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Abstract. We give a full characterization of helical polynomial curves
of any degree and a simple way to construct them. Existing results
about Hermite interpolation are revisited. A simple method to select
the best quintic interpolant among all possible solutions is suggested.

1. Introduction

The notion of helical polynomial curves, i.e, polynomial curves which
made a constant angle with a fixed line in space, have been studied by dif-
ferent authors. Let us cite the papers [6, 7, 8] where the main results about
the cubical and quintic cases are stablished. In [6] the authors gives a nec-
essary condition a polynomial curve must satisfy in order to be a helix. The
condition is expressed in terms of its hodograph, i.e., its derivative. If a poly-
nomial curve, α, is a helix then its hodograph, α′, must be Pythagorean, i.e.,
||α′||2 is a perfect square of a polynomial. Moreover, this condition is suf-
ficient in the cubical case: all Pythagorean hodograph (PH) cubical curves
are helices. In the same paper it is also stated that not only α′ must be
Pythagorean, but also α′ ∧ α′′. Following the same ideas, in [2] it is proved
that both conditions are sufficient in the quintic case. Unfortunately, this
characterization is no longer true for higher degrees. It is possible to con-
struct examples of polynomial curves of degree 7 verifying both conditions
but being not a helix.

The aim of this paper is just to show how a simple geometric trick can
clarify the proofs of some previous results and to simplify the needed compu-
tations to solve some related problems as for instance, the Hermite problem
using helical polynomial curves.

The Dietz-Hoschek-Jüttler theorem (see [3] or [4]) relates the Pythagorean
condition to the Hopf map H : C2 → R3. A polynomial curve α is Pythagorean
hodograph curve if and only if there exist z1, z2 such that α′ = H(z1, z2)
where z1, z2 are two polynomial complex functions.

The geometric trick is based on the following facts: first, the normalized
Hopf map is related to the stereographic projection (the usual stereographic
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projection from the two dimensional unit sphere, S2, into the complex plane,
not the generalized stereographic projection from the three-dimensional pro-
jective space, using homogeneous coordinates, to S2, as it appears in Remark
1 of [6], or in Remark 2 of [7]); second, the tangent indicatrix of a helical
curve describes a circle on the unit sphere and, finally, the image by the
stereographic projection of a circle on the unit sphere is a line-or-circle in
the complex plane.

Joining up these arguments, we obtain a full characterization of polyno-
mial helices of any degree in terms of the quotient z1

z2
. The condition is of

geometric nature: α is an helix if and only if z1
z2

is a rational parametriza-
tion of a piece of a line or a circle in C depending whether or not the vector
(0, 0, 1) belongs to the hodograph, respectively.

According to this approach, the already known results ([7, 8]) about Her-
mite interpolation using helical curves are revisited and their proofs sim-
plified. Moreover, the classification into two classes of helical PH quintics
introduced in [6] is also revisited, and a result concerning a sufficient con-
dition on the quaternions generating a PH helical curve is introduced (see
Cor. 2).

Finally, a simple method to choose the best among all possible general
PH quintic helices solving the first order Hermite problem is suggested. In
the cited references, the choice among all the possible solutions involves
the computation of some integral, the energy associated with the rotation-
minimizing frame. Here we simply control the values of two parameters
involved in our method (see Prop. 1).

2. Spatial Pythagorean hodograph curves

Initially, we will use the quaternion representation of spatial PH curves.
Given a quaternion polynomial

A(t) = u(t) + iq(t) + jp(t) + kv(t),

the product
α′(t) = A(t)kA∗(t)

defines (the asterisk means quaternionic conjugate) a spatial Pythagorean
hodograph, α′, whose components are

x′ = 2(up + vq),
y′ = 2(vp− uq),(2.1)
z′ = u2 + v2 − p2 − q2,

and such that ||α′||2 = (x′)2 + (y′)2 + (z′)2 = (u2 + v2 + p2 + q2)2.
In terms of the Hopf map (see [4], theorem 4.2)

H : C2 → R3

defined by H(z1, z2) = (2z1z̄2, |z1|2 − |z2|2), and taking

(2.2) z1(t) = u(t) + iv(t), z2(t) = p(t) + iq(t),
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the derivative of the curve can be written as

(2.3) α′(t) = H(z1(t), z2(t)).

Remark 1. We have followed the notations in [4], section 4, in particular
the use of the basis element k, in order to get the expression (2z1z̄2, |z1|2 −
|z2|2) for the definition of the Hopf map.

The choice of the basis element k between A(t) and A∗(t) has no special
significance as it is said in [5], page 411: choosing i, as it is done in [6], or
j instead leads to permutations of x′, y′, z′ and u, v, p, q.

The order of symbols u, v, p, q in A(t) is the one leading to alphabetical
order in z1 and z2 (Formula 2.2). Note that all these choices lead to expres-
sions of x′ = up+vq and y′ = vp−uq where the factors p and q are swapped
from the paper [6].

Theorem 1. A Pythagorean polynomial curve α with α′(t) = H(z1(t), z2(t))
is a helix if and only if the curve in the complex plane t → z1(t)

z2(t) traces a
line-or-circle.

Proof. A curve α is a general helix if and only if its tangent indicatrix is a
subset of a circle on the unit sphere S2.

Let us define the normalized Hopf map Hnor : C2 → S2 by

Hnor(z1, z2) =
1

|z1|2 + |z2|2 (2z1z̄2, |z1|2 − |z2|2).

If α′(t) = H(z1(t), z2(t)), then its tangent indicatrix is

α′(t)
||α′(t)|| = Hnor(z1(t), z2(t)).

Notice that Hnor(z1, z2) = Hnor( z1
z2

, 1) (See [1], section 4.3), and that for
any z ∈ C, Hnor(z, 1) = p−1

st (z) where pst : S2 → C ∪ {∞} denotes the
extended stereographic projection from the north pole of the whole unit
sphere to the extended complex plane with the assumption pst(0, 0, 1) = ∞.

Therefore, α is a general helix if and only if p−1
st ( z1(t)

z2(t)) ∈ S2 belongs to a
circle in the unit sphere. But the image by the stereographic projection of
a circle in the unit sphere is a line-or-circle in the extended complex plane
(see Proposition 7.23 in [9]). ¤

Corollary 1. A Pythagorean polynomial curve α with α′(t) = H(z1(t), z2(t))
with (0, 0, 1) in the trace of tangent indicatrix is a helix if and only if the
curve in the complex plane t → z1(t)

z2(t) traces a piece of a straight line.

Proof. Recall that a circle on the unit sphere passes trough the north pole if
and only if its image by the extended stereographic projection is a straight
line of the complex plane. ¤
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Figure I. Representation of the tangent indicatrix of a helical curve and of
its stereographic projection.

We prove now the following result which, in the quadratic case, is a par-
ticular case of a result already proved in Proposition 1 in [6].

Corollary 2. Let A0 and An be two quaternionic numbers and let Ai =
(1−ci)A0 +ciAn, ci ∈ R, for all i = 1, . . . , n−1. If A(t) is the quaternionic
Bézier curve defined by {Ai}n

i=0, then α′(t) = A(t)kA(t)∗ defines a helical
PH curve.

Proof. Let us write Ai = (1 − ci)A0 + ciAn for all i = 0, 1, . . . , n where
ci ∈ R, c0 = 0 and cn = 1. Then

A(t) =
n∑

i=0

Bn
i (t)Ai = (1−m(t))A0 + m(t)An,

where

m(t) =
n∑

i=0

Bn
i (t)ci.

Note that A(t) is a parametrization (not necessarily linear) of a piece of the
quaternionic straight line passing through A0 and An.

Let us suppose that A0 = u0+iq0+jp0+kv0 and An = un+iqn+jpn+kvn.
Then α′(t) = A(t)kA(t)∗ = H(z1(t), z2(t)) where




z1(t) = ((1−m(t)u0 + m(t)un) + i ((1−m(t)v0 + m(t)vn)
= (un − u0 + i(vn − v0))m(t) + (u0 + iv0),

z2(t) = ((1−m(t)p0 + m(t)pn) + i ((1−m(t)q0 + m(t)qn)
= (pn − p0 + i(qn − q0))m(t) + (p0 + iq0).

Let us write

z1(t) = a m(t) + b, z2(t) = c m(t) + d,

for some a, b, c, d ∈ C. Note that if ad = cb then z1(t)
z2(t) is a constant. So, we

can suppose that ad 6= cb.
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Let us consider the Moebius transformation f(z) = az+b
cz+d . Note that

z1(t)
z2(t)

=
a m(t) + b

c m(t) + d
= f(m(t)).

The map t → m(t) parametrizes a piece the real axis in the complex plane.
Since the image under a Moebius transformation of a line is either a line or
a circle (see Prop. 9.2 in [9]), then z1(t)

z2(t) traces a line-or-circle. By Th. 1,
the curve is a helical PH. ¤

2.1. Examples. It is just a matter of computation to check that the two
examples of quintic helices in [6] verify the condition written in the state-
ment of Th. 1. As it is said in the cited reference, they are, respectively,
examples of the two classes of helical PH quintics. We include here the de-
finition of both classes for this paper to be self-contained: A PH curve,
α(t) = (x(t), y(t), z(t)), is monotone-helical if x′, y′, z′ (and hence, also
σ(t) =

√
(x′(t))2 + (y′(t))2 + (z′(t))2 ) possess a non-constant common fac-

tor. In other case, this is, if gcd(x′, y′, z′) = constant, the PH curve is called
“a general helical PH curve”.

2.1.1. Monotone-helical PH quintic example. The first example is defined
by the four quadratic polynomials1

u(t) = t2−3t, v(t) = t2−5t+10, p(t) = t2−9t+10, q(t) = −2t2+3t+5.

Let us recall that for this case the polynomials z1 and z2 share a common
factor corresponding to the root 1 + 2i. So, we can simplify the quotient
z1(t)
z2(t) and to check that it belongs to the circumference with center ( 3

10 , 1
10)

and radius r =
√

2
2 .

Moreover, let us see for this example which kind of rational parametriza-
tion of a straight line is z1(t)

z2(t) when the hodograph is rotated in the space in
such a way that the tangent vector at t = 0 is (0, 0, 1).

After a rotation with y-axis and angle arccos( 1√
17

) and a rotation with

x-axis and angle arccos(
√

17
9 ) the hodograph curve is transformed into

α′(t) = (5− 2t + t2)
(

2t(7t− 15)√
17

,
2t(71t− 225)

9
√

17
,
1
9
(405− 288t + 43t2)

)
.

Now, it verifies
−→
t (0) = α′(0)

||α′(0)|| = (0, 0, 1).
Let us compute the image by the stereographic projection from the north

pole of the tangent vector α′(t)
||α′(t)|| . But, in order to avoid the singularity

introduced by the stereographic projection at t = 0 (recall that at t = 0 the

1In order to keep our notations as it has been explained in Remark 1, in the next two
examples, polynomials p(t) and q(t) are swapped from the original paper [6]
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tangent vector is the north pole where the stereographic projection is not
defined) we will change t by 1

t .

pst

(
α′(1

t )
||α′(1

t )||

)
=

1
10
√

17
(63 + 71i− (135 + 225i)t) .

2.1.2. General helical PH quintic example. The second example is defined
by

u(t) = −19t2 + 12t + 5, v(t) = −22t2 + 18t + 1,

p(t) = −31t2 + 24t + 3, q(t) = 15t2 − 12t− 1.

Now, z1(t)
z2(t) belongs to the circumference with center (3

4 ,−15
4 ) and radius

r = 13
√

2
4 .

Again, let us see for this example which kind of rational parametrization
of a straight line is z1(t)

z2(t) when the hodograph is rotated in the space in such a
way that the tangent vector at t = 0 is (0, 0, 1). Thanks to a rotation with y-
axis and angle arccos( 4√

65
) and a rotation with x-axis and angle arccos(

√
65
9 )

the hodograph curve is transformed into

α′(t) =
(√

13
5 t(7t− 6)(−14− 30t + 49t2),

2
9

√
13
5 t(7t− 6)(−81− 480t + 641t2),

36 + 2
9 t(1458 + 279t− 6834t2 + 4999t3)

)
.

In this case, and again with the change t → 1
t ,

pst

(
α′(1

t )
||α′(1

t )||

)
=

1
13
√

65(6t− 7)

(−(441 + 1282i) + (270 + 960i)t + (126 + 162i)t2
)
.

The result is now a second degree rational parametrization of a straight
line. If we see it as a rational Bézier curve, its control points are

P0 = c (63,
1282

7
), P1 = c (

153
2

,
401
2

), P2 = c (45, 160),

with c = 1
13
√

65
, and its weights are

ω0 = 7, ω1 = 4, ω2 = 1.

Note that P1 = 7
4P0 + (1− 7

4)P2.
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2.1.3. An example of degree 7. In the paper [2] we gave an example of a
degree seven polynomial curve,

α(t) = (−3t + t3 +
t5

5
+

t7

21
, 3t2 − t4

2
,−2t3),

verifying that both α′ and α′ ∧ α′′ were Pythagorean but still not being an
helix. It is easy to check that in this case the quotient z1(t)

z2(t) does not belong
to a circumference nor a straight line.

3. Construction of helical curves

3.1. Case z1
z2

belongs to a line. If z1(t)
z2(t) belongs to a straight line then it

can be written as
z1(t)
z2(t)

= a +
m(t)
n(t)

b, a, b ∈ C,

where m(t) and n(t) are real polynomials.
The hodograph of the associated helix can be computed using

(3.1) z1(t) = a n(t) + b m(t), z2(t) = n(t).

Therefore,

α′ = (2a n2 + 2b mn, (|a|2 − 1)n2 + (ab̄ + āb)mn + |b|2m2),

where we have suppressed any reference to the parameter t and where the
first two coordinates of α′ are written as a complex number.

Since the curvature and the torsion of a curve are geometric quantities,
i.e., independent of the parametrization we can compute them supposing
that

z1(t)
z2(t)

= a + tb, a, b ∈ C.

In this case, it is just a matter of computation to check that

τ(t)
κ(t)

=
Im(a · b)
|b| .

3.2. Case z1
z2

belongs to a circle. If z1(t)
z2(t) = px

q + ipy

q belongs to a circle
then there exist c = cx + icy ∈ C and r ∈ R such that

|px + ipy

q
− c|2 = r2.

As before, we can compute the ratio τ
κ supposing that

z1(t)
z2(t)

= c + reit, c ∈ C, r ∈ R.

In this case, it is again a matter of computation to check that

τ(t)
κ(t)

=
1 + |c|2 − r2

2r
.
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Moreover, note that the curve (px(t)−q(t)cx, py(t)−q(t)cy) is a planar PH-
curve. Therefore, we can apply the well known complex representation of a
planar PH-curve (see [5]) to the previous equation: there are polynomials
m(t), n(t) such that

px − qcx = m2 − n2, py − qcy = 2 m n, rq = m2 + n2.

So,

(3.2)
z1(t)
z2(t)

= c +
(m(t) + in(t))2

q(t)
= c + r

m(t) + in(t)
m(t)− in(t)

.

In this case, the hodograph of the associated helix can be computed using

z1(t) = c(m(t)− in(t)) + r (m(t) + in(t)), z2(t) = m(t)− in(t).

Putting c = cx + icy, suppressing any reference to the parameter t and
writing the first two coordinates of α′ as a complex number we get

α′ =
(
2(c(m2 + n2) + r(m + in)2),

(m2 + n2)(c2
y + (cx − r)2 − 1) + 4rm(cxm + cyn)

)
.

4. First-order Hermite helical interpolants revisited. The
cubical case

In [8] the following Hermite interpolation problem is considered: Given
end points p0 and p1 and end tangents

−→
t 0 and

−→
t 1 satisfying (

−→
t 0 ×−→

t 1).(p1 − p0) 6= 0, interpolate such data with a spatial PH cubic. Since
PH cubics are helical curves all the machinery on such kind of curves can
be used.

The problem is studied in the cited reference with full detail. A simple
geometric condition is obtained to test the existence of two, one, or none,
interpolants. As it is said there these conditions agree and extent previous
results in [7].

The following theorem states the previous results for cubical interpolants.
The statement is not exactly the one in [8].

Theorem 2. [8, 7] Let 0 ≤ θ0, θ1 ≤ π be the angles of the unit tangents
−→
t 0

and
−→
t 1 with respect to the vector p1 − p0, then a necessary condition for

the existence of spatial PH cubics interpolants is that

(4.1)
−→
t 0 · −→t 1 ≤ 3

4
cos(θ0 + θ1) +

1
4
.

Moreover,
(4.2)




a) if
−→
t 0 · −→t 1 ≤ −1

2 there is just one regular interpolant,

b) if
−→
t 0 · −→t 1 > −1

2 there are

{
two interpolants if cos θ0 > 0
no interpolant if cos θ0 ≤ 0.
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The proof can be found in the cited references and, although it can be
simplified at the new light shed by Th. 1 and Corollary 1, we have decided
not to include it here. Nevertheless, we will recall how to compute the
cubical interpolants, in the case they exist.

First of all, thanks to a translation, a rotation and a scale factor, we can
reduce the Hermite problem to the following data:

End points p0 = (0, 0, 0) and p1 = (xp, yp, zp) ∈ S2 and end tangents−→
t 0 = (0, 0, 1) and

−→
t 1 = (xt, yt, zt).

Since
−→
t (0) =

−→
t 0 = (0, 0, 1), and according to Corollary 1, z1

z2
(t) must be

a rational parametrization of a straight line such that z1
z2

(0) = ∞. Moreover,
for PH cubical curves the polynomials z1(t) and z2(t) are of degree 1, then
we can write the quotient as follows

(4.3)
z1

z2
(t) =

1
t

a + (1− 1
t
) b, a, b ∈ C.

Equivalently,

(4.4) z1(t) =
√

3m(a + (t− 1)b), z2(t) =
√

3mt,

where m ∈ C. The factor
√

3 has been introduced to keep computations in
the sequel as simple as possible.

From Eq. (4.3)

(4.5) a =
z1

z2
(1) = pst(

−→
t (1)) = pst(

−→
t 1) =

xt + iyt

1− zt
.

An easy computation shows that
∫ 1
0 2z1(t)z̄2(t)dt = |m|2(3a− b),

∫ 1
0 (|z1(t)|2 − |z2(t)|2)dt = |m|2(3|a|2 − 3a · b + |b|2 − 1).

Therefore, imposing the condition α(1) = p1 we get, from the first two
coordinates,

b = 3a− xp + iyp

|m|2 .

Finally, from the third coordinate of α(1) = p1, we obtain a quadratic
equation in the variable |m|2. Up to non zero factors, it can be written as a
biquadratic equation in the unique unknown |m|:
(4.6) 1− z2

p − (3(a0xp + a1yp) + zp)|m|2 + (3|a|2 − 1)|m|4 = 0,

where a = a0 + ia1, a0, a1 ∈ R.
The existence or not of interpolants depends, firstly, on the non negativity

of the discriminant of the biquadratic equation (4.6), and secondly, on the
number of positive solutions.
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5. First-order Hermite helical interpolants revisited. The
quintic case

In the paper [6], the authors study the use of quintic helices to solve the
first order Hermite interpolation problem. If one wants to adjust not only
the initial and final directions, but also their magnitudes we must to increase
the degree of the polynomial curve.

As we have noticed before, in the cited reference two classes of quintic
PH helical curves are described. We shall follow the same terminology for
them, monotone and general, (see the first paragraph of Example 2.1 for
definitions) and we will try to solve the Hermite problem within both classes.

We shall study the following Hermite interpolation problem in the space:
find a quintic PH helical curve, α, such that

α(0) = p0, α′(0) = d0 and α(1) = p1, α′(1) = d1.

As before, thanks to a translation, a rotation and a scale factor, the
problem can be reduced to

α(0) = (0, 0, 0), α′(0) = (0, 0, 1)
and

α(1) = q1 = rq(xq, yq, zq), α′(1) = v1 = rv(xv, yv, zv),
where rq, rv are positive real numbers and (xq, yq, zq), (xv, yv, zv) ∈ S2.

5.1. Using monotone-helical PH interpolants. We are looking for a
helical curve, α, as in the previous case (see expression 4.3). Since we need
this time to get a quintic curve, we will substitute the constant factor m
in z1 and z2 we introduced in (4.4) by the square root of a quadratic real
polynomial

m(t) = (m0B
2
0(t) + m1B

2
1(t) + m2B

2
2(t)).

Therefore
z1(t) = m(t)

1
2

(
a + (t− 1)(a + b)

)
,

z2(t) = m(t)
1
2 t,

and the hodograph can be computed from Eq. 2.3.
Now, we can proceed analogously to what we did for the cubical case.

The deduction is skipped. Parameters a, b, m0,m1,m2 can be determined
from the Hermite conditions as follows:

(1) Compute a = xv+iyv

1−zv
, m2 = 1

2rv(1− zv).
(2) Put

b =
1

3m0 + 4m1 + 3m2
(2(m0 + 3m1 + 6m2)a− 30rq(xq + iyq)) .

(3) If 1− zv − 2m0 6= 0, then

m1 =
4m2

0 − rv(1− z)2 − 12m0(1− rv(1− zv)− zv + 5rq(xv xq + yv yq − (1− zv)zq))
6(1− zv − 2m0)

.
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(a) Solve in the variable m0 the quartic equation |b|2m0 = 1, after
substitution of the other parameters.

(4) If 1− zv − 2m0 = 0, then take m0 = 1
2

rv
1−zv

= m2.
(a) Solve in the variable m1 the quadratic equation |b|2m0 = 1,

after substitution of the other parameters.
(5) Once all possible solutions have been obtained, those for which the

factor m(t) = (m0B
2
0(t)+m1B

2
1(t)+m2B

2
2(t)) is not strictly positive

for t ∈ [0, 1] should be rejected. We will call admissible solutions
those with a strictly positive m(t).

5.2. Using general helical PH interpolants. The second possibility is
the use of general helical PH interpolants. In the monotone helical PH
curves, we have used a degree 1 Bézier parametrization of a straight line
and then we have multiplied the complex functions z1 and z2 by a common
nonconstant factor in order to obtain the desired degree for the hodograph.
For general helical PH curves, and under the light of the Exemple 2.1.2 and
subsection 3.1, specially Eq. (3.1), what we will use is a degree 2 rational
parametrization of a straight line and then to multiply the functions z1 and
z2 by a common constant factor.

Any degree 2 rational Bézier curve is determined by a control poly-
gon, {P0, P1, P2}, and a set of weights {w0, w1, 1}. If we want to obtain
a parametrization of a straight line, then the control polygon must satisfy
P1 = (1− λ)P0 + λP2 for some λ ∈ R.

Since we want a rational curve passing through ∞ when t = 0, we will
use the parameter 1

t instead of t:

B2
0(1

t )ω0P0 + B2
1(1

t )ω1P1 + B2
2(1

t )P2

B2
0(1

t )ω0 + B2
1(1

t )ω1 + B2
2(1

t )
=

(t− 1)2ω0P0 + 2(t− 1)ω1P1 + P2

(t− 1)2ω0 + 2(t− 1)ω1 + 1

The denominator, (t− 1)2ω0 + 2(t− 1)ω1 + 1, vanishes at t = 0 if and only
if ω0 = 2ω1 − 1.

Finally, in order to simplify computations we write:

(5.1) P0 = a + b, P1 = (1− λ)P0 + λP2, P2 = a,

where a, b ∈ C and λ ∈ R and weights

(5.2) {2ω − 1, ω, 1},
where ω ∈ R.

Remark 2. Two values of the weight ω are singular. If ω = 1 then all
weights are 1 and the initial rational Bézier curve becomes just a Bézier
curve. If ω = 1

2 then the initial degree 2 rational Bézier curve is in fact a
degree 1 rational curve, and we have then a monotone helical PH, but not a
general helical PH.
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According to these conventions
(5.3)

z1(t) = m (at(2− t− 2(1− t)ω) + b(1− t)(−1 + t + 2(λ− t)ω)) ,

z2(t) = m (t(2− t− 2(1− t)ω)) ,

with m ∈ C, and the hodograph can be computed from Eq. 2.3
Parameters a, b, m, λ, ω can be determined from the Hermite conditions

as follows:
(1) Compute a = xv+iyv

1−zv
, m2 = 1

2rv(1− zv).
(2) Write λ = 1−µ

2ω .
(3) Put

b =
30(xq + iyq)− 4am2(8− ω(7− 2ω))
m2(7− 5µ(3− 2ω)− 2ω(9− 4ω))

.

(4) Solve, with µ and ω as unknowns, the system
{

|b||mµ| = 1,

(1− 2ω)2 − 5µ(1− 2ω) = 2µ2((1 + |a|2)m2(8− ω(7− 2ω))− 5(1 + 3(a0xv + a1yv − zv)).

The final step in the previous algorithm is to decide among the real so-
lutions which is the best. One possibility is to choose the one with least
possible energy associated with the rotation-minimizing frame (see section
4.4 in [6]). But let us propose another criterion: to choose curves for which
the tangent indicatrix is a simple curve, i.e., such that the tangent indicatrix
passes just once through each point of its trace.

Proposition 1. The tangent indicatrix of the general quintic PH helix de-
fined by control points (5.1) and weights (5.2) is a simple curve in the in-
terval [0, 1] if and only if

(5.4) ω < 1, and
2ω(λ− 1)

1− 2ω
/∈ ]0, 1[ .

Recall that cases ω = 1 and ω = 1
2 (Remark 2) have been removed when

dealing with general quintic PH helices.

Proof. The injectivity of the tangent indicatrix t → −→
t (t) with t ∈ [0, 1] is

equivalent to the injectivity of the map t ∈ [0, 1] → z1
z2

(t) ∈ C ∪ {∞}.
By definition, see (5.3), we can write z1

z2
(t) as the parametrization of a

piece of a straight line

z1

z2
(t) = a +

(1− t)(−1 + t + 2(λ− t)ω)
t(2− t− 2(1− t)ω)

b.

The injectivity of the map t ∈ [0, 1] → z1
z2

(t) ∈ C ∪ {∞} is equivalent to
the injectivity of

t ∈ [0, 1] → f(t) :=
(1− t)(−1 + t + 2(λ− t)ω)

t(2− t− 2(1− t)ω)
∈ R ∪ {∞}.
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To make computations easier, we will study the injectivity of the map

t ∈ [1,+∞[ ∪{∞} → g(t) := f(
1
t
) =

(1− t)(1− t− 2ω + 2λ tω)
1− 2ω + 2t(ω − 1)

∈ R∪{∞}.

The denominator of g(t) has one real root t0 = 1−2ω
2(1−ω) = 1− 1

2(1−ω) . Then,
the first necessary condition in order to be g injective in [1, +∞[ ∪{∞}
is t0 /∈ ]1, +∞[ ∪{∞}, or equivalently, ω < 1. Note that if t0 = 1 then
g(t0) = ∞ and there is no other value of t with ∞ as image.

Under this condition, we just need to control injectivity of g in [1, +∞[.

The function g is injective in [1, +∞[ if and only if g′(t) 6= 0 for any
t ∈ ]1,+∞[. Note that the possibility g′(1) = 0 is allowed, but this does not
affect the injectivity of g in the whole interval [1, +∞[.

Let us call x := 2ω(λ−1)
1−2ω , or equivalently λ := 1 + 1

2

(
1
ω − 2

)
x. Therefore,

we can write function g as

g(t) = (2ω − 1)
(1− t)(1 + t(x− 1))
1− 2ω + 2t(ω − 1)

.

It is easy to check that g′(t) = 0 if and only if

(1− x)
(
2(ω − 1)t2 + 2(1− 2ω)t + 2ω

)
+ x = 0.

The two roots of this quadratic equation are

(5.5) ti := 1− 1− x±
√

(1− x)(1 + (1− 2ω)x)
2(1− ω)(1− x)

, i := 1, 2.

Let ∆ = (1−x)(1+(1−2ω)x). Note that ∆ ≥ 0 if and only if 1
2ω−1 ≤ x ≤ 1.

Recall that we are interested in showing that if x /∈ ]0, 1[, then there are
no extremal points of g for t ∈ ]1, +∞[, because in such a case, the sign of
g′ will remain unchanged and g|[1,+∞[ will be injective.

(1) If x > 1, then ∆ < 0 and g′(t) 6= 0 for any t ∈ [1, +∞[.

(2) If x = 1, then the derivative of the function g is

g′(t) =
(1− 2ω)

(1− 2ω + 2t(ω − 1))2
.

Therefore, the sign of g′ in [1, +∞[ remains unchanged. Moreover,
note that condition ω < 1 implies that the denominator does not
vanishes for t ∈ ]1, +∞[.

(3) If x = 0 then it is easy to check that the two roots of g′(t) = 0 are
t1 = 1 and t2 = − ω

1−ω < 0.
(4) If x < 0 we have to discuss two cases:

(a) If ω ∈ ]12 , 1], then 1
2ω−1 ≥ 1 > 0. Therefore, x < 1

2ω−1 and then,
again ∆ < 0.

(b) If ω < 1
2 . In this case 1

2ω−1 < 0. We split it into two subcases:
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(i) If x < 1
2ω−1 , then again ∆ < 0.

(ii) If 1
2ω−1 ≤ x < 0. In this case, it is just a matter of

computation to check that both roots, t1, t2 in Eq. (5.5),
verify ti < 1.

Therefore, in all cases, if x /∈ ]0, 1[, then there are no extremal points of
g in ]1, +∞[ and we have prooved the sufficiency of conditions 5.4.

Finally, for the necessity, note that if x ∈ ]0, 1[, and of course ω < 1, then
it is easy to check that ∆ > 0. Indeed, if ω < 1 then 1− 2ω > −1 and then

(5.6) (1 + (1− 2ω)x) > 1− x.

Therefore, both factors in the definition of ∆ are positive.
The only thing to be checked now is that at least one of the two roots ti,

i = 1, 2, in Eq. (5.5), verify ti > 1.
If x ∈ ]0, 1[, then the root with the minus sign in the square root can be

written as

t2 = 1 +
1

2(1− ω)

(√
1 + (1− 2ω)x

1− x
− 1

)
.

As we have said before (see Eq. 5.6), the expression inside the square root
is greater than 1. Therefore, t2 > 1. ¤

We will call admissible solutions those for which ω and λ verify conditions
(5.4).

Remark 3. The existence of two real roots of the denominator z2(t), one of
them t = 0 and the other t1 ∈ R implies that the total tangent indicatrix, i.e.,
when defined in the whole R and not just in [0, 1], is a doubly traced circle.
This behavior is already pointed in [6]. The novelty here is the fact that
among the solutions one can pick up those for which the tangent indicatrix
is a simple curve in [0, 1] just by controlling the values of some parameters,
without no need of computation of energy integrals. Nevertheless one can not
be sure a priori that there is always one and only one of the solutions whose
tangent indicatrix is a simple curve2. The advantage of the new criterion is
the possibility of skipping the computation of the energy in a lot of cases.

6. Examples

The author has been unable to find some statement vaguely similar to
Theorem 2, that is, to find some conditions to the existence or not of quintic
interpolants in terms of some angles and/or lengths. Instead, let us illustrate
with examples some of the possibilities one can find when solving the first
order Hermite problem. Computations have been done using Mathematica.

The energy computed along the examples is the rotation-minimizing frame

ERMF =
∫ 1

0
κ2(t)||α′(t)|| dt.

2This has been pointed out by one of the referees.
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6.1. Example 1. In [6] the authors work the following example with Her-
mite data

p0 = (0, 0, 0), d0 = (1, 0, 1), p1 = (1, 1, 1), d1 = (0, 1, 1).

Thanks to the combination of a rotation and a change of scale of ratio 1√
2

the Hermite data can be reduced to

q0 = (0, 0, 0), v0 = (0, 0, 1), q1 = (
1√
2
, 0, 1), v1 = (

1√
2
,
1
2
,
1
2
).

Notice that the initial and final directions are unit vectors.

6.1.1. Monotone. There are two admissible solutions

m2 = m0 =
1
4
, and m1 =

51
44

or m1 =
21
4

.
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Figure II. The two monotone helical quintic Hermite interpolants for the
data q0 = (0, 0, 0), v0 = (0, 0, 1), q1 = ( 1√

2
, 0, 1), v1 = ( 1√

2
, 1

2 , 1
2).

Left: the two helices. Right: their tangent indicatrices.

The ratio curvature over torsion for the solution m1 = 51
44 is equal to 9

11
√

2
,

approximately 0.578542. The energy for it is 2.04694. The other solution
has a comparatively higher energy, 28.8104.

6.1.2. General. There is just one admissible solution:

µ = −1, ω = −0.10038.

This solution is the one given in [6]. The ratio κ
τ = 0.586692 and its energy

1.80114. So, in this case the general helix is better than the two monotone
helices.
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Figure III. Comparison between one of the monotone solution and the
general solution for the data

q0 = (0, 0, 0), v0 = (0, 0, 1), q1 = ( 1√
2
, 0, 1), v1 = ( 1√

2
, 1

2 , 1
2).

Left: the two helices. Right: their tangent indicatrices.

6.2. Example 2. In section 4.5 of [6] an example with end derivatives of
different norm is also studied:

p0 = (0, 0, 0), d0 = (−0.8, 0.3, 1.2), p1 = (1, 1, 1), d1 = (0.5,−1.3,−1.0).

First, after spatial transformations we can reduce the problem to

q0 = (0, 0, 0), v0 = (0, 0, 1),

q1 = (1.13068, 0, 0.322581), v1 = (−0.471992,−0.539519,−0.917051).

6.2.1. Monotone. Now, there is just one admissible monotone solution:

m2 = 1.04051, m1 = 8.29381 and m0 = 0.553794.

The ratio κ
τ = −5.80019 and its energy 6.36576.

6.2.2. General. There is just one admissible solution:

µ = −0.389398, and ω = −0.166546.

The ratio κ
τ = −4.97734 and its energy 12.4304. So, this time, the monotone

solution is now better.
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Figure IV. Comparison between the monotone solution and the general
solution for the data in Example 2. Left: the two helices. Right: their

tangent indicatrices.

6.3. Example 3. Let us work a final example proposed in [6] (section 4.4,
Fig. 2):

p0 = (0, 0, 0), d0 = (0.4,−1.5,−1.2), p1 = (1, 1, 1), d1 = (−1.2,−0.6,−1.2).

Thanks to the scale factor 2
√

5
77 , a rotation along the y-axis of angle

− arccos 3√
10

and a rotation along the x-axis of angle − arccos(−4
√

2
77) the

problem is reduced to

p0 = (0, 0, 0), d0 = (0, 0, 1),

p1 = (0.64466,−0.08214,−0.59740), d1 = (−0.77359,−0.09856, 0.48312).

6.3.1. Monotone. Now, there are no admissible monotone solutions.

6.3.2. General. Again, there is just one admissible general solution.
This time let us be more explicit. For such a data, there are four real

solutions for µ and ω:

solution µ ω 2ω(λ−1)
1−2ω = 1− µ

1−2ω energy

1 −0.98780 7.64178 92.020

2 1.54688 7.19549 121.974

3 −0.98136 −4.14178 1.10571 31.741

4 0.61442 −3.69549 0.92678 223.867

Only the third solution verifies conditions (5.4). Moreover, it is the one with
less energy. (See Figures V and VI.)
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Figure V. The four solutions initially obtained for Hermite data p0 =
(0, 0, 0), d0 = (0.4,−1.5,−1.2), p1 = (1, 1, 1), d1 = (−1.2,−0.6,−1.2).
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1 2 3 4

Figure VI. Schematic plot of the tangent indicatrices of the four solutions.
Only solution number 3 is a simple curve. In solutions 2 and 4 a point

with stationary tangent vector is present.

7. Conclusions

The simplifications proposed along this paper seem to be useful both from
a theoretical and constructive point of view.

In all the examples, here in the paper or in previous computer computa-
tions, we always have found just one admissible general solution. Whereas
for monotone helices we have shown examples with two, one or none solu-
tions. Moreover, the energy of the monotone helix can be even better than
the energy of the general solution.

Let us finally say that this simplified approach should be also useful to
undertake related problems like the second order Hermite problem or the
bending problem for helical curves.
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