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Abstract. We give a method to generate polynomial approximations to
constant mean curvature surfaces with prescribed boundary.

1 Introduction

Surfaces with constant mean curvature (CMC-surfaces) are the mathematical
abstraction of physical soap films and soap bubbles, and can be seen as the
critical points of area for those variations that left the enclosed volume invariable.

In general, the characterization of “area minimizing under volume constraint”
is no longer true from a global point of view, since they could have self-inter-
sections and extend to infinity. But locally, every small neighborhood of a point
is still area minimizing while fixing the volume which is enclosed by the cone
defined by the neighborhood’s boundary and the origin.

An exhaustive discussion of the existence of surfaces of prescribed constant
mean curvature spanning a Jordan curve in R3 can be found in [Str88]. Given
H ∈ R the functional DH is defined as follows

DH(−→x ) =D(−→x ) + 2HV (−→x )

=
1
2

∫

T

(‖−→x u‖2 + ‖−→x v‖2
)

dudv +
2H

3

∫

T
< −→x u ∧ −→x v,−→x > dudv.

If an isothermal patch is an extremal of the functional DH , then it is a CMC-
surface. The “volume” term, V (−→x ), measures the algebraic volume enclosed in
the cone segment consisting of all lines joining points −→x (u, v) on the surface
with the origin. The first term, D(−→x ), is the Dirichlet functional.

We will give a method to generate Bézier extremals of DH , for prescribed
boundary curves and constant mean curvatures. Our method lets to obtain ap-
proximations to CMC-surfaces, since we have considered the problem of mini-
mizing this functional restricted to the space of polynomials.

Moreover, we will consider the C1 problem, that is, we give a way to generate
a polynomial approximation to CMC-surface once the boundary curves and the
tangent planes along them have been prescribed.



2 Existence of triangular Bézier surfaces of prescribed
constant mean curvature

Here, we are not working with parametrizations, we are working instead with
triangular control nets. So, our aim is to find the minimum of the real function
P → DH(−→x P), −→x P being the triangular Bézier patch associated to the control
net P.

The Dirichlet functional, D, has a minimum in the Bézier case due to the
following facts:

First, it can be considered as a continuous real function defined on R
3(n−1)(n−2)

2 ,
since there are (n−1)(n−2)

2 interior control points which belong to R3.
Second, the functional is bounded from below.
Third, the infima is attained: when looking for a minimum, we can restrict

this function to a suitable compact subset.
On the other hand, the function assigning the value V (−→x P) to each control

net, P, with fixed boundary control points, has no global minimum. If that a
minimum existed, since spatial translations do not affect the curvature of the
surface, we could suppose that the origin is located far enough away from the
surface so that the control net is enclosed in a half-space passing through the
origin. Let us move an interior control point, PI0 , toward the origin. Then, a well-
known property of Bézier surfaces states that all the points of −→x (u, v) change in
a parallel direction with intensity Bn

I0
(u, v) . Then, since the new cone segment

is totally included in the initial one, its volume decreases.
Now, let us consider the CMC-functional,

DH(−→x ) = D(−→x ) + 2HV (−→x ).

As we said, the function, P → D(−→x P), for control nets with fixed boundary
always has a minimum and, as we have just seen, the function P → V (−→x P), never
has a minimum. Therefore, by using the constant H to balance both functions
we can say that the function, P → DH(−→x P), will have a minimum only for
H ∈ [a,−a] for some constant a ∈ R. It should be noted that when H = 0, DH

is reduced to the Dirichlet functional, D, and then there is a minimum, whereas
when H is too big, the main term in DH is V , and therefore the minimum does
not exist. The symmetry of the interval, [a,−a], is a consequence of the fact that
reversing the orientation of a surface means a change in the sign of the mean
curvature.

Let us illustrate by means of an example why the possibility of finding an
extremal of the CMC-functional only exists if the prescribed mean curvature, H,
belongs to a symmetric interval [−a, a]. The value of a depends on the boundary
control points. A detailed explanation about the existence conditions of CMC-
surfaces suited to a boundary and this dependency can be found in [Str88].

Example 1. Let us consider a triangular control net of degree 4 and prescribe
the border control points along a planar equilateral triangle. Moreover, in or-
der to reduce the number of variables in this example we will use a symmetric



configuration for the three interior control points. These three interior control
points, that is nine degrees of freedom, are reduced to a pair by the following
symmetric restriction on them:

P112 =
(

a cos
4π

3
, a sin

4π

3
, b

)
P121 =

(
a cos

2π

3
, a sin

2π

3
, b

)
P211 = (a, 0, b) .

Fig. 1. A symmetric configuration of the control net will simplify the computation of
an extremal of DH .

The functional is reduced to a function fH(a, b)

DH(−→x ) = fH(a, b) =
1

30800

(
46585 + 24640b2 + 8598

√
3bH

+ 16a2(385 + 18
√

3bH) + 8a(−385 + 312
√

3bH)
)

.

Then, to find the critical points of fH (a, b) we have to solve the system
∂fH(a,b)

∂a = ∂fH(a,b)
∂b = 0, that is,

{
385 = 1540a + 312

√
3bH + 72

√
3abH

0 = 24640b + 3
√

3(1433 + 416a + 48a2)H.

From the second equation we get b, and substituting in the first equation we
obtain the third-order equation:

−1185800 + 4743200a− 502983H2 − 262089aH2 − 50544a2H2 − 3888a3H2 = 0.

Cardano’s formula would give us the solution of this cubic equation and it
has the following discriminant

−166375
14693280768H6

( − 641395994624000 + 92020318790400H2 − 158618386080H4

+ 480048687H6 ) .

The discriminant is greater than or equal to 0 if and only if H ∈ [−2.65596,
2.65596]. Therefore the existence of an extremal of the CMC-functional can be
ensured if the prescribed mean curvature, H, belongs to that symmetric interval.



Fig. 2. These surfaces are symmetric approximations to CMC-surfaces with curvatures
H = −2.5, H = −2 and H = −1 respectively.

3 The CMC-functional Bézier form

The following proposition gives a characterization of an isothermal CMC-surface.

Proposition 1. [Str88] An isothermal patch, −→x , is a CMC-surface if and only
if

∆−→x = 2H−→x u ∧ −→x v. (1)

Expression (1) is the Euler-Lagrange equation of the functional DH . More-
over, an isothermal patch satisfies the PDE in (1) if and only if it is an extremal
of DH . In [ALM03], it was proved that an extremal of the Dirichlet functional
among all Bézier triangular surfaces with a prescribed boundary always exists
and it is the solution of a linear system. Now we find two qualitative differences,
the existence of the extremal of DH can only be ensured with certainty when
|H| ≤ a, for a certain constant, a, depending on the boundary configuration,
and they are computed as solutions of a quadratic system. Moreover, since the
Euler-Lagrange equation of the functional DH , in Equation (1), is not linear we
cannot determine a Bézier solution as a solution of a linear system of equations
in terms of the control points.

Here we will give an expression of the CMC-functional in terms of the control
points of a triangular Bézier surface, which implies that the restriction of the
functional to the Bézier case can be seen as a function instead of as a functional.

The following two results will simplify the way to obtain the formula in terms
of control points of the functional DH .

Proposition 2. The Dirichlet functional, D(−→x ), of a triangular Bézier surface,−→x , associated to the control net, P = {PI}|I|=n, can be expressed in terms of
the control points, PI = (x1

I , x
2
I , x

3
I), with |I| = |{I1, I2, I3}| = n by the formula

D(−→x ) =
1
2

3∑
a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1

(2)

where

CI0I1 =

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (a1 + a2 + 2a3 − b13 − b23) (3)



and

ar =

{
0 Ir = 0,

Ir
0 Ir

(Ir
0+Ir)(Ir

0+Ir−1) Ir > 0 brs =
Ir
0Is + Is

0Ir

(Ir
0 + Ir) (Is

0 + Is)
. (4)

Proof. The Dirichlet functional is a second-order functional, therefore we com-
pute its second derivative in order to obtain the coefficients CI0I1 .

The first derivative with respect to the coordinates of an interior control
point PI0 =

(
x1

I0
, x2

I0
, x3

I0

)
where I0 = (I1

0 , I2
0 , I3

0 ) for any a ∈ {1, 2, 3}, and any
|I0| = n, with I1

0 , I2
0 , I3

0 6= 0, is

∂D(−→x )
∂xa

I0

=
∫

T
(<

∂−→xu

∂xa
I0

,−→xu > + <
∂−→xv

∂xa
I0

,−→xv >) du dv,

and the second derivative

∂2D(−→x )
∂xa

I0
∂xa

I1

=
∫

T

((
Bn

I0

)
u

(
Bn

I1

)
u

+
(
Bn

I0

)
v

(
Bn

I1

)
v

)
< ea, ea > dudv

=
n2

2n(2n− 1)
2n(2n− 1)

n2

(
n
I0

)(
n
I1

)
(

2n
I+I0

) (a1 + a2 + 2a3 − b13 − b23),

where we took into account the formula for the product of the Bernstein poly-
nomials and the value of its integral. Therefore

CI0I1 =

(
n
I0

)(
n
I1

)
(

2n
I+I0

) (a1 + a2 + 2a3 − b13 − b23),

where a1, a2, a3, b13, b23 were defined in Equation (4).
ut

Now, we will work the volume term of the CMC-functional.

Proposition 3. Let −→x be the triangular Bézier surface associated to the control
net, P = {PI}|I|=n, then the volume, V (−→x ), can be expressed in terms of the
control points, PI = (x1

I , x
2
I , x

3
I), with |I| = n, by the formula

V (−→x ) =
∑

|I0|=|I1|=|I2|=n

CI0I1I2x
1
I0

x2
I1

x3
I2

where

CI0I1I2 =

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) (dI0I1I2
12 + dI0I1I2

23 + dI0I1I2
13 ) (5)

with

dIJK
rs =

IrJs − JrIs

(Ir + Jr + Kr)(Is + Js + Ks)
. (6)



Proof. The term V (−→x ), is a cubical polynomial of the control points, so in order
to compute the coefficients CI0I1I2 we will compute its third derivative.

The derivative with respect to a first coordinate x1
I0

of an arbitrary interior
point PI0 =

(
x1

I0
, x2

I0
, x3

I0

)
, where |I0| = n and I1

0 , I2
0 , I3

0 6= 0, is given by

∂V (−→x )
∂x1

I0

=
1
3

∫

T
( <

(
Bn

I0

)
u

e1 ∧ −→x v,−→x > + < −→x u ∧
(
Bn

I0

)
v

e1,−→x >

+ < −→x u ∧ −→x v,
(
Bn

I0

)
e1 > ) du dv

=
∫

T
< Bn

I0
e1 ∧ −→x v,−→x >u − < Bn

I0
e1 ∧ −→x vu,−→x > + < −→x u ∧Bn

I0
e1,−→x >v

− < −→x uv ∧Bn
I0

e1,−→x > + < −→x u ∧ −→x v, Bn
I0

e1 > dudv.

After computing the derivative with respect to an arbitrary first coordinate,
we applied the integration by parts formula. Now, bearing in mind that

∫

T
< Bn

I0
e1 ∧ −→x v,−→x >u=

∫

T
< −→x u ∧Bn

I0
e1,−→x >v= 0,

since Bn
I0

(1− v, v) = Bn
I0

(0, v) = Bn
I0

(u, 0) = Bn
I0

(u, 1− u) = 0 for |I0| = n with
I1
0 , I2

0 , I3
0 6= 0, and the properties of the cross and the scalar triple product, we

obtain that
∂V (−→x )
∂x1

I0

=
1
3

∫

T
< −→x u ∧ −→x v, Bn

I0
e1 > . (7)

Now we must compute the derivative with respect to a second coordinate, x2
I1

,
of an arbitrary interior point, such that, as before, |I1| = n with I1

1 , I2
1 , I3

1 6= 0.
Using the same process as before we have:

∂2V (−→x )
∂x1

I0
∂x2

I1

=
1
3

∫

T
<

(
Bn

I1

)
u

e2 ∧ −→x v, Bn
I0

e1 > + < −→x u ∧
(
Bn

I1

)
v

e2, Bn
I0

e1 > dudv

=
∫

T

((
Bn

I0

)
u

(
Bn

I1

)
v
− (

Bn
I0

)
v

(
Bn

I1

)
u

)
< e1 ∧ e2,−→x > dudv.

Finally we compute the derivative with respect to an arbitrary third coordi-
nate x3

I2
with |I2| = n and such that I1

2 , I2
2 , I3

2 6= 0, that is,

Cx1
I0

x2
I1

x3
I2

=
∂2V (−→x )

∂x1
I0

∂x2
I1

∂x3
I2

=
∫

T
((Bn

I0
)u(Bn

I1
)v − (Bn

I0
)v(Bn

I1
)u)Bn

I2
dudv

=

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) (dI0I1I2
12 + dI0I1I2

23 + dI0I1I2
13 )



where we have achieved the last formula after computing the integral of the
Bernstein polynomials and performing some simplifications like the following:

∫

T
Bn−1

I0−e1
Bn−1

I1−e2
Bn

I2
dudv =

∫

T

(
n−1

I0−e1

)(
n−1

I1−e2

)(
n
I2

)
(

3n−2
I0+I1+I2−e1−e2

) B3n−2
I0+I1+I2−e1−e2

dudv

=

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) 3n(3n− 1)
n2

I1
0I2

1

(I1
0 + I1

1 + I1
2 )(I2

0 + I2
1 + I2

2 )
.

ut

Lemma 1. The coefficients CIJK verify the following symmetry relations

CIJK = −CJIK = CJKI .

Proof. The symmetry of the coefficients C’s is a direct consequence of the sym-
metry of d’s: dIJK

rs = −dJIK
rs , which is immediate from its definition in Proposi-

tion 3, since:

dJIK
rs =

JrIs − IrJs

(Ir + Jr + Kr)(Is + Js + Ks)
.

ut

In the following proposition we give a formula for the CMC-functional,DH(−→x )
in terms of the control net, P = {PI}|I|=n, of the Bézier triangular surface, −→x .

Proposition 4. Let −→x be the triangular Bézier surface associated to the control
net, P = {PI}|I|=n, where PI = (x1

I , x
2
I , x

3
I) with |I| = |{I1, I2, I3}| = n. The

CMC-functional, DH , can be expressed by the formula

DH(−→x ) =
1
2

3∑
a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1

+ 2H
∑

|I0|=|I1|=|I2|=n

CI0I1I2x
1
I0

x2
I1

x3
I2

where

CI0I1 =

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (a1 + a2 + 2a3 − b13 − b23)

with ar and brs defined in Equation (4) and

CI0I1I2 =

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) (dI0I1I2
12 + dI0I1I2

23 + dI0I1I2
13 )

with dIJK
rs defined in Equation (6).



4 Bézier approximations to CMC-surfaces

We have just seen in Proposition 4 that the CMC-functional, DH(−→x ), is a func-
tion of the control points, so let us now compute its gradient with respect to
the coordinates of an arbitrary control point. This will let us to give a charac-
terization of the control net of the triangular Bézier extremals of DH , which are
Bézier approximations to CMC-surfaces.

The gradient of the first addend, corresponding to the Dirichlet functional,
with respect to the coordinates of a control point PI0 =

(
x1

I0
, x2

I0
, x3

I0

)

∂D(−→x )
∂PI0

=


 ∑

|J|=n

CI0Jx1
J

∑

|J|=n

CI0Jx2
J ,

∑

|J|=n

CI0Jx3
J


 =

∑

|J|=n

CI0JPJ (8)

So, let us consider the volume expression V (−→x ) =
∑
|I|,|J|,|K|=n CIJKx1

Ix
2
Jx3

K ,
and compute its gradient with respect to the coordinates of a control point
PI0 =

(
x1

I0
, x2

I0
, x3

I0

)
.

∂V (−→x )
∂PI0

=
∑

|J|,|K|=n

CI0JK(x2
Jx3

K ,−x1
Jx3

K , x1
Jx2

K)

=
∑

|J|,|K|=n

CI0JK − CI0KJ

2
(x2

Jx3
K ,−x1

Jx3
K , x1

Jx2
K)

=
1
2

∑

|J|,|K|=n

CI0JK(x2
Jx3

K − x2
Kx3

J , x1
Kx3

J − x1
Jx3

K , x1
Jx2

K − x1
Kx2

J )

=
1
2

∑

|J|,|K|=n

CI0JK PJ ∧ PK .

(9)

Now we can characterize the triangular control net of an extremal of the
CMC-functional among all triangular Bézier patches constrained by a given
boundary.

Proposition 5. A triangular control net, P = {PI}|I|=n, is an extremal of
the CMC-functional, DH , among all triangular control nets with a prescribed
boundary if and only if:

0 =
∑

|J|=n

CI0JPJ + H
∑

|J|,|K|=n

CI0JK PJ ∧ PK (10)

for all |I0 = (I1
0 , I2

0 , I3
0 )| = n with I1

0 , I2
0 , I3

0 6= 0, where the coefficients CI0J and
CI0JK are defined in Equation (3) and Equation (5) respectively.

The last result lets us to obtain Bézier approximations to CMC-surfaces since
we compute solutions to a restricted problem, that is, we find extremals of the
functional DH among all polynomial patches with prescribed border.



The following proposition characterizes the extremals of this restricted prob-
lem: −→x is an extremal of the functional DH among all triangular Bézier patches
with a prescribed boundary if and only if a weak version of the condition in
Equation (1) is fulfilled.

Proposition 6. A triangular Bézier patch −→x is an extremal of the CMC-func-
tional, DH , among all patches with a prescribed boundary if and only if:

0 =
∫

T
(∆−→x − 2H−→x u ∧ −→x v)Bn

I0
dudv for all |I0 = (I1

0 , I2
0 , I3

0 )| = n (11)

with I1
0 , I2

0 , I3
0 6= 0.

Proof. We simply compute the gradient of the CMC-functional with respect to
an arbitrary control point.

ut

The boundary curves of our example in Fig. 4 describe an approximation to a
circle. Therefore we will obtain approximations to spheres. In Fig. 4 top, we have
asked the interior control points to fulfill a symmetry condition as in Example 1
and we show three different approximations to CMC-surfaces. The three surfaces
at the bottom are obtained as a solution of the system of quadratic equations
described in Equation (10). Here we don’t ask for any kind of symmetry.

Fig. 3. These surfaces are approximations to CMC-surfaces with curvatures H = −1.5,
H = −1 and H = −0.5 respectively. The interior control points of the three surfaces
on the top are in a symmetric position.



In Fig. 4 we present two more examples. The boundary curves in the first are
built in such a way that any associated patch would be isothermal at the corner
points and in the bottom surfaces in Fig. 4 the boundaries are approximations
to three circular arcs, and therefore our results look like pieces of a sphere.

Fig. 4. These surfaces are approximations to CMC-surfaces with curvatures H = −1,
H = 0 and H = 1 at the top and H = −2, H = −1.5 and H = −1 respectively at the
bottom.

The resulting plots are pleasant and moreover they can be continuously de-
formed by the parameter H, thus allowing the designer to choose of the shape
which best fits the objective. We maintain the good shapes we got with the
Dirichlet results in [ALM03], but now the choice of the curvature gives the de-
signer another degree of freedom, although the surfaces are obtained as a solution
of a quadratic system of the control points.

5 The C1 problem

In this section we will consider the prescription of not only the boundary but
also the tangent planes along the boundary curves, the C1 problem. Now, the
boundary and the next to the boundary control points are fixed, but again the
extremals of the CMC-functional, where the other interior control points are
considered as variables, can also be computed.

Here we show an example. Considering again the same prescribed boundary
as in Example 1, we also prescribe three more lines of control points as it is
shown in Fig. 5.

The following figures show approximations to CMC-surfaces obtained as a
solution of the quadratic system of the control points in Equation (10), but now



Fig. 5. The border control points and their neighboring lines of control points are
prescribed.

for all |I0 = (I1
0 , I2

0 , I3
0 )| = n with I1

0 , I2
0 , I3

0 > 1. The free points are the interior
control points outside the boundary and its next line of control points.

Fig. 6. These surfaces are approximations to CMC-surfaces with curvatures H = −2,
H = −1.5 and H = −1 respectively.

6 Conclusions

We have given a method to obtain polynomial approximations to constant mean
curvature surfaces. An isothermal patch has constant mean curvature H if and
only if it is an extremal of the functional

DH(−→x ) = D(−→x ) + 2HV (−→x ).

Here we have generated approximations to CMC-surfaces, since we have con-
sidered the problem of minimizing this functional restricted to the space of poly-
nomials. We have obtained an expression of the CMC-functional in terms of the
control points of a triangular Bézier surface. After that, we deduced the condi-
tion that a triangular control net must fulfill in order to be an extremal of the
CMC-functional among all Bézier triangles with a prescribed boundary. This
characterization of the Bézier extremals of DH allowed us to compute them as
a solution of a quadratic system of the control points. The surfaces that are



obtained have regular shapes and have the advantage of allowing prescription
of the desired curvature in addition to the boundary. This makes it possible to
ensure, for a given boundary, the existence of a family of polynomial approxi-
mations to CMC-surfaces with this boundary and curvatures within a particular
interval. Therefore, the prescription of the curvature in this method can be seen
as another degree of freedom in comparison with the Dirichlet surface generation
method in [ALM03].

Finally, in the last section, we consider the C1 problem, that is, once the
boundary curves and the tangent planes along them have been prescribed we
give a way to generate a polynomial approximation to CMC-surface associated
to this initial information.
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