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Abstract

Two methods to generate tensor-product Bézier surface patches from their bound-
ary curves and with tangent conditions along them are presented. The first one
is based on the tetraharmonic equation: we show the existence and uniqueness of
the solution of ∆4−→x = 0 with prescribed boundary and adjacent to the boundary
control points of a n× n Bézier surface. The second one is based on the nonhomo-
geneous biharmonic equation ∆2−→x = p, where p could be understood as a vectorial
load adapted to the C1-boundary conditions.
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1 Introduction

The aim of this work is to develop C1-boundary based intuitive surface de-
sign techniques for Bézier surfaces which are one of the basic types of sur-
faces widely used in CAGD. The main idea is to find polynomial solutions
to some natural PDEs which can only be controlled through the boundary
control points and those adjacent to them. The two PDEs used are based
on the Laplacian operator, so the solutions can be seen as extremals of the
corresponding energy functionals.
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According to previous results in [7], given two opposed boundaries of a Bézier
surface there is a unique harmonic surface (∆−→x = 0) with that prescribed par-
tial boundary. And given the four opposed boundaries of a Bézier surface there
is a unique biharmonic surface (∆2−→x = 0) with that prescribed boundary (see
[8] and [4]).

This last result allows us to give a simple method to generate a Bézier surface
from its boundary. In this paper we study a similar problem, when not only
the boundaries are prescribed but also the derivatives along them.

The idea behind the first method is just, after having seen what happens
with harmonic and biharmonic surfaces, to increase the order of the partial
differential operator. It is reasonable to think that if the harmonic condition
∆−→x = 0 completely determines the Bézier surface −→x from just two opposed
boundaries, and if the biharmonic condition ∆2−→x = 0 completely determines
the Bézier surface from the whole boundary, then the tetraharmonic condition
∆4−→x = 0 should completely determine the Bézier surface from the boundaries
and the derivatives along the boundaries.

In Section 8 it is proved that given the boundary control points of a Bézier
surface and those adjacent to them in the control net, then there exists a
unique tetraharmonic polynomial surface satisfying such boundary conditions.
Moreover, an explicit algorithm to compute the solution is given. These C1

conditions on the boundary enable us to control the shape of the surface near
these boundary, which can be very useful in a variety of different situations
such as engineering or even virtual design.

The second method is based on a modification of the biharmonic condition.
If just with the four boundary curves, a unique biharmonic Bézier surface
is determined, then, in order to manage with the conditions related to the
derivatives along the boundaries, one has to introduce more degrees of freedom.
One possibility is to substitute the homogeneous biharmonic equation ∆2−→x =
0 by the nonhomogeneous one ∆2−→x = −→y .

The scalar nonhomogeneous biharmonic equation ∆2f = p describes the de-
flection of f(u, v) of the middle surface of an elastic isotropic flat plate of
uniform thickness and where p(u, v) is the load per unit area, the coordinates
u, v being taken in the plane z = 0 of the middle surface of the plate before
bending. See [5] for a complete study of the biharmonic problem in a rectan-
gle. The homogeneous biharmonic equation can be understood as a thin plate
problem without load.

The new degrees of freedom we need will be under the form of an ad hoc
vectorial load, which we will choose mainly concentrated along the bound-
aries. Intuitively, the reasoning could be the following: the prescription of the
boundaries completely determines a biharmonic Bézier surface, −→x 0, which, in
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general, would not satisfy the conditions related with the derivatives along
the boundaries. Therefore, the introduction of a load, mainly concentrated
along the boundaries, acting on −→x 0 would bend the surface up to verifying
the derivative conditions.

The use of thin plate methods in CAGD is well known from the very starting
days of the subject. For example, one has to recall the notion of TP splines
(see [3]). In this work such guiding principles are particularized to polynomial
solutions. The idea of adding a new term to the load in the nonhomogeneous
biharmonic equation to obtain polynomial approximations is not new either.
It dates back to Biezeno and Koch (see [6]) and it can be said that the new
load added by these two authors was also a polynomial load. 1

Moreover, in the recent paper [2] the authors make use of polynomials solutions
of the biharmonic equation as a first approximation to the true solution when
the boundaries are not necessarily polynomial.

In section 6 we compare our results with those in [2] which are also compared
to Timoshenko’s results. The major difference is that Bloor and Wilson’s final
approximation has a non-polynomial term added while our final solution is
polynomial, which is useful for computational purposes.

Let us say too that both methods are related by the following argument: any
solution of the tetrahamonic equation ∆4−→x = 0 can be seen as a solution
of the nonhomogeneous biharmonic equation ∆2−→x = p with p a biharmonic
load, this is, with p such that ∆2p = 0. Therefore, in the first method we look
for solutions of the nonhomogeneous biharmonic equation with a biharmonic
load whereas in the second method we look for solutions with a load mainly
concentrated along the boundary.

For the sake of clarity all the proofs of the main theorems as well as all the
lemmas needed for these proofs have been put at the end of the paper in
Annex A and Annex B.

Finally the authors would like to thank the referees for all their useful com-
ments which have helped to make the paper easier to follow and understand.

1 The new term added to the load has been called in [6] fictitious load. In our
situation, where there is not a real load from the beginning, we will not use the
adjective fictitious.
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2 Background on biharmonic Bézier surfaces

The usual statement of the biharmonic problem as can be seen in [5] involves
the prescription of the boundaries and of the normal derivatives along the
boundaries. The surprising fact is that if we are looking for polynomial solu-
tions of the homogeneous biharmonic equation, then we only need to prescribe
a polynomial boundary in order to uniquely determine a solution.

Proposition 1 Let −→x n(u, v) =
∑n

k,`=0 Bn
k (u)Bn

` (v)Pk` be a biharmonic Bézier
chart of degree n with control net {Pk`}

n
k,`=0. Then all the inner control points

{Pk`}
n−1
k=1,`=1 are determined by the boundary control points, {P0`}

n
`=0, {Pn`}

n
`=0,

{Pk0}
n
k=0 and {Pkn}

n
k=0.

Remark 1 The boundary control points are

P00 P01 P02 . . . P0n−1 P0n

P10 ∗ ∗ . . . ∗ P1n

P20 ∗ ∗ . . . ∗ P2n

...
...

...
. . .

...
...

Pn−1,0 ∗ ∗ . . . ∗ Pn−1,n

Pn0 Pn1 Pn2 . . . Pn,n−1 Pnn

The proof of Prop. 1 can be seen in [8], moreover, in [9] there is the detailed
algorithm which allows to compute, given the boundary, the unique polynomial
solution of any 4-th order linear PDE, including the biharmonic equation as a
particular case. In [4] additional conditions for the existence in the rectangular
case are stated.

3 Tetraharmonic Bézier surfaces

Before stating the main result of the first method, let us do a simple com-
putation of the dimension of the vector space of polynomial solutions of the
tetraharmonic equation for a given degree.

Recently some authors have considered polynomial solutions of the biharmonic
equation as a part of a method to compute approximate solutions (see [2]).
Let us recall their arguments for the biharmonic case.

Putting z = u + iv and z̄ = u− iv, then the usual Laplacian operator can be
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written as

∆ =
∂2

∂u2
+

∂2

∂v2
=

1

2

∂2

∂z∂z̄
,

In general, for a certain degree n, the complex polynomials

zk, 0 ≤ k ≤ n,

z̄k, 1 ≤ k ≤ n

are a basis of complex polynomials solutions of the harmonic equation. They
are in total (n + 1) + n = 2n + 1. But when switching to real polynomials,
the real and imaginary parts of zk, 0 ≤ k ≤ n, provide us with 2n + 1 linear
independent harmonic polynomials of degree ≤ n. When n is even there are no
more linear independent harmonic polynomials of the same degree, but when
n is odd there is still one more, the imaginary part of zn+1.

This agrees with the well-known result about harmonic Bézier patches, includ-
ing the different cases depending on the parity of n.

The homogeneous biharmonic equation can be written as

∆2f =
1

4

∂4f

∂z2∂z̄2
= 0. (1)

In general, for a certain degree n (we are considering not the total degree n
but the maximum between the degree of z and the degree of z̄) the complex
polynomials

zk, z̄zk, 0 ≤ k ≤ n,

z̄k, zz̄k 2 ≤ k ≤ n

are a basis of complex polynomial solutions of the biharmonic equation. They
are in total 2(n + 1) + 2(n− 1) = 4n. Therefore the dimension of the vectorial
space of degree n polynomial solutions of the biharmonic equation is 4n. This
dimension agrees with the number of boundary control points of a degree n
Bézier patch.

For real biharmonic polynomials the situation is the following: The real and
imaginary parts of zk, 0 ≤ k ≤ n and of z̄zk, 1 ≤ k ≤ n − 1, provide us
with 4n−2 linear independent polynomials of degree ≤ n. We need two more:

If n is odd, Imzn+1 and Imz̄zn.

If n is even, Re ((z − z̄)zn) and Im ((z + z̄)zn).
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For the tetraharmonic equation,

∆4f =
1

16

∂8f

∂z4∂z̄4
= 0, (2)

the complex polynomials

zk, z̄zk, z̄2zk, z̄3zk, 0 ≤ k ≤ n,

z̄k, zz̄k, z2z̄k, z3z̄k, 4 ≤ k ≤ n,

are a basis of complex polynomial solutions of the tetraharmonic equation.
They are in total 4(n+1)+4(n−3) = 8n−8. Therefore the dimension of the
vectorial space of degree n polynomial solutions of the tetraharmonic equation
is 8n − 8. This dimension agrees with the number of boundary and adjacent
to the boundary control points of a degree n Bézier patch.

For real tetraharmonic polynomials it is possible to find a polynomial basis
with the same number of elements given by the real and imaginary parts of

zk, 0 ≤ k ≤ n,

z̄zk, 1 ≤ k ≤ n− 1,

z̄2zk, 2 ≤ k ≤ n− 2,

z̄3zk, 3 ≤ k ≤ n− 3,

and by the linear combinations of the other complex polynomials as for the
biharmonic case.

The use of the complex variable z has been useful to compute the dimension of
these spaces of polynomial solutions, but it is not well adapted to the problem
of finding solutions with a prescribed boundary.

The first method is based on the next result. We will prove that the tetrahar-
monic condition implies that given the boundary control points of a tetrahar-
monic Bézier surface, and those adjacent to them, we can express the rest of
the points in the control net as linear combinations of them.

Theorem 1 Given the boundary control points and those adjacent to them
of an n × n net, (i.e. {P0j}

n
j=0, {P1j}

n−1
j=1 , {Pn−1,j}

n−1
j=1 , {Pnj}

n
j=0, {Pi0}

n
i=0,

{Pi1}
n−1
i=1 , {Pi,n−1}

n−1
i=1 and {Pin}

n
i=0), there exists a unique tetraharmonic Bézier

surface whose chart expressed in the Bernstein basis is
−→x (u, v) =

∑n
i,j=0 Bn

i (u)Bn
j (v)Pij(v) (and whose control net has those points

as boundary control points and those adjacent to them).
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Remark 2 The boundary control points and those adjacent to them are

P00 P01 P02 . . . P0,n−2 P0,n−1 P0n

P10 P11 P12 . . . P1,n−2 P1,n−1 P1n

P20 P21 ∗ . . . ∗ P2,n−1 P2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pn−2,0 Pn−2,1 ∗ . . . ∗ Pn−2,n−1 Pn−2,n

Pn−1,0 Pn−1,1 Pn−1,2 . . . Pn−1,n−2 Pn−1,n−1 Pn−1,n

Pn0 Pn1 Pn2 . . . Pn,n−2 Pn,n−1 Pnn

4 The method based on the nonhomogeneous biharmonic equation

Using the previous method, we have obtained solutions of the tetraharmonic
equation ∆4−→x = 0. Such eighth-order PDE is equivalent to the system of
fourth-order PDEs

∆2−→x = −→y , ∆2−→y = 0.

According to the terminology of biharmonic problems (see [6]), the system
can be understood as a nonhomogeneous biharmonic problem with a vectorial
load, −→y , which is biharmonic.

The basic idea of the second method is to obtain solutions of the nonhomoge-
neous biharmonic equation with a vectorial load satisfying, not a biharmonic
condition as before, but another geometric condition related to Bézier state-
ments.

First of all, since the solutions of the nonhomogeneous biharmonic equation
we are looking for are polynomial, then the load must be of the same nature.
So the first thing we have to do is to find a way, adapted to our aims, to
characterize which polynomial functions can act as a load. This is what we
develop along this section.

Let us suppose that

−→x (u, v) =
n
∑

i,j=0

Bn
i (u)Bn

j (v)Pij =
n
∑

i,j=0

aij

i!j!
uivj , (3)

where aij ∈ R
3.

The nonhomogeneous biharmonic equation ∆2−→x = p, where
p(u, v) =

∑n
i,j=0

pij

i!j!
uivj, can be translated in terms of the coefficients aij , as

follows

ak+4,` + 2ak+2,`+2 + ak,`+4 = pk,`, (4)
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for 0 ≤ k, ` ≤ n (where ak,` = 0 if k > n or ` > n).

We are initially interested in finding polynomial solutions of the nonhomo-
geneous biharmonic equation with a prescribed boundary (but not with pre-
scribed tangent planes along the boundary).

Let Rn[u, v] denote the vector space of real polynomials in the variables u, v
and of degree less or equal to n.

First, we need to characterize which polynomials p ∈ Rn[u, v] are in the image
of the biLaplacian operator when it is restricted to the vector space Rn[u, v].

Definition 1 A polynomial p ∈ Rn[u, v] will be called admissible if it belongs
to Im∆2|Rn[u,v].

Sometimes, by analogy with the thin plate problem, p will be called an ad-
missible load.

In the rest of this section, and looking at Bézier methodology, we will deter-
mine a class of admissible polynomial loads concentrated along the boundary.

The configuration of the control points chosen for the vectorial load is one
where all the control points except the exterior ones and those adjacent to
them are 0. The reason for this is the following one: the C1-boundary condi-
tions are responsible for the impossibility of solving the homogeneous bihar-
monic equation in general. Therefore, if we add a load, it is natural to make
the load act on the parts of the homogeneous biharmonic solution where the
C1-boundary conditions are not fulfilled. So it is natural to concentrate the
load mainly along the boundaries. The load forces tangent planes to fulfill the
C1-boundary conditions.

Theorem 2 Given the non-boundary control points of a Bézier load p ∈
Rn[u, v], there is a unique configuration of the boundary control points making
the polynomial load admissible.

Previous results, see Prop. 1, imply the impossibility of solving the homoge-
neous biharmonic equation prescribing the boundary and the normal deriva-
tives along the boundary within the set of polynomial functions. Given just
the boundary, a unique polynomial solution of the homogeneous biharmonic
equation is fixed. In order to cope with the normal derivative conditions we
need to introduce some more degrees of freedom. We shall introduce them as
a load mainly concentrated near the boundary.

Theorem 3 Given a polynomial boundary, or equivalently, the exterior con-
trol points of a Bézier surface, and given the normal derivatives along the
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boundary, or equivalently, the adjacent to the exterior control points of the
Bézier surface,

P0,0 P0,1 P0,2 . . . P0,n−2 P0,n−1 P0,n

P1,0 P1,1 P1,2 . . . P1,n−2 P1,n−1 P1,n

P2,0 P2,1 ∗ . . . ∗ P2,n−1 P2,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pn−2,0 Pn−2,1 ∗ . . . ∗ Pn−2,n−1 Pn−2,n

Pn−1,0 Pn−1,1 Pn−1,2 . . . Pn−1,n−2 Pn−1,n−1 Pn−1,n

Pn,0 Pn,1 Pn,2 . . . Pn,n−2 Pn,n−1 Pn,n

there is a unique admissible polynomial load, pa(u, v), whose Bézier control
net is of the kind

R0,0 R0,1 R0,2 . . . R0,n−2 R0,n−1 R0,n

R1,0 R1,1 R1,2 . . . R1,n−2 R1,n−1 R1,n

R2,0 R2,1 0 . . . 0 R2,n−1 R2,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rn−2,0 Rn−2,1 0 . . . 0 Rn−2,n−1 Rn−2,n

Rn−1,0 Rn−1,1 Rn−1,2 . . . Rn−1,n−2 Rn−1,n−1 Rn−1,n

Rn,0 Rn,1 Rn,2 . . . Rn,n−2 Rn,n−1 Rnn

(5)

and there is a unique polynomial solution of ∆2f = pa with the given C1-
boundary conditions.

We do not provide the reader with any recursive algorithm of computation
of the solution as for the other method (as will be seen in Annex A). The
examples have been computed solving first the linear system for a given de-
gree using a symbolic algebraic program (Mathematica) and fixing then the
boundary conditions.

4.1 Comparison with an exact solution of the homogeneous biharmonic equa-
tion

We will start with the same exact solution of the biharmonic equation than
in [2],

f(u, v) = u cos(u)ev.

We will consider it restricted to the domain [0, 1]2. Since it is not a polynomial
function, we approximate its boundaries by polynomial curves. Applying Prop.
1 we get a unique biharmonic polynomial solution (see Fig. I) with those
boundaries (and without any condition on the normal derivatives).
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Figure I. Left: Differences between the polynomial and the exact solution.
Center: polynomial solution. Right: Degree 10 boundary conditions.

Applying now Th. 3 we can manage the normal derivative conditions (see Fig.
II).
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Figure II. Left: Differences between the polynomial and the exact solution.
Center: polynomial solution with load. Right: Degree 7 C1-boundary

conditions.

It is interesting to see the shape of the load needed. As one can see in Fig. III
(right), the load is concentrated mainly along two of the boundaries.
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Figure III. The loads for the tetraharmonic solution (left) and the
nonhomogenenous biharmonic solution with a load (right).
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Finally, let us say that the shape of the tetraharmonic solution is similar
to that of the nonhomogeneous biharmonic solution. The maximum difference
between the exact and the nonhomogeneous biharmonic solutions is 2.499 10−6

while for the tetraharmonic solution it is 9.108 10−6.

5 Examples

We shall provide some examples of tetraharmonic and nonhomogeneous bi-
harmonic Bézier surfaces generated by the method studied above in the case
n = 7, which corresponds to an 8 × 8 control net. In two of the examples
the same boundary control points are given, but changing the control points
adjacent to them, in order to make clear the usefulness of being able to choose
the tangent planes on the boundary. Bear in mind that the tangent plane in a
boundary point P (of the surface, not of the control net) is determined by the
boundary control points which generate the Bézier curve to which this point
belongs, and the control points adjacent to them, not only by these boundary
control points and the two neighbouring adjacent control points to P .

In all the figures in this section, we will give the boundary control points (dark
ones) and those adjacent to them (lighter ones), and the two resulting surfaces,
sometimes plotted using gray tones according to the mean curvature.

5.1 Cylindrical boundary conditions

In the first example we are going to study, we will place the boundary control
points lying equally spaced on a cylinder and vary the adjacent control points.
In Fig. IV the adjacent control points are placed in the same cylinder, and the
obtained figure is as one would expect.

-1-0.5
0

0.5
1

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

-1-0.5
0
0.5

1

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

Figure IV. For cylindrical boundary data, the two methods lead to a similar
shape, more cylindrical for the tetraharmonic one (right) than for the non-
homogeneous biharmonic one (left). Meanwhile, in Fig. V, by lowering the
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adjacent control points, the central part of the resultant surfaces sinks, but
more noticeably in the tetraharmonic case.
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Figure V. Center: boundary control data. Top: nonhomogeneous biharmonic
surface. Bottom: tetraharmonic surface. In both cases: Left: with gray tones
using mean curvature. Middle: From a point of view showing their shapes
in the central part. Right: plot of the corresponding load. Gray levels in the
plots of the solutions correspond to the values of the mean curvature on a
scale common to both surfaces.

5.2 Spherical boundary conditions

In this example (see Fig. VI) the boundary conditions are taken from a degree
7 polynomial approximation to a piece of a unit sphere.
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Figure VI. Boundary conditions from an approximation to a piece of a sphere
(center). Loads of the non homogeneous biharmonic solution (left) and of the
tetraharmonic solution (right). The two corresponding Bézier solutions are not
plotted because they are similar to the piece of the sphere. In fact, the maxi-
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mum differences between the two solution and the sphere are 0.00822637 for
the nonhomogeneous biharmonic solution and 0.0141973 for the tetraharmonic
solution.

5.3 Arched boundary conditions

In this case, the boundary control points are equally distributed in four ver-
tical semi-circumferences. Fig. VII shows these boundary control points with
a collection of adjacent control points following a natural pattern, and the
surface obtained is certainly not surprising.
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Figure VII. Middle, the C1-boundary configuration. Top, the
nonhomogeneous biharmonic solution and its corresponding load. Bottom,

the tetraharmonic solution and its corresponding load.

On the other hand, in Fig. VIII, the adjacent points are in a horizontal
plane over the boundary ones. The tetraharmonic surface is rather unexpected
whereas the shape of the nonhomogeneous biharmonic surface seems to be
more natural.
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Figure VIII. Similar scheme of plotting than that of Fig. VII. Gray levels in
the plots of the solutions correspond to the values of the mean curvature on

a scale common to both surfaces.

5.4 Other type of arched boundary conditions

In this final example, the boundary control points are also equally spaced
along four semi-circumferences, but unlike the previous example, two of the
semi-circumferences corresponding to opposite sides are lying in the horizontal
plane z = 0. In the first two rows in Fig. IX, the adjacent control points are
distributed in a similar way to the boundary ones, but shifted towards the
interior, and the resulting surface shows an interesting upwards slope in the
tetraharmonic case, but not in the nonhomogeneous biharmonic case. In the
last row, on the other hand, the adjacent control points are shifted towards
the exterior, and the tetraharmonic figure obtained is blown up like a balloon,
whereas the nonhomogeneous one is quite different and even has some self-
intersections.
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Figure IX. In the middle column the same C0-boundary but with three
different C1-boundary configurations. In the left column, the corresponding

nonhomogeneous biharmonic solutions. In the right column, the
tetraharmonic solutions.

6 Uniformly loaded plate

We are now interested in the problem of a uniform rectangular plate of unit
length in the x direction, clamped at its edges and bent by uniform pressure
p applied to one face. The transverse displacement w satisfies the equation

D∆2w = p

subject to the boundary conditions that w and its normal derivatives are zero
at the edges, and where D is the flexural rigidity of the plate. The aspect ratio
of the plate is taken to be a.

In order to compare the results with that of [2] let us compute the deflection
at the middle point of a squared plate, supposing w is a bivariate polynomial
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of degree n and p/D = 1. Our results are the following

degree n | calculated deflection

7 | 0.00096377

9 | 0.00122758

11 | 0.00126654

15 | 0.00126628

Whereas in [2] the result is 0.00126532.

The load for each degree is plotted in Fig. X. It may be seen that as the degree
increases, the load decreases, except for at small regions around the corners.
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Figure X. Load for the uniformly loaded plate with p/D = 1 for degrees
n = 7, 9, 11 and 15. The four figures are plotted with the same scale factors

and the same plot range.

Finally, let us check the behavior of our method with respect to the aspect
ratio of the rectangular plate.

calculated calculated

aspect deflection deflection results of results of

ratio n = 11 n = 15 Bloor&Wilson Timoshenko

1.0 0.00126654 0.00126628 0.00126532 0.00126

1.3 0.00191234 0.00191027 0.00191168 0.00191

1.5 0.00218658 0.00219831 0.00219655 0.00220

1.7 0.00234867 0.00239123 0.00238207 0.00238

2.0 0.00246161 0.00254655 0.00253297 0.00254

The results are quite good in comparison with those existing in the literature
even for degrees as n = 11 or 15 which are not too high. Nevertheless, the
computation of normal reactions along the boundaries needs higher degrees if
results similar to the ones in [2] or [6] are wanted.
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7 Conclusions

As a continuation of previous work we have presented here two methods to
generate Bézier surface from the boundary and adjacent to the boundary
control points.

Both methods enable us to control the shape of the surface near its boundary.
As for the central part of the generated surface, one may obtain rather unex-
pected results. The problem of determining which method is better suited in
a particular case depends mainly on the boundary information.

If the boundary conditions are more or less natural, for example, they come
from a regular surface (Fig. IV, V, VI or VII) both methods give surfaces
which have a similar shape. The difference is only quantitative.

For wilder boundary conditions, see Fig. VIII and IX, the solutions clearly
show different shapes. In Fig. VII or in the middle row of Fig. IX, the nonho-
mogeneous biharmonic solution seems to be nicer than the tetraharmonic one.
On the contrary, in the last row of Figure IX, the nohomogeneous biharmonic
solution even shows unpleasant self-intersections.

Finally, let us say that we have dealt here with the whole set of C1-boundary
conditions. Nevertheless, both methods can be adapted to manage with a
partial set of C1-boundary conditions. For example, if the whole C0-boundary
is prescribed but only the tangent planes along two opposed boundary curves
are prescribed, it is reasonable to think that instead of looking for solutions
of the tetraharmonic equation, ∆4−→x = 0, one has to look for solutions of the
triharmonic equation ∆3−→x = 0.

Finally, for the nonhomogeneous biharmonic equation, the possibility to cope
with partial C1-conditions is to work with a load vanishing along the boundary
curves with no normal derivative prescribed.

8 Annex A. Proof of Th. 1

Given a Bézier surface −→x : [0, 1] × [0, 1] → R
3 let us compute ∆4−→x but

considering −→x in the usual basis instead of the Bernstein basis, i.e. −→x (u, v) =
∑n

i,j=0
aij

i!j!
uivj, in order to obtain conditions over the coefficients for a Bézier
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surface to be tetraharmonic in a simpler way.

∆4 −→x (u, v) = ( ∂8

∂u8 + 4 ∂8

∂u6∂v2 + 6 ∂8

∂u4∂v4 + 4 ∂8

∂u2∂v6 + ∂8

∂v8 )
−→x (u, v)

=
∑n

i=8,j=0
aij

(i−8)!j!
ui−8vj + 4

∑n
i=6,j=2

aij

(i−6)!(j−2)!
ui−6vj−2

+6
∑n

i=4,j=4
aij

(i−4)!(j−4)!
ui−4vj−4 + 4

∑n
i=2,j=6

aij

(i−2)!(j−6)!
ui−2vj−6

+
∑n

i=0,j=8
aij

i!(j−8)!
uivj−8

=
∑n

i,j=0
1

i!j!
(ai+8,j + 4ai+6,j+2 + 6ai+4,j+4 + 4ai+2,j+6 + ai,j+8)uivj

(6)

using the convention ai,j = 0 for i > n or j > n.

Therefore ∆4−→x = 0 if and only if

ai+8,j + 4ai+6,j+2 + 6ai+4,j+4 + 4ai+2,j+6 + ai,j+8 = 0, ∀i, j ∈ N (7)

Lemma 1 If the coefficients in the first eight rows, {a0,j , a1,j, ..., a7,j}
n

j=0, are
known, then the linear system defined by the equations of the kind given in
equation (7) has a unique solution, which is, for k ≥ 4:























































a2k,j = (−1)(k+1)

6
(k − 3)(k − 2)(k − 1)k

(

a6,2k+j−6

k−3
+ 3

a4,2k+j−4

k−2
+ 3

a2,2k+j−2

k−1
+

a0,2k+j

k

)

a2k+1,j = (−1)(k+1)

6
(k − 3)(k − 2)(k − 1)k

(

a7,2k+j−6

k−3
+ 3

a5,2k+j−4

k−2
+ 3

a3,2k+j−2

k−1
+

a1,2k+j

k

)

(8)

Proof: Let us write for k ≥ 4 the solution as follows:

a2k,j = (−1)(k+1) (Aka6,2k+j−6 + Bka4,2k+j−4 + Cka2,2k+j−2 + Dka0,2k+j) . (9)

It is easy to check that all of the four sequences {Ak, Bk, Ck, Dk}k∈N verify the
recurrence equation given by equation (7). The usual techniques for computing
the general term of a sequence defined by a recurrence equation give the next
results:

Ak = 1
6
(k − 2)(k − 1)k, Bk = 1

2
(k − 3)(k − 1)k,

Ck = 1
2
(k − 3)(k − 2)k, Dk = 1

6
(k − 3)(k − 2)(k − 1).

(10)
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Simplifying now formula 9 we get the first of the answers.

For a2k+1,j the solution is a linear combination of a7,i+j−6, a5,i+j−4, a3,i+j−2

and a1,i+j with the same coefficients as in the previous case. 2

Lemma 2 Let r ≥ 8. If the coefficients ar0, ar−1,1, ar−2,2, ar−3,3, a3,r−3, a2,r−2,
a1,r−1 and a0r are known, then the linear system defined by the equations of
the kind given in equation (7) for i + j + 8 = r (r − 7 equations) and with
unknowns {aij}, i + j = r, i, j ≥ 4, has a unique solution.

Remark 3 These are the coefficients shown as a matrix. Notice that the sys-
tems which will be solved in the following proof correspond to the positive slope
diagonals.

































a0,0 a0,1 a0,2 · · · a0,r · · · a0,n−1 a0,n

a1,0 a1,1 a1,2 · · · a1,r−1 · · · a1,n−1 a1,n

a2,0 a2,1 a2,2 · · · a2,r−2 · · · a2,n−1 a2,n

.

.

.

.

.

.

ar−2,2 · · · · · ·

ar−1,1 · · · · · ·

ar,0 · · · · · ·

.

.

.

.

.

.

an−1,0 an−1,1 an−1,2 · · · · · · an−1,n−1 an−1,n

an,0 an,1 an,2 · · · · · · an,n−1 an,n

































Proof: Let us write the first equations starting with ar0. The known values
are written in bold type. We shall consider first the case where r is even:

ar,0 +4ar−2,2 +6ar−4,4 +4ar−6,6 +ar−8,8 = 0

ar−2,2 +4ar−4,4 +6ar−6,6 +4ar−8,8 +ar−10,10 = 0
...

. . . +4a4,r−4 +a2,r−2 = 0

a8,r−8 +4a6,r−6 +6a4,r−4 +4a2,r−2 +a0,r = 0

Here we have r
2
− 3 equations and the same number of unknowns. In the case

where r is odd, the system has
[

r
2

]

− 3 equations and unknowns:

ar,0 +4ar−2,2 +6ar−4,4 +4ar−6,6 +ar−8,8 = 0

ar−2,2 +4ar−4,4 +6ar−6,6 +4ar−8,8 +ar−10,10 = 0
...

. . . +4a5,r−5 +a3,r−3 = 0

a9,r−9 +4a7,r−7 +6a5,r−5 +4a3,r−3 +a1,r−1 = 0
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The coefficient matrix for these systems is the following k × k square matrix:

Mk =





































6 4 1 0 . . .

4 6 4 1 . . .

1 4 6 4 . . .

0 1 4 6 . . .
. . .

. . . 6 4 1

. . . 4 6 4

. . . 1 4 6





































This is a scalar pentadiagonal matrix and using the recurrence formula for its
determinant due to [11] or [1], which is:

Hk = CHk−1 + (AE − BD)Hk−2 + (B2E + AD2 − 2AEC)Hk−3

+AE(AE − BD)Hk−4 + A2B2CHk−5 − A3E3Hk−6

(11)

where Hk = det(Mk), and in our case, A = 1 = E, B = 4 = D and C = 6, we
obtain:

Hk = 6Hk−1 − 15Hk−2 + 20Hk−3 − 15Hk−4 + 6Hk−5 −Hk−6 (12)

The associated characteristic polynomial is therefore λ6−6λ5 +15λ4−20λ3 +
15λ2−6λ+1 = (λ−1)6 and this gives us that the general term is of the following
type: (−1)k(c0+c1k+c2k

2+c3k
3+c4k

4+c5k
5). Calculating Hk for k = 1, . . . , 5

we have the initial conditions to obtain the coefficients ci in the general term,
and so the final solution (i.e. the determinant of the matrix as a function of
the number of equations or unknowns) is : 1

12
(12+28k+23k2+8k3+k4) which

is greater than 0 for all k. This means that the system has a unique solution.

Note that this system involves coefficients with the second index even. To
obtain the rest of the aij in the same diagonal we start the equations with
ar−1,1 instead of ar0. 2

Remark 4 For i + j ≥ n + 4, the linear system that appears in the proof is
homogeneous, taking into account the convention ai,j = 0 for i or j > n, and
therefore ai,j = 0 for i + j ≥ n + 4.
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8.1 Proof of Th. 1

Proof: Let us write the Bézier chart in the usual basis of polynomials

−→x (u, v) =
n
∑

i,j=0

aij

i!j!
uivj,

with aij ∈ R
3. Note that {P0j}

n
j=0 determine

n
∑

j=0

Bn
j (v)P0j = −→x (0, v) =

n
∑

j=0

a0j

j!
vj (13)

and so determine {a0j}
n
j=0. We also have that {P1j}

n
j=0 together with the points

given before determine

m
∑n

j=0 Bn
j (v)(P1j − P0j) = m

∑n
j=0 Bn

j (v)∆1,0P0j = ∂
∂u
−→x (0, v)

=
∑n

j=0
a1j

j!
vj

(14)

and so determine {a1j}
n
j=0. Analogously, from {Pi0}

n
i=0 and {Pi1}

n
i=0 we obtain

{ai0}
n
i=0 and {ai1}

n
i=0.

Now we have

n
∑

j=0

Bn
j (v)Pnj = −→x (1, v) =

n
∑

j=0

1

j!

(

n
∑

i=0

aij

i!

)

vj (15)

and

m
∑n

j=0 Bn
j (v)(Pnj − Pn−1,j) = m

∑n
j=0 Bn

j (v)∆1,0Pn−1,j = ∂
∂u
−→x (1, v)

=
∑n

j=0
1
j!

(

∑n
i=1

aij

(i−1)!

)

vj
(16)

which means that knowing {Pnj}
n
j=0 and {Pn−1,j}

n
j=0 gives the system shown

in the following paragraph by comparing the coefficients of vj in each side of
the equalities:

From ∂
∂u
−→x (1, v) we get that a1j + a2j +

a3j

2
+

a4j

6
+ . . . is a known value, and

from −→x (1, v) we get that a0j + a1j +
a2j

2
+

a3j

6
+ . . . is a known value too, so

for each j we have a system of two linear equations, which we will name Sj ,
whose unknowns are a2j and a3j . This system has a unique solution because
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its coefficient matrix is






1 1
2

1
2

1
6







whose determinant is − 1
12
6= 0.

Analogously, from −→x (u, 1) and ∂
∂v
−→x (u, 1), we can obtain the values of ai1 +

ai2 + ai3

2
+ ai4

6
+ . . . and ai0 + ai1 + ai2

2
+ ai3

6
+ . . ., therefore, for each i we have

a system of two linear equations with a unique solution, which we will call Si,
whose unknowns are ai2 and ai3.

We must take into account that we know that aij = 0 for i + j ≥ n + 4 by
Remark (4).

Starting from k = n and working recursively backwards until k = 2, we can
solve the systems Sk and Sk, bearing in mind that we already know a0k, a1k,
ak0 and ak1, and we also know aij for i + j ≥ k + 4(= n + 4). This way, we
can get the values of ak2, ak3, a2k and a3k. Then, as we know the values of
a0,k+3, a1,k+2, a2,k+1, a3k, ak3, ak+1,2, ak+2,1 and ak+3,0, we can use Lemma (2)
to compute aij for i + j = k + 3, so we know aij for i + j = (k − 1) + 4. This
way we can start the next step of the downwards recursion.

Remark 5 Having reached this point, it may be convenient for the neatness
of the proof to introduce a series of formulas which will be used in the final part
of the proof. From now on, we shall use the notation Bn

i (v) =
∑n−i

j=0 cn
ijv

i+j,

where cn
ij = cij = (−1)j

(

n

i

)(

n−i

j

)

.

From Equation (13) we obtain:

a0j = j!
j
∑

`=0

c`,j−`P0` j = 0, . . . , n. (17)

From equation (14) we get:

a1j = j!n
j
∑

`=0

c`,j−`(P1` − P0`) j = 0, . . . , n. (18)

From equation (15) we get:

n
∑

i=0

aij

i!
= j!

j
∑

`=0

c`,j−`Pn` j = 0, . . . , n. (19)
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From equation (16) we get:

n
∑

i=1

aij

(i− 1)!
= j!n

j
∑

`=0

c`,j−`(Pn` − Pn−1,`) j = 0, . . . , n. (20)

Analogously, from −→x (u, 0), −→x (u, 1) and their partial derivatives in the second
variable we obtain similar equations:

ai0 = i!
i
∑

`=0

c`,i−`P`0 i = 0, . . . , n, (21)

ai1 = i!n
i
∑

`=0

c`,i−`(P`1 − P`0) i = 0, . . . , n, (22)

n
∑

j=0

aij

j!
= i!

i
∑

`=0

c`,i−`P`n i = 0, . . . , n, (23)

n
∑

j=1

aij

(j − 1)!
= i!n

i
∑

`=0

c`,i−`(P`n − P`,n−1) i = 0, . . . , n. (24)

And now we shall continue with the rest of the proof.

We reach a problem when we get to solving a33, because it can be obtained
as solution to two different systems, S3 and S3, so we must check for compat-
ibility. We will first calculate a33 in S3. Using formulas (23) and (24) for i = 3
we get the following system:

∑n
j=1

a3j

(j−1)!
= 6n

∑3
`=0 c`,3−`(P`n − P`,n−1),

∑n
j=0

a3j

j!
= 6

∑3
`=0 c`,3−`P`n,

(25)

with unknowns a32 and a33. From here it follows that:

−a33

12
= 6

∑3
`=0 c`,3−`P`n − 3n

∑3
`=0 c`,3−`(P`n − P`,n−1)

−a30 −
1
2
a31 −

1
2

∑n
j=4

2−j

j!
a3j

(26)

Our current objective is to give this expression as a linear combination of the
control points, except for one term, for reasons which will become clearer later
on. Now, by formulas (21) and (22) we have:

a30 = 6
3
∑

`=0

c`,3−`P`0, a31 = 6n
3
∑

`=0

c`,3−`(P`1 − P`0) (27)
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and from solving the system (19), (20) for a2j and a3j we obtain the general
expression for a3j , j ≥ 4

a3j = 12



a0j +
a1j

2
−

j!

2

j
∑

`=0

c`,j−` ((2− n)Pn` − nPn−1,`)−
n
∑

i=4

2− i

2i!
aij



(28)

and so 1
2

∑n
j=4

2−j

j!
a3j =

= 1
2

∑n
j=4

2−j

j!
12
(

a0j +
a1j

2
− j!

2

∑j
`=0 c`,j−`((2− n)Pn` + nPn−1,`)−

∑n
i=4

2−i
2i!

aij

)

= 6
∑n

j=4(2− j)
(

∑j
`=0 c`,j−`P0` + 1

2
n
∑j

`=0 c`,j−`(P1` − P0`)

−1
2

∑j
`=0 c`,j−`((2− n)Pn` + nPn−1,`)−

1
j!

∑n
i=4

2−i
2i!

aij

)

= 3
∑n

j=4(2− j)
(

∑j
`=0 c`,j−`((2− n)P0` + nP1`

−(2− n)Pn` − nPn−1,`)− 3
∑n

j=4

∑n
i=4

(2−j)(2−i)
j!i!

aij

)

= 3
∑n

`=0(
∑n

j=`(2− j)c`,j−`)((2− n)P0` + nP1` − (2− n)Pn` − nPn−1,`)

−3
∑3

`=0(
∑3

j=`(2− j)c`,j−`)((2− n)P0` + nP1` − (2− n)Pn` − nPn−1,`)

−3
∑n

j=4

∑n
i=4

(2−j)(2−i)
j!i!

aij

(29)

Notice that in the last equality we have changed the order of the finite double
series. Now, using that Bn

i (v) =
∑n−i

j=0 cn
ijv

i+j , we have the following expression:

∑n
j=`(2− j)c`,j−` =

∑n−`
j=0(2− (j + `))c`,j = 2Bn

` (1)− ∂
∂v

Bn
` (1)

= 2Bn
` (1)− n(Bn

` (1)− Bn−1
` (1))

= 2δn
` − n(δn

` − δn−1
` ) = (2− n)δn

` + nδn−1
` .

(30)

Using this expression, we can simplify the calculation above:

1
2

∑n
j=4

2−j

j!
a3j =

= 3
∑n

`=0((2− n)δn
` + nδn−1

` )((2− n)P0` + nP1` − (2− n)Pn` − nPn−1,`)

−3
∑3

`=0(
∑3

j=`(2− j)c`,j−`)((2− n)P0` + nP1` − (2− n)Pn` − nPn−1,`)

−3
∑n

j=4

∑n
i=4

(2−j)(2−i)
j!i!

aij

(31)
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Finally, using equations (27) and (31), we get this final expression for equation
(26):

−a33

12
= 6

∑3
`=0 c`,3−`P`n − 3n

∑3
`=0 c`,3−`(P`n − P`,n−1)

−6
∑3

`=0 c`,3−`P`0 − 3n
∑3

`=0 c`,3−`(P`1 − P`0)

−3
∑n

`=0((2− n)δn
` + nδn−1

` )((2− n)P0` + nP1` − (2− n)Pn` − nPn−1,`)

+3
∑3

`=0(
∑3

j=`(2− j)c`,j−`)((2− n)P0` + nP1` − (2− n)Pn` − nPn−1,`)

+3
∑n

j=4

∑n
i=4

(2−j)(2−i)
j!i!

aij

(32)

Analogously, from system S3 we get that:

−a33

12
= 6

∑3
`=0 c`,3−`Pn` − 3n

∑3
`=0 c`,3−`(Pn` − Pn−1,`)

−6
∑3

`=0 c`,3−`P0` − 3n
∑3

`=0 c`,3−`(P1` − P0`)

−3
∑n

`=0((2− n)δn
` + nδn−1

` )((2− n)P`0 + nP`1 − (2− n)P`n − nP`,n−1)

+3
∑3

`=0(
∑3

i=`(2− i)c`,i−`)((2− n)P`0 + nP`1 − (2− n)P`n − nP`,n−1)

+3
∑n

i=4

∑n
j=4

(2−i)(2−j)
i!j!

aij

(33)

and it can easily be checked that a33 is the same in the two previous equations,
comparing the coefficients of each Pij and taking into account that i and j
only appear in the coefficients and not as indexes of the control points.

In the final step of the recursion (in which we solve systems S2 and S2), we
already know a23 and a32 from S3 and S3, so the only variable left is a22. We
can prove in a similar fashion that the solutions obtained for a22 from each of
the four equations that form systems S2 and S2 are the same, so we also have
compatibility in this final step of the process.

We have obtained all the coefficients {aij}
n

i,j=0 of the tetraharmonic Bézier
chart −→x (u, v) in the usual basis given the boundary control points and those
adjacent to them. Comparing it to the Bézier chart expressed in the Bernstein
basis we obtain the rest of the control points. 2

9 Annex B. Proofs of Th. 2 and 3

We will need some results characterizing admissible loads.

Lemma 3 If a polynomial p is admissible then its part of degree less or equal
to (n− 2) uniquely determines the parts of degree n− 1 and n.
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Proof: Let us suppose that there exists f ∈ Rn[u, v] such that ∆2f = p. Let
us write the following scheme for the coefficients of f

a0,0 a0,1 . . . a0,k a0,k+1 . . . a0,n−1 a0,n

a1,0 a1,1 . . . a1,k a1,k+1 . . . a1,n−1 a1,n

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

ak,0 ak,1 . . . ak,k ak,k+1 . . . ak,n−1 ak,n

ak+1,0 ak+1,1 . . . ak+1,k ak+1,k+1 . . . ak+1,n−1 ak+1,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. q

q

q
.
.
.

.

.

.

an−1,0 an−1,1 . . . an−1,k an−1,k+1 . . . an−1,n−1 an−1,n

an,0 an,1 . . . an,k an,k+1 . . . an,n−1 an,n

For each m ≥ n + 3, let us consider the linear system LSm made of the
equations (4) relating the coefficients ai,j in a positive slope diagonal with
i + j = m. Each one of these systems can be split into two independent linear
subsystems of the same kind. Just as an example let us see the case m = n+4.
The initial linear system is



























































pn,0 = an+4,0 + 2an+2,2 + an,4,

pn−1,1 = an+3,1 + 2an+1,3 + an−1,5,

pn−2,2 = an+2,2 + 2an,4 + an−2,6,

. . .

p2,n−2 = a6,n−2 + 2a4,n + a2,n+2,

p1,n−1 = a5,n−1 + 2a3,n+1 + a1,n+3,

p0,n = a4,n + 2a2,n+2 + a0,n+4.

(34)

Recall that ai,j = 0 if i > n or j > n.

This linear system is split into two linear subsystems depending on the parity
of the second index: (if we suppose n even)



























































pn,0 = an,4,

pn−2,2 = 2an,4 + an−2,6,

pn−4,4 = an,4 + 2an−2,6 + an−4,8,

. . .

p4,n−4 = a8,n−4 + 2a6,n−2 + a4,n,

p2,n−2 = a6,n−2 + 2a4,n,

p0,n = a4,n.

and















































pn−1,1 = an−1,5,

pn−3,3 = 2an−1,5 + an−3,7,

pn−5,5 = an−1,5 + 2an−3,7 + an−5,9,

. . .

p3,n−3 = a7,n−3 + 2a5,n−1,

p1,n−1 = a5,n−1.

(35)

Let us concentrate in the first subsystem because the same arguments are
valid for the second one. The first subsystem involves n

2
+ 1 equations and

n
2
−1 unknowns. If we remove the first and the last equations what we get is a

linear system whose matrix of coefficients is a scalar tridiagonal matrix, which
we will denote by A, with 2 in the diagonal and 1 in the two lines parallel to
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the diagonal. This matrix is invertible, then it is easy to compute the unique
solution {an,4, an−2,6, . . . , a6,n−2, a4,n} of



































pn−2,2 = 2an,4 + an−2,6,

pn−4,4 = an,4 + 2an−2,6 + an−4,8,

. . .

p4,n−4 = a4,n + 2a6,n−2 + a8,n−4,

p2,n−2 = 2a4,n + a6,n−2.

(36)

Therefore, we get pn,0 = an,4 and p0,n = a4,n in terms of the coefficients
{pn−2,2, pn−4,4, . . . , p4,n−4, p2,n−2}.

Analogous arguments applied now to the second linear subsystem allow to
express pn−1,1 and p1,n−1 in terms of the coefficients
{pn−3,3, pn−5,5, . . . , p5,n−5, p3,n−3}. 2

Proposition 2 A polynomial p(u, v) =
∑n

i,j=0
pi,j

i!j!
uivj ∈ Rn[u, v] is admissible

if and only if for m = n− 1, n and i = 0, 1, . . . , n



















pi,m = 1
[ n−i

2
]

∑[ n−i
2

]−1

`=1 (−1)`−1([n−i
2

]− `) pi+2`,m−2`,

pm,i = 1
[ n−i

2
]

∑[ n−i
2

]−1

`=1 (−1)`−1([n−i
2

]− `) pm−2`,i+2`.

(37)

Remark 6 Notice that when i ≥ n − 3 in expressions (37), the upper limit
in the sum is 0 and thus the corresponding equations reduce to pi,m = 0 and
pm,i = 0, so the coefficients of p are

p0,0 p0,1 . . . p0,n−4 p0,n−3 p0,n−2 p0,n−1 p0,n

p1,0 p1,1 . . . p1,n−4 p1,n−3 p1,n−2 p1,n−1 p1,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pn−4,0 pn−4,1 . . . pn−4,n−4 pn−4,n−3 pn−4,n−2 pn−4,n−1 pn−4,n

pn−3,0 pn−3,1 . . . pn−3,n−4 pn−3,n−3 pn−3,n−2 0 0

pn−2,0 pn−2,1 . . . pn−2,n−4 pn−2,n−3 pn−2,n−2 0 0

pn−1,0 pn−1,1 . . . pn−1,n−4 0 0 0 0

pn,0 pn,1 . . . pn,n−4 0 0 0 0

(38)

Proof: As we have said before, the matrix of coefficients is invertible and its
inverse is A−1 = (br

i,j)i,j=1,...,r, where r = rankA, defined by

br
i,j =

(−1)i+j

r + 1
(i + 1)(r − j), i ≤ j,

and if i > j, then br
i,j = br

j,i. Therefore the solution of the linear systems
(36) and the corresponding one for the other subsystems can be explicitly
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computed. Thus, for m = n− 1 and m = n

pi,m =

[ n−i
2

]−1
∑

`=1

b
[ n−i

2
]−1

`−1,0 pi+2`,m−2` =
1

[n−i
2

]

[ n−i
2

]−1
∑

`=1

(−1)`−1([
n− i

2
]− `) pi+2`,m−2`,

where we have applied that b
[ n−i

2
]−1

`−1,0 = b
[ n−i

2
]−1

0,`−1 . Analogously for pm,i.

Reciprocally, if conditions (37) are satisfied we have to show that there exists
f ∈ Rn[u, v] such that ∆2f = p, or equivalently, we have to show that all the
linear systems LSm for any m have a solution.

In Lemma 3, we have shown that conditions (37) were necessary, but also
sufficient, to assure the existence of solution of the linear systems LSm with
m ≥ n + 3. Let us see what happens for m < n + 3.

Let us recall that the homogeneous linear systems defined by Eq. 4 with pk,` =
0 are related with the homogeneous biharmonic equation. In [8] and [4] it is
shown that such linear systems have a unique solution once the first two rows
and the first two columns of coefficients are given. Therefore the same happens
for the linear systems LSm because they have the same nonsingular matrix
of coefficients. In fact, the matrix of coefficients is the same scalar tridiagonal
matrix A appearing in the proof of Lemma 3. 2

The last part of the proof and results given in [8] allow to state the next result:

Corollary 1 Given an admissible polynomial pa there is a unique polynomial
solution of ∆2f = pa with a prescribed boundary.

9.1 Proof of Th. 2

Let Mn denote the triangular matrix of the change of basis from the Bernstein
basis {Bn

i (t)}n
i=0 to the usual power basis {ti}n

i=0.

Let R = {rij}
n
i,j=0 be the control net of a polynomial function p = p(u, v). The

matrix of coefficients of p in the power basis is MT
n .R.Mn.
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Lemma 4 Let R = {rij}
n
i,j=0, with rij = 0 for all i, j ∈ {1, 2, . . . , n− 1},

r00 r01 r02 . . . r0n−1 r0n

r10 0 0 . . . 0 r1n

r20 0 0 . . . 0 r2n

...
...

...
. . .

...
...

rn−1,0 0 0 . . . 0 rn−1,n

rn0 rn1 rn2 . . . rn,n−1 rnn

be the control net of a polynomial function p = p(u, v). Then, the matrix of
coefficients of p in the power basis, A = {aij}

n
i,j=0 = MT

n .R.Mn, verifies the
following condition:

For any i, j ∈ {0, . . . , n−2}, the entry ai,j is a linear combination of ai,n−1, an−1,j

and an−1,n−1, in the following way: there are scalars λk
i,j, k = 1, 2, 3, which

don’t depend on R, such that

ai,j = λ1
i,jai,n−1 + λ2

i,jan−1,i + λ3
i,jan−1,n−1.

The next scheme tries to represent the three entries related to ai,j.

a0,0 a0,1 . . . a0,j . . . a0,n−1 a0,n

a1,0 a1,1 . . . a1,j . . . a1,n−1 a1,n

...
...

. . .
...

. . .
...

...

ai,0 ai,1 . . . ai,j ← ai,n−1 ai,n

...
...

... ↑ ↖
...

...

an−1,0 an−1,1 . . . an−1,j . . . an−1,n−1 an−1,n

an,0 an,1 . . . an,j . . . an,n−1 an,n

Proof: For any i, j ∈ {1, . . . , n−2} let Ci,j(λ) (resp. Di,j(µ)) be the (n+1)×
(n + 1) matrix whose entries are

1, entry i, j,

λ (resp. µ), entry i, n− 1 (resp. n− 1, j),

0, elsewhere.

Note that Ci,j(λ)T = Dj,i(λ).
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Note that Ci,j(λ)ADi,j(µ) is a matrix with null entries except the entry i, j
whose value is

ai,j + λan−1,j + µai,n−1 + λµan−1,n−1.

We will prove that for some values of λ and µ the product Ci,j(λ)ADi,j(µ)
vanishes. This means that

ai,j = −λan−1,j − µai,n−1 − λµan−1,n−1,

and the lemma is proved.

Let us define the polynomials Hn
i (t) =

(

n

i

)

(t − 1)i for n ∈ N and i ∈

{0, 1, . . . , n}. It is easy to check that the family {Hn
i (t)}n

i=0 is a basis of poly-
nomials of degree ≤ n and that the matrix of the change of basis from the
basis {Hn

i (t)}n
i=0 to the usual power basis {ti}n

i=0 is MT
n .

We will understand the matrix Ci,j(λ) as the matrix of control points with
respect to the basis {Hn

i (t)}n
i=0 of the polynomial function

fi,j(u, v) = Hn
i (u)Hn

j (v) + λHn
i (u)Hn

n−1(v) = Hn
i (u)

(

Hn
j (v) + λHn

n−1(v)
)

=
(

n

i

)

(u− 1)i
((

n

j

)

(v − 1)j + λn(v − 1)n−1
)

.

Note that the expression of fi,j(u, v) in the usual polynomial basis has no
terms in unvk, nor in ukvn, for any k ∈ {0, 1, . . . , n}. Moreover,

fi,j(u, 0) =

(

n

i

)

(u− 1)i

((

n

j

)

(−1)j + λn(−1)n−1

)

.

If we choose λj = 1
n

(

n

j

)

(−1)n−j then fi,j(u, 0) = 0. Therefore, fi,j(u, v) has no

terms in ukv0, for any k ∈ {0, 1, . . . , n}.

That means that the product MnCi,j(λj)M
T
n , recall that it represents the

matrix of coefficients in the usual power basis of fi,j(u, v), is a matrix with
three of the border lines vanishing, i.e., a matrix of the kind shown in the next
scheme (Scheme 39, left):



































0 ∗ ∗ . . . ∗ 0

0 ∗ ∗ . . . ∗ 0

0 ∗ ∗ . . . ∗ 0
...

...
...

. . .
...

...

0 ∗ ∗ . . . ∗ 0

0 0 0 . . . 0 0





































































0 0 0 . . . 0 0

∗ ∗ ∗ . . . ∗ 0

∗ ∗ ∗ . . . ∗ 0
...

...
...

. . .
...

...

∗ ∗ ∗ . . . ∗ 0

0 0 0 . . . 0 0



































(39)
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Analogously for the matrix Di,j(µ). There is a µi such that the product
MnDi,j(µi)M

T
n , is a matrix of the same kind, but with a different non vanishing

border line (Scheme 39, right).

Finally, note that, since the matrix Mn is invertible, the product Ci,j(λj)ADi,j(µi)
vanishes if and only if the same happens for the product

MnCi,j(λj)ADi,j(µi)M
T
n = (MnCi,j(λj)M

T
n )R(MnDi,j(µi)M

T
n ).

Now, it is easy to check that



































0 ∗ ∗ . . . ∗ 0

0 ∗ ∗ . . . ∗ 0

0 ∗ ∗ . . . ∗ 0
...

...
...

. . .
...

...

0 ∗ ∗ . . . ∗ 0

0 0 0 . . . 0 0





































































r00 r01 r02 . . . r0n−1 r0n

r10 0 0 . . . 0 r1n

r20 0 0 . . . 0 r2n

...
...

...
. . .

...
...

rn−1,0 0 0 . . . 0 rn−1,n

rn0 rn1 rn2 . . . rn,n−1 rnn





































































0 0 0 . . . 0 0

∗ ∗ ∗ . . . ∗ 0

∗ ∗ ∗ . . . ∗ 0
...

...
...

. . .
...

...

∗ ∗ ∗ . . . ∗ 0

0 0 0 . . . 0 0



































=



































0 0 0 . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . 0 0



































2

Finally, the proof of Th. 2:

Proof (Th. 2): Let us consider the net of control points of a polynomial load
{ri,j}

n
i,j=0 and let us rewrite the polynomial load in terms of the usual basis

n
∑

i,j=0

Bn
i (u)Bn

j (v)ri,j = p(u, v) =
n
∑

i,j=0

pi,j

i!j!
uivj.

Recall that coefficients pi,j can be computed from the control points ri,j using
linear expressions.

According to Corollary 1, the determination of the exterior control points is
equivalent to solving the linear system given by Eqs. (37) after substituting
the coefficients pi,j in terms of the ri,j. This linear system has 4n equations
and the same number of unknowns, the 4n boundary control points. In order
to prove that the linear system has a solution and it is unique, it is enough
to check that when the interior control points are all zero, then the trivial
solution is the only possible solution.

Comparing the matrix in Lemma 4 with the matrix (38) we get that coefficients
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in the right bottom corner vanish:

pi,j 0 1 . . . n− 4 n− 3 n − 2 n − 1 n

0 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n − 4 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

n − 3 ∗ ∗ . . . ∗ ∗ ∗ 0 0

n − 2 ∗ ∗ . . . ∗ ∗ ∗ 0 0

n − 1 ∗ ∗ . . . ∗ 0 0 0 0

n ∗ ∗ . . . ∗ 0 0 0 0

(40)

Now, Lemma 4 implies that

pn−3,n−3 = pn−2,n−3 = pn−3,n−2 = pn−2,n−2 = 0.

pi,j 0 1 . . . n− 4 n− 3 n − 2 n − 1 n

0 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n − 4 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

n − 3 ∗ ∗ . . . ∗ 0 0 0 0

n − 2 ∗ ∗ . . . ∗ 0 0 0 0

n − 1 ∗ ∗ . . . ∗ 0 0 0 0

n ∗ ∗ . . . ∗ 0 0 0 0

(41)

Proposition 2 implies that

pn−5,n = pn−4,n = pn−5,n−1 = pn−4,n−1 = 0

pn,n−5 = pn,n−4 = pn−1,n−5 = pn−1,n−4 = 0.

pi,j 0 1 . . . n− 4 n− 3 n − 2 n − 1 n

0 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n − 4 ∗ ∗ . . . ∗ ∗ ∗ 0 0

n − 3 ∗ ∗ . . . ∗ 0 0 0 0

n − 2 ∗ ∗ . . . ∗ 0 0 0 0

n − 1 ∗ ∗ . . . 0 0 0 0 0

n ∗ ∗ . . . 0 0 0 0 0

(42)

After a finite process, we get that all pi,j = 0, and so p(u, v) = 0. The only
possible solution is the trivial one. This shows that the linear system we have
to solve is compatible and determined; therefore, there is a solution and it is
unique. 2
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9.2 Proof of Th. 3

Let us see what happens for an analogous problem in terms of Bézier curves.
We will need two lemmas:

Lemma 5 If a Bézier curve of degree n− 2, α = B[P0, P1, . . . , Pn−2], can be
written as α = B[Q0, 0, . . . , 0, Qn] when it is considered as a Bézier curve of
degree n, then α ≡ 0.

Proof: The well-known formulas of raising the degree of a Bézier curve say
that the relation between the control points {Qi}

n
i=0 and {Pi}

n−2
i=0 is

Qi =
1

n(n− 1)
((n− i)(n− i− 1)Pi + 2i(n− i− 1)Pi−1 + i(i + 1)Pi−2) ,

for i = 0, 1, . . . , n, where P−1 = P−2 = Pn−1 = Pn = 0.

Conditions Qi = 0 for i = 1, 2, . . . , n − 1 can be written as a homogeneous
linear system of n− 1 equations with n− 1 unknowns {Pi}

n−2
i=0 . The matrix of

coefficients, Mn−1 = (mij)
n−1
i,j=1 is given by

mii = 2i(n− i− 1), mi+1,i = (n− i)(n− i− 1), mi,i+1 = i(i + 1),

and the rest of entries null. Now it is just a matter of computation to check
that det Mn−1 6= 0. In fact det Mn = n(n−1)

2
det Mn−1 and det M1 = 1. 2

Note that the matrix of coefficients only has the three main diagonal lines
with no null entries.

Lemma 6 If a Bézier curve of degree n, α = B[0, P1, . . . , Pn−1, 0], is such
that α′′ ≡ 0, then α ≡ 0.

Proof: Since the control points of α′′ are n(n − 1)(Pi − 2Pi+1 + Pi+2), with
P0 = Pn = 0, then condition α′′ ≡ 0 can be written as a homogeneous linear
system of n − 1 equations with n − 1 unknowns whose matrix is the regular
Toeplitz matrix T n−1

1,−2,1. 2

Lemma 7 Let α = B[0, P1, . . . , Pn−1, 0] be a Bézier curve of degree n, such
that α′′ = B[Q0, 0, . . . , 0, Qn], then α ≡ 0.

Proof: The second derivative α′′ is a Bézier curve of degree n − 2. If their
control points, when α′′ is considered as a Bézier curve of degree n, are of the
kind, Q0, 0, . . . , 0, Qn, then by Lemma 5, we get α′′ ≡ 0. Applying now Lemma
6, we get α ≡ 0. 2
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In this case it is also possible to reduce the problem to show that the unique
solution of some homogeneous system of linear equations is the trivial one.
The associated matrix of coefficients is the product of the matrices Mn−1 and
T n−1

1,−2,1. Now, it is a matrix that has the five main diagonal lines with no null
entries.

It is not difficult to check the next statement for Bézier curves again.

Lemma 8 Let α = B[0, 0, P2, . . . , Pn−2, 0, 0] be a Bézier curve of degree n,
such that α(iv) = B[Q0, Q1, 0, . . . , 0, Qn−1, Qn], then α ≡ 0.

Its proof is again a consequence of factorizing the matrix of coefficients associ-
ated to the problem as a product of two regular matrices. The first associated
to the raising of degree of Bézier curves. The second, a Toeplitz matrix asso-
ciated to the incremental operator applied to control points. The difference,
with respect to the previous lemmas, is that now the non null main diagonals
in the two factor matrices is five, and in the matrix of coefficients it is nine.

The analogous result for Bézier surfaces and for the biharmonic operator can
be stated as follows:

Lemma 9 Let f and p be polynomial functions of degree n in u and v with
{Pij}

n
i,j=0 and {Rij}

n
i,j=0, respectively, the associated control points verifying

(1) Pij = 0 if i, j /∈ {2, . . . , n− 2},
(2) Rij = 0 if i, j ∈ {2, . . . , n− 2}, and
(3) ∆2f = p

then f = p ≡ 0.

We have checked using a symbolic program (Mathematica) that the result is
true for degrees n ≤ 20. Nevertheless, we have been unable to find a general
and simple proof for Lemma 9.

Finally, the proof of Th. 3

Proof (Th. 3): First of all, note that uniqueness is a consequence of Lemma
9. We will now prove the existence.

Let f0 be the unique polynomial solution of ∆2f = 0 with the same boundary,
and let {Qi,j}

n
i,j,=0 be its control net. So the problem can be reduced to the

following situation:
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Finding an admissible load and a polynomial solution of ∆2f = pa whose
boundary and adjacent to the boundary control points are

0 0 0 . . . 0 0 0

0 P1,1 −Q1,1 P1,2 − Q1,2 . . . P1,n−2 −Q1,n−2 P1,n−1 −Q1,n−1 0

0 P2,1 −Q2,1 ∗ . . . ∗ P2,n−1 −Q2,n−1 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 Pn−2,1 −Qn−2,1 ∗ . . . ∗ Pn−2,n−1 −Qn−2,n−1 0

0 Pn−1,1 −Qn−1,1 Pn−1,2 − Qn−1,2 . . . Pn−1,n−2 −Qn−1,n−2 Pn−1,n−1 −Qn−1,n−1 0

0 0 0 . . . 0 0 0

(43)

We only have to consider a load of the kind (5) with unknown boundary
control points

∗ ∗ ∗ . . . ∗ ∗ ∗

∗ R1,1 R1,2 . . . R1,n−2 R1,n−1 ∗

∗ R2,1 0 . . . 0 R2,n−1 ∗

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

∗ Rn−2,1 0 . . . 0 Rn−2,n−1 ∗

∗ Rn−1,1 Rn−1,2 . . . Rn−1,n−2 Rn−1,n−1 ∗

∗ ∗ ∗ . . . ∗ ∗ ∗

(44)

Theorem 2 implies that, in order for pa to be admissible, the boundary control
points are totally determined as linear combinations of the adjacent to the
exterior ones.

For a given admissible load, pa, and taking zero as the boundary, there is a
unique solution of ∆2f = pa. Let us denote it by fpa

. The map, M : (R3)4n−8 →
(R3)4n−8, that assigns to any configuration of the kind (44) of pa the adjacent to
the boundary control points of the unique solution fpa

is a linear map. Indeed,
the adjacent to the boundary control points of fpa

are a linear combination
of the adjacent to the boundary control points of pa (bear in mind that the
boundary control points of pa are also a linear combination of the adjacent to
the boundary control points of pa).

Finally, uniqueness implies that the linear map M is a bijective map. There-
fore, for any boundary configuration there always exists an admissible load of
the kind (44). 2
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product Bézier surface patches, preprint (2006).

[5] V. V. Meleshko, Biharmonic problem in a rectangle, Applied Scientific Research
58, 217–249 (1998).

[6] V. V. Meleshko, A. M. Gomilko & A. A. Gourjii Normal reactions in a clamped

elatisc rectangular plate, J. of Engineering Mathematics 40, 377–398 (2001).
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