3 we define ∇u for a function u ∈ T BV (�) as the
unique function v which satisfies (3.11). This notation will be used throughout
in the sequel.

We introduce the following concept of solution for problem (3.1)

Definition 3.5. Given v ∈ L∞(�), we say that u is an entropy solution of
(3.1) if u ∈ T BV (�) ∩ L∞(�), a(u, ∇u) ∈ X1(�) and satisfies:

v = −div a(u, ∇u) in D′(�),(3.12)

(a(u, ∇u), DTa,b(u)) ≥ h(u, DTa,b(u)) as measures ∀ a < b,(3.13)

[a(u, ∇u), ν] = 0 HN−1 − a.e. on ∂�.(3.14)

Observe that (3.13) is equivalent to

(3.15) a(u, ∇u) · Ds Ta,b(u) ≥ (Ra,b
f )s(u) as measures ∀ a < b.

We have the following characterization of entropy solutions.

Proposition 3.6. Let v ∈ L∞(�) and let u ∈ T BV (�) ∩ L∞(�) with
a(u, ∇u) ∈ X1(�), satisfying (3.12) and (3.14). Then u is an entropy solution
of (3.1) (i.e., satisfies (3.13)) if and only if u satisfies

(3.16)
∫

�

φh(u, DTa,b(u)) +
∫

�

Ta,b(u)a(u, ∇u) · ∇φ dx ≤
∫

�

φvTa,b(u) dx

for any φ ∈ D(�), φ ≥ 0.
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Proof. Assume that u is an entropy solution of (3.1). Multiplying (3.12)
by Ta,b(u)φ, integrating by parts and using (3.13) and (3.14), we obtain (3.16).
Similarly, from (3.16), (3.13) and (3.14), we have∫

�

φh(u,DTa,b(u)) +
∫

�

Ta,b(u)a(u, ∇u) · ∇φ dx ≤
∫

�

φvTa,b(u) dx

= −
∫

�

div a(u, ∇u)Ta,b(u)φ dx =
∫

�

(a(u, ∇u), D(Ta,b(u)φ))

=
∫

�

φ(a(u, ∇u), DTa,b(u)) +
∫

�

Ta,b(u)a(u, ∇u) · ∇φ dx .

Hence, ∫
�

φh(u, DTa,b(u)) ≤
∫

�

φ(a(u, ∇u), DTa,b(u))

for all φ ∈ D(�), φ ≥ 0. This implies (3.13).

4. – Existence and uniqueness of entropy solutions

This section is devoted to prove the following existence and uniqueness
result.

Theorem 4.1. Assume that assumptions (H) hold. Then, for any v ∈ L∞(�)

there exists a unique entropy solution u ∈ BV (�) ∩ L∞(�) of the problem

(4.1)

{ u − div a(u, Du) = v in �

∂u

∂η
= 0 on ∂�.

Proof. Step 1. Existence of entropy solutions. Let v ∈ L∞(�). For every n ∈
N, consider an(z, ξ) := a(z, ξ)+ 1

n
ξ . Since an satisfies the classical Leray-Lions

conditions [28], we know that for any n ∈ N there exists un ∈ W 1,2(�)∩L∞(�)

such that

(4.2)
∫

�

(w−un)(v−un) dx ≤
∫

�

an(un, ∇un)·∇(w−un) dx ∀ w ∈ W 1,2(�).

Then, taking w = un − (un − ‖v‖∞)+ as test function in (4.2), we obtain∫
�

(un − ‖v‖∞)+(un − v) dx ≤ 0.

Hence,∫
{un>‖v‖∞}

(un − ‖v‖∞)2 dx ≤
∫

{un>‖v‖∞}
(un − ‖v‖∞)(v − ‖v‖∞) dx ≤ 0.
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Consequently, un ≤ ‖v‖∞ a.e. in �. Similarly, taking w = un − (un +‖v‖∞)−
as test function (where r− := min(r, 0)), we get −‖v‖∞ ≤ un a.e. in �.
Therefore,

(4.3) ‖un‖∞ ≤ ‖v‖∞ for all n ∈ N.

Taking w = 0 in (4.2) and using (4.3) we get

∫
�

a(un, ∇un) · ∇un dx + 1

n

∫
�

|∇un|2 dx ≤
∫

�

unv dx −
∫

�

|un|2 dx ≤ M2.

Hence, by (3.7), we obtain

(44)
∫

�

|∇un| dx ≤ M3 ∀ n ∈ N.

and

(4.5)
1

n

∫
�

|∇un|2 dx ≤ M4 ∀ n ∈ N

Thus, {un : n ∈ N} is bounded in W 1,1(�) and, by extracting a subsequence if
is necessary, we may assume that un converges in L1(�) and almost everywhere
to some u ∈ L1(�) ∩ BV (�) as n → +∞. Now, by (4.3) and (4.4), we have
that un → u in L2(�) and u ∈ BV (�) ∩ L∞(�).

Observe that by (3.5) and (4.5), {an(un, ∇un) : n ∈ N} is bounded in
L2(�, R

N ). Consequently we may assume that

(4.6) an(un, ∇un) ⇀ z as n → ∞, weakly in L2(�, R
N ).

Given φ ∈ C∞
0 (�), taking w = un ± φ in (4.2) we obtain

∫
�

φ(v − un) dx =
∫

�

an(un, ∇un) · ∇φ dx .

Letting n → +∞, we obtain∫
�

(v − u)φ dx =
∫

�

z · ∇φ dx,

that is,

(4.7) v − u = −div(z), in D′(�)

and

(4.8) div an(un, ∇un) ⇀ div(z) weakly in L2(�).
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Since, by (4.5),

(4.9)
1

n
|∇un| → 0 in L2(�),

as a consequence of (4.6), it follows that

(4.10) a(un, ∇un) ⇀ z as n → ∞, weakly in L2(�, R
N ).

Moreover, by (3.5) we may assume that

(4.11) a(un, ∇un) ⇀ z as n → ∞, weakly∗ in L∞(�, R
N ).

By (4.7), we have z ∈ X2(�). On the other hand, by (4.2), we have

[an(un, ∇un), ν] = 0 HN−1 − a.e. on ∂�.

Then, by (4.6) and (4.8), we obtain that

(4.12) [z, ν] = 0 HN−1 − a.e. on ∂�.

Let us prove that

(4.13) z(x) = a(u(x), ∇u(x)) a.e. x ∈ �.

Let 0 ≤ φ ∈ C1
0(�) and g ∈ C2(�). By (3.4), we have

(4.14)
∫

�

φ[a(un, ∇un) − a(un, ∇g)) · ∇(un − g)] dx ≥ 0.

Now, since

∫
�

φa(un, ∇un) · ∇(un − g) dx =
∫

�

φan(un, ∇un) · ∇(un − g) dx

− 1

n

∫
�

φ∇un · ∇(un − g) dx

≤ −
∫

�

div(an(un, ∇un))φ(un − g) dx

−
∫

�

(un − g)an(un, ∇un) · ∇φ dx

+ 1

n

∫
�

φ∇un · ∇g dx,
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we get

lim
n→∞

∫
�

φa(un, ∇un) · ∇(un − g) dx ≤ −
∫

�

div(z)φ(u − g) dx

−
∫

�

(u − g)z · ∇φ dx

=
∫

�

φ(z, D(u − g)).

On the other hand, let us denote by

Jai (x, r) :=
∫ r

0
ai (s, ∇g(x)) ds, and J ∂ai

∂xj

(x, r) :=
∫ r

0

∂

∂xj
ai (s, ∇g(x)) ds,

i, j ∈ {1, . . . , N }, and observe that

∂

∂xj
Jai (x, un(x)) = ai (un(x), ∇g(x))

∂un

∂xj
(x) + J ∂ai

∂xj

(x, un(x)).

We note that assumption (H2) is used here, and, as we shall notice in Remark
4.3, (H2) is not needed when f (z, ξ) has the form described in Remark 3.1.
Now, since

∂

∂xj
Jai (x, un) ⇀

∂

∂xj
Jai (x, u) weakly as measures,

and J ∂ai
∂xj

(x, un(x)) → J ∂ai
∂xj

(x, u(x)) a.e., we have

lim
n→∞

∫
�

φa(un,∇g) · ∇(un −g)dx = lim
n→∞

∫
�

φ

N∑
i=1

[
∂

∂xi
Jai (x, un(x))− J ∂ai

∂xi

(x,un(x))

]

− lim
n→∞

∫
�

φ a(un, ∇g) · ∇g dx

=
∫

�

φ

N∑
i=1

[
∂

∂xi
Jai (x, u) − J ∂ai

∂xi

(x, u(x))

]

−
∫

�

φ a(u, ∇g) · ∇g dx .

Consequently, from (4.14), we obtain

(4.15)

∫
�

φ(z, D(u − g))

−
∫

�

φ

(
N∑

i=1

[
∂

∂xi
Jai (x, u(x)) − J ∂ai

∂xi

(x, u(x))

]
− a(u, ∇g) · ∇g

)
≥ 0,
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for all 0 ≤ φ ∈ C1
0(�). Thus the measure

(z, D(u − g)) −
N∑

i=1

[
∂

∂xi
Jai (x, u(x)) − J ∂ai

∂xi

(x, u(x))

]
+ a(u, ∇g) · ∇g LN ≥ 0.

Then using chain’s rule for BV functions ([1], Theorem 3.96) applied to
Jai (u1, u2) with u1(x) = x , u2(x) = u(x), x ∈ �, we deduce that the ab-
solutely continuous part of

N∑
i=1

[
∂

∂xi
Jai (x, u(x)) − J ∂ai

∂xi

(x, u(x))

]

is a(u, ∇g) · ∇u LN and we obtain

z·∇(u−g)−a(u, ∇g)·∇u+a(u, ∇g)·∇g = (z−a(u, ∇g))·∇(u−g) ≥ 0 a.e..

Since we may take a countable set of functions g ∈ C2(�) dense in C1(�)

we have that the above inequality holds for all x ∈ �̃, where �̃ ⊂ � is such
that LN (� \ �̃) = 0, and all g ∈ C1(�). Now, fixed x ∈ �̃ and given ξ ∈ R

N ,
there is g ∈ C1(�) such that ∇g(x) = ξ . Then

(z(x) − a(u(x), ξ)) · (∇u(x) − ξ) ≥ 0, ∀ ξ ∈ RN .

These inequalities imply (4.13) by an application of Minty-Browder’s method
in R

N .

From (4.13), (4.7) and (4.12), it follows that

(4.16) v − u = −div a(u, ∇u), in D′(�)

and

(4.17) [a(u, ∇u), ν] = 0 HN−1 − a.e. on ∂�.

Therefore, to finish the existence part of the proof we only need to prove that

(4.18) (a(u, ∇u), DTa,b(u)) ≥ h(u, DTa,b(u)) as measures ∀ a < b.

To do that, first let us prove

(4.19) lim sup
n

∫
�

a(un, ∇un) · ∇Ta,b(un)φ(x) dx ≤
∫

�

φ(a(u, ∇u), DTa,b(u))

for any 0 ≤ φ ∈ D(�). By (4.2), we have

(4.20)
∫

�

w(v − un) dx =
∫

�

an(un, ∇un) · ∇w dx ∀ w ∈ W 1,2(�).
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Then, taking w = Ta,b(un)φ as test function in (4.20), we obtain

∫
�

φa(un, ∇un) · ∇Ta,b(un) dx + 1

n

∫
�

φ∇un · ∇Ta,b(un) dx

=
∫

�

(v − un)Ta,b(un)φ dx −
∫

�

Ta,b(un)a(un, ∇un) · ∇φ dx

− 1

n

∫
�

Ta,b(un)∇un · ∇φ dx .

Since the sign of the second term at the right hand side of the above inequality
is positive, letting n → ∞ we get

lim sup
n

∫
�

φa(un, ∇un) · ∇Ta,b(un) dx ≤
∫

�

φ(v − u)Ta,b(u) dx

−
∫

�

Ta,b(u)a(u, ∇u) · ∇φ dx

= −
∫

�

div a(u, ∇u)Ta,b(u)φ dx

−
∫

�

Ta,b(u)a(u, ∇u) · ∇φ

=
∫

�

φ(a(u, ∇u), DTa,b(u)).

Now, let us prove the following inequality for measures

(4.21) f (u, DTa,b(u)) ≤ (a(u, ∇u), DTa,b(u)) + f (u, 0).

Using the convexity of f , we have for any w ∈ W 1,1(�)

∫
�

φ f (un, ∇Ta,b(un)) dx ≤
∫

�

φa(un, ∇Ta,b(un)) · ∇Ta,b(un) dx

−
∫

�

φa(un, ∇Ta,b(un)) · ∇w dx

+
∫

�

f (un, ∇w)φ dx .

Choosing w = 0, we obtain

∫
�

φ f (un, ∇Ta,b(un)) dx ≤
∫

�

φa(un, ∇Ta,b(un)) · ∇Ta,b(un) dx

+
∫

�

φ f (un, 0) dx .
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By Proposition 2.2 and (4.19), letting n → ∞ we obtain

Ra,b
f (u, φ) ≤ lim inf

n

∫
�

f (un, ∇Ta,b(un))φ dx

≤ lim inf
n

∫
�

φa(un, ∇Ta,b(un)) · ∇Ta,b(un) dx +
∫

�

f (u, 0)φ dx

≤
∫

�

φ(a(u, ∇u), DTa,b(u)) +
∫

�

φ f (u, 0) dx,

and (4.21) holds.

Note that by the definition of Ra,b
f (u, φ), using the chain rule for BV-

functions, we deduce that

f (u, DTa,b(u))s = ψ0
(

Du

|Du|
)

|Ds Jϕ(Ta,b(u))|.

Then using (4.21), we have

(a(u, ∇u), DTa,b(u)) = (a(u, ∇u), DTa,b(u))ac + (a(u, ∇u), DTa,b(u))s

≥ a(u, ∇u) · ∇Ta,b(u) + ψ0
(

Du

|Du|
)

|Ds Jϕ(Ta,b(u))|
= h(u, DTa,b(u)).

Step 2. Uniqueness of entropy solutions. Given v, v ∈ L∞(�), let u, u be two
bounded entropy solutions of the problems

(4.22)

{ u − div a(u, Du) = v in �

∂u

∂η
= 0 on ∂�

and

(4.23)

{ u − div a(u, Du) = v in �

∂u

∂η
= 0 on ∂�,

respectively.

Let ρn be a classical mollifiers in R
N , and let us write ξn(x, y) = ρn(x −y).

If we denote z(y) = a(u(x), ∇u(x)) and z(x) = a(u(x), ∇u(y)), we have

u − div(z) = v and u − div(z) = v in D′(�).



A DEGENERATE QUASILINEAR EQUATION 21

Then, multiplying by Tε(u(y) − u(x))ξn(x, y) and integrating by parts , we
obtain

(4.24)

∫
�

u(y)Tε(u(y) − u(x))ξn(x, y)dy +
∫

�

ξn(z, Dy(Tε(u − u(x))

+
∫

�

Tε(u(y) − u(x))z(y) · ∇yξn(x, y) dy

=
∫

�

v(y)Tε(u(y) − u(x))ξn(x, y) dy

and

(4.25)

∫
�

u(x)Tε(u(y) − u(x))ξn(x, y)dx +
∫

�

ξn(z, Dx(Tε(u(y) − u))

+
∫

�

Tε(u(y) − u(x))z(x) · ∇xξn(x, y) dx

=
∫

�

v(x)Tε(u(y) − u(x))ξn(x, y) dx .

Integrating (4.24) in x and (4.25) in y, and taking differences we obtain

∫
�

∫
�

(u(y) − u(x))Tε(u(y) − u(x))ξn(x, y) dx dy

+
∫

�

(∫
�

ξn(z, Dy(Tε(u − u(x)))

)
dx

+
∫

�×�

Tε(u(y) − u(x))z(y) · ∇yξn(x, y) dy dx

−
∫

�

(∫
�

ξn(z, Dx(Tε(u(y) − u)

)
dy

−
∫

�×�

Tε(u(y) − u(x))z(x) · ∇xξn(x, y) dx dy

=
∫

�

∫
�

(v(y) − v(x))Tε(u(y) − u(x))ξn(x, y) dx dy.

Let I n
1 be the first term at the left hand side of the above identity, I n

2 the other
part of the left hand side of the above identity and let I n

3 be the right hand side
term. Note that, by applying Green’s formula and using that Tε(−r) = −Tε(r)
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and ∇yξn(x, y) + ∇xξn(x, y) = 0, we get

I n
2 =

∫
�

(∫
�

ξn(z, Dy(Tε(u − u(x)))

)
dx −

∫
�

(∫
�

ξn(z, Dx(Tε(u(y) − u)))

)
dy

+
∫

�×�

Tε(u(y) − u(x))z(y) · ∇yξn(x, y) dy dx

−
∫

�×�

Tε(u(y) − u(x))z(x) · ∇xξn(x, y) dx dy

=
∫

�×�

Tε(u(y) − u(x))
[
(z(y) − z(x)) · (∇yξn(x, y) + ∇xξn(x, y))

]
dy dx

+
∫

�

(∫
�

ξn(z, Dy(Tε(u − u(x)))

)
dx

+
∫

�×�

Tε(u(y) − u(x))z(x) · ∇yξn(x, y) dx dy

−
∫

�

(∫
�

ξn(z, Dx(Tε(u(y) − u)))

)
dy

−
∫

�×�

Tε(u(y) − u(x))z(y) · ∇xξn(x, y) dy dx

=
∫

�

(∫
�

ξn(z, Dy(Tε(u − u(x)))

)
dx

−
∫

�

(∫
�

ξn(z(x), Dy Tε(u − u(x))

)
dx

+
∫

�

(∫
�

ξn(z, Dx(Tε(u − u(y))))

)
dy

−
∫

�

(∫
�

ξn(z(y), Dx Tε(u − u(y)))

)
dy.

Since Tε(u(x)−u(y)) = T−ε+u(y),ε+u(y)(u(x))−u(y), if we take uε(x, y) :=
T−ε+u(y),ε+u(y)(u(x)), we have

Dx(Tε(u − u(y)) = Dx uε(·, y).

Similarly,

Dy(Tε(u − u(x)) = Dyuε(·, x),
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being uε(y, x) := T−ε+u(x),ε+u(x)(u(y)). Therefore, we can write

I n
2 =

∫
�

(∫
�

ξn(x, y)z(y) · ∇yuε(y, x) dy
)

dx

−
∫

�

(∫
�

ξn(x, y)z(x) · ∇yuε(y, x) dy
)

dx

+
∫

�

(∫
�

ξnz · Ds
yuε(·, x)

)
dx −

∫
�

(∫
�

ξnz(x) · Ds
yuε(·, x)

)
dx

+
∫

�

(∫
�

ξn(x, y)z(x) · ∇x uε(x, y) dx
)

dy

−
∫

�

(∫
�

ξn(x, y)z(y) · ∇x uε(x, y) dx
)

dy

+
∫

�

(∫
�

ξnz · Ds
x uε(·, y) dx

)
dy −

∫
�

(∫
�

ξnz(y) · Ds
x uε(·, y) dx

)
dy

=
∫

�×�

ξn(x, y)(z(y) − z(x)) · (∇yuε(y, x) − ∇x uε(x, y)) dy dx

+
∫

�

(∫
�

ξnz · Ds
x uε(·, y) dx

)
dy −

∫
�

(∫
�

ξnz(y) · Ds
x uε(·, y) dx

)
dy

+
∫

�

(∫
�

ξnz · Ds
yuε(·, x)

)
dx −

∫
�

(∫
�

ξnz(x) · Ds
yuε(·, x)

)
dx

= I n
21 + I n

22 + I n
23.

Let us compute I n
21. By (3.9) it follows that

I n
21 =

∫
�×�

ξn(x, y)(z(y) − z(x)) · (∇yuε(y, x) − ∇x uε(x, y)) dy dx

=
∫

�×�

ξn(x, y)T ′
ε (u(y) − u(x))(z(y) − z(x)) · (∇yu(y) − ∇x u(x)) dy dx

≥ −C
∫

�×�

ξn(x, y)T ′
ε (u(y) − u(x))|u(y) − u(x)| ‖∇yu(y) − ∇x u(x)‖ dy dx

≥ −Cε

∫
�

(∫ u(y)+ε

u(y)−ε

ξn(x, y)‖∇yu(y) − ∇x u(x)‖ dx

)
dy.

Hence

(4.26)
1

ε
I n
21 ≥ o(ε) ∀ n ∈ N,

where o(ε) is an expression that tends to 0 as ε → 0+.

Now we analyze I n
22. Having in mind the condition (3.13) of the definition

of entropy solution, we obtain that∫
�

(∫
�

ξnz · Ds
x uε(·, y) dx

)
dy ≥

∫
�

(∫
�

ξnh(uε(·, y), Dx uε(·, y))s
)

dy
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On the other hand, by (H5) and (H6), we have

z(y) · Ds
x uε(·, y) = (z(y) · −−→

Dsuε)|Ds
x uε| ≤ ϕ(u(y))ψ0(

−−→
Dsuε)|Ds

x uε|.
Therefore we have

I n
22 ≥

∫
�

(∫
�

ξnh(uε, Dx uε)
s
)

dy −
∫

�

(∫
�

ξnϕ(u(y))ψ0(
−−→
Dsuε)|Ds

x uε|
)

dy

=
∫

�

(∫
�

ξnϕ(uε(x))ψ0(
−−→
Dsuε)|Dc

x uε|
)

dy

−
∫

�

(∫
�

ξnϕ(u(y))ψ0(
−−→
Dsuε)|Dc

x uε|
)

dy

+
∫

�

(∫
Juε

ξn
1

(uε)+(x)−(uε)−(x)

(∫ (uε)+(x)

(uε)−(x)

ϕ(s)ds

)
ψ0(

−−→
Dsuε)|D j

x uε|
)

dy

−
∫

�

(∫
�

ξnϕ(u(y))ψ0(
−−→
Dsuε)|D j

x uε|
)

dy = J n
1 + J n

2

where J n
1 denotes the first and second terms of the above expression, and J n

2
the third and fourth terms. Now, since ϕ is Lipschitz continuous, we have

|J n
1 | ≤

∫
�

(∫
�

ξn|ϕ(uε(x)) − ϕ(u(y))|ψ0(
−−→
Dsuε)|Dc

x uε|
)

dy

≤ Mn

∫
�

(∫
�

|uε(x) − u(y)|T ′
−ε+u(y),ε+u(y)(u(x))|Dc

x u|
)

dy

= Mn

∫
�

(∫
{x∈� : −ε+u(y)<u(x)<ε+u(y)}

|uε(x) − u(y)||Dc
x u|

)
dy

≤ εMn

∫
�

(∫
�

|Dc
x uε|

)
.

Using the coarea formula, we get

|J n
1 | ≤ εMn

∫
�

(∫ u(y)+ε

u(y)−ε

Per({u(x) ≥ λ}) dλ

)
dy,

which yields

(4.27) lim
ε→0+

1

ε
J n

1 = 0 ∀ n ∈ N.

On the other hand, working in a similar way as before,

|J n
2 |≤

∫
�

[ ∫
Juε

ξn
1

(uε)+(x)−(uε)−(x)

( (uε)+(x)∫
(uε)−(x)

|ϕ(s)−ϕ(u(y))|ds
)

ψ0(
−−→
Dsuε)|D j

x uε|
]

dy

≤ εMn

∫
�




u(y)+ε∫
u(y)−ε

Per({u(x) ≥ λ}) dλ


 dy,
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and we obtain that

(4.28) lim
ε→0+

1

ε
J n

2 = 0 ∀ n ∈ N.

Then, by (4.27) and (4.28), we get

(4.29)
1

ε
I n
22 ≥ o(ε) ∀ n ∈ N.

In a similar way, we also obtain that

(4.30)
1

ε
I n
23 ≥ o(ε) ∀ n ∈ N.

Now, from (4.26), (4.29) and (4.30), we deduce that

1

ε
I 2
n ≥ o(ε) ∀ n ∈ N.

Consequently, since

lim
n→∞ lim

ε→0+
1

ε
I n
1 =

∫
�

|u(x) − u(x)| dx,

and

lim
n→∞ lim

ε→0+
1

ε
I n
3 ≤

∫
�

|v(x) − v(x)| dx,

we deduce that ∫
�

|u(x) − u(x)| dx ≤
∫

�

|v(x) − v(x)| dx,

and we conclude the proof of the Theorem.

Remark 4.2. When applying Kruzhkov’s method, if instead of multiplying
by Tε(u(y) − u(x)) we multiply by Tε(u(y) − u(x))+, we obtain the estimate

(4.31)
∫

�

(u(x) − u(x))+ dx ≤
∫

�

(v(x) − v(x))+ dx .

Remark 4.3. We observe that (H2) is not used when f (z, ξ) = ϕ(z)ψ(ξ)

as in Remark 3.1. Indeed, it suffices to prove the analogous of (4.15). Since
a(z, ξ) = ϕ(z)b(ξ), if we denote by Jϕ(r) := ∫ r

0 ϕ(s) ds, we have

lim
n→∞

∫
�

φ a(un, ∇g) · ∇(un − g)dx = lim
n→∞

∫
�

φ ϕ(un)b(∇g) · ∇(un − g) dx

= lim
n→∞

∫
�

φ b(∇g) · (∇ Jϕ(un) − ϕ(un)∇g
)

dx .
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Now, since ∇ Jϕ(un) ⇀ D Jϕ(u) weakly as measures, we have

lim
n→∞

∫
�

φ a(un, ∇g) · ∇(un − g) dx =
∫

�

φ[b(∇g) · D Jϕ(u) − ϕ(u)b(∇g) · ∇g]

and (4.15) follows as in the proof above.

Remark 4.4. If a(z, ξ) = |z|5/2ξ

1+|z||ξ | [23], [14], then Theorem 4.1 holds for
any v ∈ L∞(�) such that v ≥ a, for some a > 0. Moreover, multiplying the
equation

un − a − div an(un, ∇un) = v − a

by (un − a)− = min(un − a, 0) and integrating in � we obtain that∫
�

((un − a)−)2 dx ≤
∫

�

(v − a)(un − a)− dx ≤ 0

and we deduce that un ≥ a. Hence u ≥ a.

5. – Semigroup solution

In this section we shall associate an m-accretive operator in L1(�) to
the formal differential expression −div a(u, ∇u) together with the Neumann
boundary conditions.

Definition 5.1. (u, v) ∈ B if and only if u ∈ BV (�)∩ L∞(�), v ∈ L1(�)

and u is the entropy solution of problem (3.1), that is, a(u, ∇u) ∈ X1(�) and
satisfies:

(5.1) v = −div a(u, ∇u) in D′(�)

(5.2) a(u, ∇u) · Ds Ta,b(u) ≥ (Ra,b
f )s(u) ∀ a < b,

(5.3) [a(u, ∇u), ν] = 0 HN−1 − a.e. on ∂�.

Let (u, v) ∈ B, and w ∈ BV (�) ∩ L∞(�). Multiplying (5.1) by w − u,
using Green’s formula (2.16) and having in mind that (5.2) is equivalent to
(3.13) (using a = −‖u‖∞, b = ‖u‖∞), we obtain∫

�

(w − u)vdx = −
∫

�

(w − u)div a(u, ∇u) dx

=
∫

�

(a(u, ∇u), Dw − Du) −
∫

∂�

[a(u, ∇u), ν](w − u) dHN−1

≤
∫

�

(a(u, ∇u), Dw) − Rh(u).
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Therefore, if (u, v) ∈ B, we have that

(5.4)
∫

�

(w − u)v dx ≤
∫

�

(a(u, ∇u), Dw) − Rh(u),

for all w ∈ BV (�) ∩ L∞(�).

Proposition 5.2. Assume we are under assumptions (H). Then B is accretive
in L1(�), L∞(�) ⊂ R(I + B) and D(B) is dense in L1(�).

Again, we observe that assumption (H2) is not required if f (z, ξ) =
ϕ(z)ψ(ξ), being ϕ a bounded smooth function such that ϕ(z) ≥ αR > 0 for all
z ∈ R, |z| ≤ R (see Remark 3.1).

Proof. The accretivity of the operator B in L1(�) and the range condition
follows from Theorem 4.1.

To prove the density of D(B) in L1(�), we prove that C∞
0 (�) ⊆ B

L2(�)
.

Let v ∈ C∞
0 (�). By Theorem 4.1, v ∈ R(I + 1

n B) for all n ∈ N. Thus, for each
n ∈ N, there exists un ∈ D(B), ‖un‖∞ ≤ ‖v‖∞, such that (un, n(v − un)) ∈ B.
Consequently, by (5.4), we get∫

�

(w − un)n(v − un) dx ≤
∫

�

(a(un, ∇un), Dw) − Rh(un),

for all w ∈ BV (�) ∩ L∞(�). Taking w = v, we get∫
�

(v − un)
2 dx ≤ 1

n

(∫
�

a(un, ∇un) · ∇v dx − Rh(un)

)

≤ 1

n

∫
�

a(un, ∇un) · ∇v dx ≤ M

n

∫
�

|∇v| dx .

Letting n → ∞, it follows that un → v in L2(�). Therefore v ∈ D(B)
L2(�) ⊂

D(B)
L1(�)

and the proof is complete.

From Proposition 5.2, if we denote by B the closure in L1(�) of the opera-

tor B, it follows that B is m-accretive in L1(�) and D(B)
L1(�) = L1(�). There-

fore, according to the general theory of nonlinear semigroups (c.f., e.g., [11]),
for any u0 ∈ L1(�) there exists a unique mild solution u ∈ C([0, T ]; L1(�))

of the abstract Cauchy problem

(5.5) u′(t) + Bu(t) � 0, u(0) = u0.

Moreover, u(t) = T (t)u0 for all t ≥ 0, being (T (t))t≥0 the semigroup in L1(�)

generated by the Crandall-Liggett’s exponential formula, i.e.,

T (t)u0 = lim
n→∞

(
I + t

n
B

)−n

u0.
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Lemma 5.3. Given λ > 0, and u ∈ Lq(�),1 ≤ q ≤ ∞, if v = (I + λB)−1u,
then

(5.6) ‖v‖q ≤ ‖u‖q .

As a consequence, for any u0 ∈ Lq(�), 1 ≤ q ≤ ∞, we have

(5.7) T (t)u0 ∈ Lq(�) ∀ t ≥ 0.

Proof. Since v = (I + λB)−1u, we have
(
v, 1

λ
(u − v)

)
∈ B. Then,

a(v, ∇v) ∈ X1(�) and the following holds:

1

λ
(u − v) = −div a(v, ∇v) in D′(�),

a(v, ∇v) · Dsv ≥ (R f )
s(v),

[a(v, ∇v), ν] = 0 HN−1 − a.e. on ∂�.

Let

P0 := {
p ∈ C∞(R) : 0 ≤ p′ ≤ 1, supp(p′) compact, 0 �∈ supp(p)

}
.

For p ∈ P0, by Green’s formula, we have∫
�

p(v)(v − u) dx = λ

∫
�

p(v)div a(v, ∇v) dx = −λ

∫
�

(a(v, ∇v), Dp(v))

= −λ

∫
�

p′(v)a(v, ∇v) · ∇v dx − λ

∫
�

a(v, ∇v) · Ds(p(v)).

Now, by (3.6), it follows that∫
�

p′(v)a(v, ∇v) · ∇v dx ≥ 0.

On the other hand, by the chain rule for BV-functions (see [1]), we have
Ds(p(v)) = pv Dsv with pv ≥ 0, pv being the Vol’pert averaged superposition.
Moreover, by [7],

θ(a(v, ∇v), Dp(v), ·) = θ(a(v, ∇v), Dv, ·) |Dv| − a.e.

Then,

a(v, ∇v) · Ds(p(v)) = θ(a(v, ∇v), Dp(v), ·)|Ds p(v)|
= pvθ(a(v, ∇v), Dv, ·)|Dsv|
= pva(v, ∇v) · Dsv ≥ pv(R f )

s(v) ≥ 0.

Therefore, we get ∫
�

p(v)(v − u) dx ≤ 0,

and consequently, ∫
�

p(v)v dx ≤
∫

�

p(v)u dx ∀ p ∈ P0.

This implies (5.6), having in mind a result of [10]. Last assertion is a conse-
quence of (5.6).
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In [6] we shall define the notion of entropy solution for (1.2), and we shall
prove that entropy solutions are unique and coincide with semigroup solutions.
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[6] F. Andreu – V. Caselles – J.M. Mazón, “ A Strongly Degenerate Quasilinear Equation:
the Parabolic Case”, Preprint 2003.

[7] G. Anzellotti, Pairings Between Measures and Bounded Functions and Compensated
Compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293-318.

[8] G.I. Barenblatt – M. Bertsch – R. Dal Passo – V.M. Prostokishin – M. Ughi, A
mathematical Model of Turbulent Heat and Mass Transfer in Stable Stratified Shear Flow,
J. Fluid Mech. 253 (1993), 341-358.

[9] Ph. Bénilan – L. Boccardo – T. Gallouet – R. Gariepy – M. Pierre – J.L Vazquez,
An L1-Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273.

[10] Ph. Bénilan – M.G. Crandall, Completely Accretive Operators, In: “Semigroups Theory
and Evolution Equations”, Ph. Clement et al. (eds.), Marcel Dekker, 1991, pp. 41-76.

[11] Ph. Bénilan – M.G. Crandall – A. Pazy, “Evolution Equations Governed by Accretive
Operators”, Book in preparation.

[12] M. Bertsch – R. Dal Passo, Hyperbolic Phenomena in a Strongly Degenerate Parabolic
Equation, Arch. Rational Mech. Anal. 117 (1992), 349-387.

[13] M. Bertsch – R. Dal Passo, A Parabolic Equation with Mean-Curvature Type Operator,
In: “Progres Nonlinear Differential Equation Appl.”, F. Browder (ed.), 7 Birkhäuser, 1992,
89-97.

[14] Ph. Blanc, On the regularity of the solutions of some degenerate parabolic equations,
Comm. Partial Differential Equations 18 (1993), 821-846.

[15] Ph. Blanc, Sur une classe d’equations paraboliques degeneréesa une dimension d’espace
possedant des solutions discontinues, Ph.D. Thesis, number 798, Ecole Polytechnique Fed-
erale de Lausanne, 1989.

[16] D. Blanchard – F. Murat, Renormalized solutions on nonlinear parabolic problems
with L1 data: existence and uniqueness, Proc. Royal Soc. Edinburgh Sect. A 127 (1997),
1137-1152.



30 F. ANDREU – V. CASELLES – J. M. MAZÓN
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