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Abstract

In a paper by E. Salkowski ([10]) published one century ago, a family of curves with
constant curvature but non-constant torsion was defined. We characterize them as
space curves with constant curvature and whose normal vector makes a constant
angle with a fixed line. The relation between these curves and rational curves with
double Pythagorean hodograph is studied. A method to construct closed curves,
including knotted curves, of constant curvature and continuous torsion using pieces
of Salkowski curves is outlined.

Key words: Lancret’s theorem, closed (composite) space curve, constant
curvature, Salkowski curve.

1 Introduction

Circles and circular helices are curves with constant curvature and torsion.
Salkowski curves are, to the best of the author’s knowledge, the first known
family of curves with constant curvature but non-constant torsion with an
explicit parametrization. They were defined in an earlier paper [10] and re-
trieved, as an example of tangentially cubic curves, in a first version of [8],
available on the Internet [9], but not included in the final published version.

We first obtain a geometric characterization of Salkowski curves. Among all the
space curves with constant curvature, Salkowski curves are those for which the
normal vector maintains a constant angle with a fixed direction in the space.
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The reader will undoubtedly recall the analogous defining condition of general
helices and Lancret’s theorem (see Chapter 23 of [2]).

In some recent papers, [6,7], arcs of circular helices have been used to build
closed curves or to show how to realize all knot types as C2 smooth curves of
constant curvature. Nevertheless, in both papers, the torsion function of the
curves constructed by gluing arcs of circular helices (including circular arcs as
a special case) is a discontinuous function. Introducing Salkowski curves allows
enough freedom to solve this problem. The solution is based on the fact that
the torsion of Salkowski curves is not constant, in fact, it is a monotone func-
tion. So, they can be used to join arcs of circular helices with different torsions.
We will construct some examples of closed curves with constant curvature and
continuous torsion.

Finally, some Salkowski curves can be reparametrized so that the resulting
curve is a rational curve with a double Pythagorean hodograph (see [1,3] for
the definition of polynomial curves with a double Pythagorean hodograph
and Def. 2 for the extension of this notion to the rational case). This result
is partially related with what happens with general polynomial helices: any
polynomial curve whose tangent vector makes a constant angle with a fixed
line is a Pythagorean curve.

A last appendix is devoted to the definition of the reciprocal class of space
curves with constant torsion. We have called them, anti-Salkowski curves.

2 Salkowski curves

First of all, note that in the study of curves with constant curvature, thanks
to a change of scale, we can suppose that κ ≡ 1.

Second, our convention for the sign of the torsion is τ =<
−→
b
′
,−→n >.

In a paper published one century ago, [10], on the transformation of space
curves, the author devotes a section to the study of the particular case of
space curves with constant curvature:

Definition 1 Salkowski curves. (See [10] p. 538.)
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For any m ∈ R with m 6= ± 1√
3
, 0, let us define the space curve

γm(t) = 1√
1+m2

(
− 1−n

4(1+2n)
sin((1 + 2n)t)− 1+n

4(1−2n)
sin((1− 2n)t)− 1

2
sin t,

1−n
4(1+2n)

cos((1 + 2n)t) + 1+n
4(1−2n)

cos((1− 2n)t) + 1
2
cos t,

1
4m

cos(2nt)
)
,

(1)

with n = m√
1+m2 .

The geometric elements of the Salkowski curve γm are the following (see [10],
Appendix I.):

(1) ||γ′m(t)|| = cos(nt)√
1+m2 , so the curve is regular in ]− π

2n
, π

2n
[,

(2) κ(t) ≡ 1 and τ(t) = tan(nt),

and the Frenet’s frame is

−→
t (t) = −

(
cos(t) cos(nt) + n sin(t) sin(nt), cos(nt) sin(t)− n cos(t) sin(nt), n

m
sin(nt)

)
,

−→n (t) = n
(

sin(t)
m

,− cos(t)
m

,−1
)
,

−→
b (t) =

(
n cos(nt) sin(t)− cos(t) sin(nt),−n cos(t) cos(nt)− sin(t) sin(nt), n

m
cos(nt)

)
.

(2)
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Figure 1. Some Salkowski curves with κ ≡ 1 for m = 1
3
, 1

5
, 1

8
, 1

16
, plotted for

t ∈ [− π
2n

, π
2n

].

3 A characterization of Salkowski curves

From the expression of the normal vector, see Eqs. (2), one can see that the nor-
mal indicatrix, or nortrix, of a Salkowski curve describes a parallel of the unit
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sphere. The angle between the normal vector and the fixed vector (0, 0,−1) is
φ = arccos n.

This fact is reminiscent of what happens with another important class of
curves, the general helices. Let us recall that general helices are those curves
whose tangent vectors make a constant angle with a fixed line in space. Such
a condition implies that the tangent indicatrix, or tantrix, describes a parallel
in the unit sphere and that the quotient τ

κ
is constant (Lancret’s Theorem).

Therefore, it is natural to study a statement like Lancret’s theorem, where
the tantrix has been substituted by the nortrix. The analogous to Lancret’s
Theorem would give a relation between curvature and torsion. In our situation,
we do not need such a general result. We will particularize the statement to
the subclass of curves with constant curvature.

Lemma 1 Let α : I → R3 be a curve that is parametrized by arc-length with
κ ≡ 1. Its normal vectors make a constant angle, φ, with a fixed line in space
if and only if τ(s) = ± s√

tan2 φ−s2
.

Remark 1 If the angle, φ, is zero, then the normal vector is constant and the
curve is a straight line, in contradiction with the fact that κ ≡ 1. If the angle
is π

2
, then the torsion is constant, and since κ ≡ 1, the curve is a circular

helix.

Proof: (⇒) Let
−→
d be the unitary fixed direction which makes a constant

angle, φ ∈ ]0, π
2
[, with the normal vector −→n . Therefore

−→n · −→d = cos φ. (3)

Deriving Eq. (3) and using Frenet’s formulae, we get

(−−→t − τ
−→
b ) · −→d = 0. (4)

Therefore, −→
t · −→d = −τ

−→
b · −→d .

If we put b =
−→
b · −→d , we can write

−→
d = −τb

−→
t + cos φ−→n + b

−→
b .

From ||−→d || = 1 we get b = ± sin φ√
1+τ2 . Therefore, vector

−→
d can be written as

−→
d = ∓ τ√

1 + τ 2
sin φ

−→
t + cos φ−→n ± sin φ√

1 + τ 2

−→
b . (5)
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If we derive Eq. (4) again, we obtain

(
τ̇
−→
b + (1 + τ 2)−→n

)
· −→d = 0.

Using Eq. (5) we get the differential equation

± tan φ
τ̇

(1 + τ 2)
3
2

+ 1 = 0. (6)

By integration we get

± tan φ
τ

(1 + τ 2)
1
2

+ s + c = 0, (7)

where c is an integration constant. The integration constant can be subsumed
thanks to a parameter change s → s − c. Finally, to solve Eq. (7) with τ as
unknown let us write it as

± tan φ
τ

(1 + τ 2)
1
2

= −s. (8)

If we take squares at both sides of Eq. (8), the resulting equation can be easily
solved in τ and we get the desired result.

(⇐) Suppose that τ = ± s√
tan2 φ−s2

and let us put

b = ∓ sin φ√
1 + τ 2

= ∓ sin φ√
1 + s2

tan2 φ−s2

= ∓ cos φ
√

tan2 φ− s2,

where we are assuming that when τ has the positive (negative) sign, then b
gets the negative (positive) sign. Thus, τb = −s cos φ.

We will prove that the expression

−→
d = −τb

−→
t + cos φ−→n + b

−→
b = cos φ

(
s
−→
t +−→n ∓

√
tan2 φ− s2−→b

)

defines a constant vector. Indeed, applying Frenet’s formulae

−̇→
d = cos φ


−→t + s−→n −−→t ∓ s√

tan2 φ− s2

−→
b ± s√

tan2 φ− s2

−→
b ∓ (±s)−→n


 = 0.

Therefore,
−→
d is constant and

−→
d · −→n = cos φ. 2
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Once the intrinsic or natural equations of a curve have been determined, the
next step is to integrate Frenet’s formulae with κ(s) ≡ 1 and

τ(s) = ± s√
tan2 φ− s2

= ±
s

tan φ√
1− ( s

tan φ
)2

= ± tan(arcsin(
s

tan φ
)). (9)

Theorem 1 The space curves with κ ≡ 1 and such that their normal vectors
make a constant angle with a fixed line are, up to rigid movements in space
or up to the antipodal map, Salkowski curves (see Def. 1).

Proof: As it has been said after Def. 1, the arc-length parameter of Salkowski
curves is s =

∫ t
0 ||γ′(u)|| du = 1

m
sin(nt). Therefore, t = 1

n
arcsin(ms). In terms

of the arc-length curvature and torsion are then

κ(s) ≡ 1, τ(s) = tan(arcsin(ms)),

the same intrinsic equations, with m = 1
tan φ

and n = cos φ (compare with the

positive case in Eq. (9)), as the ones shown in Lemma 1.

For the negative case in Eq. (9), let us recall that if a curve α has torsion τα,
then the curve β(t) = −α(t) has as torsion τβ(t) = −τα(t), whereas curvature
is preserved.

Therefore, the Fundamental Theorem of curves in space states in our situation
that, up to rigid movements or up to the antipodal map, p → −p, the curves
we are looking for are Salkowski curves. 2

4 Salkowski curves and rational double Pythagorean hodograph
curves

The notion of a Pythagorean hodograph (PH) curve has been extensively stud-
ied in recent years. Its relation with generalized helices has been established
by Farouki and co-workers (see [2]). Double PH curves (see [1,3,4]) are those
polynomial curves for which not only the tangent vector is again a rational
vectorial function but the whole Frenet’s frame is rational.

The generalization of the PH condition to the rational case can be found in
Chapter 20 of [2]. The extension to the definition of rational double PH curves
is easy:

Definition 2 A rational curve α : I → R3 is said to be a rational double
Pythagorean hodograph curve (rational DPH curve) if both ||α′|| and ||α′∧α′′||
are rational functions.
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Salkowski curves provide a class of examples of rational DPH curves which are
not generalized helices. For some values of the parameter m and under suit-
able reparametrization, the corresponding Salkowski curve admits a rational
expression which is a rational double Pythagorean hodograph curve.

Lemma 2 Let α : R→ R3 be a rational PH curve. If, in addition, its normal
vectors make a constant angle with a fixed line, then the curve is a rational
DPH.

Proof: As is well known,

−→
t =

α′

||α′|| ,
−→
b =

α′ ∧ α′′

||α′ ∧ α′′|| ,

and −→n =
−→
b ∧−→t . If for some unitary vector,

−→
d , we have −→n · −→d = a, a being

constant, then

||α′ ∧ α′′|| = det(α′ ∧ α′′, α′,
−→
d )

a||α′|| .

Since, by hypothesis, ||α′|| is a rational function, so is ||α′ ∧ α′′||. 2

The reciprocal is not true. In [4] (Example 7) one can find the following ex-
ample of a non-helical double PH curve

(−t
2 − t3

3
− t

4
+

11

5
t
5 − 5

9
t
6 − 22

63
t
7
,−2t− t

2 − 4t
3

+ t
4 − 26

5
t
5

+
34

3
t
6 − 124

21
t
7
,− 2

3
t
3 − 4

3
t
4

+
2

5
t
5

+ 2t
6 − 4

3
t
7
)

whose nortrix does not describe a parallel in the unit sphere.

Proposition 1 For each a ∈ Z with |a| > 2, let ma = 1√
a2−1

. Then the

Salkowski curve βa(t) := γma(2a arctan(t)) is a rational DPH curve.

Proof: First, we have to show that βa is a rational curve. Note that since√
1+m2

a

ma
= a then n = 1

a
and 1 ± 2n = 1 ± 2

a
. Therefore, all the trigonometric

functions in the parametrization (1), when evaluated in 2a arctan(t), become
rational functions. Indeed, the three coordinates of βa(t) are combinations of

cos(4 arctan(t)) =
1− 6t2 + t4

(1 + t2)2
, sin(4 arctan(t)) = −4t(t2 − 1)

(1 + t2)2

and of
cos(2a arctan(t)), sin(2a arctan(t))

which can also be written as rational functions when a ∈ Z. In fact, suitable
recursive trigonometric formulae allow us to reduce cos(a (2 arctan(t))) and
sin(a (2 arctan(t))) into the simplest terms of the kind cos(2 arctan(t)) and
sin(2 arctan(t)).

Let us check that the curve βa is a curve with a Pythagorean hodograph. Since
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||γ′m(u)|| = cos(nu)√
1+m2 then under a change of the kind u = u(t) = 2a arctan(t),

with u′(t) = 2a
1+t2

we will have

||β′a(t)|| = −
√

a2 − 1

a

t2 − 1

t2 + 1
u′(t).

Therefore, the curve βa is PH. By Lemma 2, the curve is double PH. 2

For example, for a = 3, ma = 1
2
√

2
and the new parametrization of the

Salkowski curve is

(
−4
√

2t(15− 20t2 + 58t4 − 20t6 + 15t8)

15(1 + t2)5
,−16

√
2(−1 + t2)5

15(1 + t2)5
,
2(1− 6t2 + t4)

3(1 + t2)2

)
.

5 Closed space curves of constant curvature consisting of arcs of
Salkowski curves and of circular helices

In some recent papers arcs of curves with constant curvature and constant
torsion, that is, of circular helices, have been used to build closed curves [6]
or to show how to realize all knot types as C2 smooth curves of constant
curvature [7].

Nevertheless, in both these papers, the torsion function of the curves con-
structed by gluing arcs of circular helices (including circular arcs as a special
case) is a discontinuous function. The introduction of Salkowski curves allows
enough freedom to solve this problem. We will see four examples of closed
curves, one of them knotted, with constant curvature and continuous torsion.

The curves we will construct throughout this section are made by gluing pieces
of curves in such a way that, at the junction points, the Frenet’s elements
(curvature, torsion and frame) will be the same. Therefore, the resulting curves
are not directly C3 smooth curves but of geometric continuity of order 3
(G3). To get C3 smooth curves, all we have to do is to reparameterize all the
pieces by arc length. Recall that the change of parameter in Salkowski curves
is t = 1

n
arcsin(ms). Thus, any of the curves so constructed can be easily

reparameterized to get a C3 smooth curve.

Finally, it should be mentioned that in [5] it is shown that any space curve
can be approximated by a C∞ curve of constant curvature.
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5.1 Closed curves

In paper [6] it is shown how to build closed curves from pieces of circular he-
lices. The method shown in the cited paper uses the property verified by cir-
cular helices: their tangent vector makes a constant angle with a fixed line. So,
the tantrix of a circular helix describes a parallel in the unit sphere. Therefore,
we can choose a closed curve in the unit sphere made with pieces of parallels as
a tantrix of a possible closed curve in space made by pieces of circular helices.

The same method is useful when we replace circular helices by Salkowski
curves, and the tantrix by the nortrix.

The intersection between each face of a regular polyhedron and the sphere
defines a parallel. Thanks to a spatial rotation, we can suppose that such a
parallel is horizontal. Therefore there is a Salkowski curve γm whose nortrix
describes the horizontal parallel.

Figure 2. The intersection between a sphere and a cube makes it possible to
select a continuous nortrix.

We will work with two simple constructions using a cube. The parallels defined
as the intersection of the faces of the cube and the unit sphere are all of latitude
π
4

(see Fig. 2). Therefore, let us consider the piece of the Salkowski curve γ1

in the interval [−π
2
, π

2
]. Note that the torsion of the Salkowski curve at π

2
is

τ0 := τ(π
2
) = tan( π

2
√

2
) and, analogously, τ(−π

2
) = −τ0.

Let a = γ1|[−π
2
, π
2
] and b = γ−1|[−π

2
, π
2
]. It is possible to join four basic pieces,

abab, to form a closed curve (see Fig. 3, left). The junction point in ab has
τ0 as the torsion, whereas the torsion at the junction point in ba is −τ0.
Therefore, the torsion function of the closed curve is continuous. The Frenet’s
frames at the junction points are the same. Moreover, since the curvature is
constant, then its derivative vanishes. Therefore the closed curve has geometric
continuity of order 3.
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Figure 3. Left, a closed curve with κ = 1 and continuous torsion represented
as a tubular surface to help the reader to visualize it. Right, its nortrix. Note

that the nortrix is made of pieces of circular arcs.

Figure 4. Left, another example of a closed curve with κ = 1 and continuous
torsion also represented as a tubular surface. Right, its nortrix, a part of the

intersection between a cube and the unit sphere.

In the previous example the junction points are points with non-vanishing
torsion. An alternative construction consists in using the points with vanishing
torsion as some of the junction points. Let c = γ1|[0, π

2
] and d = γ−1|[−π

2
,0]. Then

cdcdcd (see Figure 4) is again a closed curve. Note that the union cd is at a
point with torsion τ0 whereas the union dc is at a point with vanishing torsion.

5.2 A constant curvature knot

In paper [7] curves are defined by joining pieces of circular helices or of circles
and maintaining the same Frenet’s frame at junction points. In that work this
type of procedure is called “splicing”.
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Here we will repeat the same procedure but now substituting pieces of Salkowski
curves for circular pieces, so that we can continuously join two pieces of cir-
cular helices of different torsion.

Let us recall the explicit parametrization of a circular helix. Given a, b ∈ R,
with a > 0,

α(t) = (a cos t, a sin t, bt), t ∈ R
is the usual parametrization of a circular helix with constant curvature κ ≡

a
a2+b2

and constant torsion τ ≡ − b
a2+b2

. Therefore, given any r ∈ R, the circular

helix defined by the parameters a = 1
1+r2 and b = r

1+r2 is of constant curvature
1 and torsion r.

As before, let a = γ1|[−π
2
, π
2
] and b = γ−1|[−π

2
, π
2
]. Moreover, let `p (rp) be the

circular helix with curvature 1, and torsion τ0 (−τ0) defined for t ∈ [0, 2pπ].

In Fig. 5, left, the closed curve is a` 1
2
br 1

2
a` 1

2
br 1

2
. In Fig. 5, right, the curve is

a`7br6a`6br4a`2br4a`5br4a`3br2a`1br4.

Figure 5. Left: Another curve of constant curvature built from the curve
shown in Fig. 4 but with the addition of some pieces of circular helices.
Right: A C3 model of a knot as a curve of constant curvature. Note that
after a ‘red’ piece of a Salkowski curve, the circular helix, in ‘blue’, is of
negative (and constant) torsion. Reciprocally, after a ‘yellow’ piece, the

circular helix, in ‘green’, has a positive value.

Both curves are also represented as tubular surfaces to help the reader to
visualize the pieces they are made of and the crossings of the knot curve.
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6 Conclusions

The closed curves we have seen in the previous sections, including the knotted
one, are just examples of the possibilities offered by the use of Salkowski
curves. A systematic study of the construction of closed curves and of models
of knotted curves will be developed in the future.

We have shown that a reparametrization of some Salkowski curves gives rise to
double PH curves. Therefore we have a new kind of double PH curves defined
by geometric conditions, that is, constant curvature and normal vector making
a constant angle with a fixed direction.

It has to be said that, in spite of their clear geometrical interpretation, the use
of rational Salkowski curves in practical applications could be difficult because
these curves depend on a parameter a (see Prop. 1), which can only vary in
Z.

Acknowledgement. The author wishes to express his gratitude to the refer-
ees. Their insightful comments and suggestions have contributed to improve
the contents of the paper and to correct some mistakes in the original version.

7 Appendix. A family of curves with constant torsion and non-
constant curvature

As an additional material we will show in this appendix how to build, from a
curve of constant curvature, another curve of constant torsion.

Let us recall that a curve α : ]a, b[→ R3, is 2-regular at a point t0 if α′(t0) 6= 0
and if κα(t0) 6= 0.

Lemma 3 Let α : I → R3 be a regular curve parametrized by arc-length, with
curvature κα, torsion τα, and Frenet’s frame {−→t α

,−→n α,
−→
b

α}. Let us consider

the curve β(s) =
∫ s
s0

−→
b

α
(u) du. Then at a parameter s ∈ I such that τα(s) 6= 0,

the curve β is 2-regular at s and

κβ = |τα(s)|, τβ(s) = κα(s),

−→
t

β
=
−→
b

α
, −→n β = −→n α,

−→
b

β
= −−→t α

.

Proof: In order to obtain the tangent vector of β let us compute β̇(s) =−→
b

α
(s). Since ||−→b α

(s)|| = 1, then β is a curve parametrized by arc-length and
−→
t

β
=
−→
b

α
.
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If we derive the tangent vector we obtain
−̇→
t

β

=
−̇→
b

α

= τα−→n α. Therefore

κβ(s) = ||−̇→t
β

(s)|| = |τα(s)| and −→n β = −→n α.

The remaining part of the proof can be easily deduced using the same tech-
niques. 2

Let us apply the previous result to the Salkowski curve γm defined in Eq. (1).
From the expression of the binormal vector in Eq. (2) and from the fact that

∫ −→
b

γm

(s) ds =
∫ −→

b
γm

(t)||γ′m(t)|| dt,

we have

βm(t) =
(

1
2(4n2−1)m

(n(1− 4n2 + 3 cos(2nt)) cos(t) + (2n2 + 1) sin(t) sin(2nt),

1
2(4n2−1)m

(n(1− 4n2 + 3 cos(2nt)) sin(t)− (2n2 + 1) cos(t) sin(2nt),

n2−1
4n2 (2nt + sin(2nt))

)
,

(10)

where, as for Salkowski curves, n = m√
1+m2 . Let us call these curves by the

name anti-Salkowski curves. The presence of the non-trigonometric term 2nt
in the third component of βm(t) makes that the change of variable studied in
Section 3 for Salkowski curves does not work for anti-Salkowski curves.

Applying Lemma 3 we get the following result:

Proposition 2 The curves βm in Eq. (10) are curves of constant torsion
equal to 1.

Theorem 2 The space curves with τ ≡ 1 and such that their normal vectors
make a constant angle with a fixed line are the anti-Salkowski curves defined
in Eq. (10).

Proof: Let α be a curve with τ ≡ 1 and let β(s) =
∫ s
s0

−→
b

α
(u) du. By Lemma 3,

β is a curve with constant curvature κ ≡ 1 and with the same normal vector.
Therefore, β is a Salkowski curve and α is an anti-Salkowski curve. 2
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